WO2017169603A1 - 透明導電性膜形成用組成物、及び透明導電性基板 - Google Patents

透明導電性膜形成用組成物、及び透明導電性基板 Download PDF

Info

Publication number
WO2017169603A1
WO2017169603A1 PCT/JP2017/009327 JP2017009327W WO2017169603A1 WO 2017169603 A1 WO2017169603 A1 WO 2017169603A1 JP 2017009327 W JP2017009327 W JP 2017009327W WO 2017169603 A1 WO2017169603 A1 WO 2017169603A1
Authority
WO
WIPO (PCT)
Prior art keywords
solvent
transparent conductive
conductive film
composition
parts
Prior art date
Application number
PCT/JP2017/009327
Other languages
English (en)
French (fr)
Inventor
水谷拓雄
光橋文枝
吉田健一郎
Original Assignee
日立マクセル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立マクセル株式会社 filed Critical 日立マクセル株式会社
Priority to JP2018508901A priority Critical patent/JPWO2017169603A1/ja
Priority to CN201780013383.8A priority patent/CN108780678A/zh
Priority to US16/083,444 priority patent/US20190077931A1/en
Publication of WO2017169603A1 publication Critical patent/WO2017169603A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D201/00Coating compositions based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/24Electrically-conducting paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/20Diluents or solvents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
    • C08J2333/06Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing only carbon, hydrogen, and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C08J2333/08Homopolymers or copolymers of acrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2231Oxides; Hydroxides of metals of tin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2296Oxides; Hydroxides of metals of zinc
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/13439Electrodes characterised by their electrical, optical, physical properties; materials therefor; method of making

Definitions

  • the present invention relates to a composition for forming a transparent conductive film and a transparent conductive substrate formed using this composition.
  • a transparent conductive film has been manufactured by depositing a transparent conductive metal oxide such as tin-containing indium oxide on a substrate by a so-called dry process such as sputtering or vapor deposition. Since the production of the transparent conductive film using such a dry process method is performed under vacuum conditions, an expensive production apparatus is required, the production efficiency is low, and it is not suitable for mass production. Therefore, as a method for replacing the dry process method, a wet process in which a dispersion composition containing transparent conductive particles is applied to form a transparent conductive film is being studied.
  • tin-containing indium oxide (ITO) particles in which tin is contained in indium oxide are CRTs that are required to be prevented from static electricity and electromagnetic waves because of their high translucency for visible light and high conductivity. It has been used as a suitable material for screens, LCD screens and the like.
  • the dispersion composition contains transparent conductive particles such as tin oxide, antimony-containing tin oxide, zinc oxide, and fluorine-containing tin oxide.
  • transparent conductive particles such as tin oxide, antimony-containing tin oxide, zinc oxide, and fluorine-containing tin oxide.
  • Patent Document 1 proposes hydrocarbons, aromatics, ketones, alcohols, glycols, glycol esters, glycol ethers and the like. Moreover, as a manufacturing method of the coating type transparent conductive sheet provided with the coating type transparent conductive film, Patent Document 1 specifies the amount of residual solvent in the dry coating film as a ratio to the dry film thickness, and the surface electrical resistance value. A coating type transparent conductive sheet having a small change rate and a low haze and a method for producing the same have been proposed.
  • the solvent used for the coating type transparent conductive film is limited to at least one selected from ketones and esters, and the relative evaporation rate is 1 when the evaporation rate of butyl acetate is 1 as the solvent.
  • a composition for a transparent conductive sheet having a low value and excellent in transparency capable of suppressing an increase in the surface electric resistance value over time, and a method for producing a transparent conductive sheet using the composition have been proposed. .
  • the composition for transparent conductive sheets manufactured by said solvent composition described in patent document 2 is based on the composition of predetermined
  • coating systems such as a gravure coater, a bar coater, and a die coater.
  • the coating composition according to the prior art uses a coating method in which the storage stability of the composition and the stability of the surface electrical resistance value are still insufficient, and it is difficult to sufficiently level the composition.
  • the transparent conductive film may not have sufficiently satisfactory characteristics in terms of surface roughness, haze value, and surface electrical resistance value.
  • the present invention is excellent in storage stability, can reduce the surface roughness and haze value of the transparent conductive film formed on the transparent substrate, and can sufficiently reduce the surface electric resistance value, regardless of the coating method.
  • a composition for forming a transparent conductive film is provided.
  • the composition for forming a transparent conductive film of the present invention is a composition for forming a transparent conductive film comprising transparent conductive particles, a binder resin, and a solvent.
  • the solid content concentration is 20 to 50% by mass
  • the solvent includes a solvent A having a relative evaporation rate of 1 or more and a solvent B having a relative evaporation rate of less than 1 when the evaporation rate of butyl acetate is 1.
  • the transparent conductive substrate of the present invention is a transparent conductive substrate including a transparent substrate and a transparent conductive film disposed on the transparent substrate, and the transparent conductive film of the present invention is It was formed using the composition for transparent conductive film formation.
  • the storage stability is excellent, the surface roughness and haze value of the transparent conductive film formed on the transparent substrate are small, and the surface electrical resistance value is sufficiently low regardless of the coating method.
  • a possible composition for forming a transparent conductive film and a transparent conductive substrate formed using the composition can be provided.
  • a film immediately after a transparent conductive film forming composition containing transparent conductive particles, a binder resin and a solvent is applied on a transparent substrate is used as the transparent conductive coating film, and the solvent of the transparent conductive coating film is used.
  • the evaporated and dried film is referred to as a transparent conductive film, and the film including the transparent substrate and the transparent conductive film is referred to as a transparent conductive substrate.
  • the composition for forming a transparent conductive film may be simply referred to as a composition.
  • the composition for forming a transparent conductive film is obtained by preparing transparent conductive particles and a binder resin by dispersing them in a solvent.
  • the solid content concentration of the composition for forming a transparent conductive film is in the range of 20 to 50% by mass.
  • the solid content concentration is preferably 25 to 45 mass%, more preferably 30 to 40 mass%.
  • solvent A solvent having a relative evaporation rate of 1 or more when the evaporation rate of butyl acetate is 1
  • solvent B relative evaporation rate of 1 when the evaporation rate of butyl acetate is 1
  • the convection of the composition accompanying the evaporation of the solvent reduces the filling property of the transparent conductive particles, and the transparent conductive property Since the contact between the particles decreases, the surface electrical resistance value may not be sufficiently lowered. In addition, the surface roughness may increase, or the amount of residual solvent in the transparent conductive film may increase.
  • the solid content concentration exceeds 50 mass%, the amount of the solvent is small, so that the dispersion of the composition for forming a transparent conductive film becomes insufficient, and the dispersion stability is lowered, so that the storage stability of the composition is lowered. Moreover, there is a risk of causing leveling defects.
  • the solvent has an evaporation rate as a solvent.
  • the solvent A is relatively easily evaporated when the transparent conductive film-forming composition is applied to a transparent substrate and dried to form a transparent conductive film.
  • the solvent B which is relatively hard to evaporate, gradually evaporates as compared to the solvent A, which is easy to evaporate.
  • the leveling property and spreadability of the composition are improved, the surface roughness and haze value of the transparent conductive film can be reduced, and the uniform deposition and filling of the transparent conductive particles proceeds sufficiently, that is, Fillability is improved and a transparent conductive film having a low surface electric resistance value can be realized.
  • the amount of residual solvent in the transparent conductive film can be made equal to or less than that of the prior art composition.
  • the proportion of the solvent A, which is relatively easy to evaporate in the entire mixed solvent is less than 5 parts, the wettability of the solvent with respect to the conductive particles may be reduced, and it may be difficult to maintain dispersion stability. . Moreover, the drying property of the transparent conductive coating film immediately after coating becomes extremely slow, and there is a possibility that the amount of residual solvent in the transparent conductive coating film increases. Further, when the proportion of the solvent A that is relatively easy to evaporate in the entire mixed solvent exceeds 40 parts, the amount of the solvent A that is relatively easy to evaporate is too much, so that the spray coater coating method and the spin coater coating method are used.
  • the surface roughness and haze value increase due to poor spread of the composition and poor leveling due to the increase in solid content concentration
  • the surface electrical resistance value may increase due to poor filling of the conductive particles due to the short time until drying and solidification.
  • the proportion of solvent A in the total mixed solvent is preferably in the range of 10 to 30 parts.
  • Both the solvent A and the solvent B contain at least a ketone solvent.
  • the content of the ketone solvent in the solvent A is preferably 90% by mass or more based on the total amount of the solvent A.
  • the dispersibility of a composition can improve and it can be set as the composition for transparent conductive film formation excellent in storage stability.
  • the content of the ketone solvent in the solvent A is less than 90% by mass with respect to the total amount of the solvent A, the dispersibility of the composition is lowered, and the storage stability of the composition may be lowered.
  • the content of the ketone solvent in the solvent A is more preferably 95% by mass or more based on the total amount of the solvent A.
  • the content of the ketone solvent in the solvent B is preferably 70% by mass or more with respect to the total amount of the solvent B.
  • the content of the ketone solvent in the solvent B is less than 70% by mass with respect to the total amount of the solvent B, the dispersibility of the composition is lowered, and the storage stability of the composition may be lowered.
  • the content of the ketone solvent in the solvent B is more preferably 80% by mass or more with respect to the total amount of the solvent B.
  • the content of the ketone solvent in the solvent A is 90% by mass or more with respect to the total amount of the solvent A, and the content of the ketone solvent in the solvent B is 70% by mass or more with respect to the total amount of the solvent B. Then, the solvent A and the solvent B may contain a solvent other than the ketone solvent.
  • solvent As the solvent, a solvent A having a relative evaporation rate of 1 or more when the evaporation rate of butyl acetate is 1, and a solvent B having a relative evaporation rate of less than 1 are used.
  • the relative evaporation rate is a relative evaporation rate when the evaporation rate of butyl acetate is 1, and it means that the larger the value, the easier the evaporation, and the smaller the value, the harder the evaporation.
  • Both the solvent A and the solvent B include at least a ketone solvent.
  • ketone solvent classified into the solvent A having a relative evaporation rate of 1 or more acetone, methyl ethyl ketone (MEK), methyl isobutyl ketone (MIBK) and the like can be used.
  • Examples of the ketone solvents classified into the solvent B having a relative evaporation rate of less than 1 include cyclopentanone, cyclohexanone, cycloheptanone, diisobutyl ketone (DIBK), 2-heptanone, methyl isoamyl ketone, and methyl-n.
  • DIBK diisobutyl ketone
  • 2-heptanone 2-heptanone
  • methyl isoamyl ketone and methyl-n.
  • -Propyl ketone, isophorone, etc. can be used.
  • the solvent A and the solvent B may be mixed with alcohol-based, ester-based, aliphatic-based, aromatic-based, glycol-based, ether-based, or glycol-ether-based solvents in addition to the above-mentioned ketone-based solvents.
  • these solvents are used by mixing with a ketone solvent, it is desirable to add them to such an extent that the dispersibility of the conductive fine particles is not impaired.
  • Examples of the solvent classified as the solvent A other than the above ketone solvents include methyl alcohol, ethyl alcohol, isopropyl alcohol, ethyl acetate, isopropyl acetate, normal propyl acetate, tetrahydrofuran, hexane, heptane, cyclohexane, toluene and the like.
  • the solvents classified as solvent B include normal propanol, normal butanol, ethyl lactate, ethylene glycol monomethyl ether, diethylene glycol monomethyl ether, ethylene glycol monomethyl ether acetate, diethylene glycol monomethyl ether acetate, ethylene glycol mono Examples include butyl ether, diethylene glycol monobutyl ether, ethylene glycol monobutyl ether acetate, diethylene glycol monobutyl ether acetate, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, 1,4-dioxane, xylene and the like.
  • the transparent conductive particles are not particularly limited as long as the particles have both transparency and conductivity.
  • conductive metal oxide particles and conductive nitride particles can be used.
  • the conductive metal oxide particles include metal oxide particles such as indium oxide, tin oxide, zinc oxide, and cadmium oxide.
  • conductive metal oxide particles doped with tin, antimony, aluminum, gallium with one or more metal oxides selected from the group consisting of indium oxide, tin oxide, zinc oxide and cadmium oxide as main components,
  • ITO indium oxide
  • ATO antimony-containing tin oxide
  • ATO aluminum-containing zinc oxide
  • GZO gallium-containing zinc oxide
  • ITO particles are particularly preferable from the viewpoint of excellent transparency and conductivity.
  • the amount of tin added to the ITO particles in the ITO particles is preferably in the range of 1 to 20% by mass in terms of tin oxide.
  • the conductivity is improved by adding tin to ITO.
  • the amount of tin added is less than 1% by mass, the improvement in conductivity tends to be poor. Tend to be less.
  • the transparent conductive particles preferably have an average primary particle size in the range of 10 to 200 nm.
  • the average primary particle diameter is less than 10 nm, it is considered that the dispersion treatment becomes difficult and the particles are easily aggregated, but the haze increases and the optical properties tend to be inferior.
  • the average primary particle diameter exceeds 200 nm, it seems to be due to the scattering of visible light by the particles, but the haze tends to increase.
  • the average primary particle diameter is, for example, at least 100 particles after observing and measuring the particle diameter of each particle using an electron microscope on the surface or cross section of the transparent conductive film formed on the transparent substrate.
  • the average particle diameter is the average of the particle diameters.
  • the content of the binder resin contained in the transparent conductive film forming composition is preferably in the range of 5 to 18 parts by mass with respect to 100 parts by mass of the transparent conductive particles.
  • the content of the binder resin is less than 5 parts by mass, the effect of improving the coating film strength tends to be poor, and when the content of the binder resin exceeds 18 parts by mass, the surface electrical resistance value tends to increase. There is a possibility that good conductivity cannot be obtained.
  • the binder resin is not particularly limited, but a resin having a glass transition temperature in the range of 30 to 120 ° C. is preferable. By using a resin having a glass transition temperature in the range of 30 to 120 ° C. as the binder resin, the transparent conductive film can have appropriate flexibility.
  • a thermoplastic resin having a glass transition temperature in the range of 30 to 120 ° C. or a radiation curable resin having a glass transition temperature in the range of 30 to 120 ° C. can be used.
  • the said binder resin may be used independently or may be used in combination of 2 or more type.
  • the measurement of the glass transition temperature can be performed in accordance with Japanese Industrial Standard (JIS) K7121 using a DSC method based on so-called thermal analysis.
  • JIS Japanese Industrial Standard
  • thermoplastic resin having a glass transition temperature in the range of 30 to 120 ° C. for example, an acrylic resin or a polyester resin can be used.
  • acrylic resin examples include “Dianar BR-60”, “Dianar BR-64”, “Dianar BR-75”, “Dianar BR-77”, “Dianar BR” manufactured by Mitsubishi Rayon Co., Ltd. -80 ",” Diananal BR-83 “,” Dianar BR-87 “,” Dianar BR-90 “,” Dianar BR-95 “,” Dianar BR-96 “,” Dianar BR-100 “ ”,“ Dianar BR-101 ”,“ Dianar BR-105 ”,“ Dianar BR-106 ”,“ Dianar BR-107 ”,“ Dianar BR-108 ”,“ Dianar BR-110 ”, “Dianar BR-113”, “Dianar BR-122”, “Dianar BR-605”, “Dianar MB-2539” “Dianar MB-2389”, “Dianar MB-2487”, “Dianar MB-2660”, “Dianar MB-2952”, “Dianar MB-3015”, “Dianar MB
  • polyester resin examples include “Byron 200”, “Byron 220”, “Byron 226”, “Byron 240”, “Byron 245”, “Byron 270”, “Byron 280”, “Byron” manufactured by Toyobo Co., Ltd. 290 ”,“ Byron 296 ”,“ Byron 660 ”,“ Byron 885 ”,“ Byron GK110 ”,“ Byron GK250 ”,“ Byron GK360 ”,“ Byron GK640 ”,“ Byron GK880 ”and the like.
  • the radiation curable resin having a glass transition temperature in the range of 30 to 120 ° C. is not particularly limited, and examples thereof include acrylate monomers, methacrylate monomers, epoxy acrylates, urethane acrylates, polyester acrylates, and acrylic oligomers. Specifically, isobornyl acrylate, 2-phenoxyethyl methacrylate, tripropylene glycol diacrylate, diethylene glycol diacrylate, ethoxylated bisphenol A dimethacrylate, trimethylolpropane triacrylate, dipentaerythritol pentaacrylate, etc. may be used. it can.
  • the glass transition temperature of the radiation curable resin is, for example, an ultraviolet polymerization initiator such as 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropane-1 with respect to 100 parts by mass of the resin. It is preferable to use a measurement value after radiation curing treatment obtained by adding 5 parts by mass of ON and irradiating with ultraviolet rays at 500 mJ / cm 2 .
  • the curing treatment may be performed by radiation such as ultraviolet rays, electron beams, and ⁇ rays. Among these, it is convenient to use ultraviolet rays.
  • an ultraviolet polymerization initiator may be further added to the radiation curable resin. As the ultraviolet polymerization initiator, the following can be used.
  • benzoin isopropyl ether benzophenone, 2-hydroxy-2-methylpropiophenone, 1-hydroxycyclohexyl phenyl ketone, 2,4-diethylthioxanthone, methyl o-benzoylbenzoate, 4,4-bisdiethylaminobenzophenone, 2, 2-diethoxyacetophene, benzyl, 2-chlorothioxanthone, diisopropylthioxanthone, 9,10-anthraquinone, benzoin, benzoin methyl ether, 2,2-dimethoxy-2-phenylacetophenone, 2-hydroxy-2-methyl -Propiophenone, 4-isopropyl-2-hydroxy-2-methylpropiophenone, ⁇ , ⁇ -dimethoxy- ⁇ -phenylacetone, etc.
  • the said ultraviolet polymerization initiator may be used independently and may be used in combination of 2 or more type.
  • the ultraviolet polymerization initiator is preferably added in the range of 1 to 20 parts by mass with respect to 100 parts by mass of the radiation curable resin.
  • the addition amount of the ultraviolet polymerization initiator is less than 1 part by mass, it is considered that the curability of the resin is inferior, but the strength of the transparent conductive film tends to be inferior.
  • the addition amount of the said ultraviolet polymerization initiator exceeds 20 mass parts, although it seems that bridge
  • thermosetting resin such as an epoxy resin may be used.
  • the composition for forming a transparent conductive film may contain a dispersant, a plasticizer, an antistatic agent and the like in addition to the transparent conductive particles and the binder resin.
  • a dispersant containing at least an anionic functional group is preferably used, and a polyester resin containing an anionic functional group and an acrylic resin containing an anionic functional group are more preferably used.
  • carboxylic acid-containing acrylic resins, acid-containing polyester resins, acid and base-containing polyester resins, and the like can be used.
  • Solspurs 3000 “Solspurs 21000”, “Solspurs 32000”, “Solspurs 36000”, “Solspurs 41000”, “Solspurs 43000”, “Solspurs 44000”, “Solspurs 45000” manufactured by Abyssia
  • a commercially available product such as “Solspers 56000” can be used.
  • the method for preparing the transparent conductive film forming composition is not particularly limited as long as the transparent conductive particles and the binder resin can be dispersed in a solvent.
  • a dispersion process using a bead mill such as a sand grind mill, an ultrasonic disperser, a three roll mill, or the like can be mentioned, but a dispersion process using a bead mill is preferable from the viewpoint of better dispersibility.
  • the transparent conductive substrate includes a transparent substrate and a transparent conductive film disposed on the transparent substrate, and the transparent conductive film is formed using the above-described composition for forming a transparent conductive film. ing.
  • the total light transmittance of the transparent conductive substrate is preferably 75% or more, and more preferably 85% or more. Further, the haze value is preferably 2% or less, and more preferably 1% or less.
  • the transparent conductive substrate can be selected from, for example, a touch panel, a light control film electrode, a transparent surface heating element, a display antistatic film, It can be suitably used for a transparent conductive substrate for an electromagnetic shielding material.
  • the transparent substrate is not particularly limited as long as it is made of a transparent material having translucency.
  • polyester resins such as polyethylene terephthalate and polyethylene naphthalate; polyolefins; cellulose resins such as cellulose triacetate; amide resins such as nylon and aramid; polyether resins such as polyphenylene ether and polysulfone ether; polycarbonate resins;
  • a film or a substrate made of a material such as polyamide resin; polyimide resin; polyamideimide resin; aromatic polyamide resin; can be used.
  • the transparent substrate may be formed using glass, ceramics, or the like. In that case, inorganic glass or organic glass (polymer substrate) can be used as the glass material.
  • the thickness of the transparent substrate is preferably in the range of 3 to 300 ⁇ m, more preferably in the range of 25 to 200 ⁇ m.
  • the transparent substrate is preferably formed of glass, ceramics, or the like.
  • transparent means that the total light transmittance measured in accordance with JIS K7161: 1997 is 75% or more.
  • Additives such as antioxidants, flame retardants, ultraviolet absorbers, lubricants and antistatic agents may be added to the transparent substrate. Furthermore, in order to improve adhesion with the transparent conductive film formed on the transparent substrate, an easy-adhesive layer (for example, a primer layer) is provided on the substrate surface, or surface treatment such as corona treatment or plasma treatment. Can be done.
  • a primer layer for example, a primer layer
  • surface treatment such as corona treatment or plasma treatment.
  • the method for forming the transparent conductive substrate by applying the transparent conductive film-forming composition to the transparent substrate is not particularly limited as long as it is a coating method capable of forming a smooth coating film.
  • a coating method such as a gravure roll method, a micro gravure roll method, a spray method, a spin method, a knife method, a kiss method, a squeeze method, a reverse roll method, a dip method, or a bar coating method can be used.
  • the composition of the present invention is preferably used in a coating method in which the solid content concentration of the composition tends to increase and the time until drying and solidification is short, such as a spray coater coating method and a spin coater coating method.
  • hot air may be applied from the transparent conductive coating film side or from the transparent substrate side. Moreover, you may make a heat source contact the transparent substrate side directly. Moreover, you may dry a transparent conductive coating film by a non-contact method with a heat source using an infrared heater, a far-infrared heater, etc. Furthermore, you may dry naturally in the space where temperature and humidity were controlled.
  • Example 1 ⁇ Preparation of transparent conductive film forming composition A> First, a mixture having the following composition was subjected to dispersion treatment using zirconia beads having a diameter of 0.1 mm as a dispersion medium and a paint conditioner as a disperser to prepare a dispersion solution.
  • ITO particles average primary particle size: 20 nm, tin oxide content: 8% by mass
  • Binder resin acrylic resin, “Dianal BR-113” manufactured by Mitsubishi Rayon Co., Ltd.
  • Solvent A methyl isobutyl ketone
  • Solvent B cyclohexanone
  • Example 2 ⁇ Preparation of composition B for forming transparent conductive film>
  • a dispersion solution was prepared in the same manner as in Example 1 using a mixture having the following composition.
  • ITO particles average primary particle size: 20 nm, tin oxide content: 8% by mass
  • Binder resin acrylic resin, “Dianal BR-113” manufactured by Mitsubishi Rayon Co., Ltd.
  • Solvent A methyl isobutyl ketone
  • Solvent B cyclohexanone
  • Example 3 ⁇ Preparation of transparent conductive film forming composition C> First, a dispersion solution was prepared in the same manner as in Example 1 using a mixture having the following composition.
  • ITO particles average primary particle size: 20 nm, tin oxide content: 8% by mass
  • Binder resin acrylic resin, “Dianal BR-113” manufactured by Mitsubishi Rayon Co., Ltd.): 5 parts
  • Solvent A methyl isobutyl ketone
  • Solvent B cyclohexanone
  • Example 4 ⁇ Preparation of composition D for forming transparent conductive film> First, a dispersion solution was prepared in the same manner as in Example 1 using a mixture having the following composition.
  • ITO particles average primary particle size: 20 nm, tin oxide content: 8% by mass
  • Binder resin acrylic resin, “Dianal BR-113” manufactured by Mitsubishi Rayon Co., Ltd.): 5 parts
  • Solvent A methyl isobutyl ketone
  • Solvent B cyclohexanone
  • Binder resin (acrylic resin, “Dainal BR-83” manufactured by Mitsubishi Rayon Co., Ltd.): 1.9 parts
  • Solvent B (cyclohexanone): 40 parts
  • Solvent B (propylene glycol monomethyl ether: non Ketone solvent): 31.1 parts
  • Example 5 ⁇ Preparation of transparent conductive film forming composition E> First, a dispersion solution was prepared in the same manner as in Example 1 using a mixture having the following composition.
  • ITO particles average primary particle size: 20 nm, tin oxide content: 8% by mass
  • Binder resin acrylic resin, “Dianal BR-113” manufactured by Mitsubishi Rayon Co., Ltd.): 5 parts
  • Solvent A methyl isobutyl ketone
  • Solvent B cyclohexanone
  • Binder resin (acrylic resin, “Dainal BR-83” manufactured by Mitsubishi Rayon Co., Ltd.): 1.9 parts
  • Solvent B (cyclohexanone): 67.1 parts
  • Example 6 ⁇ Preparation of transparent conductive film forming composition F> First, a dispersion solution was prepared in the same manner as in Example 1 using a mixture having the following composition.
  • ITO particles average primary particle size: 20 nm, tin oxide content: 8% by mass
  • Binder resin acrylic resin, “Dianal BR-113” manufactured by Mitsubishi Rayon Co., Ltd.): 5 parts
  • Solvent A methyl isobutyl ketone
  • Solvent B cyclohexanone
  • Binder resin (acrylic resin, “Dainal BR-83” manufactured by Mitsubishi Rayon Co., Ltd.): 1.9 parts
  • Solvent A methyl ethyl ketone
  • Solvent B cyclohexanone
  • Example 7 ⁇ Preparation of transparent conductive film forming composition G> First, a dispersion solution was prepared in the same manner as in Example 1 using a mixture having the following composition.
  • ITO particles average primary particle size: 20 nm, tin oxide content: 8% by mass
  • Binder resin acrylic resin, “Dianal BR-113” manufactured by Mitsubishi Rayon Co., Ltd.): 5 parts
  • Solvent A methyl isobutyl ketone
  • Solvent B cyclohexanone
  • Binder resin (acrylic resin, “Dainal BR-83” manufactured by Mitsubishi Rayon Co., Ltd.): 1.9 parts
  • Solvent A methyl ethyl ketone
  • Solvent B cyclohexanone
  • Example 8 ⁇ Preparation of transparent conductive film forming composition H> First, a dispersion solution was prepared in the same manner as in Example 1 using a mixture having the following composition.
  • ITO particles average primary particle size: 20 nm, tin oxide content: 8% by mass
  • Binder resin acrylic resin, “Dainal BR-113” manufactured by Mitsubishi Rayon Co., Ltd.
  • Solvent A methyl isobutyl ketone
  • Solvent B cyclohexanone
  • Binder resin (acrylic resin, “Dainal BR-83” manufactured by Mitsubishi Rayon Co., Ltd.): 1.9 parts
  • Solvent B (cyclohexanone): 4.0 parts
  • composition I for forming transparent conductive film a dispersion solution was prepared in the same manner as in Example 1 using a mixture having the following composition.
  • ITO particles average primary particle size: 20 nm, tin oxide content: 8% by mass
  • Binder resin acrylic resin, “Dianal BR-113” manufactured by Mitsubishi Rayon Co., Ltd.
  • Solvent A methyl ethyl ketone
  • Solvent B cyclohexanone
  • composition J for forming transparent conductive film a dispersion solution was prepared in the same manner as in Example 1 using a mixture having the following composition.
  • ITO particles average primary particle size: 20 nm, tin oxide content: 8% by mass
  • Binder resin acrylic resin, “Dianal BR-113” manufactured by Mitsubishi Rayon Co., Ltd.
  • Solvent A methyl isobutyl ketone
  • Solvent B cyclohexanone
  • Binder resin (acrylic resin, “Dainal BR-83” manufactured by Mitsubishi Rayon Co., Ltd.): 1.9 parts
  • Solvent A methyl isobutyl ketone
  • Solvent B cyclohexanone
  • composition K for forming transparent conductive film a dispersion solution was prepared in the same manner as in Example 1 using a mixture having the following composition.
  • ITO particles average primary particle size: 20 nm, tin oxide content: 8% by mass
  • Binder resin acrylic resin, “Dianal BR-113” manufactured by Mitsubishi Rayon Co., Ltd.
  • Solvent A methyl isobutyl ketone
  • Solvent B cyclohexanone
  • Binder resin (acrylic resin, “Dainal BR-83” manufactured by Mitsubishi Rayon Co., Ltd.): 1.9 parts
  • Solvent B (cyclohexanone): 71.1 parts
  • Example 4 ⁇ Preparation of transparent conductive film forming composition L> First, a dispersion solution was prepared in the same manner as in Example 1 using a mixture having the following composition.
  • ITO particles average primary particle size: 20 nm, tin oxide content: 8% by mass
  • Binder resin acrylic resin, “Dianal BR-113” manufactured by Mitsubishi Rayon Co., Ltd.): 5 parts
  • Solvent A methyl isobutyl ketone
  • Solvent B propylene glycol monomethyl ether acetate: non-ketone solvent
  • Binder resin (acrylic resin, “Dainal BR-83” manufactured by Mitsubishi Rayon Co., Ltd.): 1.9 parts
  • Solvent B (propylene glycol monomethyl ether acetate: non-ketone solvent): 71.1 parts
  • Binder resin (acrylic resin, “Dainal BR-83” manufactured by Mitsubishi Rayon Co., Ltd.): 1.9 parts
  • Solvent B (cyclohexanone): 2.5 parts
  • composition N for forming transparent conductive film a dispersion solution was prepared in the same manner as in Example 1 using a mixture having the following composition.
  • ITO particles average primary particle size: 20 nm, tin oxide content: 8% by mass
  • Binder resin acrylic resin, “Dianal BR-113” manufactured by Mitsubishi Rayon Co., Ltd.
  • Solvent A methyl isobutyl ketone
  • Solvent B cyclohexanone
  • Binder resin (acrylic resin, “Dainal BR-83” manufactured by Mitsubishi Rayon Co., Ltd.): 1.9 parts
  • Solvent B (cyclohexanone): 71.1 parts
  • the transparent conductive film forming compositions A to O were dried on a rectangular transparent glass substrate (Corning non-alkali glass “EagleGXG”, thickness: 0.7 mm). Coating was carried out by adjusting the number of revolutions so that the film thickness became 0.7 ⁇ m, dried for 1 minute in an environment of 25 ° C. after coating, and then dried for 3 minutes in a thermostatic chamber at 80 ° C., Examples 1 to 8 In addition, transparent conductive substrates of Comparative Examples 1 to 7 were obtained. At this time, the distance from the composition discharge port of the spin coater to the transparent glass substrate was 5.0 mm.
  • the transparent conductive film forming compositions A to O are dried on a rectangular transparent glass substrate (non-alkali glass “Eagle XG” manufactured by Corning, thickness: 0.7 mm) using a bar coater. After coating, the count of the bar coater was adjusted so that the film thickness would be 0.7 ⁇ m. After coating, the coating was dried for 1 minute in an environment of 25 ° C. and then dried for 3 minutes in a thermostatic chamber at 80 ° C. Transparent conductive substrates of Example 8 and Comparative Examples 1 to 7 were obtained.
  • a transparent conductive substrate having a transparent conductive film on a transparent glass substrate formed by applying and drying a transparent glass substrate within 24 hours after preparing the composition for forming a transparent conductive film is used. It was.
  • the initial surface electrical resistance value of the transparent conductive film was measured using a resistivity meter (“Loresta MCP-T610” manufactured by Mitsubishi Chemical Analytech Co., Ltd.). Specifically, the average value of the surface electrical resistance values at four locations between the central point of each side of the transparent conductive film and the central point of the transparent conductive film was used as the measured value of the initial surface electrical resistance value. .
  • the initial surface electrical resistance is less than 10,000 ⁇ / square, it is evaluated as “good”, when 10,000 to 15,000 ⁇ / square is “good”, and when it exceeds 15,000 ⁇ / square, it is evaluated as “bad”. It was.
  • a transparent conductive substrate having a transparent conductive film on a transparent glass substrate formed by applying and drying a transparent glass substrate within 24 hours after preparing the composition for forming a transparent conductive film is used. It was.
  • the surface roughness of the transparent conductive film was evaluated by measuring the arithmetic average roughness (Ra) when observed at a magnification of 100 times using a three-dimensional surface structure analysis microscope (“NewView 5030” manufactured by ZYGO). Ra was less than 5.0 nm as “good”, 5.0-8.0 nm as “good”, and 8.0 nm as “bad”. The lower the value of Ra, the better the surface smoothness.
  • a transparent conductive substrate having a transparent conductive film on a transparent glass substrate formed by applying and drying a transparent glass substrate within 24 hours after preparing the composition for forming a transparent conductive film is used. It was.
  • the haze value is measured using a haze meter (“NDH2000” manufactured by Nippon Denshoku Co., Ltd.) in accordance with a method (mode: Hohou 1) in accordance with JIS K7361, including the transparent glass substrate. Evaluated. The case where the haze value was less than 1.0% was evaluated as “good”, the case where the haze value was 1.0 to 2.0% was evaluated as “good”, and the case where it exceeded 2.0% was evaluated as “bad”. The lower the haze value, the better the optical properties.
  • the measurement sample was stored for 7 days in an environment at 25 ° C., and then a rectangular transparent glass substrate (Corning non-alkali glass “EaglelXG”, thickness: 0.7 mm) was applied with a spin coater and dried to use a transparent conductive substrate having a transparent conductive film having a thickness of 0.7 ⁇ m on the transparent glass substrate.
  • a rectangular transparent glass substrate Corning non-alkali glass “EaglelXG”, thickness: 0.7 mm
  • Tables 1 to 4 show the compositions of the transparent conductive film forming compositions A to O produced in Examples 1 to 8 and Comparative Examples 1 to 7, respectively. The above evaluation results are shown in Tables 5 to 8.
  • the change rate of the surface electrical resistance value before and after the coating was stored in a 25 ° C. environment for 7 days However, it was 5% or less with respect to the initial surface electric resistance value, and evaluation of “good” was obtained.
  • the transparent conductive substrate formed using the transparent conductive film forming compositions A to B and E to H, whether formed with a spin coater or a bar coater has an initial surface electrical resistance value, surface roughness, Evaluation of “good” was obtained for all items of haze value.
  • Example 3 using the composition C for forming a transparent conductive film, since the ketone solvent in the solvent A is small, the change rate of the surface electric resistance value is 8%, and the storage stability of the composition is “good”. It became evaluation of.
  • both the transparent conductive substrate formed with a transparent conductive film using a spin coater and the transparent conductive substrate formed with a transparent conductive film using a bar coater have initial surface electrical resistance values of 11,000 ⁇ / square, It was 200 ⁇ / square, which was evaluated as “good”.
  • Example 4 using the composition D for forming a transparent conductive film, since the ketone solvent in the solvent B is small, the change rate of the surface electric resistance value is 6%, and the storage stability of the composition is “good”. It became evaluation of. Moreover, the initial surface electrical resistance values are 12,000 ⁇ / square and 11,800 ⁇ / square, respectively, for the transparent conductive substrate on which the transparent conductive film is formed by either the spin coater or the bar coater. It became. Further, the haze values of the transparent conductive substrate were 1.2% and 1.2%, respectively, and the evaluation was “good”.
  • the transparent conductive substrate on which the transparent conductive film is formed using a spin coater has a large amount of the solvent A having a relative evaporation rate of 1 or more.
  • the solvent was quickly dried from the composition, and the initial surface electrical resistance value and the haze value were 13,500 ⁇ / square and 1.2%, respectively, which were evaluated as “good”.
  • the surface roughness was evaluated as “bad” at 8.5 nm.
  • Comparative Example 2 using the composition J for forming a transparent conductive film, the transparent conductive substrate on which the transparent conductive film was formed using a spin coater had a solvent A having a relative evaporation rate of 1 or more as compared with Comparative Example 1.
  • the drying of the solvent from the composition is faster than that of Comparative Example 1, so that the initial surface electrical resistance value is evaluated as “bad” at 15,500 ⁇ / square, and the surface roughness is also evaluated as “bad” at 9.6 nm.
  • the haze value was 2.3%, which was evaluated as “bad”.
  • the transparent conductive substrate on which the transparent conductive film is formed by any coating method of spin coater or bar coater has an initial electric resistance value of 23,000 ⁇ / square, 22,500 ⁇ / square, and a surface roughness of 11.5 nm, respectively. 11.0 nm and haze values were 2.8% and 2.6%, respectively, and all were evaluated as “bad”.
  • the solid content concentration of the composition was high, so that the viscosity increased and sufficient dispersion could not be obtained, and the rate of change in the surface electrical resistance value was 8%.
  • the storage stability of the product was evaluated as “good”.
  • the transparent conductive substrate on which the transparent conductive film is formed by any coating method of spin coater or bar coater has an initial electric resistance value of 16,200 ⁇ / square, 16,300 ⁇ / square, and a surface roughness of 8.8 nm, respectively. 8.4 nm and haze values were 2.3% and 2.1%, respectively, which were evaluated as “bad”, respectively.
  • the transparent conductive substrate on which the transparent conductive film was formed using a spin coater had a low solid content concentration, so that the drying time was reduced when forming the coating film.
  • the initial surface electrical resistance value and haze value were 15,200 ⁇ / square and 2.3%, respectively, which were evaluated as “bad”. Further, the surface roughness was 7.1 nm, and the evaluation was “good”. Further, the haze value of the transparent conductive substrate on which the transparent conductive film was formed by the bar coater coating method was 1.5%, which was evaluated as “good”.
  • the transparent conductive substrate on which the transparent conductive film is formed by any of the spin coater and bar coater coating methods has an initial electric resistance value of 21,000 ⁇ / square, 21,200 ⁇ / square, and a surface roughness of 8.8 nm, respectively. , 8.2 nm, and haze values were 2.1% and 2.1%, respectively.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Paints Or Removers (AREA)
  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)
  • Laminated Bodies (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)

Abstract

透明導電性膜形成用組成物は、透明導電性粒子と、バインダ樹脂と、溶媒と、を含み、前記透明導電性膜形成用組成物の固形分濃度が、20~50質量%であり、前記溶媒は、酢酸ブチルの蒸発速度を1とした場合の相対蒸発速度が1以上の溶媒Aと、前記相対蒸発速度が1未満の溶媒Bとを含み、前記溶媒Aと前記溶媒Bとの質量比が、溶媒A:溶媒B=40:60~5:95であり、前記溶媒Aと前記溶媒Bとは、いずれも、少なくともケトン系溶媒を含む。

Description

透明導電性膜形成用組成物、及び透明導電性基板
 本発明は、透明導電性膜形成用組成物と、この組成物を用いて形成した透明導電性基板に関する。
 従来、透明導電性膜は、例えば、スズ含有酸化インジウムなどの透明導電性金属酸化物をスパッタリング、蒸着などのいわゆるドライプロセスにより基材上に堆積することにより、製造されていた。このようなドライプロセス法を用いた透明導電性膜の製造は、真空条件下で行われるため、高価な製造装置を必要とし、また、生産効率が悪く、大量生産には適さない。そのため、上記ドライプロセス法に代わる方法として、透明導電性粒子を含む分散組成物を塗布して透明導電性膜を形成するウェットプロセスの検討が進められている。
 透明導電性粒子のうち、酸化インジウムにスズを含有させたスズ含有酸化インジウム(ITO)粒子は、可視光に対する高い透光性と、高い導電性から、静電防止や電磁波遮蔽が要求されるCRT画面、LCD画面などに好適な材料として用いられてきた。
 また、透明導電性膜のドライプロセス法で使用されてきたスズ含有酸化インジウムの他、酸化スズ、アンチモン含有酸化スズ、酸化亜鉛、フッ素含有酸化スズなどの透明導電性粒子を含む分散組成物を基材上に塗布して形成した塗布型透明導電性膜も実用化されている。
 塗布型透明導電性膜に用いる溶媒としては、特許文献1では炭化水素類、芳香族類、ケトン類、アルコール類、グリコール類、グリコールエステル類、グリコールエーテル類などが提案されている。また、塗布型透明導電性膜を設けた塗布型透明導電性シートの製造方法としては、特許文献1で、乾燥塗膜中の残存溶媒量を乾燥膜厚に対する比率で規定し、表面電気抵抗値の変化率が小さく、ヘイズが小さい塗布型透明導電性シートと、その製造方法が提案されている。
 特許文献2では、塗布型透明導電性膜に用いる溶媒として、ケトン類、エステル類から選ばれる少なくとも1種に限定し、更に溶媒を酢酸ブチルの蒸発速度を1とした場合の相対蒸発速度が1以上の溶媒Aと、上記相対蒸発速度が1未満の溶媒Bとを、重量比で溶媒A:溶媒B=95:5~70:30とし、限定された乾燥条件を満たすことにより初期表面電気抵抗値が低く、上記表面電気抵抗値が経時で上昇することを抑制できる透明性に優れた透明導電性シート用組成物と、この組成物を用いた透明導電性シートの製造方法が提案されている。
特開2012-190713号公報 特開2016-207607号公報
 しかし、一般に透明導電性粒子とバインダ樹脂と溶媒とを含むコーティング組成物において、特許文献1の実施例で記載されている溶媒系(MEK/トルエン)では組成物の安定性が不十分であり、長期の保存によってコーティング組成物の粘度上昇が生じることがあった。また、このような組成物を用いて透明導電性シートを形成した場合、表面電気抵抗値の安定性が不十分であり、経時で表面電気抵抗値が上昇するという問題があった。
 また、特許文献2に記載されている上記の溶剤組成にて製造された透明導電性シート用組成物を、グラビアコータ、バーコータ、ダイコータなどの塗布方式により、所定の固形分濃度の組成物を基材に剪断力をかけて塗布し、急激な溶剤の蒸発が起こっていない材料予熱期間から恒率乾燥期間初期の段階で十分に塗膜をレベリングした後に、本格的な乾燥を行う方法においては、前述の効果は得られるものの、スプレーコータ塗布方式の様に、所定の固形分濃度の組成物を霧状に噴霧して基材に剪断力をかけずに塗布する方法では、噴霧の段階で、溶剤の急激な蒸発が起こってしまい、固形分濃度上昇に起因するレベリング不良によって表面粗さおよびヘイズ値が上昇したり、乾燥固化までの時間が短いことに起因する導電性粒子の充填不良によって表面電気抵抗値が上昇したりするおそれがあった。また、スピンコータ塗布方式の様に、所定の固形分濃度の組成物の液滴を高速回転する基材に垂らして、遠心力により水平方向に剪断力をかけて塗布する方法においても、基材の高速回転により、溶剤の急激な蒸発が起こってしまい、固形分濃度上昇に起因する組成物の広がり不良やレベリング不良によって表面粗さおよびヘイズ値が上昇したり、乾燥固化までの時間が短いことに起因する導電性粒子の充填不良によって表面電気抵抗値が上昇するおそれがあった。
 このように従来技術によるコーティング組成物は、組成物の保存安定性や表面電気抵抗値の安定性がまだ不十分であり、また、組成物のレベリングを十分に行うのが難しい塗布方式を用いた場合には、透明導電性膜の表面粗さおよびヘイズ値や表面電気抵抗値において十分満足する特性が得られないおそれがあった。
 本発明は、保存安定性に優れ、塗布方式によらず、透明基板に形成された透明導電性膜の表面粗さおよびヘイズ値を小さく、かつ表面電気抵抗値を十分に低くすることが可能な透明導電性膜形成用組成物を提供する。
 本発明の透明導電性膜形成用組成物は、透明導電性粒子と、バインダ樹脂と、溶媒と、を含む透明導電性膜形成用組成物であって、前記透明導電性膜形成用組成物の固形分濃度が、20~50質量%であり、前記溶媒は、酢酸ブチルの蒸発速度を1とした場合の相対蒸発速度が1以上の溶媒Aと、前記相対蒸発速度が1未満の溶媒Bとを含み、前記溶媒Aと前記溶媒Bとの質量比が、溶媒A:溶媒B=40:60~5:95であり、前記溶媒Aと前記溶媒Bとは、いずれも、少なくともケトン系溶媒を含むことを特徴とする。
 また、本発明の透明導電性基板は、透明基板と、前記透明基板の上に配置された透明導電性膜とを含む透明導電性基板であって、前記透明導電性膜は、上記本発明の透明導電性膜形成用組成物を用いて形成されたことを特徴とする。
 本発明によれば、保存安定性に優れ、塗布方式によらず、透明基板に形成された透明導電性膜の表面粗さおよびヘイズ値を小さく、かつ表面電気抵抗値を十分に低くすることが可能な透明導電性膜形成用組成物と、この組成物を用いて形成した透明導電性基板を提供することができる。
 本発明では、透明導電性粒子とバインダ樹脂と溶媒とを含む透明導電性膜形成用組成物を透明基板上に塗布した直後の膜を透明導電性塗布膜、前記透明導電性塗布膜の溶媒を蒸発・乾燥させた膜を透明導電性膜、透明基板と透明導電性膜とを含むものを透明導電基板と称する。また、透明導電性膜形成用組成物を単に組成物と称することもある。
 <透明導電性膜形成用組成物>
 上記透明導電性膜形成用組成物は、透明導電性粒子とバインダ樹脂とを溶媒に分散させて調製することにより得られる。上記透明導電性膜形成用組成物の固形分濃度は20~50質量%の範囲である。上記固形分濃度は25~45質量%が好ましく、30~40質量%が更に好ましい。
 上記透明導電性膜形成用組成物の固形分濃度が20質量%未満であると、透明導電性膜形成用組成物中の溶媒量が多くなるため、後述にて説明する相対的に蒸発しやすい溶媒A(酢酸ブチルの蒸発速度を1とした場合の相対蒸発速度が1以上の溶媒)、および相対的に蒸発しにくい溶媒B(酢酸ブチルの蒸発速度を1とした場合の相対蒸発速度が1未満の溶媒)を用いても透明導電性塗布膜中から蒸発乾燥する溶媒量が多いため、溶媒の蒸発に伴う組成物の対流の影響で透明導電性粒子の充填性が低下して透明導電性粒子間の接触が減少するため、表面電気抵抗値を十分に下げることができないおそれがある。また、表面粗さが大きくなったり、透明導電性膜中の残存溶媒量が多くなるおそれがある。
 上記固形分濃度が50質量%を超えると、溶媒量が少ないため透明導電性膜形成用組成物の分散が不十分になり、分散安定性が低下するため組成物の保存安定性が低下する。また、レベリング不良を起こすおそれがある。
 上記固形分濃度が20~50質量%の透明導電性膜形成用組成物、言い換えれば、溶媒が50~80質量%含まれる本発明の透明導電性膜形成用組成物において、溶媒として蒸発速度の異なる溶媒Aおよび溶媒Bを混合した溶媒を用いることにより、透明導電性膜形成用組成物を透明基板に塗布、乾燥して透明導電性膜を形成する際に、相対的に蒸発しやすい溶媒Aにより透明導電性膜中の残存溶媒量を低減することができる。また、相対的に蒸発しにくい溶媒Bが蒸発しやすい溶媒Aに比べて徐々に蒸発する結果、透明導電性塗布膜が乾燥固化するまでの間に透明導電性粒子の均一な堆積・充填が十分に進行、すなわち充填性が向上し、透明導電性粒子間の接触が増えることで透明導電性膜の表面電気抵抗値を十分に低下させることができる。
 相対的に蒸発しやすい上記溶媒Aと相対的に蒸発しにくい上記溶媒Bとを混合する場合、上記溶媒Aと、上記溶媒Bとの質量比は、溶媒A:溶媒B=40:60~5:95の範囲である。上記範囲とすることで、スプレーコータ塗布方式やスピンコータ塗布方式の様に、組成物の固形分濃度が上昇しやすく、乾燥固化までの時間が短い塗布方式においても、溶媒の蒸発速度を緩やかにすることができ、従来技術の組成物よりも固形分濃度の急激な上昇を抑制でき、乾燥固化までの時間も長く確保することができる。その結果、組成物のレベリング性や広がり性が向上し、透明導電性膜の表面粗さおよびヘイズ値を小さくすることができるとともに、透明導電性粒子の均一な堆積・充填が十分に進行、すなわち充填性が向上し、表面電気抵抗値の低い透明導電性膜を実現することができる。また、透明導電性膜中の残存溶媒量も従来技術の組成物と同等レベル以下にすることができる。
 混合溶媒全体の中に占める相対的に蒸発しやすい溶媒Aの割合が5部未満であると、導電性粒子に対する溶媒の濡れ性が低下し、分散安定性を保つことが困難となるおそれがある。また、塗布直後の透明導電性塗布膜の乾燥性が極端に遅くなり、透明導電性塗膜中の残存溶媒量が増加するおそれがある。また、混合溶媒全体の中に占める相対的に蒸発しやすい溶媒Aの割合が40部を超えると、相対的に蒸発しやすい溶媒Aが多すぎるため、スプレーコータ塗布方式やスピンコータ塗布方式の様に、組成物の固形分濃度が上昇しやすく、乾燥固化までの時間が短い塗布方式において、固形分濃度上昇に起因する組成物の広がり不良やレベリング不良によって表面粗さおよびヘイズ値が上昇したり、乾燥固化までの時間が短いことに起因する導電性粒子の充填不良によって表面電気抵抗値が上昇したりするおそれがある。混合溶媒全体の中に占める溶媒Aの割合は10~30部の範囲が好ましい。
 上記溶媒Aと上記溶媒Bとはいずれも、少なくともケトン系溶媒を含む。ここで、上記溶媒Aにおけるケトン系溶媒の含有量は、溶媒Aの全量に対して、90質量%以上とするのが好ましい。上記範囲とすることで、組成物の分散性が向上し、保存安定性に優れた透明導電性膜形成用組成物とすることができる。上記溶媒Aにおけるケトン系溶媒の含有量が、溶媒Aの全量に対して、90質量%未満であると、組成物の分散性が低下し、組成物の保存安定性が低下するおそれがある。上記溶媒Aにおけるケトン系溶媒の含有量は、溶媒Aの全量に対して、95質量%以上とするのがより好ましい。
 また、上記溶媒Bにおけるケトン系溶媒の含有量は、溶媒Bの全量に対して、70質量%以上とするのが好ましい。上記範囲とすることで、組成物の分散性が向上するとともに、塗布時における溶媒の蒸発速度が緩やかになり、固形分濃度の急激な上昇を抑制できるので、組成物のレベリング性や広がり性が向上し、透明導電性基板の表面粗さおよびヘイズ値を小さくすることができる。また、乾燥固化までの時間も長く確保することができるので、透明導電性粒子の均一な堆積・充填が十分に進行、すなわち充填性が向上し、表面電気抵抗値の低い透明導電性基板を得ることができる。上記溶媒Bにおけるケトン系溶媒の含有量が、溶媒Bの全量に対して、70質量%未満であると、組成物の分散性が低下し、組成物の保存安定性が低下するおそれがある。上記溶媒Bにおけるケトン系溶媒の含有量は、溶媒Bの全量に対して、80質量%以上とするのがより好ましい。
 上記溶媒Aにおけるケトン系溶媒の含有量を、溶媒Aの全量に対して、90質量%以上とし、上記溶媒Bにおけるケトン系溶媒の含有量を、溶媒Bの全量に対して、70質量%以上とすれば、上記溶媒Aおよび上記溶媒Bはケトン系溶媒以外の溶媒を含んでいても良い。
 (溶媒)
 上記溶媒としては、酢酸ブチルの蒸発速度を1とした場合の相対蒸発速度が1以上の溶媒Aと、上記相対蒸発速度が1未満の溶媒Bとを用いる。ここで、相対蒸発速度とは酢酸ブチルの蒸発速度を1とした場合の相対的な蒸発速度であり、値が大きいほど蒸発しやすく、値が小さい程蒸発しにくいことを意味する。
 上記溶媒Aと上記溶媒Bとは、いずれも、少なくともケトン系溶媒を含む。
 上記相対蒸発速度が1以上の上記溶媒Aに分類されるケトン系溶媒としては、アセトン、メチルエチルケトン(MEK)、メチルイソブチルケトン(MIBK)などを用いることができる。また、上記相対蒸発速度が1未満の上記溶媒Bに分類されるケトン系溶媒としては、シクロペンタノン、シクロヘキサノン、シクロヘプタノン、ジイソブチルケトン(DIBK)、2-ヘプタノン、メチルイソアミルケトン、メチル-n-プロピルケトン、イソホロンなどを用いることができる。
 上記溶媒Aにおいて酢酸ブチルの蒸発速度を1とした場合の相対蒸発速度が1以上、上記溶媒Bにおいて酢酸ブチルの蒸発速度を1とした場合の相対蒸発速度が1未満となる限りにおいては、上記溶媒Aおよび上記溶媒Bは、上記のケトン系溶媒の他に、アルコール系、エステル系、脂肪族系、芳香族系、グリコール系、エーテル系、グリコールエーテル系の溶媒を混合しても良い。これら溶媒をケトン系溶媒と混合して用いる場合には導電性微粒子の分散性を損なわない程度に添加することが望ましい。
 上記ケトン系溶媒以外で溶媒Aに分類される溶媒としては、メチルアルコール、エチルアルコール、イソプロピルアルコール、酢酸エチル、酢酸イソプロピル、酢酸ノルマルプロピル、テトラヒドロフラン、ヘキサン、ヘプタン、シクロヘキサン、トルエンなどが挙げられる。また、上記ケトン系溶媒以外で溶媒Bに分類される溶媒としては、ノルマルプロパノール、ノルマルブタノール、乳酸エチル、エチレングリコールモノメチルエーテル、ジエチレングリコールモノメチルエーテル、エチレングリコールモノメチルエーテルアセテート、ジエチレングリコールモノメチルエーテルアセテート、エチレングリコールモノブチルエーテル、ジエチレングリコールモノブチルエーテル、エチレングリコールモノブチルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテート、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、1,4-ジオキサン、キシレンなどが挙げられる。
 (透明導電性粒子)
 上記透明導電性粒子としては、透明性と導電性とを兼ね備えた粒子であれば特に限定されず、例えば、導電性金属酸化物粒子、導電性窒化物粒子を用いることができる。上記導電性金属酸化物粒子としては、酸化インジウム、酸化スズ、酸化亜鉛、酸化カドミウムなどの金属酸化物粒子が挙げられる。また、酸化インジウム、酸化スズ、酸化亜鉛および酸化カドミウムからなる群から選ばれる1種類以上の金属酸化物を主成分として、更にスズ、アンチモン、アルミニウム、ガリウムがドープされた導電性金属酸化物粒子、例えば、スズ含有酸化インジウム(ITO)粒子、アンチモン含有酸化スズ(ATO)粒子、アルミニウム含有酸化亜鉛(AZO)粒子、ガリウム含有酸化亜鉛(GZO)粒子、ITOをアルミニウム置換した導電性金属酸化物粒子も用いることができる。中でも、透明性および導電性に優れている点から、ITO粒子が特に好ましい。また、導電性の観点から、上記ITO粒子において、ITO全体に対してスズの添加量は酸化スズ換算で1~20質量%の範囲が好ましい。ITOへのスズの添加により導電性が改善されるが、スズの添加量が1質量%未満である場合は導電性の改善が乏しい傾向があり、20質量%を超えても導電性向上の効果は少ない傾向がある。
 上記透明導電性粒子は、平均一次粒子径が10~200nmの範囲であることが好ましい。平均一次粒子径が10nm未満である場合、分散処理が困難になり粒子同士が凝集しやすくなるためと思われるが、曇り(ヘイズ)が大きくなり、光学特性が劣る傾向がある。また、平均一次粒子径が200nmを超える場合、粒子による可視光線の散乱によるためと思われるが、曇り(ヘイズ)が大きくなる傾向がある。ここで、平均一次粒子径は、例えば、透明基板上に形成した透明導電性膜の表面又は断面において、個々の粒子の粒子径を電子顕微鏡を用いて観察・測定した後、少なくとも100個の粒子の粒子径を平均した平均粒子径をいう。
 (バインダ樹脂)
 上記透明導電性膜形成用組成物に含まれる上記バインダ樹脂の含有量は、透明導電性粒子100質量部に対して5~18質量部の範囲であることが好ましい。上記バインダ樹脂の含有量が5質量部未満であると塗膜強度向上の効果が乏しい傾向があり、上記バインダ樹脂の含有量が18質量部を超えると表面電気抵抗値が上昇する傾向があり、良好な導電性が得られないおそれがある。
 上記バインダ樹脂としては、特に限定されないが、ガラス転移温度が30~120℃の範囲である樹脂が好ましい。上記バインダ樹脂として、ガラス転移温度が30~120℃の範囲である樹脂を用いることにより、透明導電性膜は適度な柔軟性を有することができる。上記バインダ樹脂としては、例えば、ガラス転移温度が30~120℃の範囲である熱可塑性樹脂又はガラス転移温度が30~120℃の範囲である放射線硬化性樹脂を用いることができる。上記バインダ樹脂は、単独で用いてもよく、又は二種以上を組合せて用いてもよい。ここで、ガラス転移温度の測定は、いわゆる熱分析によるDSC法を用いて日本工業規格(JIS)K7121に準拠して行うことができる。
 上記ガラス転移温度が30~120℃の範囲である熱可塑性樹脂としては、例えばアクリル系樹脂又はポリエステル樹脂などを用いることができる。
 上記アクリル系樹脂としては、例えば、三菱レイヨン社製の“ダイヤナールBR-60”、“ダイヤナールBR-64”、“ダイヤナールBR-75”、“ダイヤナールBR-77”、“ダイヤナールBR-80”、“ダイヤナールBR-83”、“ダイヤナールBR-87”、“ダイヤナールBR-90”、“ダイヤナールBR-95”、“ダイヤナールBR-96”、“ダイヤナールBR-100”、“ダイヤナールBR-101”、“ダイヤナールBR-105”、“ダイヤナールBR-106”、“ダイヤナールBR-107”、“ダイヤナールBR-108”、“ダイヤナールBR-110”、“ダイヤナールBR-113”、“ダイヤナールBR-122”、“ダイヤナールBR-605”、“ダイヤナールMB-2539”、“ダイヤナールMB-2389”、“ダイヤナールMB-2487”、“ダイヤナールMB-2660”、“ダイヤナールMB-2952”、“ダイヤナールMB-3015”、“ダイヤナールMB-7033”などが挙げられる。
 上記ポリエステル樹脂としては、例えば、東洋紡積社製の“バイロン200”、“バイロン220”、“バイロン226”、“バイロン240”、“バイロン245”、“バイロン270”、“バイロン280”、“バイロン290”、“バイロン296”、“バイロン660”、“バイロン885”、“バイロンGK110”、“バイロンGK250”、“バイロンGK360”、“バイロンGK640”、“バイロンGK880”などが挙げられる。
 上記ガラス転移温度が30~120℃の範囲である放射線硬化性樹脂としては、特に限定されないが、例えば、アクリレートモノマー、メタクリレートモノマー、エポキシアクリレート、ウレタンアクリレート、ポリエステルアクリレート、アクリルオリゴマーなどが挙げられる。具体的には、イソボルニルアクリレート、2-フェノキシエチルメタクリレート、トリプロピレングリコールジアクリレート、ジエチレングリコ-ルジアクリレート、エトキシ化ビスフェノールAジメタクリレート、トリメチロールプロパントリアクリレート、ジペンタエリスリトールペンタアクリレートなどを用いることができる。ここで、放射線硬化性樹脂のガラス転移温度としては、例えば、樹脂100質量部に対し紫外線重合開始剤、例えば2-メチル-1-[4-(メチルチオ)フェニル]-2-モルフォリノプロパン-1-オンを5質量部添加し、紫外線を500mJ/cm2照射して得られた放射線硬化処理後の測定値を用いることが好ましい。
 上記バインダ樹脂として放射線硬化性樹脂を用いた場合、紫外線、電子線、β線などの放射線により硬化処理を行ってもよい。これらのうち紫外線を用いることが簡便であり、この場合、放射線硬化性樹脂に、更に紫外線重合開始剤を含ませてもよい。上記紫外線重合開始剤としては、以下のものを用いることができる。例えば、ベンゾインイソプロピルエーテル、ベンゾフェノン、2-ヒドロキシ-2-メチルプロピオフェノン、1-ヒドロキシシクロヘキシルフェニルケトン、2,4-ジエチルチオキサントン、o-ベンゾイル安息香酸メチル、4,4-ビスジエチルアミノベンゾフェノン、2,2-ジエトキシアセトフェン、ベンジル、2-クロロチオキサントン、ジイソプロピルチオザンソン、9,10-アントラキノン、ベンソイン、ベンソインメチルエーテル、2,2-ジメトキシ-2-フェニルアセトフェノン、2-ヒドロキシ-2-メチル-プロピオフェノン、4-イソプロピル-2-ヒドロキシ-2-メチルプロピオフェノン、α,α-ジメトキシ-α-フェニルアセトンなどを用いることができる。上記紫外線重合開始剤は、単独で用いてもよく、二種以上を組合せて用いてもよい。
 上記紫外線重合開始剤は、放射線硬化性樹脂100質量部に対し、1~20質量部の範囲で添加することが好ましい。上記紫外線重合開始剤の添加量が1質量部未満である場合、樹脂の硬化性が劣るためと思われるが、透明導電性膜の強度が劣る傾向にある。また、上記紫外線重合開始剤の添加量が20質量部を超える場合、架橋が十分に進行しないためと思われるが、透明導電性膜の強度が劣る傾向にある。
 また、上記ガラス転移温度が30~120℃の範囲である樹脂として、エポキシ樹脂などの熱硬化性樹脂を用いてもよい。
 (その他の添加剤)
 上記透明導電性膜形成用組成物には透明導電性粒子、バインダ樹脂以外に分散剤や可塑剤、耐電防止剤などを含んでいても良い。
 上記分散剤としては、少なくともアニオン系官能基を含む分散剤を用いることが好ましく、アニオン系官能基を含むポリエステル系樹脂、アニオン系官能基を含むアクリル系樹脂を用いることがより好ましい。例えば、カルボン酸含有アクリル系樹脂、酸含有ポリエステル系樹脂、酸および塩基含有ポリエステル系樹脂などを用いることができる。具体的には、三菱レイヨン社製の“ダイヤナールMR-2539”、“ダイヤナールMB-2389”、“ダイヤナールMB-2660”、“ダイヤナールMB-3015”、“ダイヤナールBR-84”など、又はアビシア社製の“ソルスパーズ3000”、“ソルスパーズ21000”、“ソルスパーズ26000”、“ソルスパーズ32000”、“ソルスパーズ36000”、“ソルスパーズ41000”、“ソルスパーズ43000”、“ソルスパーズ44000”、“ソルスパーズ45000”、“ソルスパーズ56000”などの市販のものを用いることができる。
 上記透明導電性膜形成用組成物の調製方法は、透明導電性粒子とバインダ樹脂とを溶媒中に分散できればよく、その分散方法はそれぞれ特に限定されない。例えば、サンドグラインドミルなどのビーズミル、超音波分散機、3本ロールミルなどによる分散処理が挙げられるが、より分散性が優れるという点から、ビーズミルによる分散処理が好ましい。
 <透明導電性基板>
 上記透明導電性基板は、透明基板と、上記透明基板の上に配置された透明導電性膜とを備え、上記透明導電性膜は、前述の透明導電性膜形成用組成物を用いて形成されている。上記透明導電性基板の全光線透過率は75%以上であることが好ましく、85%以上であることがより好ましい。また、ヘイズ値は2%以下であることが好ましく、1%以下であることがより好ましい。上記透明導電性基板の全光線透過率およびヘイズ値を上記範囲に設定することで、上記透明導電性基板を、例えば、タッチパネル、調光フィルム用電極、透明面発熱体、ディスプレイの帯電防止フィルム、電磁波シールド材用透明導電性基板などに好適に用いることができる。
 (透明基板)
 上記透明基板としては、透明な透光性を有する材料で形成されていれば特に限定されない。例えば、ポリエチレンテレフタレート、ポリエチレンナフタレートなどのポリエステル系樹脂;ポリオレフィン類;セルローストリアセテートなどのセルロース系樹脂;ナイロン、アラミドなどのアミド系樹脂;ポリフェニレンエーテル、ポリスルホンエーテルなどのポリエーテル系樹脂;ポリカーボネート系樹脂;ポリアミド系樹脂;ポリイミド系樹脂;ポリアミドイミド系樹脂;芳香族ポリアミド系樹脂;などの材料からなる、フィルム又は基板を用いることができる。また、上記透明基板は、ガラス、セラミックスなどを用いて形成してもよい。その場合、ガラス材料として、無機ガラス又は有機ガラス(ポリマー基体)を用いることができる。上記透明基板の厚さは、フィルム又は基板の場合は3~300μmの範囲が好ましく、25~200μmの範囲がより好ましい。スプレー法、スピン法などを用いて透明導電性膜形成用組成物を塗布する場合、透明基板はガラス、セラミックスなどで形成されている方が好ましい。
 また、本発明で透明とは、JIS K7161:1997に準拠して測定した全光線透過率が75%以上であることをいう。
 上記透明基板には、酸化防止剤、難燃剤、紫外線吸収剤、易滑剤、帯電防止剤などの添加剤が添加されてもよい。更に、上記透明基板上に形成される透明導電性膜との密着性を向上させるために、基板表面に易接着剤層(例えば、プライマー層)を設けたり、コロナ処理、プラズマ処理などの表面処理を行ったりすることができる。
 上記透明基板へ透明導電性膜形成用組成物を塗布して透明導電性基板を形成する方法としては、平滑な塗膜を形成しうる塗布方法であればよく、特に限定されない。例えば、グラビアロール法、マイクログラビアロール法、スプレー法、スピン法、ナイフ法、キス法、スクイズ法、リバースロール法、ディップ法、バーコート法などの塗布方法を用いることができる。特に、スプレーコータ塗布方式やスピンコータ塗布方式の様に、組成物の固形分濃度が上昇しやすく、乾燥固化までの時間が短い塗布方式において、本発明の組成物を用いることが好ましい。
 上記塗膜の乾燥方法としては、熱風を透明導電性塗布膜側から、あるいは透明基板側からあててもよい。また、透明基板側に熱源を直接接触させても良い。また、赤外線ヒーター、遠赤外線ヒーターなどを用いて、熱源と非接触の方法で透明導電性塗布膜を乾燥させても良い。更に、温度、湿度の管理された空間にて自然乾燥させてもよい。
 以下、実施例に基づいて本発明を詳細に説明する。但し、本発明は以下の実施例に限定されるものではない。また、特に指摘がない場合、下記において、「部」は「質量部」を意味する。
 (実施例1)
 <透明導電性膜形成用組成物Aの調製>
 先ず、以下の組成の混合物を、分散メディアとして直径0.1mmのジルコニアビーズを用い、分散機としてペイントコンディショナーを用いて分散処理して、分散溶液を調製した。
 (1)ITO粒子(平均一次粒子径:20nm、酸化スズ含有率:8質量%):45部
 (2)バインダ樹脂(アクリル系樹脂、三菱レイヨン社製“ダイヤナールBR-113”):5部
 (3)溶媒A(メチルイソブチルケトン):25部
 (4)溶媒B(シクロヘキサノン):25部
 次に、上記にて得られた分散溶液100部に以下の成分の混合物を加え、30分撹拌を行った後、フィルター(日本ミリポア社製のグラスファイバーフィルター“AP-25”)を通して「透明導電性膜形成用組成物A」を得た。
 (5)バインダ樹脂(アクリル系樹脂、三菱レイヨン社製“ダイヤナールBR-83”):1.9部
 (6)溶媒B(シクロヘキサノン):71.1部
 (実施例2)
 <透明導電性膜形成用組成物Bの調製>
 先ず、以下の組成の混合物を用いて、実施例1と同様にして分散溶液を調製した。
 (1)ITO粒子(平均一次粒子径:20nm、酸化スズ含有率:8質量%):45部
 (2)バインダ樹脂(アクリル系樹脂、三菱レイヨン社製“ダイヤナールBR-113”):5部
 (3)溶媒A(メチルイソブチルケトン):25部
 (4)溶媒B(シクロヘキサノン):25部
 次に、上記にて得られた分散溶液100部に以下の成分の混合物を加え、実施例1と同様にして「透明導電性膜形成用組成物B」を得た。
 (5)バインダ樹脂(アクリル系樹脂、三菱レイヨン社製“ダイヤナールBR-83”):1.9部
 (6)溶媒A(メチルエチルケトン):10.0部
 (7)溶媒B(シクロヘキサノン):61.1部
 (実施例3)
 <透明導電性膜形成用組成物Cの調製>
 先ず、以下の組成の混合物を用いて、実施例1と同様にして分散溶液を調製した。
 (1)ITO粒子(平均一次粒子径:20nm、酸化スズ含有率:8質量%):45部
 (2)バインダ樹脂(アクリル系樹脂、三菱レイヨン社製“ダイヤナールBR-113”):5部
 (3)溶媒A(メチルイソブチルケトン):25部
 (4)溶媒B(シクロヘキサノン):25部
 次に、上記にて得られた分散溶液100部に以下の成分の混合物を加え、実施例1と同様にして「透明導電性膜形成用組成物C」を得た。
 (5)バインダ樹脂(アクリル系樹脂、三菱レイヨン社製“ダイヤナールBR-83”):1.9部
 (6)溶媒A(トルエン:非ケトン系溶媒):11.1部
 (7)溶媒B(シクロヘキサノン):60.0部
 (実施例4)
 <透明導電性膜形成用組成物Dの調製>
 先ず、以下の組成の混合物を用いて、実施例1と同様にして分散溶液を調製した。
 (1)ITO粒子(平均一次粒子径:20nm、酸化スズ含有率:8質量%):45部
 (2)バインダ樹脂(アクリル系樹脂、三菱レイヨン社製“ダイヤナールBR-113”):5部
 (3)溶媒A(メチルイソブチルケトン):25部
 (4)溶媒B(シクロヘキサノン):25部
 次に、上記にて得られた分散溶液100部に以下の成分の混合物を加え、実施例1と同様にして「透明導電性膜形成用組成物D」を得た。
 (5)バインダ樹脂(アクリル系樹脂、三菱レイヨン社製“ダイヤナールBR-83”):1.9部
 (6)溶媒B(シクロヘキサノン):40部
 (7)溶媒B(プロピレングリコールモノメチルエーテル:非ケトン系溶媒):31.1部
 (実施例5)
 <透明導電性膜形成用組成物Eの調製>
 先ず、以下の組成の混合物を用いて、実施例1と同様にして分散溶液を調製した。
 (1)ITO粒子(平均一次粒子径:20nm、酸化スズ含有率:8質量%):45部
 (2)バインダ樹脂(アクリル系樹脂、三菱レイヨン社製“ダイヤナールBR-113”):5部
 (3)溶媒A(メチルイソブチルケトン):6部
 (4)溶媒B(シクロヘキサノン):44部
 次に、上記にて得られた分散溶液100部に以下の成分の混合物を加え、実施例1と同様にして「透明導電性膜形成用組成物E」を得た。
 (5)バインダ樹脂(アクリル系樹脂、三菱レイヨン社製“ダイヤナールBR-83”):1.9部
 (6)溶媒B(シクロヘキサノン):67.1部
 (実施例6)
 <透明導電性膜形成用組成物Fの調製>
 先ず、以下の組成の混合物を用いて、実施例1と同様にして分散溶液を調製した。
 (1)ITO粒子(平均一次粒子径:20nm、酸化スズ含有率:8質量%):45部
 (2)バインダ樹脂(アクリル系樹脂、三菱レイヨン社製“ダイヤナールBR-113”):5部
 (3)溶媒A(メチルイソブチルケトン):25部
 (4)溶媒B(シクロヘキサノン):25部
 次に、上記にて得られた分散溶液100部に以下の成分の混合物を加え、実施例1と同様にして「透明導電性膜形成用組成物F」を得た。
 (5)バインダ樹脂(アクリル系樹脂、三菱レイヨン社製“ダイヤナールBR-83”):1.9部
 (6)溶媒A(メチルエチルケトン):23.0部
 (7)溶媒B(シクロヘキサノン):48.1部
 (実施例7)
 <透明導電性膜形成用組成物Gの調製>
 先ず、以下の組成の混合物を用いて、実施例1と同様にして分散溶液を調製した。
 (1)ITO粒子(平均一次粒子径:20nm、酸化スズ含有率:8質量%):45部
 (2)バインダ樹脂(アクリル系樹脂、三菱レイヨン社製“ダイヤナールBR-113”):5部
 (3)溶媒A(メチルイソブチルケトン):25部
 (4)溶媒B(シクロヘキサノン):25部
 次に、上記にて得られた分散溶液100部に以下の成分の混合物を加え、実施例1と同様にして「透明導電性膜形成用組成物G」を得た。
 (5)バインダ樹脂(アクリル系樹脂、三菱レイヨン社製“ダイヤナールBR-83”):1.9部
 (6)溶媒A(メチルエチルケトン):39.0部
 (7)溶媒B(シクロヘキサノン):110.0部
 (実施例8)
 <透明導電性膜形成用組成物Hの調製>
 先ず、以下の組成の混合物を用いて、実施例1と同様にして分散溶液を調製した。
 (1)ITO粒子(平均一次粒子径:20nm、酸化スズ含有率:8質量%)45部
 (2)バインダ樹脂(アクリル系樹脂、三菱レイヨン社製“ダイヤナールBR-113”):5部
 (3)溶媒A(メチルイソブチルケトン):20部
 (4)溶媒B(シクロヘキサノン):30部
 次に、上記にて得られた分散溶液100部に以下の成分の混合物を加え、実施例1と同様にして「透明導電性膜形成用組成物H」を得た。
 (5)バインダ樹脂(アクリル系樹脂、三菱レイヨン社製“ダイヤナールBR-83”):1.9部
 (6)溶媒B(シクロヘキサノン):4.0部
 (比較例1)
 <透明導電性膜形成用組成物Iの調製>
 先ず、以下の組成の混合物を用いて、実施例1と同様にして分散溶液を調製した。
 (1)ITO粒子(平均一次粒子径:20nm、酸化スズ含有率:8質量%):45部
 (2)バインダ樹脂(アクリル系樹脂、三菱レイヨン社製“ダイヤナールBR-113”):5部
 (3)溶媒A(メチルエチルケトン):25部
 (4)溶媒B(シクロヘキサノン):25部
 次に、上記にて得られた分散溶液100部に以下の成分の混合物を加え、実施例1と同様にして「透明導電性膜形成用組成物I」を得た。
 (5)バインダ樹脂(アクリル系樹脂、三菱レイヨン社製“ダイヤナールBR-83”):1.9部
 (6)溶媒A(メチルイソブチルケトン):51.1部
 (7)溶媒B(シクロヘキサノン):20.0部
 (比較例2)
 <透明導電性膜形成用組成物Jの調製>
 先ず、以下の組成の混合物を用いて、実施例1と同様にして分散溶液を調製した。
 (1)ITO粒子(平均一次粒子径:20nm、酸化スズ含有率:8質量%):45部
 (2)バインダ樹脂(アクリル系樹脂、三菱レイヨン社製“ダイヤナールBR-113”):5部
 (3)溶媒A(メチルイソブチルケトン):25部
 (4)溶媒B(シクロヘキサノン):25部
 次に、上記にて得られた分散溶液100部に以下の成分の混合物を加え、実施例1と同様にして「透明導電性膜形成用組成物J」を得た。
 (5)バインダ樹脂(アクリル系樹脂、三菱レイヨン社製“ダイヤナールBR-83”):1.9部
 (6)溶媒A(メチルイソブチルケトン):61.1部
 (7)溶媒B(シクロヘキサノン):10.0部
 (比較例3)
 <透明導電性膜形成用組成物Kの調製>
 先ず、以下の組成の混合物を用いて、実施例1と同様にして分散溶液を調製した。
 (1)ITO粒子(平均一次粒子径:20nm、酸化スズ含有率:8質量%):45部
 (2)バインダ樹脂(アクリル系樹脂、三菱レイヨン社製“ダイヤナールBR-113”):5部
 (3)溶媒A(メチルイソブチルケトン):5部
 (4)溶媒B(シクロヘキサノン):45部
 次に、上記にて得られた分散溶液100部に以下の成分の混合物を加え、実施例1と同様にして「透明導電性膜形成用組成物K」を得た。
 (5)バインダ樹脂(アクリル系樹脂、三菱レイヨン社製“ダイヤナールBR-83”):1.9部
 (6)溶媒B(シクロヘキサノン):71.1部
 (比較例4)
 <透明導電性膜形成用組成物Lの調製>
 先ず、以下の組成の混合物を用いて、実施例1と同様にして分散溶液を調製した。
 (1)ITO粒子(平均一次粒子径:20nm、酸化スズ含有率:8質量%):45部
 (2)バインダ樹脂(アクリル系樹脂、三菱レイヨン社製“ダイヤナールBR-113”):5部
 (3)溶媒A(メチルイソブチルケトン):25部
 (4)溶媒B(プロピレングリコールモノメチルエーテルアセテート:非ケトン系溶媒):25部
 次に、上記にて得られた分散溶液100部に以下の成分の混合物を加え、実施例1と同様にして「透明導電性膜形成用組成物L」を得た。
 (5)バインダ樹脂(アクリル系樹脂、三菱レイヨン社製“ダイヤナールBR-83”):1.9部
 (6)溶媒B(プロピレングリコールモノメチルエーテルアセテート:非ケトン系溶媒):71.1部
 (比較例5)
 <透明導電性膜形成用組成物Mの調製>
 先ず、以下の組成の混合物を用いて、実施例1と同様にして分散溶液を調製した。
 (1)ITO粒子(平均一次粒子径:20nm、酸化スズ含有率:8質量%):45部
 (2)バインダ樹脂(アクリル系樹脂、三菱レイヨン社製“ダイヤナールBR-113”):5部
 (3)溶媒A(メチルイソブチルケトン):15部
 (4)溶媒B(シクロヘキサノン):25部
 次に、上記にて得られた分散溶液90部に以下の成分の混合物を加え、実施例1と同様にして「透明導電性膜形成用組成物M」を得た。
 (5)バインダ樹脂(アクリル系樹脂、三菱レイヨン社製“ダイヤナールBR-83”):1.9部
 (6)溶媒B(シクロヘキサノン):2.5部
 (比較例6)
 <透明導電性膜形成用組成物Nの調製>
 先ず、以下の組成の混合物を用いて、実施例1と同様にして分散溶液を調製した。
 (1)ITO粒子(平均一次粒子径:20nm、酸化スズ含有率:8質量%):45部
 (2)バインダ樹脂(アクリル系樹脂、三菱レイヨン社製“ダイヤナールBR-113”):5部
 (3)溶媒A(メチルイソブチルケトン):25部
 (4)溶媒B(シクロヘキサノン):25部
 次に、上記にて得られた分散溶液100部に以下の成分の混合物を加え、実施例1と同様にして「透明導電性膜形成用組成物N」を得た。
 (5)バインダ樹脂(アクリル系樹脂、三菱レイヨン社製“ダイヤナールBR-83”):1.9部
 (6)溶媒A(メチルイソブチルケトン):71.1部
 (7)溶媒B(シクロヘキサノン):173部
 (比較例7)
 <透明導電性膜形成用組成物Oの調製>
 先ず、以下の組成の混合物を用いて、実施例1と同様にして分散溶液を調製した。
 (1)ITO粒子(平均一次粒子径:20nm、酸化スズ含有率:8質量%):45部
 (2)バインダ樹脂(アクリル系樹脂、三菱レイヨン社製“ダイヤナールBR-113”):5部
 (3)溶媒A(酢酸エチル:非ケトン系溶媒):25部
 (4)溶媒B(シクロヘキサノン):25部
 次に、上記にて得られた分散溶液100部に以下の成分の混合物を加え、実施例1と同様にして「透明導電性膜形成用組成物O」を得た。
 (5)バインダ樹脂(アクリル系樹脂、三菱レイヨン社製“ダイヤナールBR-83”):1.9部
 (6)溶媒B(シクロヘキサノン):71.1部
 <透明導電性基板の作製>
 実施例1~実施例8の透明導電性膜形成用組成物A~Hおよび比較例1~比較例7の透明導電性膜形成用組成物I~Oを用いて、下記のように透明導電性基板を作製した。
 上記透明導電性膜形成用組成物A~Oを、スピンコータを用いて、矩形状の透明ガラス基板(コーニング社製の無アルカリガラス"Eagle XG"、厚さ:0.7mm)に、乾燥後の膜厚が0.7μmになるよう回転数を調整して塗布し、塗布後25℃の環境下で1分乾燥後、80℃の恒温室にて3分乾燥させ、実施例1~実施例8および比較例1~比較例7の透明導電性基板を得た。このとき、スピンコータの組成物吐出口から透明ガラス基板までの距離は5.0mmであった。
 また、上記透明導電性膜形成用組成物A~Oを、バーコータを用いて、矩形状の透明ガラス基板(コーニング社製の無アルカリガラス"Eagle XG"、厚さ:0.7mm)に、乾燥後の膜厚が0.7μmになるようバーコータの番手を調整して塗布し、塗布後25℃の環境下で1分乾燥後、80℃の恒温室にて3分乾燥させ、実施例1~実施例8および比較例1~比較例7の透明導電性基板を得た。
 続いて、上記透明導電性基板を用いて下記特性を評価した。
 <初期表面電気抵抗値>
 測定試料は、透明導電性膜形成用組成物を作製後、24時間以内に透明ガラス基板に塗布、乾燥して形成した、透明ガラス基板の上に透明導電性膜を有する透明導電性基板を用いた。上記透明導電性膜の初期表面電気抵抗値は、抵抗率計(“ロレスタMCP-T610”三菱化学アナリテック社製)を用いて測定した。具体的には、透明導電性膜の各辺の中心点と、透明導電性膜の中央点との間の4箇所の表面電気抵抗値の平均値を、初期表面電気抵抗値の測定値とした。初期表面電気抵抗値が、10,000Ω/スクエア未満の場合を「良好」、10,000~15,000Ω/スクエアの場合を「良」、15,000Ω/スクエアを超える場合を「不良」と評価とした。
 <表面粗さ>
 測定試料は、透明導電性膜形成用組成物を作製後、24時間以内に透明ガラス基板に塗布、乾燥して形成した、透明ガラス基板の上に透明導電性膜を有する透明導電性基板を用いた。上記透明導電性膜の表面粗さは、3次元表面構造解析顕微鏡(“NewView5030”ZYGO社製)を用いて、倍率100倍観測時の算術平均粗さ(Ra)を測定することにより評価した。Raが、5.0nm未満の場合を「良好」、5.0~8.0nmの場合を「良」、8.0nmを超える場合を「不良」と評価とした。Raの値は低いほど、表面の平滑性が優れることになる。
 <ヘイズ値>
 測定試料は、透明導電性膜形成用組成物を作製後、24時間以内に透明ガラス基板に塗布、乾燥して形成した、透明ガラス基板の上に透明導電性膜を有する透明導電性基板を用いた。ヘイズ値の測定は、ヘイズメーター(“NDH2000”日本電色社製)を用いて、JIS K7361に準拠した方法(モード:ホウホウ1)にて透明ガラス基板を含めた透明導電性基板全体のヘイズ値を評価した。ヘイズ値が、1.0%未満の場合を「良好」、1.0~2.0%の場合を「良」、2.0%を超える場合を「不良」と評価とした。ヘイズ値は低いほど、光学特性が優れることになる。
 <組成物の保存安定性>
 実施例1~実施例8の透明導電性膜形成用組成物A~Hおよび比較例1~比較例7の透明導電性膜形成用組成物I~Oを用いて、下記のように保存安定性を評価した。
 測定試料は、透明導電性膜形成用組成物を作製後、25℃の環境下で7日間保存した後、矩形状の透明ガラス基板(コーニング社製の無アルカリガラス"Eagle XG"、厚さ:0.7mm)にスピンコータにて塗布、乾燥して、透明ガラス基板の上に厚さ0.7μmの透明導電性膜を有する透明導電性基板を用いた。
 上記透明導電性膜の各辺の中心点と、透明導電性膜の中央点との間の4箇所を抵抗率計(“ロレスタMCP-T610”三菱化学アナリテック社製)を用いて表面電気抵抗値を測定した。4箇所の表面電気抵抗値の平均値を、保存後表面電気抵抗値の測定値とした。この保存後表面電気抵抗値と、先に測定した初期表面電気抵抗値とから下記の式を用いて計算した変化率が、5%以下の場合を透明導電性膜形成用組成物の保存安定性が「良好」、6%以上10%未満の場合を保存安定性が「良」、10%以上の場合を保存安定性が「不良」と評価とした。
 変化率(%)=〔(保存後表面電気抵抗値-初期表面電気抵抗値)/初期表面電気抵抗値〕×100
 実施例1~8および比較例1~7で作製した透明導電性膜形成用組成物A~Oの組成を表1~表4に示す。また、上記各評価結果を表5~表8に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
 透明導電性膜形成用組成物A~B、E~Hを用いた実施例1、2、5~8は、塗料を25℃環境下で7日間保存した前後での表面電気抵抗値の変化率が、初期表面電気抵抗値に対して5%以下であり、「良好」の評価を得た。また、透明導電膜形成用組成物A~B、E~Hを用いて形成した透明導電性基板は、スピンコータで形成した場合でもバーコータで形成した場合でも、初期表面電気抵抗値、表面粗さ、ヘイズ値の全項目で「良好」の評価を得た。
 透明導電性膜形成用組成物Cを用いた実施例3は、溶媒A中のケトン系溶媒が少ないため、表面電気抵抗値の変化率が8%となり、組成物の保存安定性が「良」の評価となった。また、スピンコータを用いて透明導電性膜を形成した透明導電性基板、バーコータを用いて透明導電性膜を形成した透明導電性基板とも、初期表面電気抵抗値が各々11,000Ω/スクエア、11,200Ω/スクエアとなり、「良」の評価となった。
 透明導電性膜形成用組成物Dを用いた実施例4は、溶媒B中のケトン系溶媒が少ないため、表面電気抵抗値の変化率が6%となり、組成物の保存安定性が「良」の評価となった。また、またスピンコータ、バーコータの何れの塗布方式で透明導電性膜を形成した透明導電性基板とも、初期表面電気抵抗値が各々12,000Ω/スクエア、11,800Ω/スクエアとなり、「良」の評価となった。また、透明導電性基板のヘイズ値も各々1.2%、1.2%となり、「良」の評価となった。
 これらに対して、透明導電膜形成用組成物Iを用いた比較例1では、スピンコータを用いて透明導電性膜を形成した透明導電性基板は、相対蒸発速度が1以上の溶媒Aが多いため、組成物から溶媒の乾燥が早くなり、初期表面電気抵抗値、ヘイズ値は各々13,500Ω/スクエア、1.2%となり、「良」の評価となった。また、表面粗さは8.5nmで「不良」の評価となった。
 透明導電性膜形成用組成物Jを用いた比較例2では、スピンコータを用いて透明導電性膜を形成した透明導電性基板は、相対蒸発速度が1以上の溶媒Aが比較例1に比べて多く、組成物から溶媒の乾燥が比較例1に比べて更に早いため、初期表面電気抵抗値が15,500Ω/スクエアで「不良」の評価となり、表面粗さも9.6nmで「不良」の評価となり、ヘイズ値も2.3%で「不良」の評価となった。
 透明導電性膜形成用組成物Kを用いた比較例3では、相対蒸発速度が1以下の溶媒Bが多すぎるため、表面電気抵抗値の変化率が7%となり、組成物の保存安定性が「良」の評価となった。また、スピンコータ、バーコータの何れの塗布方式で透明導電性膜を形成した透明導電性基板とも、初期表面電気抵抗値が各々17,200Ω/スクエア、17,500Ω/スクエアで「不良」の評価となり、表面粗さは各々7.3nm、7.8nmで「良」の評価となり、ヘイズ値も各々1.7%、1.8%で「良」の評価となった。
 透明導電性膜形成用組成物Lを用いた比較例4では、溶媒B中のケトン系溶媒が0であるため、表面電気抵抗値の変化率が20%となり、組成物の保存安定性が「不良」の評価となった。また、スピンコータ、バーコータの何れの塗布方式で透明導電性膜を形成した透明導電性基板とも、初期電気抵抗値は各々23,000Ω/スクエア、22,500Ω/スクエア、表面粗さは各々11.5nm、11.0nm、ヘイズ値は各々2.8%、2.6%となり、全て「不良」の評価となった。
 透明導電性膜形成用組成物Mを用いた比較例5では、組成物の固形分濃度が高いため粘度が上がり充分な分散が得られず、表面電気抵抗値の変化率が8%となり、組成物の保存安定性が「良」の評価となった。また、スピンコータ、バーコータの何れの塗布方式で透明導電性膜を形成した透明導電性基板とも、初期電気抵抗値は各々16,200Ω/スクエア、16,300Ω/スクエア、表面粗さは各々8.8nm、8.4nm、ヘイズ値は各々2.3%、2.1%となり、それぞれ「不良」の評価となった。
 透明導電性膜形成用組成物Nを用いた比較例6では、スピンコータを用いて透明導電性膜を形成した透明導電性基板は、組成物の固形分濃度が低いため塗膜形成時に乾燥時間が長くなり、初期表面電気抵抗値、ヘイズ値は各々15,200Ω/スクエア、2.3%となり、「不良」の評価となった。また、表面粗さは7.1nmで「良」の評価となった。また、バーコータ塗布方式で透明導電性膜を形成した透明導電性基板のヘイズ値も1.5%で「良」の評価となった。
 透明導電性膜形成用組成物Oを用いた比較例7では、溶媒A中のケトン系溶媒が0であるため、表面電気抵抗率の変化率が12%となり、組成物の保存安定性が「不良」の評価となった。また、スピンコータ、バーコータの何れの塗布方式で透明導電性膜を形成した透明導電性基板とも、初期電気抵抗値は各々21,000Ω/スクエア、21,200Ω/スクエア、表面粗さは各々8.8nm、8.2nm、ヘイズ値は各々2.1%、2.1%となり、全て「不良」の評価となった。
 本発明は、その趣旨を逸脱しない範囲で、上記以外の形態としても実施が可能である。本出願に開示された実施形態は一例であって、これらに限定はされない。本発明の範囲は、上述の明細書の記載よりも、添付されている請求の範囲の記載を優先して解釈され、請求の範囲と均等の範囲内での全ての変更は、請求の範囲に含まれるものである。

Claims (7)

  1.  透明導電性粒子と、バインダ樹脂と、溶媒と、を含む透明導電性膜形成用組成物であって、
     前記透明導電性膜形成用組成物の固形分濃度が、20~50質量%であり、
     前記溶媒は、酢酸ブチルの蒸発速度を1とした場合の相対蒸発速度が1以上の溶媒Aと、前記相対蒸発速度が1未満の溶媒Bとを含み、
     前記溶媒Aと前記溶媒Bとの質量比が、溶媒A:溶媒B=40:60~5:95であり、
     前記溶媒Aと前記溶媒Bとは、いずれも、少なくともケトン系溶媒を含むことを特徴とする透明導電性膜形成用組成物。
  2.  前記溶媒Aにおける前記ケトン系溶媒の含有量が、溶媒Aの全量に対して、90質量%以上であり、
     前記溶媒Bにおける前記ケトン系溶媒の含有量が、溶媒Bの全量に対して、70質量%以上である請求項1に記載の透明導電性膜形成用組成物。
  3.  前記相対蒸発速度が1以上の前記ケトン系溶媒が、アセトン、メチルエチルケトン、およびメチルイソブチルケトンからなる群から選ばれる少なくとも1種である請求項1又は2に記載の透明導電性膜形成用組成物。
  4.  前記相対蒸発速度が1未満の前記ケトン系溶媒が、シクロペンタノン、シクロヘキサノン、シクロヘプタノン、ジイソブチルケトン、2-ヘプタノン、メチルイソアミルケトン、メチル-n-プロピルケトン、およびイソホロンからなる群から選ばれる少なくとも1種である請求項1~3のいずれか1項に記載の透明導電性膜形成用組成物。
  5.  透明基板と、前記透明基板の上に配置された透明導電性膜とを含む透明導電性基板であって、
     前記透明導電性膜は、請求項1~4のいずれか1項に記載の透明導電性膜形成用組成物を用いて形成されたことを特徴とする透明導電性基板。
  6.  全光線透過率が、75%以上である請求項5に記載の透明導電性基板。
  7.  ヘイズ値が、2%以下である請求項5又は6に記載の透明導電性基板。
PCT/JP2017/009327 2016-03-30 2017-03-08 透明導電性膜形成用組成物、及び透明導電性基板 WO2017169603A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018508901A JPWO2017169603A1 (ja) 2016-03-30 2017-03-08 透明導電性膜形成用組成物、及び透明導電性基板
CN201780013383.8A CN108780678A (zh) 2016-03-30 2017-03-08 透明导电性膜形成用组合物及透明导电性基板
US16/083,444 US20190077931A1 (en) 2016-03-30 2017-03-08 Composition for forming transparent conductive film, and transparent conductive substrate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016069122 2016-03-30
JP2016-069122 2016-03-30

Publications (1)

Publication Number Publication Date
WO2017169603A1 true WO2017169603A1 (ja) 2017-10-05

Family

ID=59963084

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/009327 WO2017169603A1 (ja) 2016-03-30 2017-03-08 透明導電性膜形成用組成物、及び透明導電性基板

Country Status (4)

Country Link
US (1) US20190077931A1 (ja)
JP (1) JPWO2017169603A1 (ja)
CN (1) CN108780678A (ja)
WO (1) WO2017169603A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008034345A (ja) * 2006-06-27 2008-02-14 Sumitomo Metal Mining Co Ltd 導電性酸化物微粒子分散液と透明導電膜形成用塗布液、及び透明導電膜
JP2012190713A (ja) * 2011-03-11 2012-10-04 Hitachi Maxell Ltd 透明導電性シートの製造方法
WO2013047686A1 (ja) * 2011-09-29 2013-04-04 日立マクセル株式会社 透明導電性シート
JP2015095387A (ja) * 2013-11-13 2015-05-18 日立マクセル株式会社 透明導電性シート
JP2016207607A (ja) * 2015-04-28 2016-12-08 日立マクセル株式会社 透明導電性膜組成物、透明導電性シートの製造方法、及び透明導電性シート

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5190758B2 (ja) * 2005-10-05 2013-04-24 住友金属鉱山株式会社 透明導電層付フィルムとフレキシブル機能性素子、フレキシブル分散型エレクトロルミネッセンス素子及びその製造方法並びにそれを用いた電子デバイス
CN101510457A (zh) * 2008-02-13 2009-08-19 住友金属矿山株式会社 挠性透明导电薄膜和挠性功能性元件及它们的制造方法
WO2009102079A1 (ja) * 2008-02-13 2009-08-20 Sumitomo Metal Mining Co., Ltd. フレキシブル透明導電フィルムとフレキシブル機能性素子およびこれ等の製造方法
JP6004874B2 (ja) * 2011-12-16 2016-10-12 日東電工株式会社 透明導電性フィルム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008034345A (ja) * 2006-06-27 2008-02-14 Sumitomo Metal Mining Co Ltd 導電性酸化物微粒子分散液と透明導電膜形成用塗布液、及び透明導電膜
JP2012190713A (ja) * 2011-03-11 2012-10-04 Hitachi Maxell Ltd 透明導電性シートの製造方法
WO2013047686A1 (ja) * 2011-09-29 2013-04-04 日立マクセル株式会社 透明導電性シート
JP2015095387A (ja) * 2013-11-13 2015-05-18 日立マクセル株式会社 透明導電性シート
JP2016207607A (ja) * 2015-04-28 2016-12-08 日立マクセル株式会社 透明導電性膜組成物、透明導電性シートの製造方法、及び透明導電性シート

Also Published As

Publication number Publication date
US20190077931A1 (en) 2019-03-14
JPWO2017169603A1 (ja) 2019-02-07
CN108780678A (zh) 2018-11-09

Similar Documents

Publication Publication Date Title
TWI622611B (zh) Hard coating film and hard coating film winding body
JP5006528B2 (ja) 帯電防止ハードコート用塗布組成物
KR20120106603A (ko) 투명 도전성 필름 및 터치 패널
CN110119004B (zh) 防眩膜及具有此防眩膜的偏光板
JP6858503B2 (ja) 透明導電性フィルム
TWI421316B (zh) 透明導電膜形成用組成物、透明導電膜及顯示器
JP2008165984A (ja) 透明導電膜形成用組成物、透明導電膜及びディスプレイ
JP5405935B2 (ja) 透明導電性シート
TWI680874B (zh) 積層薄膜及其製造方法
Suthabanditpong et al. Studies of optical properties of UV-cured acrylate films modified with spherical silica nanoparticles
TW201716517A (zh) 用於剛性及可撓性基材之導電透明塗層
JP5674514B2 (ja) 透明導電性シートの製造方法
JP5337500B2 (ja) 透明導電膜及びその製造方法
CN114479152B (zh) 一种高硬度防眩膜
JP6506608B2 (ja) 透明導電性膜組成物、透明導電性シートの製造方法、及び透明導電性シート
WO2017169603A1 (ja) 透明導電性膜形成用組成物、及び透明導電性基板
JP7124409B2 (ja) ドライフィルムレジスト用ポリエステルフィルム
JP2011192401A (ja) 透明導電性ペースト組成物
JP2005247939A (ja) ハードコートフィルム及びその製造方法
JP6398319B2 (ja) 積層フィルム及び透明基板
JP6515445B2 (ja) 表面保護フィルム用ポリエステルフィルムロールおよび導電性フィルム積層体
JP5789163B2 (ja) 透明導電性シート
JP6210851B2 (ja) 透明導電性シート
JP2010053173A (ja) 樹脂被覆金属酸化物粒子分散液の製造方法および該樹脂被覆金属酸化物粒子を含む透明被膜形成用塗布液ならびに透明被膜付基材
KR20090008516A (ko) 다양한 크기의 나노 분말을 사용한 난반사 조성물 및 그제조방법과 이 조성물을 사용한 물품

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018508901

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17774148

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17774148

Country of ref document: EP

Kind code of ref document: A1