WO2017169811A1 - 高強度鋼材およびその製造方法 - Google Patents

高強度鋼材およびその製造方法 Download PDF

Info

Publication number
WO2017169811A1
WO2017169811A1 PCT/JP2017/010531 JP2017010531W WO2017169811A1 WO 2017169811 A1 WO2017169811 A1 WO 2017169811A1 JP 2017010531 W JP2017010531 W JP 2017010531W WO 2017169811 A1 WO2017169811 A1 WO 2017169811A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
steel material
content
mpa
steel
Prior art date
Application number
PCT/JP2017/010531
Other languages
English (en)
French (fr)
Inventor
晋士 吉田
勇次 荒井
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to MX2018011714A priority Critical patent/MX2018011714A/es
Priority to JP2018509003A priority patent/JP6597887B2/ja
Priority to EP17774355.6A priority patent/EP3438312B1/en
Priority to RU2018137852A priority patent/RU2687328C1/ru
Priority to BR112018069722-2A priority patent/BR112018069722B1/pt
Priority to US16/088,902 priority patent/US10988819B2/en
Priority to CN201780022079.XA priority patent/CN108884539A/zh
Priority to CA3019483A priority patent/CA3019483A1/en
Publication of WO2017169811A1 publication Critical patent/WO2017169811A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/005Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/001Heat treatment of ferrous alloys containing Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/10Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/10Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
    • C21D8/105Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/004Dispersions; Precipitations

Definitions

  • the present invention relates to a high-strength steel material and a manufacturing method thereof.
  • oil wells and gas wells are being deepened. For this reason, high strength steel pipes for oil wells (hereinafter referred to as “oil well pipes”) such as casings and tubing used in oil wells are required.
  • SSC sulfide stress cracking
  • SSC is one type of hydrogen embrittlement that results in fracture due to the synergistic action of the diffusion of hydrogen generated on the steel surface in the corrosive environment into the steel and the stress loaded on the steel.
  • the austenitic steel material and the Ni-based alloy material having a face-centered cubic (fcc) structure generally have a body-centered cubic (bcc) structure or a body-centered square (bct) structure. (Hereinafter, these are collectively referred to as “bcc structure” in this specification.) It is known that they have excellent hydrogen embrittlement resistance compared to carbon steel materials and low alloy steel materials.
  • solution heat treatment solution heat treatment
  • component elements such as Ni are used for stabilization of austenite. Since a large amount is contained, the material cost is remarkably increased.
  • Mn is mentioned as an element having an austenite stabilizing action and cheaper than Ni. For this reason, the technique regarding various austenitic high intensity
  • Patent Document 1 includes 5.0% to 45.0% Mn and 0.5% to 2.0% V by mass, and more specifically, C: 0.10 to 1.2%. %, Si: 0.05 to 1.0%, Mn: 5.0 to 45.0% and V: 0.5 to 2.0% as essential elements, and the contents of P and S as impurities
  • the amount is limited to a specific amount or less, and if necessary, further includes one or more selected from a specific amount of Cr, Ni, Cu and N, and has a substantially austenite single-phase metal structure and 758 MPa (77.3 kgf / mm).
  • a steel material having a yield strength (YS) equal to or greater than the above and a method for producing the same are disclosed.
  • Patent Document 2 states that, by mass, C: 1.2% or less, Si: 0.05 to 1.0%, and Mn: 5 to 45% are essential elements, and the contents of P and S as impurities are as follows.
  • a metal structure that is limited to a specific amount or less, and further includes one or more selected from a specific amount of Cr, Ni, Mo, Cu, and N, and is substantially composed of austenite and ⁇ -martensite, and 758 MPa
  • a steel material having a yield strength (YS) of (77.3 kgf / mm 2 ) or more and a manufacturing method thereof are disclosed.
  • the steel material disclosed in Patent Document 1 is an austenitic steel material, if V completely dissolved in the base austenite is sufficiently precipitated as V carbide, it is surely 758 MPa (77.3 kgf / mm). 2 )
  • the above YS can be provided.
  • the V precipitate is the only precipitate that is precipitated by the aging treatment after the solution heat treatment and contributes to the strength improvement, and the V content is as low as 0.5 to 2.0% by mass. For this reason, in order to stably secure a high strength of 758 MPa or more in YS by precipitation strengthening of V carbide, for example, a long aging treatment exceeding 3 hours is required.
  • Patent Document 1 since the evaluation of K ISSC by DCB test is not made, there is room to consider the SSC resistance in the stress concentration portion such as a crack tip vicinity.
  • Patent Document 2 ensures strength improvement by cold working after solution heat treatment. For this reason, although it is an austenitic steel material, it can certainly comprise YS of 758 MPa (77.3 kgf / mm 2 ) or more. However, in order to ensure high strength stably, for example, cold working with a cross-section reduction rate of 25% or more is required. Therefore, if the cross-section reduction rate during cold working cannot be increased due to constraints such as equipment or product size, the desired high strength of 758 MPa or more may not be ensured with YS, although the SSC resistance is good. (See Tables 2 and 3 in Examples of Patent Document 2).
  • the steel material disclosed in Patent Document 3 ensures strength improvement by cold working after solution heat treatment.
  • one or more of optional elements V, Nb, Ta, Ti and Zr are included, more remarkable strength improvement is achieved by aging heat treatment after solution heat treatment and cold work performed after the aging heat treatment. Is achieved.
  • it is an austenitic steel material, it can certainly comprise YS of 862 MPa or more.
  • it is excellent in SSC resistance, stress corrosion cracking resistance, and overall corrosion resistance by a four-point bending method using a plate-like smooth test piece.
  • the steel material that has been precipitation strengthened by various carbides or carbonitrides precipitated by aging heat treatment is cold-worked.
  • the cold working equipment may be subjected to a very large load.
  • Patent Document 3 since the evaluation of K ISSC by DCB test is not made, there is room to consider the SSC resistance in the stress concentration portion such as a crack tip vicinity.
  • the present invention can be stably ensured 758MPa or more YS, the addition, K ISSC by DCB test is 33.7MPa ⁇ m 0.5 or more, to provide a high strength steel and a manufacturing method thereof austenitic Objective.
  • the present invention has been made in order to solve the above-described problems, and provides the following high-strength steel materials and manufacturing methods thereof.
  • the chemical composition is mass%, C: 0.30 to 1.0%, Si: 0.05 to 1.0%, Mn: 16.0-35.0%, P: 0.030% or less, S: 0.030% or less, Al: 0.003 to 0.06%, N: 0.1% or less, V: 0 to 3.0%, Ti: 0 to 1.5%, Nb: 0 to 1.5%, Cr: 0 to 5.0%, Mo: 0 to 3.0%, Cu: 0 to 1.0%, Ni: 0 to 1.0%, B: 0 to 0.02%, Zr: 0 to 0.5%, Ta: 0 to 0.5% Ca: 0 to 0.005%, Mg: 0 to 0.005%, Balance: Fe and impurities, Satisfying the following formula (i) Carbides and / or carbonitrides having a number density of carbides and / or carbonitrides with an equivalent circle diameter of 5 to 30 nm deposited in steel of 50 to 700 / ⁇ m 2 and an equivalent circle diameter of more than 100 nm The number density is less
  • the chemical composition is mass%, V: 0.1-3.0% Ti: 0.003 to 1.5%, Nb: 0.003 to 1.5%, Cr: 0.1 to 5.0%, Mo: 0.5 to 3.0%, Cu: 0.1 to 1.0%, Ni: 0.1 to 1.0%, B: 0.0001 to 0.02%, Zr: 0.005 to 0.5%, Ta: 0.005 to 0.5%, Ca: 0.0003 to 0.005%, and Mg: 0.0003 to 0.005% Containing one or more selected from The high-strength steel material according to (1) above.
  • the high Mn steel material of the “example of the present invention” in the example in which the crystal structure is the fcc structure and the conventional low alloy steel material in which the crystal structure is the bcc structure (0.27% C-1% Cr-0.7% Mo based low
  • the alloy steel was obtained by a DCB test defined in NACE TM0177-2005 in a high strength region where YS was 758 MPa or higher with respect to a low alloy steel obtained by quenching and tempering the alloy steel (denoted as “QT” in the figure). It is a figure which compares and shows K ISSC . It is a figure which shows typically the shape of the DCB test piece used in the Example. It is a figure which shows the shape of the wedge used by the DCB test of the Example. In addition, the numerical value in a figure shows a dimension (unit: mm).
  • the present inventors have found that in order to solve the above problems, using a relatively inexpensive high Mn steel was variously adjusted chemical composition, overlaid intensive studies on methods of increasing the K ISSC by YS and DCB test. As a result, the following important findings were obtained.
  • C 0.30 to 1.0%
  • C has an effect of stabilizing austenite even if it does not contain expensive Ni by containing it in combination with Mn described later. Furthermore, C contributes to high strength by forming fine carbides and / or carbonitrides by combining with one or more of V, Ti and Nb during aging treatment. However, when the C content is less than 0.30%, it is difficult to obtain the above effect. On the other hand, when the C content exceeds 1.0%, cementite precipitates to lower the grain boundary strength, resulting in a decrease in SSC resistance and hot workability. Therefore, the C content is set to 0.30 to 1.0%. The C content is preferably 0.40% or more. Further, the C content is preferably 0.90% or less, and more preferably less than 0.60%.
  • Si 0.05 to 1.0% Si is an element effective for deoxidation of steel, and to obtain this effect, it is necessary to contain 0.05% or more. On the other hand, when the Si content exceeds 1.0%, the grain boundary strength is lowered, and the SSC resistance is lowered. Therefore, the Si content is set to 0.05 to 1.0%.
  • the Si content is preferably 0.1% or more, and preferably 0.8% or less.
  • Mn 16.0-35.0%
  • Mn has a function of stabilizing austenite at low cost by containing it in combination with C. In order to obtain this effect sufficiently, it is necessary to contain 16.0% or more of Mn.
  • Mn is preferentially dissolved in a wet hydrogen sulfide environment, and if the Mn content exceeds 35.0%, the overall corrosion resistance is lowered. Therefore, the Mn content is 16.0 to 35.0%.
  • the Mn content is preferably 18.0% or more, and more preferably 19.0% or more.
  • Mn content is 30.0% or less, and it is more preferable that it is 25.0% or less.
  • P 0.030% or less
  • P is an element that segregates at grain boundaries and adversely affects SSC resistance. For this reason, P content needs to be limited to 0.030% or less.
  • the content of P which is an impurity is preferably as low as possible, and is preferably 0.020% or less.
  • the lower limit of the P content is not particularly set and includes 0%. However, excessive reduction of the P content causes an increase in the manufacturing cost of the steel material, so the lower limit is preferably about 0.001%.
  • S 0.030% or less S is present in the steel as an impurity.
  • the content of S which is an impurity is preferably as low as possible, and is preferably 0.015% or less.
  • the lower limit is preferably about 0.001%.
  • Al 0.003 to 0.06%
  • Al is an element effective for deoxidation of steel. To obtain this effect, it is necessary to contain 0.003% or more. On the other hand, when the Al content exceeds 0.06%, oxide inclusions are particularly coarsened, which adversely affects toughness and SSC resistance. Therefore, the Al content is set to 0.003 to 0.06%.
  • the Al content is preferably 0.008% or more, and preferably 0.05% or less.
  • Al content of this invention points out content in acid-soluble Al (what is called "Sol.Al").
  • N 0.1% or less N contributes to high strength by forming fine carbonitride by combining with one or more of V, Ti and Nb during aging treatment. However, when the N content exceeds 0.1%, the hot workability is reduced. Therefore, the N content is 0.1% or less.
  • the N content is preferably 0.08% or less. In order to acquire said effect, it is preferable that N content is 0.004% or more, and it is more preferable that it is 0.010% or more.
  • V 0 to 3.0%
  • V is an element that contributes to high strength by forming fine carbides and / or carbonitrides by combining with C or further N during aging treatment. For this reason, you may contain V as needed. However, even if V is contained excessively, the above effects are saturated, leading to an increase in material cost, and in addition, a decrease in toughness and instability of austenite may be caused. Therefore, the V content is 3.0% or less. The V content is preferably 2.9% or less. In order to acquire said effect, it is preferable that V content is 0.1% or more, and it is more preferable that it is 1.0% or more.
  • Ti 0 to 1.5% Ti is an element that contributes to high strength by forming fine carbides and / or carbonitrides by combining with C or N during aging treatment. For this reason, you may contain Ti as needed. However, even if Ti is contained excessively, the above effects are saturated, leading to an increase in material cost, and in addition, a decrease in toughness and instability of austenite may be caused. Therefore, the Ti content is 1.5% or less.
  • the Ti content is preferably 1.1% or less. In order to acquire said effect, it is preferable that Ti content is 0.003% or more, and it is more preferable that it is 0.1% or more.
  • Nb 0 to 1.5%
  • Nb is an element that contributes to high strength by forming fine carbides and / or carbonitrides by combining with C or further N during aging treatment. For this reason, you may contain Nb as needed. However, even if Nb is contained excessively, the above effects are saturated, leading to an increase in material cost, and in addition, a decrease in toughness and instability of austenite may be caused. Therefore, the Nb content is 1.5% or less.
  • the Nb content is preferably 1.1% or less. In order to obtain the above effect, the Nb content is preferably 0.003% or more, and more preferably 0.1% or more.
  • V, Ti, and Nb in the above formula (i) mean the contents (mass%) of each element in steel, and are zero when not contained.
  • the value on the left side of the above formula (i) is an index for increasing the strength by forming fine V, Ti and Nb carbides and / or carbonitrides after aging treatment, and at the same time, the cross-section reduction rate is 20% or less cold. It is also an index for securing a high strength of 758 MPa or more in YS by processing and subsequent aging treatment for 2 hours or less.
  • the left side value of Formula is 2.1 or more.
  • the upper limit is not particularly defined, but is preferably 4.0 or less, and preferably 3.0 or less.
  • any one of the above three elements may be contained alone, or two of the three elements may be combined and contained. All of them may be contained in combination.
  • Cr 0 to 5.0% Cr is an element that improves the overall corrosion resistance. For this reason, you may contain Cr as needed. However, when the amount of Cr exceeds 5.0%, the SSC resistance is lowered. Therefore, the Cr content is 5.0% or less. The Cr content is preferably 4.5% or less. In order to acquire said effect, it is preferable that Cr content is 0.1% or more.
  • Mo 0 to 3.0% Mo is an element that improves the overall corrosion resistance. For this reason, you may contain Mo as needed. However, even if Mo is contained in an amount exceeding 3.0%, the above effect is saturated and the material cost is increased. Therefore, the Mo content is 3.0% or less. The Mo content is preferably 2.0% or less. In order to acquire said effect, it is preferable that Mo content is 0.5% or more.
  • the total amount when Cr and Mo are contained in combination is preferably 5.0% or less.
  • Cu 0 to 1.0%
  • Cu is an element effective for stabilizing austenite. For this reason, you may contain Cu as needed. However, when Cu is contained in a large amount, local corrosion is promoted and a stress concentration portion is formed on the steel surface. Therefore, the Cu content is 1.0% or less. The Cu content is preferably 0.8% or less. In order to acquire said effect, it is preferable that Cu content is 0.1% or more.
  • Ni 0 to 1.0%
  • Ni is an element effective for stabilizing austenite. For this reason, you may contain Ni as needed. However, when Ni is contained in a large amount, local corrosion is promoted and a stress concentration portion is formed on the steel surface. Therefore, the Ni content is 1.0% or less. The Ni content is preferably 0.8% or less. In order to obtain the above effect, the Ni content is preferably 0.1% or more.
  • the total amount when Cu and Ni are combined and contained is preferably 1.0% or less.
  • B 0 to 0.02%
  • B has the effect
  • the B content is preferably 0.015% or less. In order to acquire said effect, it is preferable that B content is 0.0001% or more.
  • Zr 0 to 0.5%
  • Zr is an element that forms a carbide and / or carbonitride and has a precipitation strengthening action. For this reason, you may contain Zr as needed. However, even if Zr is contained in a large amount, the above effects are saturated, leading to an increase in material cost, and in addition, a decrease in toughness and instability of austenite may be caused. Therefore, the Zr content is 0.5% or less. The Zr content is preferably 0.4% or less. In order to obtain the above effect stably, the Zr content is preferably 0.005% or more.
  • Ta 0 to 0.5%
  • Ta is an element that forms a carbide and / or carbonitride and has a precipitation strengthening action. For this reason, you may contain Ta as needed. However, even if Ta is contained in a large amount, the above effects are saturated, resulting in an increase in material cost, and also a decrease in toughness and instability of austenite may be caused. Therefore, the Ta content is 0.5% or less.
  • the Ta content is preferably 0.4% or less. In order to obtain the above effect, the Ta content is preferably 0.005% or more.
  • the total amount is preferably 0.5% or less.
  • Ca 0 to 0.005%
  • Ca has the effect
  • the Ca content is preferably 0.003% or less. In order to acquire said effect, it is preferable that Ca content is 0.0003% or more.
  • Mg 0 to 0.005% Mg has the effect of controlling the form of inclusions to improve toughness and corrosion resistance. For this reason, you may contain Mg as needed. However, when Mg is contained in a large amount, inclusions may be clustered, leading to a decrease in toughness and corrosion resistance. Therefore, the Mg content is 0.005% or less.
  • the Mg content is preferably 0.003% or less. In order to acquire said effect, it is preferable that Mg content is 0.0003% or more.
  • the total amount is preferably 0.005% or less.
  • the balance is Fe and impurities.
  • impurities are components mixed in due to various factors of raw materials such as ores and scraps and manufacturing processes when industrially producing steel materials, and are permitted within a range that does not adversely affect the present invention. Means what will be done.
  • the steel material is strengthened by precipitating carbides and / or carbonitrides (hereinafter collectively referred to as “precipitates”).
  • precipitates precipitate inside the steel material and contribute to strengthening by making dislocations difficult to move. If the size of these precipitates is less than 5 nm in terms of the equivalent circle diameter, they do not act as an obstacle when dislocations move. On the other hand, if the size of the precipitate is larger than the equivalent circle diameter of 30 nm and becomes coarse, the number of the precipitates is extremely reduced, so that it does not contribute to strengthening. Therefore, the size of the precipitate suitable for precipitation strengthening the steel material is 5 to 30 nm.
  • the number density of precipitates having a circle equivalent diameter of 5 to 30 nm in the metal structure is 50 to 700 / ⁇ m 2 .
  • the number density of precipitates having an equivalent circle diameter of 5 to 30 nm is preferably 100 / ⁇ m 2 or more, and more preferably 150 / ⁇ m 2 or more.
  • the number density of precipitates having an equivalent circle diameter of 5 to 30 nm is preferably 650 / ⁇ m 2 or less, and more preferably 600 / ⁇ m 2 or less.
  • the number density of precipitates having an equivalent circle diameter exceeding 100 nm needs to be less than 10 / ⁇ m 2 .
  • the number density of precipitates having an equivalent circle diameter exceeding 100 nm is preferably less than 7 / ⁇ m 2 , and more preferably less than 5 / ⁇ m 2 .
  • the number density of precipitates having an equivalent circle diameter of more than 30 nm and not more than 100 nm is preferably 70 / ⁇ m 2 or less, and more preferably 60 / ⁇ m 2 or less.
  • the number density of precipitates is measured by the following method.
  • a thin film having a thickness of 100 nm is prepared from the inside of the steel material (thickness central portion), and the thin film is observed with a transmission electron microscope (TEM), and the above-mentioned equivalent circle diameter within a 1 ⁇ m square field is 5 to 30 nm.
  • the number of precipitates, precipitates exceeding 30 nm and not more than 100 nm and precipitates exceeding 100 nm are measured.
  • the number density is measured in three or more fields of view, and the average value is obtained.
  • YS of high strength steel The YS of the high-strength steel material according to the present invention is 758 MPa or more. If YS is 758 MPa or more, it can sufficiently withstand the recent deep well formation of oil wells. YS is preferably 760 MPa or more. YS is preferably 1000 MPa or less, and more preferably 950 MPa or less. In the present invention, “YS” means “YS in room temperature atmosphere”.
  • K ISSC of high strength steel The K ISSC of the high-strength steel material according to the present invention is 33.7 MPa ⁇ m 0.5 or more. If K ISSC is 33.7 MPa ⁇ m 0.5 or more, there is no problem with SSC resistance at stress concentration parts such as near the crack tip, and it is sufficiently stable for deep well formation in the recent sour environment. Can withstand. K ISSC is preferably 34.0 MPa ⁇ m 0.5 or more. The upper limit of K ISSC is assumed to be about 50.0 MPa ⁇ m 0.5 . Note that “K ISSC ” in the present invention refers to a value determined by a DCB test using a test piece and a wedge having a shape shown in FIGS. 2 and 3 as defined in NACE TM0177-2005.
  • the high-strength steel material of the present invention can be manufactured by the following method.
  • the high Mn steel having the above-described chemical composition is melted by the same method as general austenitic steel, and then ingot or slab is formed by casting.
  • a slab having a round billet shape for pipe making may be formed by a so-called “round CC” method.
  • the cast ingot or slab is subjected to partial rolling or hot forging.
  • This step is a step of obtaining a material used for final hot working (for example, hot rolling, hot extrusion, hot forging) for processing into a predetermined shape such as a thick plate, a round bar, and a seamless steel pipe. is there.
  • a material used for final hot working for example, hot rolling, hot extrusion, hot forging
  • the slab made into the circular billet shape can be directly finished into a steel pipe by using the “round CC” method, it is not always necessary to perform the ingot rolling or the hot forging.
  • Hot Working Step After heating the above steel material to 900 to 1200 ° C., it is finished into a predetermined shape.
  • the heating temperature is lower than 900 ° C., deformation resistance during hot working increases and the load received by the processing equipment increases, which may cause processing defects such as wrinkles or cracks.
  • the heating temperature exceeds 1200 ° C., high-temperature grain boundary cracking or ductility reduction may occur. Therefore, the heating temperature in hot workability is set to 900 to 1200 ° C.
  • the heating temperature is preferably 950 ° C. or higher, and preferably 1150 ° C. or lower.
  • the heating temperature in this process refers to the temperature at the surface of the steel material.
  • the holding time in the above temperature range is preferably 10 to 180 minutes, more preferably 20 to 120 minutes, depending on the size or shape of the product.
  • the finishing temperature for hot working is preferably 800 to 1150 ° C, more preferably 1000 to 1150 ° C.
  • (C) Solution heat treatment step The steel material after cooling to a temperature of 100 ° C. or lower needs to sufficiently dissolve precipitates such as carbides in the base austenite. Accordingly, in the present invention, precipitates and the like can be sufficiently dissolved, and in order to obtain temperature and time conditions that do not cause coarsening of austenite grains, the temperature is maintained at 800 to 1200 ° C. for 10 minutes or more. And The solution heat treatment temperature is preferably 1000 ° C. or higher, and preferably 1150 ° C. or lower.
  • the heating temperature in this process also refers to the temperature at the surface of the steel material.
  • the holding time in the temperature range of the solution heat treatment is preferably 20 minutes or more, more preferably 180 minutes or less, depending on the size or shape of the product.
  • the rapid cooling after holding for the above-mentioned time is performed at a cooling rate that prevents precipitation of carbides and intermetallic compounds during cooling and does not cause thermal distortion by an appropriate method such as water cooling, oil cooling, or mist cooling. Just do it.
  • Specific examples of the cooling rate include water cooling or oil cooling of 1 ° C./second or more. In this case, it is preferable that the temperature range up to about 300 ° C. is cooled at a cooling rate of 10 ° C./second or more.
  • (D) Cold working step The steel material quenched in the solution heat treatment step is subjected to a cold working of 5 to 20% in terms of the cross-sectional reduction rate in order to secure carbide and carbonitride nucleation sites. If the cross-section reduction rate is less than 5%, it may not be possible to secure a high strength of 758 MPa or more in YS. On the other hand, if the cross-section reduction rate exceeds 20%, there may be restrictions in terms of equipment or product size. The cross-sectional reduction rate is preferably 18% or less.
  • the number of cold workings is not particularly limited, and may be one or more times. However, when performing cold working a plurality of times, it is needless to say that the total cross-section reduction rate does not exceed 20%, but it is necessary to perform the work without softening in the middle.
  • the above-mentioned “(total) cross-section reduction rate” means “S 0 ” as the cross-sectional area of the steel material before the first cold work, and “S 0 ” as the cross-sectional area of the steel material after the final cold work. S f ” ⁇ (S 0 -S f ) / S 0 ⁇ ⁇ 100 The value represented by
  • (E) Aging treatment step The steel material subjected to the above cold working is subjected to an aging treatment which is maintained at 600 to 750 ° C. for 0.5 to 2 hours so that YS of 758 MPa or more can be secured stably.
  • the aging treatment temperature is less than 600 ° C. or the aging treatment time is less than 0.5 hour, the precipitation effect of V, Ti and Nb carbides and / or carbonitrides effective for strengthening is not sufficient, A high strength of 758 MPa or more may not be secured with YS.
  • the aging treatment temperature exceeds 750 ° C.
  • the aging treatment temperature in this step also refers to the temperature at the surface of the steel material.
  • Hot Working Step After heating the above steel material to 900-1200 ° C., it is finished to a predetermined shape at 800 ° C. or higher.
  • the heating temperature of the steel material is lower than 900 ° C., the deformation resistance during hot working increases, and the load received by the processing equipment increases, which may cause processing defects such as wrinkles or cracks.
  • the heating temperature exceeds 1200 ° C., high-temperature grain boundary cracking or ductility reduction may occur. Therefore, the heating temperature of the steel material in the hot working process is set to 900 to 1200 ° C.
  • the heating temperature is preferably 1000 ° C. or higher, and preferably 1150 ° C. or lower.
  • finishing temperature of hot working is below 800 ° C., precipitates such as carbides are formed, and the precipitates may remain in the base austenite without being sufficiently dissolved in the so-called “direct solution heat treatment” in the next step. is there.
  • the finishing temperature for hot working is preferably 1000 ° C. or higher, and preferably 1150 ° C. or lower.
  • the heating temperature and finishing temperature in this process refer to the temperature at the surface of the steel material.
  • the holding time in the heating temperature range is preferably 10 to 180 minutes, more preferably 20 to 120 minutes, depending on the size or shape of the product.
  • (H) Solid solution heat treatment step The steel material finished in a predetermined shape at 1000 ° C. or higher is then immediately quenched to leave precipitates such as carbides in a sufficiently solid solution state in the base austenite. it can.
  • the rapid cooling in this step is a cooling rate that prevents precipitation of carbides and intermetallic compounds during cooling, such as water cooling, oil cooling, or mist cooling, and does not cause thermal strain, as in step (c). Just do it.
  • the rapid cooling described above is preferably performed within 180 seconds after finishing by hot working although it depends on the size or shape of the product.
  • step (I) Cold working step
  • the steel material quenched in the so-called “direct solution heat treatment” in step (h) is cooled by 5 to 20% in terms of cross-sectional reduction to secure carbide and carbonitride nucleation sites. Apply inter-processing. If the cross-section reduction rate is less than 5%, it may not be possible to secure a high strength of 758 MPa or more in YS. On the other hand, if the cross-section reduction rate exceeds 20%, there may be restrictions in terms of equipment or product size.
  • the cross-sectional reduction rate is preferably 18% or less.
  • the number of cold workings is not particularly limited as long as the cross-sectional reduction rate is 5 to 20%, and may be one or more times. However, when performing cold working a plurality of times, it is needless to say that the total cross-section reduction rate does not exceed 20%, but it is necessary to perform the work without softening in the middle.
  • (J) Aging treatment step The steel material subjected to the above cold working is subjected to an aging treatment that is maintained at 600 to 750 ° C. for 0.5 to 2 hours so that YS of 758 MPa or more can be secured stably.
  • the aging treatment temperature is less than 600 ° C. or the aging treatment time is less than 0.5 hour, the precipitation effect of V, Ti and Nb carbides and / or carbonitrides effective for strengthening is not sufficient, A high strength of 758 MPa or more may not be secured with YS.
  • the aging treatment temperature exceeds 750 ° C.
  • the aging treatment temperature in this step also refers to the temperature at the surface of the steel material.
  • the steel material subjected to the solution heat treatment in the step (c) or the step (h) may be subjected to mechanical processing such as cutting or peeling before cold working as necessary. Further, in the case of cold working, it is preferable to perform a lubricating treatment by an appropriate method.
  • Steel No. in Table 1 1-21 are steels whose chemical compositions are within the range defined by the present invention.
  • Steel No. 22 to 24 are steels whose chemical compositions deviate from the conditions defined in the present invention.
  • the plate material having a thickness of 40 mm obtained as described above was hot-rolled into a plate material having a thickness of 20 mm under the conditions shown in Table 2. Thereafter, test no. 1 to 10, 13 to 15, and 18 to 52 were cooled to room temperature after finish rolling, and then reheated to perform solution heat treatment. In addition, Test No. For 11, 12, 16 and 17, solution heat treatment was directly applied after finish rolling. All these samples were further subjected to cold rolling and aging treatment under the conditions shown in Table 2 to obtain test materials.
  • the base metal structure was first investigated. Specifically, the volume ratio of the bcc structure phase was measured using a ferrite meter (model number: FE8e3) manufactured by Helmut Fischer. As a result, no bcc structural phase was detected in test numbers 1 to 51. On the other hand, in the test number 52 and the test number 53, the bcc structure phase was recognized.
  • a thin film having a thickness of 100 nm was prepared from the central portion in the thickness direction of each test material, and the thin film was observed by TEM, and a precipitate having an equivalent circle diameter of 5 to 30 nm and 100 nm contained in a 1 ⁇ m square field of view. The number of precipitates exceeding the number was measured. In addition, the number of precipitates was measured in 3 visual fields, and the average value was used.
  • a round bar tensile test piece having a diameter of 4 mm in parallel with the rolling direction (longitudinal direction) was cut out from the central portion in the thickness direction of each test material, and subjected to a tensile test in the air at room temperature to obtain YS.
  • a DCB test piece having a notch and a hole as shown in FIG. 2 in the rolling direction (longitudinal direction) and a wedge having a thickness of 2.92 mm as shown in FIG. 3 are sampled from the center in the thickness direction of each test material. did.
  • the solution A defined in NACE TM0177-2005 (5% NaCl + 0.5% CH 3 COOH aqueous solution, concentration is mass%) was degassed and injected into the autoclave.
  • 1 atm of hydrogen sulfide gas was passed through the autoclave, and the liquid phase was stirred to saturate the hydrogen sulfide gas into the liquid phase.
  • the liquid phase was stirred and held at 24 ° C. for 336 hours, after which the gas was replaced with nitrogen and the test piece was taken out.
  • FIG. 1 shows a high Mn steel material of “Invention Example” of Test Nos. 1-36 having a crystal structure of fcc structure and a conventional low alloy steel material having a bcc structure of crystal structure (0.27% C-1%). Obtained by the above DCB test in a high strength region where YS is 758 MPa or higher for a low alloy steel obtained by quenching and tempering Cr-0.7% Mo-based low alloy steel (denoted as “QT” in the figure). The KISSC obtained are shown in comparison.
  • test no. In Nos. 1 to 36 YS is 758 MPa or more, and K ISSC by DCB test is 33.7 MPa ⁇ m 0.5 or more, and it is clear that it has good SSC resistance.
  • test No. 37-53 are either not be obtained a high strength of more than 758MPa at YS, not obtained SSC resistance that K ISSC is 33.7MPa ⁇ m 0.5 or more by DCB test.
  • test No. As shown in 37 to 46, even when steel whose chemical composition satisfies the provisions of the present invention is used, a high strength of 758 MPa or more cannot be obtained in YS if the production conditions are not preferable.
  • test no That was not cold worked before aging treatment. In 37 and 38, even if an aging treatment was performed under appropriate conditions thereafter, fine precipitates were not sufficiently generated, and the required strength could not be obtained. Similarly, Test No. which was not cold worked before aging treatment. In No. 46, even when the aging treatment was performed for a long time, coarse precipitates were generated, and the strength was decreased.
  • Test No. not subjected to aging treatment In 39 to 41, 43 and 44, no precipitate was formed and the strength was lowered. In addition, Test No. In No. 42, since the aging treatment time was too long, the precipitates became coarse and the strength decreased. Furthermore, test no. In No. 45, since the aging treatment temperature was too low, sufficient fine precipitates were not generated and the required strength could not be obtained.
  • plate-like smooth test pieces were collected from the plate materials prepared in Test Nos. 1 to 36 in the same manner as described above, and the solution A specified in NACE TM0177-2005 saturated with 1 atm of hydrogen sulfide gas was used at 24 ° C. Was immersed for 336 hours, and the corrosion weight loss was determined. As a result, it was confirmed that the corrosion weight loss was small and the overall corrosion resistance was excellent.
  • the high-strength steel material of the present invention has a yield stress of 758 MPa or more and a K ISSC by DCB test of 33.7 MPa ⁇ m 0.5 or more. it can. Moreover, said high-strength steel material can be obtained with the manufacturing method of this invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

化学組成が、質量%で、C:0.30~1.0%、Si:0.05~1.0%、Mn:16.0~35.0%、P:0.030%以下、S:0.030%以下、Al:0.003~0.06%、N:0.1%以下、V:0~3.0%、Ti:0~1.5%、Nb:0~1.5%、Cr:0~5.0%、Mo:0~3.0%、Cu:0~1.0%、Ni:0~1.0%、B:0~0.02%、Zr:0~0.5%、Ta:0~0.5%、Ca:0~0.005%、Mg:0~0.005%、残部:Feおよび不純物であり、[V+Ti+Nb>2.0]を満足し、鋼中に析出する円相当直径が5~30nmの炭化物/炭窒化物の個数密度が50~700個/μm2であり、かつ、円相当直径が100nm超の炭化物/炭窒化物の個数密度が10個/μm2未満であり、降伏応力が758MPa以上であり、DCB試験によるKISSCの値が33.7MPa・m0.5以上である、高強度鋼材。

Description

高強度鋼材およびその製造方法
 本発明は、高強度鋼材およびその製造方法に関する。
 油井およびガス井(以下、油井およびガス井を総称して、単に「油井」という。)の深井戸化が進んでいる。このため、油井で用いられるケーシング、チュービング等の油井用鋼管(以下、「油井管」という。)の高強度化が要求されている。
 さらに、最近開発される深井戸の内部の多くは、腐食性を有する硫化水素(HS)を含む酸性化した厳しい環境(サワー環境)である。このような環境下では、硫化物応力割れ(以下、「SSC」という。)によって油井管が破壊に至ることがある。そして、鋼の高強度化に伴い、SSCに対する感受性が高まることが広く知られている。
 このような状況の下、特に油井の壁(外管)の役割を果たすケーシングとして用いられる鋼材に対して、高強度化および耐サワー化の要求が高まっている。そして、現在では、758~862MPaの降伏応力(以下、「YS」ともいう。)を有するいわゆる「110ksi級」でも、HS分圧が1atmの環境でSSCを起こさない油井管、または862~965MPaのYSを有するいわゆる「125ksi級」でも、HS分圧が0.03atmの環境でSSCを起こさない油井管が使用されるようになっている。
 なお、上記の「SSC」は、腐食環境中で鋼材表面に発生した水素の鋼中への拡散と鋼材に負荷された応力との相乗作用によって破断に至る水素脆化の1種である。
 このように、高強度油井管の開発に当たっては、高強度化だけでなく、良好な耐SSC性を具備することが要求される。
 しかも、油井環境のますますの苛酷化に伴って、油井管にはより一層高い安全性が求められるようになり、耐SSC防止の観点から、従来のNACE TM0177-2005に記載の「Method A」に基づく定荷重試験結果および「Method B」に基づくSc試験結果が良好なことに加えて、最近では、「Method D」に基づくDCB試験結果であるサワー環境中における破壊靱性値(以下、「KISSC」という。)が高いことが要求され始めている。
 例えば、代表的サイズである肉厚が15.9mmのケーシングに、0.5mmのき裂が存在し、いわゆる「110ksi級」の規格最小降伏応力である758MPaが負荷されることを想定すると、き裂底の応力拡大係数は33.7MPa・m0.5となる。このため、KISSCには、それ以上の値が要求される。
 なお、結晶構造と水素脆化との関係については、面心立方(fcc)構造のオーステナイト系鋼材およびNi基合金材が、一般的に体心立方(bcc)構造または体心正方(bct)構造(以下、本明細書においてはこれらをまとめて「bcc構造」という。)の炭素鋼材および低合金鋼材に比べて、優れた耐水素脆化特性を有することが知られている。
 しかし、一般に、オーステナイト系材料は溶体化熱処理(以下、「固溶化熱処理」ということがある。)ままでは低強度であり、オーステナイトの安定化のために、通常はNi等の高価な成分元素を多量に含有させるので、材料コストの上昇が著しい。
 オーステナイト安定化作用を有し、かつ上記Niよりも安価な元素として、Mnが挙げられる。このため、種々のオーステナイト系高強度高Mn鋼材に関する技術が開示されている。
 例えば、特許文献1に、質量%で、5.0~45.0%のMnと0.5~2.0%のVを含み、より具体的には、C:0.10~1.2%、Si:0.05~1.0%、Mn:5.0~45.0%およびV:0.5~2.0%を必須の元素とし、不純物としてのPおよびSの含有量を特定量以下に制限し、必要に応じてさらに、特定量のCr、Ni、CuおよびNから選択される1種以上を含み、実質的にオーステナイト単相の金属組織と758MPa(77.3kgf/mm)以上の耐力(YS)とを有する鋼材およびその製造方法が開示されている。
 特許文献2に、質量%で、C:1.2%以下、Si:0.05~1.0%およびMn:5~45%を必須の元素とし、不純物としてのPおよびSの含有量を特定量以下に制限し、必要に応じてさらに、特定量のCr、Ni、Mo、CuおよびNから選択される1種以上を含み、実質的にオーステナイトとεマルテンサイトからなる金属組織と、758MPa(77.3kgf/mm)以上の耐力(YS)を有する鋼材とその製造方法が開示されている。
 特許文献3に、化学組成が、質量%で、C:0.60~1.4%、Si:0.05~1.00%、Mn:12~25%およびAl:0.003~0.06%を必須の元素とし、不純物としてのPおよびSの含有量を特定量以下に制限し、必要に応じてさらに、特定量のN、Cr、Mo、Cu、Ni、V、Nb、Ti、Zr、Ca、MgおよびBから選択される1種以上を含み、Nieq(=Ni+30C+0.5Mn)≧27.5であって、金属組織が、FCC構造を主体とする組織で、フェライトおよびα’マルテンサイトの合計体積分率が0.10%未満であり、YSが862MPa以上である鋼材が開示されている。
特開平9-249940号公報 特開平10-121202号公報 国際公開第2015/012357号
 特許文献1で開示された鋼材は、オーステナイト系鋼材であるにも拘わらず、基地のオーステナイト中に完全に固溶したVがV炭化物として十分に析出すれば、確かに758MPa(77.3kgf/mm)以上のYSを具備することができる。しかし、溶体化熱処理後の時効処理により析出して強度向上に寄与する析出物がV炭化物だけであり、しかも、V含有量が、質量%で、0.5~2.0%と低い。このため、V炭化物の析出強化によってYSで758MPa以上の高強度を安定して確保するのに、例えば、3時間を超える長時間の時効処理が必要になる。その結果、生産性の点で不利になり、エネルギーコストが嵩む場合がある(特許文献1の実施例の表3および表4参照)。さらに、特許文献1では、DCB試験によるKISSCの評価がなされていないので、き裂先端近傍等の応力集中部における耐SSC性について検討すべき余地がある。
 特許文献2で開示された鋼材は、強度向上を溶体化熱処理後の冷間加工によって確保する。このため、オーステナイト系鋼材であるにも拘わらず、確かに758MPa(77.3kgf/mm)以上のYSを具備することが可能である。しかし、高強度を安定して確保するには、例えば、断面減少率で25%以上の冷間加工が必要である。そのため、設備または製品サイズ等の制約から、冷間加工時の断面減少率を大きくできない場合には、耐SSC性は良好であるものの、YSで758MPa以上という所望の高強度が確保できない場合がある(特許文献2の実施例の表2および表3参照)。一方、鋼材の化学組成によっては、758MPa以上という所望のYS強度の確保はできるものの、加工誘起変態によりbcc構造のα’マルテンサイトが生成して耐SSC性の低下を招く場合のあることが想定される。加えて、特許文献2でも、DCB試験によるKISSCの評価がなされていないので、き裂先端近傍等の応力集中部における耐SSC性について検討すべき余地がある。
 特許文献3で開示された鋼材は、強度向上を固溶化熱処理後の冷間加工によって確保する。また、任意元素であるV、Nb、Ta、TiおよびZrの1種以上を含む場合には、固溶化熱処理後の時効熱処理と該時効熱処理の後に施す冷間加工とによって、より顕著な強度向上が達成される。このため、オーステナイト系鋼材であるにも拘わらず、確かに862MPa以上のYSを具備することが可能である。しかも、板状の平滑試験片を用いた、4点曲げ法による耐SSC性および耐応力腐食割れ性、ならびに耐全面腐食性に優れている。しかしながら、上記各種任意元素を含む場合の顕著な強度向上効果を確保するためには、時効熱処理で析出した各種の炭化物または炭窒化物によって析出強化された鋼素材を冷間加工することになるので、冷間加工設備が極めて大きな負荷を受けるおそれがある。また、特許文献3でも、DCB試験によるKISSCの評価がなされていないので、き裂先端近傍等の応力集中部における耐SSC性について検討すべき余地がある。
 本発明は、安定して758MPa以上のYSが確保でき、しかも、DCB試験によるKISSCが33.7MPa・m0.5以上である、オーステナイト系の高強度鋼材およびその製造方法を提供することを目的とする。
 本発明は、上記課題を解決するためになされたものであり、下記に示す高強度鋼材およびその製造方法を要旨とする。
 (1)化学組成が、質量%で、
 C:0.30~1.0%、
 Si:0.05~1.0%、
 Mn:16.0~35.0%、
 P:0.030%以下、
 S:0.030%以下、
 Al:0.003~0.06%、
 N:0.1%以下、
 V:0~3.0%、
 Ti:0~1.5%、
 Nb:0~1.5%、
 Cr:0~5.0%、
 Mo:0~3.0%、
 Cu:0~1.0%、
 Ni:0~1.0%、
 B:0~0.02%、
 Zr:0~0.5%、
 Ta:0~0.5%、
 Ca:0~0.005%、
 Mg:0~0.005%、
 残部:Feおよび不純物であり、
 下記(i)式を満足し、
 鋼中に析出する円相当直径が5~30nmの炭化物および/または炭窒化物の個数密度が50~700個/μmであり、かつ、円相当直径が100nmを超える炭化物および/または炭窒化物の個数密度が10個/μm未満であり、
 降伏応力が758MPa以上であり、
 DCB試験によるKISSCの値が33.7MPa・m0.5以上である、
 高強度鋼材。
 V+Ti+Nb>2.0   ・・・(i)
 但し、上記(i)式中のV、TiおよびNbは、それぞれの元素の鋼中含有量(質量%)を意味し、含有されない場合はゼロとする。
 (2)前記化学組成が、質量%で、
 V:0.1~3.0%、
 Ti:0.003~1.5%、
 Nb:0.003~1.5%、
 Cr:0.1~5.0%、
 Mo:0.5~3.0%、
 Cu:0.1~1.0%、
 Ni:0.1~1.0%、
 B:0.0001~0.02%、
 Zr:0.005~0.5%、
 Ta:0.005~0.5%、
 Ca:0.0003~0.005%、および
 Mg:0.0003~0.005%
 から選択される1種以上を含有する、
 上記(1)に記載の高強度鋼材。
 (3)上記(1)または(2)に記載の化学組成を有する鋼材に対して、下記(a)~(f)の工程の処理を順に施す、
 上記(1)または(2)に記載の高強度鋼材の製造方法。
 (a)900~1200℃に加熱した後、所定の形状に仕上げる、熱間加工工程
 (b)100℃以下の温度まで冷却する、冷却工程
 (c)800~1200℃に加熱して10分以上保持した後、急冷する、固溶化熱処理工程
 (d)断面減少率で5~20%の加工を行う、冷間加工工程
 (e)600~750℃で0.5~2時間保持する、時効処理工程
 (f)100℃以下の温度まで冷却する、冷却工程
 (4)上記(1)または(2)に記載の化学組成を有する鋼材に対して、下記(g)~(k)の工程の処理を順に施す、
 上記(1)または(2)に記載の高強度鋼材の製造方法。
 (g)900~1200℃に加熱した後、800℃以上で所定の形状に仕上げる、熱間加工工程
 (h)上記(g)の工程に引き続いて直ちに急冷する、固溶化熱処理工程
 (i)断面減少率で5~20%の加工を行う、冷間加工工程
 (j)600~750℃で0.5~2時間保持する、時効処理工程
 (k)100℃以下の温度まで冷却する、冷却工程
 本発明によれば、降伏応力が758MPa以上で、DCB試験によるKISSCが33.7MPa・m0.5以上である高強度鋼材を得ることができる。
結晶構造がfcc構造である実施例における「本発明例」の高Mn鋼材および結晶構造がbcc構造である従来型低合金鋼材(0.27%C-1%Cr-0.7%Mo系低合金鋼を焼入れ-焼戻し処理(図中には、「QT」と表記)した低合金鋼材)について、YSが758MPa以上の高強度域で、NACE TM0177-2005に規定されたDCB試験によって求められたKISSCを比較して示す図である。 実施例で用いたDCB試験片の形状を模式的に示す図である。 実施例のDCB試験で用いたくさびの形状を示す図である。なお、図中の数値は寸法(単位:mm)を示す。
 本発明者らは、前記の課題を解決するために、化学組成を種々調整した比較的安価な高Mn鋼材を用いて、YSとDCB試験によるKISSCとを高める手法について鋭意研究を重ねた。その結果、下記の重要な知見を得た。
 (A)質量%で、0.30%以上のCと16.0%以上のMnを含有させることにより、高価なNiを含有させなくても、オーステナイトを安定化させることができるが、固溶化熱処理のままでは、安定して758MPa以上のYSが得られない。
 (B)固溶化熱処理後に時効処理を施してV、NbおよびTiの炭化物および/または炭窒化物を析出させ、その強化作用を利用すればオーステナイト系鋼材のYSを高めることができる。
 (C)V、NbおよびTiの炭化物および/または炭窒化物の析出強化作用を安定して確保するためには、V、NbおよびTiの合計含有量が、2.0%を超える必要がある。
 (D)必要量の炭化物および/または炭窒化物を確保するためには、時効処理時間は長くすることが好ましい。しかしながら、長時間の時効処理は、コストの増大につながるだけでなく、粗大な炭化物または炭窒化物を生成させ、降伏応力を却って低下させる。したがって、短時間の時効処理で必要量の炭化物および/または炭窒化物を析出させることが望まれる。
 (E)固溶化熱処理後に冷間加工を施してから時効処理すれば、冷間加工で導入された転位が上記の炭化物および炭窒化物の核生成サイトとなる。そのため、冷間加工しない場合に比べて短時間の時効処理で鋼を強化することができる。しかも、合計で2.0%を超える量のV、NbおよびTiを含有させることで、断面減少率で20%以下という軽度の冷間加工とその後の2時間以下の短時間時効処理とによって、大きな強化作用が得られる。その結果、設備、製品サイズまたは製造コスト面からの制約が少なくなる。
 (F)YSが758MPa以上の高強度域において、NACE TM0177-2005に規定されたDCB試験によって求められるKISSCは、bcc構造の低合金鋼材ではYSの上昇とともに顕著に低下するのに対して、fcc構造の高Mn鋼材では、YSによらず33.7MPa・m0.5以上の大きな値を有する(図1参照)。
 本発明は上記の知見に基づき完成されたものである。以下、本発明の各要件について詳しく説明する。
 1.化学組成
 本発明に係る鋼材の化学組成の限定理由は次のとおりである。以下の説明において各元素の含有量についての「%」は、「質量%」を意味する。
 C:0.30~1.0%
 Cは、後述のMnと複合して含有させることにより、高価なNiを含有させなくても、オーステナイトを安定化させる効果を有する。さらに、Cは、時効処理時に、V、TiおよびNbの1種以上と結び付くことにより微細な炭化物および/または炭窒化物を形成して高強度化にも寄与する。しかしながら、C含有量が0.30%未満では、上記の効果が得難い。一方、C含有量が1.0%を超えると、セメンタイトが析出して粒界強度を低下させ、耐SSC性および熱間加工性の低下をきたす。したがって、C含有量は0.30~1.0%とする。C含有量は0.40%以上であるのが好ましい。また、C含有量は0.90%以下であるのが好ましく、0.60%未満であるのがより好ましい。
 Si:0.05~1.0%
 Siは、鋼の脱酸に有効な元素であり、この効果を得るには、0.05%以上含有させる必要がある。一方、Si含有量が1.0%を超えると、粒界強度を低下させて耐SSC性の低下を招く。したがって、Si含有量は0.05~1.0%とする。Si含有量は0.1%以上であるのが好ましく、0.8%以下であるのが好ましい。
 Mn:16.0~35.0%
 Mnは、上記Cと複合して含有させることにより、安価でかつオーステナイトを安定化させる作用を有する。この効果を十分に得るには、Mnを16.0%以上含有させる必要がある。一方、湿潤硫化水素環境中ではMnは優先的に溶解し、Mnの含有量が35.0%を超えると耐全面腐食性の低下をきたす。したがって、Mn含有量は16.0~35.0%とする。Mn含有量は18.0%以上であるのが好ましく、19.0%以上であるのがより好ましい。また、Mn含有量は30.0%以下であるのが好ましく、25.0%以下であるのがより好ましい。
 P:0.030%以下
 Pは、粒界に偏析し、耐SSC性に悪影響を及ぼす元素である。このため、P含有量は0.030%以下に制限する必要がある。不純物であるPの含有量はできるだけ低いことが好ましく、0.020%以下であることが好ましい。P含有量の下限は特に設けず、0%を含む。しかし、P含有量の過度の低減は鋼材の製造コストの上昇を招くので、下限は0.001%程度とするのがよい。
 S:0.030%以下
 Sは、不純物として鋼中に存在し、特に、その含有量が0.030%を超えると、粒界に偏析するとともに、硫化物系の介在物を生成して耐SSC性を低下させる。したがって、S含有量は、0.030%以下とする。不純物であるSの含有量もできるだけ低いことが好ましく、0.015%以下であることが好ましい。S含有量の下限は特に設けず、0%を含む。しかし、S含有量の過度の低減は鋼材の製造コストの上昇を招くので、下限は0.001%程度とするのがよい。
 Al:0.003~0.06%
 Alは、鋼の脱酸に有効な元素であり、この効果を得るには、0.003%以上含有させる必要がある。一方、Al含有量が0.06%を超えると、特に酸化物系の介在物が粗大化して、靱性および耐SSCに悪影響を与える。したがって、Al含有量は0.003~0.06%とする。Al含有量は0.008%以上であるのが好ましく、0.05%以下であるのが好ましい。なお、本発明のAl含有量とは、酸可溶Al(いわゆる「Sol.Al」)での含有量を指す。
 N:0.1%以下
 Nは、時効処理時に、V、TiおよびNbの1種以上と結び付くことにより微細な炭窒化物を形成して高強度化に寄与する。しかしながら、N含有量が0.1%を超えると、熱間加工性の低下を招く。したがって、Nの含有量を0.1%以下とする。N含有量は0.08%以下であるのが好ましい。上記の効果を得るためには、N含有量は0.004%以上であるのが好ましく、0.010%以上であるのがより好ましい。
 V:0~3.0%
 Vは、時効処理時に、CまたはさらにNと結び付いて微細な炭化物および/または炭窒化物を形成し、高強度化に寄与する元素である。このため、必要に応じてVを含有させてもよい。しかしながら、Vを過剰に含有させても上記の効果が飽和して材料コストの上昇を招く上に、靱性の低下およびオーステナイトの不安定化を招くことがある。したがって、V含有量は3.0%以下とする。V含有量は2.9%以下であるのが好ましい。上記の効果を得るためには、V含有量は0.1%以上であるのが好ましく、1.0%以上であるのがより好ましい。
 Ti:0~1.5%
 Tiは、時効処理時に、CまたはさらにNと結び付いて微細な炭化物および/または炭窒化物を形成し、高強度化に寄与する元素である。このため、必要に応じてTiを含有させてもよい。しかしながら、Tiを過剰に含有させても上記の効果が飽和して材料コストの上昇を招く上に、靱性の低下およびオーステナイトの不安定化を招くことがある。したがって、Ti含有量は1.5%以下とする。Ti含有量は1.1%以下であるのが好ましい。上記の効果を得るためには、Ti含有量は0.003%以上であるのが好ましく、0.1%以上であるのがより好ましい。
 Nb:0~1.5%
 Nbは、時効処理時に、CまたはさらにNと結び付いて微細な炭化物および/または炭窒化物を形成し、高強度化に寄与する元素である。このため、必要に応じてNbを含有させてもよい。しかしながら、Nbを過剰に含有させても上記の効果が飽和して材料コストの上昇を招く上に、靱性の低下およびオーステナイトの不安定化を招くことがある。したがって、Nb含有量は1.5%以下とする。Nb含有量は1.1%以下であるのが好ましい。上記の効果を得るためには、Nb含有量は0.003%以上であるのが好ましく、0.1%以上であるのがより好ましい。
 V+Ti+Nb>2.0   ・・・(i)
 但し、上記(i)式中のV、TiおよびNbは、それぞれの元素の鋼中含有量(質量%)を意味し、含有されない場合はゼロとする。
 上記(i)式左辺値は、時効処理後の微細なV、TiおよびNbの炭化物および/または炭窒化物形成による高強度化の指標であると同時に、断面減少率で20%以下の冷間加工とその後の2時間以下の時効処理とによって、YSで758MPa以上という高強度を確保するための指標でもある。
 すなわち、V、TiおよびNbの合計含有量が2.0%を超えることによって、固溶化熱処理後に施す、断面減少率で20%以下という軽度の冷間加工とその後の2時間以下の短時間時効処理とによって、安定してYSで758MPa以上という高強度が確保できる。(i)式左辺値は2.1以上であるのが好ましい。また、上限は特に規定しないが、4.0以下であるのが好ましく、3.0以下であるのが好ましい。
 なお、上記(i)式を満足していればよく、上記3元素のいずれかを単独で含有させてもよいし、3元素のうちの2元素を組み合わせて含有させてもよいし、3元素全てを複合して含有させてもよい。
 Cr:0~5.0%
 Crは、耐全面腐食性を向上させる元素である。このため、必要に応じてCrを含有させてもよい。しかしながら、5.0%を超える量のCrを含有させると、耐SSC性を低下させる。したがって、Cr含有量は5.0%以下とする。Cr含有量は4.5%以下であるのが好ましい。上記の効果を得るためには、Cr含有量は0.1%以上であるのが好ましい。
 Mo:0~3.0%
 Moは、耐全面腐食性を向上させる元素である。このため、必要に応じてMoを含有させてもよい。しかしながら、3.0%を超える量のMoを含有させても上記の効果が飽和して材料コストの上昇を招く。したがって、Mo含有量は3.0%以下とする。Mo含有量は2.0%以下であるのが好ましい。上記の効果を得るためには、Mo含有量は0.5%以上であるのが好ましい。
 上記のCrおよびMoを複合して含有させる場合の合計量は、5.0%以下であることが好ましい。
 Cu:0~1.0%
 Cuは、オーステナイトを安定化させるのに有効な元素である。このため、必要に応じてCuを含有させてもよい。しかしながら、Cuを多量に含有させると、局部腐食を促進して、鋼材表面に応力集中部を形成する。したがって、Cu含有量は1.0%以下とする。Cu含有量は0.8%以下であるのが好ましい。上記の効果を得るためには、Cu含有量は0.1%以上であるのが好ましい。
 Ni:0~1.0%
 Niは、オーステナイトを安定化させるのに有効な元素である。このため、必要に応じてNiを含有させてもよい。しかしながら、Niを多量に含有させると、局部腐食を促進して、鋼材表面に応力集中部を形成する。したがって、Ni含有量は1.0%以下とする。Ni含有量は0.8%以下であるのが好ましい。上記の効果を得るためには、Ni含有量は0.1%以上であるのが好ましい。
 上記のCuおよびNiを複合して含有させる場合の合計量は、1.0%以下であることが好ましい。
 B:0~0.02%
 Bは、析出物を微細化する作用とオーステナイト粒を微細化する作用とを有する。このため、必要に応じてBを含有させてもよい。しかしながら、Bの含有量が過剰になると、熱間加工性の低下を招く。したがって、B含有量は0.02%以下とする。B含有量は0.015%以下であるのが好ましい。上記の効果を得るためには、B含有量は0.0001%以上であるのが好ましい。
 Zr:0~0.5%
 Zrは、炭化物および/または炭窒化物を形成して、析出強化作用を有する元素である。このため、必要に応じてZrを含有させてもよい。しかしながら、Zrを多量に含有させても上記の効果が飽和して材料コストの上昇を招く上に、靱性の低下およびオーステナイトの不安定化を招くことがある。したがって、Zr含有量は0.5%以下とする。Zr含有量は0.4%以下であるのが好ましい。上記の効果を安定して得るためには、Zr含有量は0.005%以上であるのが好ましい。
 Ta:0~0.5%
 Taは、炭化物および/または炭窒化物を形成して、析出強化作用を有する元素である。このため、必要に応じてTaを含有させてもよい。しかしながら、Taを多量に含有させても上記の効果が飽和して材料コストの上昇を招く上に、靱性の低下およびオーステナイトの不安定化を招くことがある。したがって、Ta含有量は0.5%以下とする。Ta含有量は0.4%以下であるのが好ましい。上記の効果を得るためには、Ta含有量は0.005%以上であるのが好ましい。
 上記のZrおよびTaを複合して含有させる場合の合計量は、0.5%以下であることが好ましい。
 Ca:0~0.005%
 Caは、介在物の形態を制御して、靱性および耐食性を改善する作用を有する。このため、必要に応じてCaを含有させても良い。しかしながら、Caを多量に含有させると、介在物がクラスター化して、却って靱性および耐食性の低下を招くことがある。したがって、Ca含有量は0.005%以下とする。Ca含有量は0.003%以下であるのが好ましい。上記の効果を得るためには、Ca含有量は0.0003%以上であるのが好ましい。
 Mg:0~0.005%
 Mgは、介在物の形態を制御して、靱性および耐食性を改善する作用を有する。このため、必要に応じてMgを含有させても良い。しかしながら、Mgを多量に含有させると、介在物がクラスター化して、却って靱性および耐食性の低下を招くことがある。したがって、Mg含有量は0.005%以下とする。Mg含有量は0.003%以下であるのが好ましい。上記の効果を得るためには、Mg含有量は0.0003%以上であるのが好ましい。
 上記のCaおよびMgを複合して含有させる場合の合計量は、0.005%以下であることが好ましい。
 本発明に係る鋼材において、残部はFeおよび不純物である。
 ここで「不純物」とは、鉄鋼材料を工業的に製造する際に、鉱石、スクラップ等の原料、製造工程の種々の要因によって混入する成分であって、本発明に悪影響を与えない範囲で許容されるものを意味する。
 2.析出物
 上述のように、オーステナイト系鋼材は一般的に低強度である。そのため、本発明においては、炭化物および/または炭窒化物(以下、これらを合わせて「析出物」ともいう。)を析出させることによって鋼材を強化させる。析出物は、鋼材内部に析出し、転位を動きにくくすることで強化に寄与する。これら析出物の大きさが円相当直径で5nm未満であると、転位が動く際の障害として働かない。一方、析出物の大きさが円相当直径で30nmを超えて粗大になると、個数が極端に減るため、強化に寄与しなくなる。したがって、鋼材を析出強化させるのに適した析出物の大きさは、5~30nmである。
 758MPa以上の降伏応力を安定的に得るためには、金属組織中に上記の円相当直径が5~30nmの析出物の個数密度が50~700個/μmである必要がある。円相当直径が5~30nmの析出物の個数密度は100個/μm以上であるのが好ましく、150個/μm以上であるのがより好ましい。また、円相当直径が5~30nmの析出物の個数密度は650個/μm以下であるのが好ましく、600個/μm以下であるのがより好ましい。
 一方、円相当直径が100nmを超える粗大な析出物の個数密度が過剰になると降伏応力を却って低下させる上に、靭性も劣化させる。したがって、円相当直径が100nmを超える析出物の個数密度10個/μm未満である必要がある。円相当直径が100nmを超える析出物の個数密度は7個/μm未満であるのが好ましく、5個/μm未満であるのがより好ましい。
 なお、円相当直径が30nmを超えて100nm以下の析出物は、鋼材の特性に大きく影響しないため、その個数密度については特に制限は設けない。しかしながら、上記の析出物が過剰に存在すると、円相当直径が5~30nmの析出物の量を十分に確保できなくなるおそれがある。したがって、円相当直径が30nmを超えて100nm以下の析出物の個数密度は70個/μm以下であるのが好ましく、60個/μm以下であるのがより好ましい。
 本発明において、析出物の個数密度は、以下の方法により測定するものとする。鋼材内部(肉厚中央部)から厚さ100nmの薄膜を作製し、当該薄膜を透過電子顕微鏡(TEM)によって観察し、1μm四方の視野内に含まれる、上記の円相当直径が5~30nmの析出物、30nmを超えて100nm以下の析出物および100nmを超える析出物の数をそれぞれ計測する。また、個数密度の測定は3視野以上において行い、その平均値を求めることとする。
 3.高強度鋼材のYS
 本発明に係る高強度鋼材のYSは、758MPa以上である。YSが758MPa以上であれば、最近の油井の深井戸化にも十分安定して耐えることができる。YSは760MPa以上であることが好ましい。また、YSは1000MPa以下であることが好ましく、950MPa以下であることがより好ましい。なお、本発明における「YS」とは「室温大気中でのYS」を指す。
 4.高強度鋼材のKISSC
 本発明に係る高強度鋼材のKISSCは、33.7MPa・m0.5以上である。KISSCが33.7MPa・m0.5以上であれば、き裂先端近傍等の応力集中部における耐SSC性も問題がなく、最近のサワー環境での油井の深井戸化にも十分安定して耐えることができる。KISSCは34.0MPa・m0.5以上であることが好ましい。また、KISSCの上限は50.0MPa・m0.5程度であると想定される。なお、本発明における「KISSC」とは、NACE TM0177-2005に規定された、図2および図3に示す形状の試験片とくさびを用いたDCB試験によって求められる値を指す。
 5.製造方法
 本発明の高強度鋼材は、以下の方法によって製造することができる。
 前述した化学組成を有する高Mn鋼を、一般的なオーステナイト系鋼と同様の方法で溶製した後、鋳造によりインゴットまたは鋳片とする。なお、継目無鋼管を製造する場合には、いわゆる「ラウンドCC」法によって、製管用の円形ビレット形状を有する鋳片にしてもよい。
 次の工程として、鋳造されたインゴットまたは鋳片に、分塊圧延または熱間鍛造を施す。該工程は、厚板、丸棒、継目無鋼管等の所定形状に加工するための最終的な熱間加工(例えば、熱間圧延、熱間押出、熱間鍛造)に用いる素材を得る工程である。なお、上記「ラウンドCC」法によって、円形ビレット形状とした鋳片は、直接それを用いて鋼管に仕上げることができるので、必ずしも分塊圧延または熱間鍛造を施す必要はない。
 上記の分塊圧延または熱間鍛造で製造した、最終的な熱間加工に用いる素材および円形ビレット形状とした鋳片(以下、「鋼材」という。)に、以下に示す(a)~(f)の工程(熱間加工工程の後で、再加熱して固溶化熱処理する場合)または、(g)~(k)の工程(熱間加工工程の後で、直接に固溶化熱処理する場合)を順に施して、本発明の高強度鋼材が製造される。
 (5-1)熱間加工工程後に再加熱して固溶化熱処理する場合の製造方法
 (a)熱間加工工程
 上述した鋼材を900~1200℃に加熱した後、所定の形状に仕上げる。加熱温度が900℃を下回ると、熱間加工時の変形抵抗が大きくなって加工設備が受ける負荷が大きくなり、疵または割れ等の加工不良を生じることがある。一方、加熱温度が1200℃を上回ると、高温粒界割れまたは延性低下をきたすことがある。したがって、熱間加工性における加熱温度を900~1200℃とする。加熱温度は950℃以上とすることが好ましく、1150℃以下とすることが好ましい。
 この工程での加熱温度は、鋼材の表面における温度を指す。なお、上記温度域での保持時間は、製品のサイズまたは形状にもよるが10~180分とすることが好ましく、20~120分とすることがより好ましい。また、熱間加工の仕上げ温度は800~1150℃とすることが好ましく、1000~1150℃とすることがより好ましい。
 (b)冷却工程
 所定の形状に仕上げた後、鋼材は100℃以下の温度まで冷却される。この際の冷却速度については、特に制限がない。
 (c)固溶化熱処理工程
 100℃以下の温度まで冷却した後の鋼材は、炭化物等の析出物を基地のオーステナイト中に十分固溶させる必要がある。したがって、本発明においては、析出物等を十分固溶させることができ、しかもオーステナイト粒の粗大化が生じない温度、時間条件とするために、800~1200℃の温度で、10分以上の保持とする。固溶化熱処理温度は1000℃以上とすることが好ましく、1150℃以下とすることが好ましい。
 この工程での加熱温度も、鋼材の表面における温度を指す。上記固溶化熱処理の温度域での保持時間も、製品のサイズまたは形状にもよるが、20分以上とすることが好ましく、180分以下とすることが好ましい。なお、上述の時間保持した後の急冷は、水冷、油冷またはミスト冷却など適宜の方法によって、冷却中に炭化物および金属間化合物の析出が防止できるとともに熱ひずみを生じない程度の冷却速度で行えばよい。具体的な冷却速度の例としては、1℃/秒以上の水冷または油冷等が挙げられる。なお、その際、300℃程度までの温度域は10℃/秒以上の冷却速度で冷却することが好ましい。
 (d)冷間加工工程
 固溶化熱処理工程で急冷した鋼材に対して、炭化物および炭窒化物の核生成サイトを確保するため断面減少率で5~20%の冷間加工を施す。断面減少率が5%未満であると、YSで758MPa以上という高強度が確保できないことがある。一方、断面減少率が20%を超えると、設備または製品サイズ等の面で制約を受ける場合がある。断面減少率は18%以下とすることが好ましい。
 断面減少率が5~20%であれば、冷間加工の回数は特に限定されず、1回でも複数回でもよい。但し、複数回の冷間加工を行う場合は、総断面減少率が20%を超えないようにするのは勿論のことであるが、途中で軟化処理することなく施す必要がある。なお、上記の「(総)断面減少率」とは、第1回目の冷間加工前の鋼材の断面積を「S」、最終の冷間加工を施した後の鋼材の断面積を「S」とした場合に、
{(S-S)/S}×100
で表される値を指す。
 (e)時効処理工程
 上記の冷間加工を施した鋼材に、安定して758MPa以上のYSが確保できるように600~750℃で0.5~2時間保持する、時効処理を施す。時効処理温度が600℃未満であるか、または時効処理時間が0.5時間未満であると、強化に有効なV、TiおよびNbの炭化物および/または炭窒化物の析出効果が十分ではなく、YSで758MPa以上の高強度が確保できないことがある。一方、時効処理温度が750℃を超えるか、または時効処理時間が2時間を超えると、過時効状態になって、YSで758MPa以上の高強度が確保できないことがある。加えて、時効処理時間が2時間を超える場合には、生産性の点で不利になり、エネルギーコストが嵩む。この工程での時効処理温度も、鋼材の表面における温度を指す。
 (f)冷却工程
 時効処理を施した後、鋼材は100℃以下の温度まで冷却される。この際、工程(c)と同様の急冷が好ましい。
 (5-2)熱間加工工程後に直接に固溶化熱処理する場合の製造方法
 (g)熱間加工工程
 上述した鋼材を900~1200℃に加熱した後、800℃以上で所定の形状に仕上げる。鋼材の加熱温度が900℃を下回ると、熱間加工時の変形抵抗が大きくなって加工設備が受ける負荷が大きくなり、疵または割れ等の加工不良を生じることがある。一方、加熱温度が1200℃を上回ると、高温粒界割れまたは延性低下をきたすことがある。したがって、熱間加工工程における鋼材の加熱温度を900~1200℃とする。加熱温度は1000℃以上とすることが好ましく、1150℃以下とすることが好ましい。
 熱間加工の仕上げ温度が800℃を下回ると、炭化物等の析出物が生じ、該析出物が次工程のいわゆる「直接固溶化熱処理」では基地のオーステナイト中に十分固溶せず残存する場合がある。熱間加工の仕上げ温度は1000℃以上とすることが好ましく、1150℃以下とすることが好ましい。この工程での加熱温度および仕上げ温度は、鋼材の表面における温度を指す。なお、上記加熱温度域での保持時間は、製品のサイズまたは形状にもよるが10~180分とすることが好ましく、20~120分とすることがより好ましい。
 (h)固溶化熱処理工程
 1000℃以上で所定の形状に仕上げた鋼材は、引き続いて直ちに急冷することによって、炭化物等の析出物を基地のオーステナイト中に十分固溶した状態のままにすることができる。なお、この工程における急冷も、工程(c)と同様に、例えば、水冷、油冷またはミスト冷却など、冷却中に炭化物および金属間化合物の析出が防止できるとともに熱ひずみを生じない程度の冷却速度で行えばよい。上記の急冷は、製品のサイズまたは形状にもよるが、熱間加工で仕上げた後180秒以内に行うことが好ましい。
 (i)冷間加工工程
 工程(h)のいわゆる「直接固溶化熱処理」で急冷した鋼材に対して、炭化物および炭窒化物の核生成サイトを確保するため断面減少率で5~20%の冷間加工を施す。断面減少率が5%未満であると、YSで758MPa以上という高強度が確保できないことがある。一方、断面減少率が20%を超えると、設備または製品サイズ等の面で制約を受ける場合がある。断面減少率は18%以下とすることが好ましい。
 前述の工程(d)と同様に、断面減少率が5~20%であれば、冷間加工の回数は特に限定されず、1回でも複数回でもよい。但し、複数回の冷間加工を行う場合は、総断面減少率が20%を超えないようにするのは勿論のことであるが、途中で軟化処理することなく施す必要がある。
 (j)時効処理工程
 上記の冷間加工を施した鋼材に、安定して758MPa以上のYSが確保できるように600~750℃で0.5~2時間保持する、時効処理を施す。時効処理温度が600℃未満であるか、または時効処理時間が0.5時間未満であると、強化に有効なV、TiおよびNbの炭化物および/または炭窒化物の析出効果が十分ではなく、YSで758MPa以上の高強度が確保できないことがある。一方、時効処理温度が750℃を超えるか、または時効処理時間が2時間を超えると、過時効状態になって、YSで758MPa以上の高強度が確保できないことがある。加えて、時効処理時間が2時間を超える場合には、生産性の点で不利になり、エネルギーコストが嵩む。この工程での時効処理温度も、鋼材の表面における温度を指す。
 (k)冷却工程
 時効処理を施した後、鋼材は100℃以下の温度まで冷却される。この際、工程(c)と同様の急冷が好ましい。
 なお、工程(c)または工程(h)で固溶化熱処理を施した鋼材には、必要に応じて、冷間加工する前に切削加工またはピーリング加工等の機械的な加工処理を行ってもよい。また、冷間加工の際には、適宜の方法で潤滑処理を行うことが好ましい。
 以下、実施例によって、本発明をより具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
 表1に示す化学組成を有する鋼1~24を50kg真空溶解炉によって溶製し、鋳型に鋳込んで得たインゴットを1150℃で180分加熱した後、熱間鍛造により厚さ40mmの板材とした。
 表1中の鋼No.1~21は、化学組成が本発明で規定する範囲内にある鋼である。一方、鋼No.22~24は、化学組成が本発明で規定する条件から外れた鋼である。
Figure JPOXMLDOC01-appb-T000001
 上記のようにして得た厚さ40mmの板材を、表2に示す条件で厚さ20mmの板材に熱間圧延した。その後、試験No.1~10、13~15および18~52については、仕上げ圧延後に室温まで冷却した後、再加熱して固溶化熱処理を施した。また、試験No.11、12、16および17については、仕上げ圧延後に直接固溶化熱処理を施した。これら全ての試料について、その後さらに表2に示す条件で冷間圧延および時効処理を施し、試験材とした。
Figure JPOXMLDOC01-appb-T000002
 なお、再加熱して固溶化熱処理する場合には、熱間圧延で仕上げた後の室温までの冷却は、全て大気中での放冷とし、固溶化熱処理後の急冷は、水冷とした。直接固溶化熱処理後の急冷についても水冷とした。また、上記冷間圧延は固体潤滑剤を塗布してから行った。さらに、時効処理を施した後の冷却は、全て水冷とした。
 上記の各試験材について、先ず、基地の金属組織を調査した。具体的には、Helmut Fischer製のフェライトメーター(型番:FE8e3)を用いてbcc構造相の体積率を測定した。その結果、試験番号1~51には、bcc構造相は検出されなかった。一方、試験番号52および試験番号53には、bcc構造相が認められた。
 続いて、各試験材の厚さ方向中央部から厚さ100nmの薄膜を作製し、当該薄膜をTEMによって観察し、1μm四方の視野内に含まれる円相当直径が5~30nmの析出物および100nmを超える析出物の数をそれぞれ計測した。なお、析出物の数は3視野において計測し、その平均値を用いた。
 また、各試験材の厚さ方向中央部から、圧延方向(長手方向)に平行部直径が4mmの丸棒引張試験片を切り出し、室温の大気中で引張試験して、YSを求めた。
 さらに、耐SSC性を評価するために、NACE TM0177-2005に記載の「Method D」に基づくDCB試験を行ってKISSC値を算出した。その具体的な手順は次のとおりである。
 先ず、各試験材の厚さ方向中央部から、圧延方向(長手方向)に図2に示すような切欠き部および穴を有するDCB試験片および図3に示す厚さ2.92mmのくさびを採取した。次いで、上記切欠き部にくさびを打ち込んだ状態の試験片をオートクレーブ中に封入した後、NACE TM0177-2005に規定される溶液A(5%NaCl+0.5%CHCOOH水溶液、濃度は質量%)を脱気し、オートクレーブ中に注入した。その後、オートクレーブ内に1atmの硫化水素ガスを通気させ、上記の液相を攪拌して、硫化水素ガスを液相に飽和させた。液相を攪拌しつつ、24℃で336時間保持し、その後気体を窒素に置換して試験片を取り出した。
 その後、取り出した試験片の上記穴にピンを差し込んで引張試験機で切欠き部を開口させて、くさび解放応力を測定した。さらに、試験片を液体窒素温度まで冷却した状態で、切欠き部に杭を差し込み、その杭をハンマーでたたくことで強制的に試験片を破断させた後、目視によるノギス計測で、前記液相に浸漬中の割れ進展長さを計測した。最後に、上述のくさび解放応力および割れ進展長さからKISSC値を算出した。
 表3に、上記のようにして求めた析出物の個数密度、YSおよびKISSCの値をまとめて示す。また、図1に、結晶構造がfcc構造である試験番号1~36の「本発明例」の高Mn鋼材および結晶構造がbcc構造である従来型低合金鋼材(0.27%C-1%Cr-0.7%Mo系低合金鋼を焼入れ-焼戻し処理(図中には、「QT」と表記)した低合金鋼材)について、YSが758MPa以上の高強度域で上記のDCB試験によって求められたKISSCを比較して示す。
Figure JPOXMLDOC01-appb-T000003
 表3から、本発明例の試験No.1~36は、YSが758MPa以上でかつ、DCB試験によるKISSCが33.7MPa・m0.5以上であって、良好な耐SSC性を備えていることが明らかである。
 これに対して、比較例の試験No.37~53は、YSで758MPa以上という高強度が得られないか、DCB試験によるKISSCが33.7MPa・m0.5以上という耐SSC性が得られない。
 すなわち、試験No.37~46に示されるように、化学組成が本発明の規定を満足する鋼を用いても、製造条件が好ましくない場合には、YSで758MPa以上という高強度が得られない。
 具体的には、時効処理前に冷間加工を施さなかった試験No.37および38では、その後適切な条件で時効処理を行ったとしても、微細な析出物が十分に生成せずに必要な強度が得られなかった。また、同様に時効処理前に冷間加工を施さなかった試験No.46では、その後、時効処理を長時間行っても、粗大な析出物が生成する結果となり、却って強度が低下する結果となった。
 時効処理を行っていない試験No.39~41、43および44では、析出物が全く生成せずに強度が低くなる結果となった。また、試験No.42では、時効処理時間が長すぎるため、析出物が粗大化し、強度が低下する結果となった。さらに、試験No.45では、時効処理温度が低すぎるため、微細な析出物が十分に生成せずに必要な強度が得られなかった。
 また、用いた鋼の化学組成が本発明で規定する条件から外れる場合には、試験番号47~53に示されるように、製造条件が本発明の規定を満たす、満たさないに関係なく、YSで758MPa以上という高強度が得られないか、DCB試験によるKISSCが33.7MPa・m0.5以上という耐SSC性が得られない。
 具体的には、C含有量が規定値を下回る鋼No.22を用いた試験No.47および48、ならびにV、TiおよびNbの合計含有量が規定値を下回る鋼No.23を用いた試験No.49~51では、微細な析出物が十分に生成せずに必要な強度が得られなかった。また、Mn含有量が規定値を下回る鋼No.24を用いた試験No.52および53では、bcc構造相の混入に起因して、DCB試験によるKISSCが劣る結果となった。
 DCB試験で良好な耐SSC性が得られた上記の試験番号1~36で作製した板材を用いて、次に、定荷重試験による耐SSC性の調査を実施した。具体的には、各時効処理した板材の厚さ方向中央部から、圧延方向(長手方向)に板状の平滑試験片を採取し、4点曲げ法によって一方の面にYSの90%に相当する応力を付加した後、試験溶液として、1atmの硫化水素ガスを飽和させたNACE TM0177-2005に規定される溶液Aに浸漬させ、24℃で336時間保持して破断するか否かを判定した。その結果、全ての試験材で破断が生じないことを確認した。
 さらに、試験番号1~36で作製した板材から、上記と同様にして板状の平滑試験片を採取し、1atmの硫化水素ガスを飽和させたNACE TM0177-2005に規定される溶液Aに24℃で336時間浸漬させ、腐食減量を求めた。その結果、腐食減量は少なく、耐全面腐食性に優れることも確認できた。
 本発明の高強度鋼材は、降伏応力が758MPa以上でかつ、DCB試験によるKISSCが33.7MPa・m0.5以上であるため、サワー環境で使用される油井管等に好適に用いることができる。また、本発明の製造方法によって、上記の高強度鋼材を得ることができる。

 

Claims (4)

  1.  化学組成が、質量%で、
     C:0.30~1.0%、
     Si:0.05~1.0%、
     Mn:16.0~35.0%、
     P:0.030%以下、
     S:0.030%以下、
     Al:0.003~0.06%、
     N:0.1%以下、
     V:0~3.0%、
     Ti:0~1.5%、
     Nb:0~1.5%、
     Cr:0~5.0%、
     Mo:0~3.0%、
     Cu:0~1.0%、
     Ni:0~1.0%、
     B:0~0.02%、
     Zr:0~0.5%、
     Ta:0~0.5%、
     Ca:0~0.005%、
     Mg:0~0.005%、
     残部:Feおよび不純物であり、
     下記(i)式を満足し、
     鋼中に析出する円相当直径が5~30nmの炭化物および/または炭窒化物の個数密度が50~700個/μmであり、かつ、円相当直径が100nmを超える炭化物および/または炭窒化物の個数密度が10個/μm未満であり、
     降伏応力が758MPa以上であり、
     DCB試験によるKISSCの値が33.7MPa・m0.5以上である、
     高強度鋼材。
     V+Ti+Nb>2.0   ・・・(i)
     但し、上記(i)式中のV、TiおよびNbは、それぞれの元素の鋼中含有量(質量%)を意味し、含有されない場合はゼロとする。
  2.  前記化学組成が、質量%で、
     V:0.1~3.0%、
     Ti:0.003~1.5%、
     Nb:0.003~1.5%、
     Cr:0.1~5.0%、
     Mo:0.5~3.0%、
     Cu:0.1~1.0%、
     Ni:0.1~1.0%、
     B:0.0001~0.02%、
     Zr:0.005~0.5%、
     Ta:0.005~0.5%、
     Ca:0.0003~0.005%、および
     Mg:0.0003~0.005%
     から選択される1種以上を含有する、
     請求項1に記載の高強度鋼材。
  3.  請求項1または請求項2に記載の化学組成を有する鋼材に対して、下記(a)~(f)の工程の処理を順に施す、
     請求項1または請求項2に記載の高強度鋼材の製造方法。
     (a)900~1200℃に加熱した後、所定の形状に仕上げる、熱間加工工程
     (b)100℃以下の温度まで冷却する、冷却工程
     (c)800~1200℃に加熱して10分以上保持した後、急冷する、固溶化熱処理工程
     (d)断面減少率で5~20%の加工を行う、冷間加工工程
     (e)600~750℃で0.5~2時間保持する、時効処理工程
     (f)100℃以下の温度まで冷却する、冷却工程
  4.  請求項1または請求項2に記載の化学組成を有する鋼材に対して、下記(g)~(k)の工程の処理を順に施す、
     請求項1または請求項2に記載の高強度鋼材の製造方法。
     (g)900~1200℃に加熱した後、800℃以上で所定の形状に仕上げる、熱間加工工程
     (h)上記(g)の工程に引き続いて直ちに急冷する、固溶化熱処理工程
     (i)断面減少率で5~20%の加工を行う、冷間加工工程
     (j)600~750℃で0.5~2時間保持する、時効処理工程
     (k)100℃以下の温度まで冷却する、冷却工程
     

     
PCT/JP2017/010531 2016-03-30 2017-03-15 高強度鋼材およびその製造方法 WO2017169811A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
MX2018011714A MX2018011714A (es) 2016-03-30 2017-03-15 Material de acero de alta resistencia y metodo de produccion.
JP2018509003A JP6597887B2 (ja) 2016-03-30 2017-03-15 高強度鋼材およびその製造方法
EP17774355.6A EP3438312B1 (en) 2016-03-30 2017-03-15 High-strength steel material and production method therefor
RU2018137852A RU2687328C1 (ru) 2016-03-30 2017-03-15 Высокопрочный стальной материал и способ его производства
BR112018069722-2A BR112018069722B1 (pt) 2016-03-30 2017-03-15 Material de aço de alta resistência e seu método de produção
US16/088,902 US10988819B2 (en) 2016-03-30 2017-03-15 High-strength steel material and production method therefor
CN201780022079.XA CN108884539A (zh) 2016-03-30 2017-03-15 高强度钢材和其制造方法
CA3019483A CA3019483A1 (en) 2016-03-30 2017-03-15 High-strength steel material and production method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-067741 2016-03-30
JP2016067741 2016-03-30

Publications (1)

Publication Number Publication Date
WO2017169811A1 true WO2017169811A1 (ja) 2017-10-05

Family

ID=59965249

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/010531 WO2017169811A1 (ja) 2016-03-30 2017-03-15 高強度鋼材およびその製造方法

Country Status (9)

Country Link
US (1) US10988819B2 (ja)
EP (1) EP3438312B1 (ja)
JP (1) JP6597887B2 (ja)
CN (1) CN108884539A (ja)
BR (1) BR112018069722B1 (ja)
CA (1) CA3019483A1 (ja)
MX (1) MX2018011714A (ja)
RU (1) RU2687328C1 (ja)
WO (1) WO2017169811A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019198460A1 (ja) * 2018-04-09 2019-10-17 日本製鉄株式会社 鋼管、及び、鋼管の製造方法
WO2020054553A1 (ja) * 2018-09-12 2020-03-19 Jfeスチール株式会社 鋼材およびその製造方法
CN112281057A (zh) * 2020-10-14 2021-01-29 东北大学 一种具有不同晶粒尺寸和孪晶含量的twip钢板及其制备方法
KR102218441B1 (ko) * 2019-10-08 2021-02-19 주식회사 포스코 비자성 고강도 선재 및 이의 제조방법
JPWO2021157217A1 (ja) * 2020-02-03 2021-08-12
JP2022031163A (ja) * 2020-08-07 2022-02-18 Jfeスチール株式会社 鋼材およびその製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114763593B (zh) * 2021-01-12 2023-03-14 宝山钢铁股份有限公司 具有耐高湿热大气腐蚀性的海洋工程用钢及其制造方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5118916A (ja) * 1974-08-09 1976-02-14 Nippon Steel Corp Teionjinseinosugureta oosutenaitokono seizoho
JPS5236513A (en) * 1975-09-18 1977-03-19 Daido Steel Co Ltd Strong and tough steel used at extremely low temperature
JPS6039150A (ja) * 1983-08-12 1985-02-28 Nippon Steel Corp 応力腐食割れ抵抗の優れた油井管用鋼
JPH10121204A (ja) * 1996-08-29 1998-05-12 Daito Seisakusho:Kk 高マンガン鋼とそれを用いた摺動軸部材および非磁性軸部材
US20110308673A1 (en) * 2008-11-12 2011-12-22 Voestalpine Stahl Gmbh Manganese steel strip having an increased phosphorous content and process for producing the same
WO2015012357A1 (ja) * 2013-07-26 2015-01-29 新日鐵住金株式会社 高強度油井用鋼材および油井管
WO2016052397A1 (ja) * 2014-10-01 2016-04-07 新日鐵住金株式会社 高強度油井用鋼材および油井管
JP2017031483A (ja) * 2015-08-05 2017-02-09 新日鐵住金株式会社 高圧水素ガス用高Mn鋼鋼材およびその製造方法、ならびにその鋼材からなる、配管、容器、バルブおよび継手

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3577882D1 (de) * 1984-05-22 1990-06-28 Westinghouse Electric Corp Austenitische legierungen auf eisen-mangan-basis und auf eisen-mangan-chrom-basis.
JPH09249940A (ja) 1996-03-13 1997-09-22 Sumitomo Metal Ind Ltd 耐硫化物応力割れ性に優れる高強度鋼材およびその製造方法
JP3379355B2 (ja) 1996-10-21 2003-02-24 住友金属工業株式会社 耐硫化物応力割れ性を必要とする環境で使用される高強度鋼材およびその製造方法
JP2001131713A (ja) 1999-11-05 2001-05-15 Nisshin Steel Co Ltd Ti含有超高強度準安定オーステナイト系ステンレス鋼材および製造法
EP1807542A1 (de) 2004-11-03 2007-07-18 ThyssenKrupp Steel AG Höherfestes, twip-eigenschaften aufweisendes stahlband oder -blech und verfahren zu dessen herstellung mittels "direct strip casting "
CN101307415A (zh) 2008-07-14 2008-11-19 四川大学 一种整体具有良好耐磨性的奥氏体不锈钢
CN101597721A (zh) 2009-07-08 2009-12-09 中原特钢股份有限公司 无磁钻具用钢及其生产方法
US20120160363A1 (en) * 2010-12-28 2012-06-28 Exxonmobil Research And Engineering Company High manganese containing steels for oil, gas and petrochemical applications
JP5880836B2 (ja) 2011-03-21 2016-03-09 大同特殊鋼株式会社 析出強化型耐熱鋼及びその加工方法
MX363038B (es) 2011-07-06 2019-03-01 Nippon Steel & Sumitomo Metal Corp Metodo para producir hoja de acero laminada en frio.
EP2738274B1 (en) 2011-07-27 2018-12-19 Nippon Steel & Sumitomo Metal Corporation High-strength cold-rolled steel sheet with excellent stretch flangeability and precision punchability, and process for producing same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5118916A (ja) * 1974-08-09 1976-02-14 Nippon Steel Corp Teionjinseinosugureta oosutenaitokono seizoho
JPS5236513A (en) * 1975-09-18 1977-03-19 Daido Steel Co Ltd Strong and tough steel used at extremely low temperature
JPS6039150A (ja) * 1983-08-12 1985-02-28 Nippon Steel Corp 応力腐食割れ抵抗の優れた油井管用鋼
JPH10121204A (ja) * 1996-08-29 1998-05-12 Daito Seisakusho:Kk 高マンガン鋼とそれを用いた摺動軸部材および非磁性軸部材
US20110308673A1 (en) * 2008-11-12 2011-12-22 Voestalpine Stahl Gmbh Manganese steel strip having an increased phosphorous content and process for producing the same
WO2015012357A1 (ja) * 2013-07-26 2015-01-29 新日鐵住金株式会社 高強度油井用鋼材および油井管
WO2016052397A1 (ja) * 2014-10-01 2016-04-07 新日鐵住金株式会社 高強度油井用鋼材および油井管
JP2017031483A (ja) * 2015-08-05 2017-02-09 新日鐵住金株式会社 高圧水素ガス用高Mn鋼鋼材およびその製造方法、ならびにその鋼材からなる、配管、容器、バルブおよび継手

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3438312A4 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019198460A1 (ja) * 2018-04-09 2019-10-17 日本製鉄株式会社 鋼管、及び、鋼管の製造方法
JPWO2019198460A1 (ja) * 2018-04-09 2021-02-12 日本製鉄株式会社 鋼管、及び、鋼管の製造方法
WO2020054553A1 (ja) * 2018-09-12 2020-03-19 Jfeスチール株式会社 鋼材およびその製造方法
JP6750748B1 (ja) * 2018-09-12 2020-09-02 Jfeスチール株式会社 鋼材およびその製造方法
CN112703263B (zh) * 2018-09-12 2022-05-03 杰富意钢铁株式会社 钢材及其制造方法
CN112703263A (zh) * 2018-09-12 2021-04-23 杰富意钢铁株式会社 钢材及其制造方法
AU2019340624B2 (en) * 2018-09-12 2021-11-11 Jfe Steel Corporation Steel material and method of producing same
KR102218441B1 (ko) * 2019-10-08 2021-02-19 주식회사 포스코 비자성 고강도 선재 및 이의 제조방법
WO2021071204A1 (ko) * 2019-10-08 2021-04-15 주식회사 포스코 비자성 고강도 선재 및 이의 제조방법
WO2021157217A1 (ja) * 2020-02-03 2021-08-12 日本製鉄株式会社 油井用鋼材および油井管
JPWO2021157217A1 (ja) * 2020-02-03 2021-08-12
JP7348553B2 (ja) 2020-02-03 2023-09-21 日本製鉄株式会社 油井管
JP2022031163A (ja) * 2020-08-07 2022-02-18 Jfeスチール株式会社 鋼材およびその製造方法
JP7380655B2 (ja) 2020-08-07 2023-11-15 Jfeスチール株式会社 鋼材およびその製造方法
CN112281057A (zh) * 2020-10-14 2021-01-29 东北大学 一种具有不同晶粒尺寸和孪晶含量的twip钢板及其制备方法

Also Published As

Publication number Publication date
RU2687328C1 (ru) 2019-05-13
JP6597887B2 (ja) 2019-10-30
MX2018011714A (es) 2019-02-18
BR112018069722B1 (pt) 2022-08-23
EP3438312A4 (en) 2019-04-24
CN108884539A (zh) 2018-11-23
CA3019483A1 (en) 2017-10-05
EP3438312A1 (en) 2019-02-06
US10988819B2 (en) 2021-04-27
US20200123624A1 (en) 2020-04-23
JPWO2017169811A1 (ja) 2018-11-29
BR112018069722A2 (pt) 2019-02-05
EP3438312B1 (en) 2020-12-23

Similar Documents

Publication Publication Date Title
JP6677310B2 (ja) 鋼材及び油井用鋼管
JP6597887B2 (ja) 高強度鋼材およびその製造方法
JP6064955B2 (ja) 耐硫化物応力割れ性に優れた油井用高強度継目無鋼管の製造方法
US10597760B2 (en) High-strength steel material for oil well and oil well pipes
JP6107437B2 (ja) 耐硫化物応力腐食割れ性に優れた油井用低合金高強度継目無鋼管の製造方法
US10513761B2 (en) High-strength steel material for oil well and oil country tubular goods
JP6172391B2 (ja) 低合金油井用鋼管
JP6103156B2 (ja) 低合金油井用鋼管
JP7036238B2 (ja) サワー環境での使用に適した鋼材
AU2017226126B2 (en) Steel material and oil-well steel pipe
JPH09249935A (ja) 耐硫化物応力割れ性に優れる高強度鋼材とその製造方法
JP6981527B2 (ja) サワー環境での使用に適した鋼材
JPH09249940A (ja) 耐硫化物応力割れ性に優れる高強度鋼材およびその製造方法
JP7088305B2 (ja) 鋼材、及び、鋼材の製造方法
JP7036237B2 (ja) サワー環境での使用に適した鋼材
CN118516603A (zh) 氢气环境用马氏体不锈钢及其制造方法
KR20240034213A (ko) 페라이트계 내열강

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018509003

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: MX/A/2018/011714

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 3019483

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112018069722

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 2017774355

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017774355

Country of ref document: EP

Effective date: 20181030

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17774355

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 112018069722

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20180926