WO2017168880A1 - 硬化性組成物およびその硬化物ならびに回転機 - Google Patents

硬化性組成物およびその硬化物ならびに回転機 Download PDF

Info

Publication number
WO2017168880A1
WO2017168880A1 PCT/JP2016/088053 JP2016088053W WO2017168880A1 WO 2017168880 A1 WO2017168880 A1 WO 2017168880A1 JP 2016088053 W JP2016088053 W JP 2016088053W WO 2017168880 A1 WO2017168880 A1 WO 2017168880A1
Authority
WO
WIPO (PCT)
Prior art keywords
epoxy resin
curable composition
inorganic particles
hydrophilic
resin
Prior art date
Application number
PCT/JP2016/088053
Other languages
English (en)
French (fr)
Inventor
あずさ 大澤
馬渕 貴裕
保田 直紀
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to EP16897096.0A priority Critical patent/EP3438200B1/en
Priority to US16/086,126 priority patent/US20200032046A1/en
Priority to CN201680082248.4A priority patent/CN108884296B/zh
Priority to JP2017531923A priority patent/JP6279161B1/ja
Publication of WO2017168880A1 publication Critical patent/WO2017168880A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • C08L63/10Epoxy resins modified by unsaturated compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/226Mixtures of di-epoxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/24Di-epoxy compounds carbocyclic
    • C08G59/245Di-epoxy compounds carbocyclic aromatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/26Di-epoxy compounds heterocyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/42Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3442Heterocyclic compounds having nitrogen in the ring having two nitrogen atoms in the ring
    • C08K5/3445Five-membered rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/30Windings characterised by the insulating material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/003Additives being defined by their diameter
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group

Definitions

  • the present invention relates to a curable composition, a cured product thereof, and a rotating machine.
  • Patent Document 1 JP-A-2006-057017 discloses a resin composition containing an epoxy resin, a curing agent for epoxy resin, a coupling agent, and inorganic particles.
  • a curable epoxy resin composition is used for insulation treatment of heavy electrical equipment. For example, in a rotating machine, a mica tape wound around a coil conductor is impregnated with a curable epoxy resin composition. The curable epoxy resin composition is heated to become a cured product. Thereby, an insulating layer covering the coil conductor is formed.
  • inorganic particles are not easily compatible with epoxy resins (organic materials). Therefore, in the composite material, aggregation of inorganic particles tends to occur. Furthermore, when the particle size becomes nano-order, the tendency is more remarkable. When the inorganic particles are aggregated, the inorganic particles are likely to settle. In addition, voids are easily formed around the aggregate. A void can become a starting point of partial discharge in a cured product. Therefore, in consideration of partial discharge resistance and the like, the insulation performance is still not sufficient.
  • Patent Document 1 inorganic particles and an epoxy resin are bonded with a coupling agent or the like. Thereby, it is supposed that the dispersibility of an inorganic particle improves.
  • the coupling agent has lower heat resistance than the epoxy resin. For this reason, when a coupling agent is used in a large amount, the heat resistance of the cured product may be lowered.
  • the coupling agent is inferior to epoxy resin because of its strength of dielectric breakdown. Insulation degradation paths tend to progress through weakly insulated parts. Therefore, when the coupling agent is dispersed inside the cured product, dielectric breakdown may occur through the coupling agent. That is, when a coupling agent is used, the effect of improving the strength of dielectric breakdown due to the dispersion of inorganic particles may be offset.
  • an object of the present invention is to provide a curable composition having improved insulation performance while suppressing a decrease in heat resistance.
  • the curable composition (X) of the present invention contains an epoxy resin (A), a curing agent (B), a curing accelerator (C), and hydrophilic inorganic particles (D).
  • the epoxy resin (A) includes a first epoxy resin (a1) and a second epoxy resin (a2).
  • the first epoxy resin (a1) is a chain aliphatic epoxy resin having a hydrophilic group, and has a water content of 20% by mass to 99% by mass.
  • the second epoxy resin (a2) includes at least one selected from the group consisting of cycloaliphatic epoxy resins, aromatic epoxy resins, and heterocyclic epoxy resins.
  • the first epoxy resin (a1) and the hydrophilic inorganic particles (D) are both hydrophilic. Due to these interactions, the hydrophilic inorganic particles (D) are surrounded by the first epoxy resin (a1), and thus aggregation of the hydrophilic inorganic particles (D) is suppressed. That is, hydrophilic inorganic particles (D) can be dispersed without depending on the coupling agent. Therefore, it is possible to suppress a decrease in heat resistance accompanying the addition of the coupling agent. In addition, the insulation performance can be improved by the dispersion of inorganic particles.
  • 1st Embodiment of this invention is curable composition (X) and its hardened
  • the curable composition (X) includes an epoxy resin (A), a curing agent (B), a curing accelerator (C), and hydrophilic inorganic particles (D).
  • the curable composition (X) may be thermosetting. Alternatively, the curable composition may be photocurable.
  • Epoxy resin (A) is preferably 46% by volume to 98% by volume (more preferably 50% by volume to 97% by volume, even more preferably 70% by volume to 95% by volume). Included. Within this range, the balance between the insulation performance of the cured product (Y) and the mechanical properties (for example, toughness) is good.
  • the epoxy resin (A) includes a first epoxy resin (a1) and a second epoxy resin (a2).
  • the first epoxy resin (a1) is a chain aliphatic epoxy resin having a hydrophilic group.
  • the first epoxy resin (a1) exhibits specific water solubility. That is, the first epoxy resin (a1) has a water content of 20% by mass to 99% by mass (preferably 30% by mass to 90% by mass, more preferably 40% by mass to 80% by mass, and most preferably 50% by mass. Mass% to 70 mass%).
  • Water solubility means the dissolution rate (unit: mass%) of the epoxy resin in water at room temperature. That is, when the epoxy resin is dissolved in water adjusted to 25 ° C. ⁇ 1 ° C., the proportion of the epoxy resin actually dissolved in water is the water solubility. Specifically, the water solubility is measured as follows. Prepare 100 g of water adjusted to 25 ⁇ 1 ° C. While stirring the water well, the epoxy resin is gradually dropped into the water. The percentage of the value obtained by dividing the dripping amount of the epoxy resin until the mixed solution reaches a saturated state by the mass of water (100 g) is the water solubility. Whether or not it is dissolved is determined by the fact that the mixed solution is not turbid and that separation does not occur after standing.
  • the water content of the first epoxy resin (a1) is less than 20% by mass, it is difficult to sufficiently disperse the hydrophilic inorganic particles (D).
  • the water solubility exceeds 99% by mass, the heat resistance of the cured product (Y) may be lowered.
  • the first epoxy resin (a1) is a chain aliphatic compound.
  • the first epoxy resin (a1) may be linear.
  • the first epoxy resin (a1) may be branched.
  • the first epoxy resin has a hydrophilic group.
  • the hydrophilic group is, for example, a hydroxy group, an ether group, a carboxy group or the like.
  • the first epoxy resin (a1) has one or more epoxy groups in one molecule. That is, the first epoxy resin (a1) is a monovalent or polyvalent glycidyl compound.
  • the first epoxy resin (a1) is preferably a glycidyl ether compound.
  • the first epoxy resin (a1) is more preferably a polyglycidyl ether compound having a glycerol skeleton. When the 1st epoxy resin (a1) is these compounds, it is easy to adjust a water content rate within the limits of 20 mass% or more and 99 mass% or less.
  • the first epoxy resin (a1) include, for example, ethylene glycol diglycidyl ether, diethylene glycol diglycidyl ether, triethylene glycol diglycidyl ether; polyglycidyl ether; glycerol polyglycidyl ether, diglycerol polyglycidyl ether; trimethylol.
  • One of the above compounds may be used alone as the first epoxy resin (a1).
  • Two or more compounds may be used in combination as the first epoxy resin (a1). That is, the first epoxy resin (a1) may be at least one selected from the above compound group.
  • products that can be used as the first epoxy resin (a1) include, for example, Denacol EX-121, Denacol EX-171, Denacol EX-192, Denacol EX-211, Denacol EX-212, Denacol EX-313 , Denacol EX-314, Denacol EX-321, Denacol EX-411, Denacol EX-421, Denacol EX-512, Denacol EX-521, Denacol EX-611, Denacol EX-612, Denacol EX-614, Denacol EX-622 , Denacol EX-810, Denacol EX-811, Denacol EX-850, Denacol EX-851, Denacol EX-821, Denacol EX-830, Denacol EX-832, Denacol EX-841, Denacol X-861, Denacol EX-911, Denacol EX-941, Denacol EX-920, Denacol E
  • the first epoxy resin (a1) preferably has a viscosity of 20 mPa ⁇ s to 21200 mPa ⁇ s (more preferably 20 mPa ⁇ s to 5000 mPa ⁇ s, even more preferably 40 mPa ⁇ s to 650 mPa ⁇ s, most preferably 90 mPa ⁇ s to 200 mPa ⁇ s).
  • a viscosity of 20 mPa ⁇ s to 21200 mPa ⁇ s (more preferably 20 mPa ⁇ s to 5000 mPa ⁇ s, even more preferably 40 mPa ⁇ s to 650 mPa ⁇ s, most preferably 90 mPa ⁇ s to 200 mPa ⁇ s).
  • the balance between the dispersibility and the dispersion stability of the hydrophilic inorganic particles (D) is good.
  • Viscosity is measured using an E-type viscometer.
  • the measurement temperature is 25 ⁇ 1 ° C.
  • the rotation speed of the viscometer is 40 rpm. However, the rotational speed of the viscometer may be changed within the range of 10 to 120 rpm depending on the viscosity of the measurement object.
  • the second epoxy resin (a2) includes at least one selected from the group consisting of cycloaliphatic epoxy resins, aromatic epoxy resins, and heterocyclic epoxy resins.
  • the second epoxy resin (a2) is a component that imparts heat resistance to the cured product (Y).
  • the cycloaliphatic epoxy resin contains one or more epoxy groups and one or more aliphatic carbocycles (non-aromatic carbocycles) in one molecule.
  • Specific examples of the cycloaliphatic epoxy resin include alicyclic diepoxy adipate, alicyclic diepoxy carboxylate, vinylcyclohexene dioxide, 4-vinylcyclohexene-1,2-epoxide, and the like.
  • the aromatic epoxy resin contains one or more epoxy groups and one or more aromatic rings in one molecule.
  • Specific examples of the aromatic epoxy resin include, for example, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol AD type epoxy resin, brominated bisphenol type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, glycidyl. Examples thereof include ester type epoxy resins and glycidylamine type epoxy resins.
  • the heterocyclic epoxy resin contains one or more epoxy groups and one or more heterocyclic rings in one molecule.
  • Specific examples of the heterocyclic epoxy resin include, for example, an epoxy resin having a triazine ring, a hydantoin type epoxy resin, and the like.
  • one compound is used alone as the second epoxy resin (a2). It may be used. Two or more compounds may be used in combination as the second epoxy resin (a2).
  • the ratio of the first epoxy resin (a1) to the total of the first epoxy resin (a1) and the second epoxy resin (a2) is preferably 26% by volume to 54% by volume (more preferably 27% by volume to 46% by volume). The following). Within this range, the balance between insulation performance and heat resistance tends to be good.
  • the curing agent (B) reacts with the epoxy resin (A) to cure the epoxy resin (A).
  • the curing agent (for epoxy resin (A)) include an amine curing agent, an acid anhydride curing agent, an imidazole curing agent, a polymercaptan curing agent, a phenol curing agent, and a Lewis acid curing agent. Examples thereof include a curing agent and an isocyanate curing agent.
  • amine curing agent examples include, for example, ethylenediamine, 1,3-diaminopropane, 1,4-diaminobutane, hexamethylenediamine, dipropylenediamine, polyether diamine, 2,5-dimethylhexamethylenediamine, trimethyl.
  • acid anhydride curing agent examples include methyltetrahydrophthalic anhydride, methylhexahydrophthalic anhydride, and methylnadic anhydride.
  • the use of other acid anhydride curing agents does not depart from the scope of the present invention.
  • imidazole curing agent examples include, for example, 2-methylimidazole, 2-undecylimidazole, 1,2-dimethylimidazole, 2-ethyl-4-methylimidazole, 2-heptadecylimidazole, 2-phenylimidazole, Examples thereof include 2-phenyl-4-methylimidazole, 1-benzyl-2-methylimidazole, 1-benzyl-2-phenylimidazole and the like. However, these are merely examples. The use of imidazole curing agents other than these does not depart from the scope of the present invention.
  • the blending amount of the curing agent (B) can be appropriately adjusted according to the type of the epoxy resin (A) and the type of the curing agent (B).
  • the blending amount of the curing agent (B) is preferably about 0.5 equivalents or more and 2 equivalents or less with respect to the epoxy equivalent of the epoxy resin (A).
  • the blending amount of the curing agent (B) is less than 0.5 equivalent, curing of the epoxy resin (A) may not sufficiently proceed.
  • curing agent (B) exceeds 2 equivalent, the heat resistance of a hardened
  • Curing Accelerator (C) >> A hardening accelerator (C) accelerates
  • the curing accelerator (C) include tertiary amines and salts thereof, quaternary ammonium compounds, imidazoles, alkali metal alkoxides, and the like. However, these are merely examples. The use of other curing accelerators does not depart from the scope of the present invention.
  • the blending amount of the curing accelerator (C) is preferably about 0.01 to 30% by mass (more preferably about 0.05 to 20% by mass) with respect to the mass of the epoxy resin (A). ). When the blending amount is less than 0.01% by mass, the promoting effect may be small. If the blending amount exceeds 30% by mass, the storage stability of the curable composition (X), the moldability of the cured product (Y), and the like may be lowered.
  • the curable composition (X) is preferably 2% by volume to 54% by volume (more preferably 3% by volume or more and 50% by volume or less, still more preferably 5% by volume or more and 30% by volume) of the hydrophilic inorganic particles (D). % Or less).
  • the volume content of the hydrophilic inorganic particles (D) indicates a percentage of a value obtained by dividing the volume of the hydrophilic inorganic particles (D) by the volume of the curable composition (X).
  • the volume of the hydrophilic inorganic particles (D) is determined by dividing the mass of the powder by the true density of the hydrophilic inorganic particles (D).
  • the insulation performance (eg, initial breakdown voltage, partial discharge resistance) of the cured product (Y) is greatly improved.
  • the dispersibility of the hydrophilic inorganic particles (D) is good, and the mechanical properties of the cured product (Y) are also good.
  • the viscosity of curable composition (X) will become high and application to an impregnation use may be difficult.
  • Hydrophilic inorganic particles (D) are inorganic compound particles.
  • the hydrophilic inorganic particles (D) have the property of being easily adapted to water.
  • Examples of the hydrophilic inorganic particles include metal oxides such as silicon oxide, magnesium oxide, aluminum oxide, zinc oxide, beryllium oxide, copper oxide, and cuprous oxide.
  • the hydrophilic inorganic particles (D) preferably have a hydrophilic group on the surface.
  • the hydrophilic group include a hydroxy group, a carboxy group, an amino group, a silanol group, and a siloxane group.
  • the hydrophilic group may be introduced by a surface modifier.
  • the surface modifier include ⁇ -glycidoxy-propyltrimethoxysilane, ⁇ -aminopropyl-trimethoxysilane, vinyltriethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-glycidyloxypropyl-trimethoxysilane.
  • Silane coupling agents such as: titanate coupling agents, aluminate coupling agents; aluminum laurate, aluminum stearate, iron stearate; aluminum hydroxide; alumina, silica, zirconia; silicone;
  • the hydrophilic inorganic particles (D) more preferably have a silanol group on the surface.
  • the hydrophilic inorganic particles (D) are more preferably silicon oxide (silica) having a silanol group on the surface.
  • Silica may be crystalline.
  • Silica may be amorphous.
  • Amorphous silica can be synthesized by, for example, a wet method, a dry method, a melting method, or the like. Examples of the wet method include a sedimentation method and a gel method. Examples of the dry method include a flame hydrolysis method, an arc method, a plasma method, and the like. Among these, fumed silica synthesized by a flame hydrolysis method in particular can have a suitable amount of silanol groups on the surface.
  • the amount of the hydrophilic group bonded to the surface of the hydrophilic inorganic particle (D) can be represented by the hydrophilic group density on the particle surface.
  • “Hydrophilic group density” indicates the number of hydrophilic groups per unit area.
  • the hydrophilic group density is preferably 0.1 / nm 2 to 10 / nm 2 (more preferably 2 / nm 2 to 5 / nm 2 ). Within this range, the dispersibility of the hydrophilic inorganic particles (D) is good.
  • S i represents a hydrophilic group density [unit: number / nm 2 ].
  • S b represents the amount of the powder sample [unit: g].
  • S m represents the specific surface area [unit: m 2 / g] of the powder.
  • T represents an absolute temperature [unit: K].
  • H represents the amount of hydrogen [unit: ml] generated when the dried powder [S b [g]] is reacted with LiAlH 4 (Lithium Aluminum Hydride; LAH) in diethylene glycol dimethyl ether.
  • LiAlH 4 Lithium Aluminum Hydride
  • the hydrophilic inorganic particles (D) preferably have an average primary particle size of 0.5 nm to 1200 nm (more preferably 1 nm to 1000 nm, still more preferably 5 nm to 100 nm, most preferably 10 nm to 50 nm). It is. Within this range, the partial discharge resistance tends to be improved.
  • the average value of the primary particle diameter is measured by an image analysis method using a scanning electron microscope (SEM).
  • the primary particle size indicates the particle size of the primary particles.
  • the particle size indicates the ferret diameter. Measure the particle size of at least 5 primary particles.
  • the average value is an arithmetic average value.
  • the hydrophilic inorganic particles (D) preferably have a specific surface area of 10 m 2 / g or more and 350 m 2 / g or less (more preferably 20 m 2 / g or more and 250 m 2 / g or less, even more preferably 30 m 2 / g or more and 200 m 2 or less. / G or less). Within this range, the dispersibility of the hydrophilic inorganic particles (D) is good. “Specific surface area” indicates a value measured by a gas adsorption method (BET method).
  • the surface of the hydrophilic inorganic particles (D) may be coated with a hydrophilic polymer. It may have a shell structure made of a hydrophilic organic substance.
  • hydrophilic inorganic particles (D) include core-shell type inorganic particles comprising a metal oxide core and a hydrophilic organic substance shell (coating layer).
  • the metal oxide to be the core include zinc oxide, cerium oxide, aluminum oxide, zirconium oxide, cobalt oxide and the like, but are not particularly limited thereto.
  • those that can be used as the core-shell type hydrophilic inorganic particles include core-shell type cerium particles (manufactured by Hokuko Chemical Co., Ltd.).
  • Unsaturated polyester resin (a3) The curable composition (X) is unsaturated as a resin other than the first epoxy resin (a1) and the second epoxy resin (a2) or as at least one resin contained in the first epoxy resin (a1).
  • the polyester resin (a3) may be included.
  • the unsaturated polyester resin (a3) contains two or more (meth) acryloyl groups in one molecule and has a hydrophilic group.
  • the hydrophilic group include a hydroxy group, an ether group, and a carboxy group. Since the unsaturated polyester resin (a3) has a hydrophilic group, the dispersibility of the hydrophilic inorganic particles (D) is the same as that of the first epoxy resin (a1) due to the interaction with the hydrophilic inorganic particles (D). Can be improved.
  • the unsaturated polyester resin (a3) may be unsaturated via a free radical generated from an organic peroxide.
  • An addition reaction of a saturated binding site (including a (meth) acryloyl group) occurs. Therefore, the first epoxy resin (a1) and the second epoxy resin (a2) are obtained by adding an unsaturated polyester resin (a3) via a free radical in addition to the ring-opening addition polymerization of an epoxy group due to the presence of the epoxy resin curing catalyst. The addition reaction proceeds simultaneously.
  • the first epoxy resin (a1), the second epoxy resin (a2) and the unsaturated polyester resin (a3) are polymerized with each other, and the three-dimensional crosslinking proceeds efficiently, so that the crosslinking density increases in a short time. To do. Therefore, the curing time of the curable composition (X) is shortened.
  • the unsaturated polyester resin (a3) include, for example, epoxy (meth) acrylate resin (vinyl ester resin), urethane (meth) acrylate resin, polyether (meth) acrylate resin, polyester (meth) acrylate resin, and the like. Is mentioned. These may be used singly or in combination of two or more.
  • the epoxy (meth) acrylate resin means a resin obtained by an addition reaction between (meth) acrylic acid and an epoxy compound, and by changing the kind of the epoxy compound, the ratio of (meth) acrylic acid addition, and the like. Resins with different physical properties can be obtained.
  • the epoxy compound include compounds having a skeleton such as bisphenol A, bisphenol E, bisphenol F, hydrogenated phthalic acid, cresol novolac, phenol novolac, resorcin, and techmore polyphenylene ether. .
  • the urethane (meth) acrylate resin means a resin obtained by urethanizing an isocyanate compound, a polyol compound, and a hydroxyl group-containing (meth) acrylic acid monomer, the type of compound to be combined, the number of functional groups of the (meth) acrylic acid monomer, etc. By changing the value, resins having different physical properties can be obtained.
  • the polyether (meth) acrylate resin means a chain polymer having an ether bond (—O—) in the main chain and a (meth) acryloyl group at the terminal.
  • the polyester (meth) acrylate resin is a saturated polyester obtained by condensation reaction of a saturated dibasic acid and a polyhydric alcohol, and has a (meth) acryloyl group at the terminal, or ⁇ , ⁇ -Means an unsaturated polyester obtained by condensation reaction of an unsaturated dibasic acid and a polyhydric alcohol, having a (meth) acryloyl group at the terminal.
  • the unsaturated polyester resin (a3) is preferably a hydrophilic group obtained by introducing a meth (acryloyl) group into an epoxy resin having a hydrophilic group (including an epoxy resin similar to the first epoxy resin (a1)).
  • an epoxy acrylate resin which has this it is not limited to this.
  • examples of such an epoxy acrylate resin having a hydrophilic group include a polymer of a monomer compound obtained by introducing a meta (acryloyl) group into a monoepoxy compound, diepoxy compound or polyepoxy compound having a hydrophilic group. Can do.
  • the unsaturated polyester resin (a3) include, for example, an epoxy acrylate resin having a glycerin skeleton, a propylene glycol skeleton, or a polypropylene glycol skeleton.
  • products that can be used as the unsaturated polyester resin (a3) include Denacol acrylate DA-212, DA-314, DA-314-90M, DA-910, DA-911M, DA-920, DA- 931 (both manufactured by Nagase ChemteX Corporation).
  • the ratio of the content of the unsaturated polyester resin (a3) to the total amount of the curable composition containing the unsaturated polyester resin (a3) is preferably 5% by volume or more.
  • the upper limit of content ratio of said unsaturated polyester resin (a3) is not specifically limited, For example, it is 54 volume% or less.
  • the curable composition (X) contains the unsaturated polyester resin (a3)
  • the curable composition (X) is usually a curing agent for the unsaturated polyester resin (a3), and the unsaturated polyester resin (a3). It further contains a curing accelerator for the polyester resin (a3).
  • reaction initiator for the unsaturated polyester resin (a3)
  • organic peroxide for example, an organic peroxide can be used.
  • organic peroxide is not particularly limited, and those known in the technical field can be used.
  • organic peroxides include ketone peroxides, peroxyketals, hydroperoxides, dialkyl peroxides, diacyl peroxides, peroxyesters, and peroxydicarbonates Can be used. These organic peroxides may be used alone or in combination of two or more.
  • organic peroxide examples include, for example, 1,1-di (t-butylperoxy) cyclohexane, 1,1-di (t-hexylperoxy) cyclohexane, 1,1-di (t-hexylperper).
  • Examples of the curing accelerator for the unsaturated polyester resin (a3) include metal soaps, metal chelates, and amines.
  • metal soaps include zinc octylate, vanadium octylate, copper naphthenate, cobalt naphthenate, and barium naphthenate.
  • metal chelates examples include vanadium acetyl acetate, cobalt acetyl acetate, and iron acetylacetonate.
  • amines include: Aniline, diethanolaniline, N, N-substituted anilines [N, N-dimethylaniline, N, N-diethylaniline, N, N-bis (hydroxyethyl) aniline, etc.], p-toluidine, m-toluidine, N-ethyl-m-toluidine, N, N-substituted-p-toluidine [N, N-dimethyl-p-toluidine, N, N-bis (2-hydroxyethyl) -p-toluidine, N, N-bis (2-hydroxypropyl) -p- Toluidine etc.), 4- (N, N-substituted amino) benzaldehyde [4- (N, N-dimethylamino) benzaldehyde, 4- [N, N-bis (2-hydroxyethyl) amino] benzaldehyde, 4- (N-methyl-N -Hydr
  • FIG. 3 is a flowchart showing an outline of a method for producing the curable composition (X).
  • the manufacturing method includes a preliminary dispersion step (S01), a shear dispersion step (S02), and a curable composition preparation step (S03).
  • S01 preliminary dispersion step
  • S02 shear dispersion step
  • S03 curable composition preparation step
  • Preliminary dispersion step (S01) In the preliminary dispersion step (S01), the first dispersion is prepared by dispersing the hydrophilic inorganic particles (D) in the first epoxy resin (a1).
  • the distribution method in this step is not particularly limited.
  • the hydrophilic inorganic particles (D) can be dispersed in the first epoxy resin (a1) by means usually used in the technical field.
  • a general rotation / revolution stirrer or the like can be used.
  • Shear dispersion step (S02) In the shear dispersion step (S02), the first dispersion and the second epoxy resin (a2) are sprayed into a predetermined nozzle at a high pressure. The hydrophilic inorganic particles are crushed and dispersed in the liquid by the shearing force generated in the jet. In this way, a second dispersion is prepared.
  • a wet high pressure shear disperser is preferably used.
  • the hydrophilic inorganic particles (D) are usually in the form of aggregates such as secondary particles and tertiary particles.
  • the aggregation is crushed by applying a strong shearing force to the hydrophilic inorganic particles (D).
  • the hydrophilic inorganic particles (D) are crushed to such an extent that they have a nano-order primary particle size.
  • the crushed hydrophilic inorganic particles (D) are dispersed in a medium. Thereby, the 2nd dispersion liquid is prepared.
  • the hydrophilic inorganic particles (D) have hydrophilic groups (for example, silanol groups) and hydrophilic groups (for example, hydroxy groups, ether groups, etc.) of the first epoxy resin (a1), so that the hydrophilic inorganic particles (D) have hydrophilic inorganic particles (D).
  • the particles (D) are surrounded by the first epoxy resin (a1). For this reason, re-aggregation and sedimentation of the hydrophilic inorganic particles (D) are suppressed. That is, a uniform dispersed state is formed, and the state can be stably maintained.
  • the pressure applied to the dispersion is preferably 100 MPa or more and 200 MPa or less (more preferably 150 MPa or more and 200 MPa or less). If the pressure is too high, the primary particles are crushed and the active surface is exposed. Therefore, reaggregation may occur easily. If the pressure is too low, the hydrophilic inorganic particles (D) may not be sufficiently crushed and dispersed.
  • Curable Composition Preparation Step (S03) In the curable composition preparation step (S03), the curing agent (B) and the curing accelerator (C) are added to the second dispersion and stirred. Thereby, curable composition (X) is prepared.
  • the stirring method in this step is not particularly limited.
  • stirring can be performed by means commonly used in the art.
  • a general stirrer or the like can be used.
  • vacuum deaeration treatment or the like may be performed as necessary. From the above, the curable composition (X) can be produced.
  • additives that can be usually blended in the technical field may be used in combination.
  • Such an additive may be added in the shear dispersion step (S02).
  • the cured product (Y) is a cured product of the curable composition (X).
  • the cured product (Y) is typically produced by heating the curable composition (X).
  • the cured product (Y) is used in various forms and shapes depending on the application.
  • the cured product (Y) can be molded into a desired shape by various molding methods such as impregnation, coating, casting, and sheet molding.
  • the cured product (Y) is excellent in insulation performance and heat resistance. Therefore, the cured product (Y) is suitable for applications that require at least one of insulating performance and heat resistance.
  • cured material (Y) is suitable for the insulating member of heavy electrical equipment, such as a rotary machine and a power transmission / transformation apparatus, for example. Examples of the insulating member include varnish, insulating paint, cable coating material, insulating sheet, sealing material, and the like.
  • FIG. 2 is a conceptual diagram showing a cured product according to a reference form.
  • inorganic particles are dispersed in an epoxy resin using a coupling agent.
  • the cured product 20 includes an epoxy resin 16 and inorganic particles 13.
  • a coating layer 15 derived from a coupling agent is formed on the surface of the inorganic particles 13.
  • the coating layer 15 is inferior to the epoxy resin 16 due to the strength of dielectric breakdown. Therefore, when a high voltage is applied from the electrode 14, the insulation deterioration path 17 advances along the coating layer 15. Further, the coating layer 15 has lower heat resistance than the epoxy resin 16. Therefore, in the cured product 20, the overall heat resistance can be lowered.
  • FIG. 1 is a conceptual diagram showing a cured product (Y) according to the first embodiment.
  • the cured product 10 includes an epoxy resin 6 and hydrophilic inorganic particles 3.
  • the epoxy resin 6 includes the first epoxy resin (a1) having high water solubility. Therefore, in the cured product 10, aggregation and sedimentation of the hydrophilic inorganic particles 3 are suppressed by the interaction between the epoxy resin 6 and the hydrophilic inorganic particles 3. As a result, the generation of voids as starting points for partial discharge is also suppressed.
  • the cured product 10 achieves a uniform dispersed state without depending on the coupling agent. That is, the cured product 10 does not substantially contain a coupling agent. Therefore, even when a high voltage is applied from the electrode 4, the insulation degradation path 7 cannot progress long. Moreover, the heat resistance fall accompanying addition of a coupling agent can also be eliminated substantially.
  • the second embodiment of the present invention is a rotating machine.
  • the rotating machine may be a generator.
  • the rotating machine may be an electric motor.
  • the generator and the electric motor usually include a rotor and a stator.
  • FIG. 4 is a schematic view illustrating a main part of the rotating machine according to the second embodiment. In FIG. 4, the slot exit part of the stator of a rotary machine is shown.
  • the outline of the rotating machine according to the second embodiment is as follows.
  • the rotating machine includes a rotor (not shown) and a stator 102.
  • the stator 102 includes a coil conductor 103 and an insulating layer 104 that covers the coil conductor 103.
  • the insulating layer 104 includes the cured product (Y) of the first embodiment.
  • the rotating machine is excellent in insulation life and reliability based on the insulation performance and heat resistance of the cured product (Y).
  • a slot 107 is provided in the stator core 101.
  • the slot 107 is divided into an upper stage and a lower stage by a spacer 106.
  • Stator 102 is arranged at the upper and lower stages of slot 107, respectively.
  • the stator 102 is fixed in the slot 107 by a wedge 105.
  • Stator 102 includes a coil conductor 103 and an insulating layer 104.
  • the insulating layer 104 covers the coil conductor 103.
  • the stator 102 is manufactured as follows. First, an insulated wire is prepared. The strand has conductivity. The material of the strand is, for example, copper, aluminum, silver or the like.
  • the coil conductor 103 is composed of the strands.
  • a mica tape is wound around the coil conductor 103. The mica tape is wound several times so that parts of the tape overlap each other. The width of the overlapping portion is, for example, about half the width of the mica tape.
  • the coil conductor 103 around which the mica tape is wound is placed in a predetermined mold.
  • the mold is impregnated with the curable composition (X) of the first embodiment. After impregnation, the inside of the mold is pressurized and the curable composition (X) is heated.
  • the curable composition (X) may be heated by heating the mold.
  • the curable composition (X) may be heated by heating the coil conductor 103.
  • the heating temperature is, for example, about 100 ° C. or more and 250 ° C. or less.
  • the pressure is, for example, about 5 kg / cm 2 or more and 100 kg / cm 2 or less.
  • the pressurization time is, for example, about 0.5 hours to 24 hours.
  • the stator 102 is removed from the mold.
  • a mica tape is wound around the coil conductor 103 and then a mold release agent is applied to the surface thereof.
  • the release agent may be one usually used in the technical field.
  • the second epoxy resin (a2) was added to the first dispersion.
  • the hydrophilic inorganic particles (D) were crushed and dispersed using a wet high-pressure shear dispersion apparatus.
  • the treatment pressure was adjusted within the range of 150 MPa to 200 MPa. In this way, a second dispersion was prepared (S02).
  • Comparative Example 1 According to the compounding amount shown in Table 1 below, a curable composition was prepared in the same manner as described above. As shown in Table 1 below, Comparative Example 1 is an example in which the water content of the first epoxy resin (a1) exceeds 99% by mass.
  • curable compositions were prepared in the same manner as in Examples 1 to 15 except that hydrophobic inorganic particles were blended instead of the hydrophilic inorganic particles (D).
  • Comparative Example 5 According to the composition shown in Table 1 below, a curable composition was prepared in the same manner as described above. Comparative Example 5 is an example in which the water content of the first epoxy resin (a1) is less than 20% by mass.
  • viscosity The viscosity of the first epoxy resin (a1) was measured with an E-type viscometer. The results are shown in Table 1 above.
  • the dispersibility of the curable composition was evaluated by a sedimentation method.
  • the evaluation procedure is as follows.
  • the curable composition was put in a glass container.
  • the glass container was shaken well and then allowed to stand. After standing, light was irradiated from one side of the glass container, and the transparency of the curable composition was evaluated from the side not irradiated with light.
  • Dispersibility was evaluated at three levels of A, B, and C. Based on the dispersibility of Example 1, A was better than the standard, B was equivalent to the standard, and C was worse than the standard. The results are shown in Table 1 above.
  • ⁇ Average value of primary particle size> The curable composition was heated at 150 ° C. for 180 minutes. Thereby, a cured product was obtained. Using SEM, the average value of the primary particle diameter of the inorganic particles contained in the cured product was measured. The primary particle size was measured on 10 particles. Ten arithmetic average values were obtained. The results are shown in Table 1 above.
  • the moldability of the cured product was evaluated by a mold release test.
  • the evaluation procedure is as follows.
  • a plate-shaped mold was prepared.
  • the curable composition was poured into a plate-shaped mold.
  • the curable composition was cured to obtain a plate-shaped cured product.
  • the cured product was removed from the mold.
  • the ease of removing the cured product was evaluated based on the following three levels.
  • the case where the cured product could be easily removed was designated as A, the case where the cured product could be removed without causing damage, the case B, and the case where the cured product was brittle and caused damage when removed.
  • the results are shown in Table 1 above.
  • Tg glass transition temperature
  • the partial discharge resistance was evaluated based on the partial discharge initiation voltage (PDIV). The measurement of PDIV was performed 10 times. The arithmetic average of 10 results was used as a representative value.
  • the partial discharge resistance was evaluated based on three levels of A, B, and C. Based on the PDIV of Example 1, A was higher than the reference, B was equivalent to the reference, and C was lower than the reference. The results are shown in Table 1 above.
  • Examples 1 to 15 have improved insulation performance (initial breakdown voltage and partial discharge resistance) compared to Comparative Examples 1 to 5. Moreover, the heat resistance fall accompanying it is suppressed. It is considered that the dispersibility of the hydrophilic inorganic particles (D) is improved by the interaction between the first epoxy resin (a1) having a water solubility of 20% by mass or more and 99% by mass or less and the hydrophilic inorganic particles (D). It is done.
  • Example 1 water solubility: 64% by mass
  • the ratio of saturated bonds and unsaturated bonds in the molecule is suitable, and it is considered that both the water content and heat resistance can be achieved.
  • Comparative Example 1 water solubility: 100% by mass
  • the ratio of unsaturated bonds is excessively low, which is considered to have caused a decrease in heat resistance.
  • Example 1 since the first epoxy resin (a1) having a high water content surrounds the periphery of the hydrophilic inorganic particles (D), the dispersibility of the hydrophilic inorganic particles (D) is improved. Moreover, it is considered that the dispersion state is stable. In contrast, in Comparative Example 2 that does not include the first epoxy resin (a1), the hydrophilic inorganic particles (D) are likely to aggregate. Therefore, even if the hydrophilic inorganic particles (D) are once dispersed, they are re-aggregated thereafter. By the aggregation and sedimentation of the hydrophilic inorganic particles (D), voids that are the starting points of insulation deterioration and partial discharge are formed. As a result, it is considered that the initial breakdown voltage and the partial discharge resistance are reduced.
  • Comparative Example 4 includes the first epoxy resin (a1) having a high water solubility. However, the inorganic particles are hydrophobic. Therefore, it is considered that the first epoxy resin (a1) and the inorganic particles are not compatible and the dispersibility is lowered. As a result, it is considered that the initial withstand voltage and the partial discharge property are lowered.
  • Example 11 The superiority or inferiority of the initial withstand voltage and the partial discharge resistance among Example 3, Example 11 and Example 12 can be explained by the average value of the primary particle diameter of the hydrophilic inorganic particles (D).
  • the primary particle size is larger than the insulation deterioration path, it is considered that the progress of the insulation deterioration path is likely to be hindered.
  • the primary particle size becomes excessively large, it tends to settle, so that the dispersibility cannot be maintained and the insulation performance is lowered. Accordingly, it is considered that there is an appropriate range in which the average value of the primary particle diameters can be compatible. From this result, it is concluded that the range is 0.5 nm or more and 1200 nm or less.
  • Example 16> A mixture of an unsaturated polyester resin (epoxy (meth) acrylate) having a hydrophilic group as an unsaturated polyester resin (a3) in each of 15 types of curable compositions (X) similar to those in Examples 1 to 15. 0, 10 or to the total amount of (the curable composition of this example) (that is, the total amount of the curable composition (X) and the unsaturated polyester resin (a3) as in Examples 1 to 15) 23% by volume was added. Furthermore, as a curing agent for the unsaturated polyester resin (a3), 1% by mass of alkyl ketone peroxide is added to the amount of the unsaturated polyester resin (a3) added, and as a curing accelerator for the unsaturated polyester resin (a3). A naphthenic acid metal soap was added in an amount of 0.5% by mass based on the added amount of the unsaturated polyester resin (a3).
  • the curable composition (X) and the cured product (Y) thereof were produced in the same manner as in Examples 1 to 15. At that time, the curing time of each curable composition (X) was measured. The curing time was determined based on the gelation time of the resin composition, and the time when gelation and fluidity were lost was defined as the curing time.
  • FIG. 5 shows a graph plotting the relationship between the addition rate of the unsaturated polyester resin (a3) and the curing time of the curable composition (X).
  • the addition of the unsaturated polyester resin (a3) shortens the curing time of the curable composition (X). This is presumably because the addition of the unsaturated polyester resin (a3) allows the three-dimensional crosslinking to proceed efficiently as described above, so that the crosslinking density increases in a short time.
  • hydrophilic inorganic particles 4, 14 electrodes, 6, 16 epoxy resin, 7, 17 insulation degradation path, 10, 20 cured product, 13 inorganic particles, 15 coating layer, 101 stator core, 102 stator, 103 coil conductor 104 insulating layers, 105 wedges, 106 spacers, 107 slots.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)
  • Insulation, Fastening Of Motor, Generator Windings (AREA)

Abstract

硬化性組成物(X)は、エポキシ樹脂(A)、硬化剤(B)、硬化促進剤(C)および親水性無機粒子(D)を含む。エポキシ樹脂(A)は、第1エポキシ樹脂(a1)および第2エポキシ樹脂(a2)を含む。第1エポキシ樹脂(a1)は、親水基を有する鎖状脂肪族エポキシ樹脂であり、かつ水溶率が20質量%以上99質量%以下である。第2エポキシ樹脂(a2)は、環状脂肪族エポキシ樹脂、芳香族エポキシ樹脂および複素環式エポキシ樹脂からなる群より選択される少なくとも1種を含む。

Description

硬化性組成物およびその硬化物ならびに回転機
 本発明は、硬化性組成物およびその硬化物ならびに回転機に関する。
 特開2006-057017号公報(特許文献1)には、エポキシ樹脂、エポキシ樹脂用硬化剤、カップリング剤、および無機粒子を含む樹脂組成物が開示されている。
特開2006-057017号公報(段落0028)
 重電機器の絶縁処理等に、硬化性エポキシ樹脂組成物が利用されている。たとえば、回転機においては、コイル導体の周囲に巻き付けられたマイカテープに、硬化性エポキシ樹脂組成物が含浸される。硬化性エポキシ樹脂組成物は加熱され、硬化物となる。これによりコイル導体を被覆する絶縁層が形成される。
 回転機の絶縁寿命、信頼性を向上させるため、絶縁性能および耐熱性が向上した硬化物が求められている。この求めに応じて、硬化性エポキシ樹脂組成物に、ナノオーダーの無機粒子を分散させた複合材料が提案されている。硬化物の内部に無機粒子が分散していることにより、たとえば、絶縁破壊の強さの向上が期待できる。
 しかし無機粒子(無機物)は、エポキシ樹脂(有機物)とは馴染みにくい。そのため複合材料では、無機粒子の凝集が起こり易い。さらに粒径がナノオーダーともなると、その傾向はいっそう顕著である。無機粒子が凝集すると、無機粒子が沈降しやすくなる。また凝集体の周囲には、空隙(ボイド)が形成されやすくなる。ボイドは、硬化物において部分放電の起点となり得る。したがって、耐部分放電性等を考慮すると、絶縁性能は未だ十分とはいえない。
 特許文献1では、カップリング剤等により、無機粒子とエポキシ樹脂とを結合させている。これにより、無機粒子の分散性が向上するとされている。
 しかしながら、この構成において所望の分散状態を実現するためには、多量のカップリング剤が必要になる。カップリング剤は、エポキシ樹脂に比べて耐熱性が低い。このためカップリング剤を多量に用いると、硬化物の耐熱性が低下する可能性がある。
 さらにカップリング剤は、絶縁破壊の強さで、エポキシ樹脂に劣る。絶縁劣化パスは、絶縁の弱い部分を伝って進展しやすい。したがって、カップリング剤が硬化物の内部に分散していると、カップリング剤を通じて絶縁破壊が起こる可能性がある。すなわち、カップリング剤を用いると、無機粒子の分散による、絶縁破壊の強さの向上効果が相殺される可能性もある。
 本発明は、上述の課題を解決するためになされたものである。すなわち、本発明の目的は、耐熱性の低下を抑制しつつ、絶縁性能が向上した硬化性組成物を提供することである。
 本発明の硬化性組成物(X)は、エポキシ樹脂(A)、硬化剤(B)、硬化促進剤(C)、および親水性無機粒子(D)を含む。エポキシ樹脂(A)は、第1エポキシ樹脂(a1)および第2エポキシ樹脂(a2)を含む。第1エポキシ樹脂(a1)は、親水基を有する鎖状脂肪族エポキシ樹脂であり、かつ水溶率が20質量%以上99質量%以下である。第2エポキシ樹脂(a2)は、環状脂肪族エポキシ樹脂、芳香族エポキシ樹脂および複素環式エポキシ樹脂からなる群より選択される少なくとも1種を含む。
 硬化性組成物(X)において、第1エポキシ樹脂(a1)および親水性無機粒子(D)は、いずれも親水性である。これらの相互作用により、親水性無機粒子(D)が第1エポキシ樹脂(a1)に取り囲まれるため、親水性無機粒子(D)の凝集が抑制される。すなわち、カップリング剤に頼らず、親水性無機粒子(D)を分散させることができる。したがって、カップリング剤の添加に伴う耐熱性の低下を抑制できる。なおかつ無機粒子の分散による絶縁性能の向上を実現できる。
本発明の第1実施形態に係る硬化物を示す概念図である。 参考形態に係る硬化物を示す概念図である。 本発明の第1実施形態に係る硬化性組成物の製造方法の概略を示すフローチャートである。 本発明の第2実施形態に係る回転機の要部を示す概略図である。 不飽和ポリエステル樹脂の添加率と、硬化性組成物の硬化時間との関係をプロットしたグラフである。
 以下、本発明の実施形態を説明する。ただし本発明は、以下の実施形態に限定されるべきでない。
 <第1実施形態>
 本発明の第1実施形態は、硬化性組成物(X)およびその硬化物(Y)である。
 <硬化性組成物(X)>
 硬化性組成物(X)は、エポキシ樹脂(A)、硬化剤(B)、硬化促進剤(C)、および親水性無機粒子(D)を含む。硬化性組成物(X)は、熱硬化性であってもよい。あるいは硬化性組成物は、光硬化性であってもよい。
 《エポキシ樹脂(A)》
 硬化性組成物(X)は、エポキシ樹脂(A)を好ましくは46体積%以上98体積%以下(より好ましくは50体積%以上97体積%以下、よりいっそう好ましくは70体積%以上95体積%以下)含む。この範囲で、硬化物(Y)の絶縁性能と、機械的特性(たとえば靭性等)とのバランスが良好である。
 エポキシ樹脂(A)は、第1エポキシ樹脂(a1)および第2エポキシ樹脂(a2)を含む。
 (第1エポキシ樹脂(a1))
 第1エポキシ樹脂(a1)は、親水基を有する鎖状脂肪族エポキシ樹脂である。第1エポキシ樹脂(a1)は、特定の水溶性を示す。すなわち、第1エポキシ樹脂(a1)は、水溶率が20質量%以上99質量%以下(好ましくは30質量%以上90質量%以下、より好ましくは40質量%以上80質量%以下、最も好ましくは50質量%以上70質量%以下)である。
 「水溶率」は、室温の水に対するエポキシ樹脂の溶解率〔単位:質量%〕を意味する。すなわち、25℃±1℃に調整された水にエポキシ樹脂を溶解させたとき、水中に実際に溶解した該エポキシ樹脂の割合が水溶率である。水溶率は、具体的には次のようにして測定する。25±1℃に調整された水100gを準備する。水をよく攪拌しながら、水にエポキシ樹脂を徐々に滴下する。混合液が飽和状態に達するまでのエポキシ樹脂の滴下量を、水の質量(100g)で除した値の百分率が水溶率である。溶解したかどうかは、混合液に濁りがないこと、および、静置後も分離が生じないことにより判断する。
 第1エポキシ樹脂(a1)の水溶率が20質量%未満であると、親水性無機粒子(D)を十分に分散させることが困難である。水溶率が99質量%を超えると、硬化物(Y)の耐熱性が低下する可能性がある。
 第1エポキシ樹脂(a1)は、鎖状の脂肪族化合物である。第1エポキシ樹脂(a1)は、直鎖状であってもよい。第1エポキシ樹脂(a1)は、分岐していてもよい。第1エポキシ樹脂は、親水基を有する。親水基は、たとえば、ヒドロキシ基、エーテル基、カルボキシ基等である。
 第1エポキシ樹脂(a1)は、1分子中に1個以上のエポキシ基を有する。すなわち、第1エポキシ樹脂(a1)は、1価または多価のグリシジル化合物である。第1エポキシ樹脂(a1)は、好ましくはグリシジルエーテル化合物である。第1エポキシ樹脂(a1)は、より好ましくはグリセロール骨格を有するポリグリシジルエーテル化合物である。第1エポキシ樹脂(a1)が、これらの化合物であることにより、水溶率を20質量%以上99質量%以下の範囲内に調整しやすい。
 第1エポキシ樹脂(a1)の具体例としては、たとえば、エチレングリコールジグリシジルエーテル、ジエチレングリコールジグリシジルエーテル、トリエチレングリコールジグリシジルエーテル;ポリグリシジルエーテル;グリセロールポリグリシジルエーテル、ジグリセロールポリグリシジルエーテル;トリメチロールプロパンポリグリシジルエーテル、ソルビトールポリグリシジルエーテル、ペンタエリスリトールポリグリシジルエーテル;レゾルシノールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル;水添ビスフェノールA型ジグリシジルエーテル;ポリエチレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル;等が挙げられる。上記の化合物のうち1種を単独で第1エポキシ樹脂(a1)として用いてもよい。2種以上の化合物を組み合わせて第1エポキシ樹脂(a1)として用いてもよい。すなわち、第1エポキシ樹脂(a1)は、上記の化合物群から選択される少なくとも1種であってもよい。
 市販品のうち、第1エポキシ樹脂(a1)として使用できる製品としては、たとえば、デナコールEX-121、デナコールEX-171、デナコールEX-192、デナコールEX-211、デナコールEX-212、デナコールEX-313、デナコールEX-314、デナコールEX-321、デナコールEX-411、デナコールEX-421、デナコールEX-512、デナコールEX-521、デナコールEX-611、デナコールEX-612、デナコールEX-614、デナコールEX-622、デナコールEX-810、デナコールEX-811、デナコールEX-850、デナコールEX-851、デナコールEX-821、デナコールEX-830、デナコールEX-832、デナコールEX-841、デナコールEX-861、デナコールEX-911、デナコールEX-941、デナコールEX-920、デナコールEX-931(いずれもナガセケムテックス社製);エポライトM-1230、エポライト40E、エポライト100E、エポライト200E、エポライト400E、エポライト70P、エポライト200P、エポライト400P、エポライト1500NP、エポライト1600、エポライト80MF、エポライト100MF(いずれも共栄社化学社製);アデカグリシロールED-503、アデカグリシロールED-503G、アデカグリシロールED-506、アデカグリシロールED-523T(いずれもADEKA社製);等が挙げられる。
 第1エポキシ樹脂(a1)は、好ましくは粘度が20mPa・s以上21200mPa・s以下(より好ましくは20mPa・s以上5000mPa・s以下、よりいっそう好ましくは40mPa・s以上650mPa・s以下、最も好ましくは90mPa・s以上200mPa・s以下)である。この範囲内で、親水性無機粒子(D)の分散性と分散安定性とのバランスが良好である。
 「粘度」は、E型粘度計を用いて測定する。測定温度は25±1℃とする。粘度計の回転数は、40rpmとする。ただし、測定対象の粘度によっては、10~120rpmの範囲内で、粘度計の回転数を変更してもよい。
 (第2エポキシ樹脂(a2))
 第2エポキシ樹脂(a2)は、環状脂肪族エポキシ樹脂、芳香族エポキシ樹脂および複素環式エポキシ樹脂からなる群より選択される少なくとも1種を含む。第2エポキシ樹脂(a2)は、硬化物(Y)に耐熱性を付与する成分である。
 環状脂肪族エポキシ樹脂は、1分子中に、1個以上のエポキシ基および1個以上の脂肪族炭素環(非芳香族性の炭素環)を含む。環状脂肪族エポキシ樹脂の具体例としては、たとえば、アリサイクリックジエポキシアジフェート、アリサイクリックジエポキシカルボキシレート、ビニルシクロヘキセンジオキサイド、4-ビニルシクロヘキセン-1,2-エポキシド等が挙げられる。
 芳香族エポキシ樹脂は、1分子中に、1個以上のエポキシ基および1個以上の芳香族環を含む。芳香族エポキシ樹脂の具体例としては、たとえば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールAD型エポキシ樹脂、臭素化ビスフェノール型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、グリシジルエステル型エポキシ樹脂、グリシジルアミン型エポキシ樹脂等が挙げられる。
 複素環式エポキシ樹脂は、1分子中に、1個以上のエポキシ基および1個以上の複素環を含む。複素環式エポキシ樹脂の具体例としては、たとえば、トリアジン環を有するエポキシ樹脂、ヒダントイン型エポキシ樹脂等が挙げられる。
 上記の環状脂肪族エポキシ樹脂の具体例、上記の芳香族エポキシ樹脂の具体例、および上記の複素環式エポキシ樹脂の具体例のうち、1種の化合物を単独で第2エポキシ樹脂(a2)として用いてもよい。2種以上の化合物を組み合わせて第2エポキシ樹脂(a2)として用いてもよい。
 第1エポキシ樹脂(a1)および第2エポキシ樹脂(a2)の合計に対する第1エポキシ樹脂(a1)の割合は、好ましくは26体積%以上54体積%以下(より好ましくは27体積%以上46体積%以下)である。この範囲内において、絶縁性能と耐熱性とのバランスが良い傾向にある。
 《硬化剤(B)》
 硬化剤(B)は、エポキシ樹脂(A)と反応し、エポキシ樹脂(A)を硬化させる。(エポキシ樹脂(A)用の)硬化剤(B)としては、たとえば、アミン系硬化剤、酸無水物系硬化剤、イミダゾール系硬化剤、ポリメルカプタン系硬化剤、フェノール系硬化剤、ルイス酸系硬化剤、イソシアネート系硬化剤等が挙げられる。
 アミン系硬化剤の具体例としては、たとえば、エチレンジアミン、1,3-ジアミノプロパン、1,4-ジアミノブタン、ヘキサメチレンジアミン、ジプロピレンジアミン、ポリエーテルジアミン、2,5-ジメチルヘキサメチレンジアミン、トリメチルヘキサメチレンジアミン、ジエチレントリアミン、イミノビスプロピルアミン、ビス(ヘキサメチル)トリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、ペンタエチレンヘキサミン、アミノエチルエタノールアミン、トリ(メチルアミノ)へキサン、ジメチルアミノプロピルアミン、ジエチルアミノプロピルアミン、メチルイミノビスプロピルアミン、メンセンジアミン、イソホロンジアミン、ビス(4-アミノ-3-メチルジシクロヘキシル)メタン、ジアミノジシクロヘキシルメタン、ビス(アミノメチル)シクロへキサン、N-アミノエチルピペラジン、3,9-ビス(3-アミノプロピル)-2,4,8,10-テトラオキサスピロ[5,5]ウンデカン、m-キシレンジアミン、メタフェニレンジアミン、ジアミノジフェニルメタン、ジアミノジフェニルスルフォン、ジアミノジエチルジフェニルメタン、ジシアンジアミド、有機酸ジヒドラジド等が挙げられる。ただし、これらは、あくまで例示に過ぎない。これら以外のアミン系硬化剤を用いたからといって、本発明の範囲を逸脱するわけではない。
 酸無水物系硬化剤の具体例としては、たとえば、メチルテトラヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、無水メチルナジック酸等が挙げられる。ただし、これらは、あくまで例示に過ぎない。これら以外の酸無水物系硬化剤を用いたからといって、本発明の範囲を逸脱するわけではない。
 イミダゾール系硬化剤の具体例としては、たとえば、2-メチルイミダゾール、2-ウンデシルイミダゾール、1,2-ジメチルイミダゾール、2-エチル-4-メチルイミダゾール、2-ヘプタデシルイミダゾール、2-フェニルイミダゾール、2-フェニル-4-メチルイミダゾール、1-ベンジル-2-メチルイミダゾール、1-ベンジル-2-フェニルイミダゾール等が挙げられる。ただし、これらは、あくまで例示に過ぎない。これら以外のイミダゾール系硬化剤を用いたからといって、本発明の範囲を逸脱するわけではない。
 硬化剤(B)の配合量は、エポキシ樹脂(A)の種類、および硬化剤(B)の種類等に応じて、適宜調整され得る。硬化剤(B)の配合量は、エポキシ樹脂(A)のエポキシ当量に対して、好ましくは0.5当量以上2当量以下程度である。硬化剤(B)の配合量が0.5当量未満であると、エポキシ樹脂(A)の硬化が十分進行しない可能性もある。硬化剤(B)の配合量が2当量を超えると、硬化物の耐熱性、機械的特性等が低下する可能性もある。
 《硬化促進剤(C)》
 硬化促進剤(C)は、エポキシ樹脂(A)の硬化を促進する。あるいは硬化促進剤(C)は、エポキシ樹脂(A)の硬化を制御する。硬化促進剤(C)としては、たとえば、第三級アミンおよびその塩、四級アンモニウム化合物、イミダゾール、アルカリ金属アルコキシド等が挙げられる。ただし、これらはあくまで例示に過ぎない。これら以外の硬化促進剤を用いたからといって、本発明の範囲を逸脱するわけではない。
 硬化促進剤(C)の配合量は、エポキシ樹脂(A)の質量に対して、好ましくは0.01質量%以上30質量%以下程度(より好ましくは0.05質量%以上20質量%以下程度)である。配合量が0.01質量%未満であると、促進効果が小さいこともある。配合量が30質量%を超えると、硬化性組成物(X)の保存安定性、硬化物(Y)の成形性等が低下する可能性もある。
 《親水性無機粒子(D)》
 硬化性組成物(X)は、親水性無機粒子(D)を好ましくは2体積%以上54体積%以下(より好ましくは3体積%以上50体積%以下、よりいっそう好ましくは5体積%以上30体積%以下)含む。親水性無機粒子(D)の体積含有率は、親水性無機粒子(D)の体積を、硬化性組成物(X)の体積で除した値の百分率を示す。親水性無機粒子(D)の体積は、粉末の質量を、親水性無機粒子(D)の真密度で除することにより求める。
 親水性無機粒子(D)の体積含有率が2体積%以上の範囲において、硬化物(Y)の絶縁性能(たとえば初期耐圧、耐部分放電性等)が大幅に向上する。54体積%以下の範囲において、親水性無機粒子(D)の分散性が良好であり、硬化物(Y)の機械的特性も良好である。なお54体積%を超えると、硬化性組成物(X)の粘度が高くなり、含浸用途への適用が難しいこともある。
 親水性無機粒子(D)は、無機化合物の粒子である。親水性無機粒子(D)は、水に馴染みやすい性質を有する。親水性無機粒子としては、たとえば、酸化珪素、酸化マグネシウム、酸化アルミニウム、酸化亜鉛、酸化ベリリウム、酸化銅、亜酸化銅等の金属酸化物が挙げられる。
 親水性無機粒子(D)は、好ましくは表面に親水基を有する。親水基としては、たとえば、ヒドロキシ基、カルボキシ基、アミノ基、シラノール基、シロキサン基等が挙げられる。
 親水基は、表面改質剤により導入されたものであってもよい。表面改質剤としては、たとえば、γ-グリシドオキシ-プロピルトリメトキシシラン、γ-アミノプロピル-トリメトキシシラン、ビニルトリエトキシシラン、3-メタクリルオキシプロピルトリメトキシシラン、3-グリシジルオキシプロピル-トリメトキシシラン等のシランカップリング剤;チタネート系カップリング剤、アルミネート系カップリング剤;ラウリン酸アルミニウム、ステアリン酸アルミニウム、ステアリン酸鉄;水酸化アルミニウム;アルミナ、シリカ、ジルコニア;シリコーン;等が挙げられる。
 親水性無機粒子(D)は、より好ましくは表面にシラノール基を有する。親水性無機粒子(D)は、よりいっそう好ましくは表面にシラノール基を有する酸化珪素(シリカ)である。シリカは、結晶性であってもよい。シリカは、非晶性であってもよい。非晶性シリカは、たとえば、湿式法、乾式法、溶融法等により合成され得る。湿式法には、たとえば、沈降法、ゲル法等がある。乾式法には、たとえば、火炎加水分解法、アーク法、プラズマ法等がある。これらのうち、特に火炎加水分解法により合成されたフュームドシリカは、表面に好適量のシラノール基を有し得る。
 親水性無機粒子(D)の表面に結合している親水基の量は、粒子表面の親水基密度によって表すことができる。「親水基密度」は、単位面積当たりの親水基の個数を示す。親水基密度は、好ましくは0.1個/nm2以上10個/nm2以下(より好ましくは2個/nm2以上5個/nm2以下)である。この範囲内で、親水性無機粒子(D)の分散性が良好である。
 親水性無機粒子(D)の「親水基密度」は、下記式(1):
 Si=(H×7312.5)÷(Sb×Sm×T)・・・(1)
により求める。
 上記式(1)中、Siは親水基密度〔単位:個/nm2〕を示す。Sbは粉末のサンプル量〔単位:g〕を示す。Smは粉末の比表面積〔単位:m2/g〕を示す。Tは絶対温度〔単位:K〕を示す。Hは、乾燥させた粉末[Sb〔g〕]を、ジエチレングリコールジメチルエーテル中で、LiAlH4(Lithium Alminum Hydride;LAH)と反応させた際に発生した水素量〔単位:ml〕を示す。
 親水性無機粒子(D)は、一次粒径の平均値が好ましくは0.5nm以上1200nm以下(より好ましくは1nm以上1000nm以下、よりいっそう好ましくは5nm以上100nm以下、最も好ましくは10nm以上50nm以下)である。この範囲内で、耐部分放電性が向上する傾向にある。
 「一次粒径の平均値」は、走査型電子顕微鏡(SEM)を用いた画像解析法により測定する。一次粒径は、一次粒子の粒径を示す。粒径は、フェレー径を示す。少なくとも5個の一次粒子の粒径を測定する。平均値は算術平均値である。
 親水性無機粒子(D)は、比表面積が好ましくは10m2/g以上350m2/g以下(より好ましくは20m2/g以上250m2/g以下、よりいっそう好ましくは30m2/g以上200m2/g以下)である。この範囲内で、親水性無機粒子(D)の分散性が良好である。「比表面積」は、ガス吸着法(BET法)によって測定される値を示す。
 親水性無機粒子(D)の表面は、親水性ポリマーで被覆されていてもよい。親水性の有機物からなるシェル構造となっていてもよい。このような親水性無機粒子(D)としては、たとえば、金属酸化物のコアと親水性有機物のシェル(被覆層)とからなるコア-シェル型の無機粒子が挙げられる。コアとなる金属酸化物の例としては、酸化亜鉛、酸化セリウム、酸化アルミニウム、酸化ジルコニウム、酸化コバルト等が挙げられるが、特にこれらに限定されるものではない。市販品のうち、上記コア-シェル型の親水性無機粒子として使用できるものとしては、コアシェル型セリウム粒子(北興化学工業製)等が挙げられる。
 《不飽和ポリエステル樹脂(a3)》
 硬化性組成物(X)は、第1エポキシ樹脂(a1)および第2エポキシ樹脂(a2)以外の樹脂として、または、第1エポキシ樹脂(a1)に含まれる少なくとも1種の樹脂として、不飽和ポリエステル樹脂(a3)を含んでいてもよい。
 不飽和ポリエステル樹脂(a3)は、1分子中に2個以上の(メタ)アクリロイル基を含み、親水性基を有する。親水性基としては、例えば、ヒドロキシ基、エーテル基、カルボキシ基等が挙げられる。不飽和ポリエステル樹脂(a3)は、親水性基を有することにより、親水性無機粒子(D)との相互作用によって、第1エポキシ樹脂(a1)と同様に親水性無機粒子(D)の分散性を向上させることができる。
 硬化性組成物(X)がこのような不飽和ポリエステル樹脂(a3)をさらに含有している場合、例えば、有機過酸化物から生成した遊離ラジカルを介して、不飽和ポリエステル樹脂(a3)の不飽和結合部位((メタ)アクリロイル基を含む)の付加反応が起こる。したがって、第1エポキシ樹脂(a1)及び第2エポキシ樹脂(a2)は、エポキシ樹脂用硬化触媒の存在によってエポキシ基の開環付加重合に加え、遊離ラジカルを介した不飽和ポリエステル樹脂(a3)との付加反応も同時に進行する。
 これにより、第1エポキシ樹脂(a1)、第2エポキシ樹脂(a2)および不飽和ポリエステル樹脂(a3)は、互いに重合して、3次元架橋が効率良く進行するため、架橋密度が短時間で増加する。したがって、硬化性組成物(X)の硬化時間が短縮される。
 不飽和ポリエステル樹脂(a3)の具体例としては、たとえば、エポキシ(メタ)アクリレート樹脂(ビニルエステル系樹脂)、ウレタン(メタ)アクリレート樹脂、ポリエーテル(メタ)アクリレート樹脂、ポリエステル(メタ)アクリレート樹脂などが挙げられる。これらは、単独で用いてもよいし、2種類以上を混合して用いてもよい。
 ここで、エポキシ(メタ)アクリレート樹脂とは、(メタ)アクリル酸とエポキシ化合物との付加反応で得られる樹脂を意味し、エポキシ化合物の種類、(メタ)アクリル酸付加の割合などを変えることにより、物性の異なる樹脂を得ることができる。エポキシ化合物としては、たとえば、ビスフェノールA系、ビスフェノールE系、ビスフェノールF系、水添フタル酸系、クレゾールノボラック系、フェノールノボラック系、レゾルシン系、テクモア系ポリフェニレンエーテル系などの骨格を有する化合物が挙げられる。
 ウレタン(メタ)アクリレート樹脂とは、イソシアネート化合物とポリオール化合物と水酸基含有(メタ)アクリル酸モノマーとをウレタン化して得られる樹脂を意味し、組み合わせる化合物の種類、(メタ)アクリル酸モノマーの官能基数などを変えることにより、物性の異なる樹脂を得ることができる。
 ポリエーテル(メタ)アクリレート樹脂とは、エーテル結合(-O-)を主鎖に持ち、末端に(メタ)アクリロイル基を有している鎖状高分子を意味する。
 ポリエステル(メタ)アクリレート樹脂とは、飽和二塩基酸と多価アルコールとを縮合反応させて得られる飽和ポリエステルであって、末端に(メタ)アクリロイル基を有しているもの、または、α、β-不飽和二塩基酸と多価アルコールとを縮合反応させて得られる不飽和ポリエステルであって、末端に(メタ)アクリロイル基を有しているものを意味する。
 不飽和ポリエステル樹脂(a3)は、好ましくは、親水性基を有するエポキシ樹脂(第1エポキシ樹脂(a1)と同様のエポキシ樹脂を含む)にメタ(アクリロイル)基が導入されてなる、親水性基を有するエポキシアクリレート樹脂であるが、これに限定されるものではない。このような親水性基を有するエポキシアクリレート樹脂としては、例えば、親水性基を有するモノエポキシ化合物、ジエポキシ化合物またはポリエポキシ化合物にメタ(アクリロイル)基を導入してなるモノマー化合物の重合体を挙げることができる。
 不飽和ポリエステル樹脂(a3)の具体例としては、たとえば、グリセリン骨格、プロピレングリコール骨格、またはポリプピレングリコール骨格を有するエポキシアクリレート樹脂が挙げられる。
 市販品のうち、不飽和ポリエステル樹脂(a3)として使用できる製品としては、デナコールアクリレートDA-212、DA-314、DA-314-90M、DA-910、DA-911M、DA-920、DA-931(いずれもナガセケムテクッス社製)などが挙げられる。
 不飽和ポリエステル樹脂(a3)を含む硬化性組成物の全量に対する不飽和ポリエステル樹脂(a3)の含有量の比率は、好ましくは5体積%以上である。上記の不飽和ポリエステル樹脂(a3)の含有量の比率の上限は、特に限定されないが、例えば、54体積%以下である。
 硬化性組成物(X)が不飽和ポリエステル樹脂(a3)を含有している場合は、通常、硬化性組成物(X)は、不飽和ポリエステル樹脂(a3)用の硬化剤、および、不飽和ポリエステル樹脂(a3)用の硬化促進剤をさらに含有する。
 不飽和ポリエステル樹脂(a3)用の硬化剤(反応開始剤)としては、たとえば、有機過酸化物を用いることができる。
 有機過酸化物としては、特に限定されず、当該技術分野において公知のものを用いることができる。有機過酸化物の例としては、ケトンパーオキサイド系、パーオキシケタール系、ハイドロパーオキサイド系、ジアルキルパーオキサイド系、ジアシルパーオキサイド系、パーオキシエステル系、またはパーオキシジカーボネート系の過酸化物などを用いることができる。これらの有機過酸化物は、単独で用いても、2種類以上を混合して用いてもよい。
 有機過酸化物の具体例としては、たとえば、1,1-ジ(t-ブチルパーオキシ)シクロヘキサン、1,1-ジ(t-ヘキシルパーオキシ)シクロヘキサン、1,1-ジ(t-ヘキシルパーオキシ)-3,3,5-トリメチルシクロヘキサン、1,1-ジ(t-ブチルパーオキシ)-2-メチルシクロヘキサン、2,2-ジ(4,4-ジ-(ブチルパーオキシ)シクロヘキシル)プロパン、n-ブチル4,4-ジ-(t-ブチルパーオキシ)バレラート、2,2-ジ-(t-ブチルパーオキシ)ブタン、t-ヘキシルパーオキシイソプロピルモノカーボネート、t-ブチルパーオキシマレイン酸、t-ブチルパーオキシ-3,5,5-トリメチルヘキサン酸、t-ブチルパーオキシラウリン酸、t-ブチルパーオキシイソプロピルモノカーボネート、t-ブチルパーオキシベンゾエート、t-ブチルパーオキシアセテート、t-ヘキシルパーオキシベンゾエート、2,5-ジメチル-2,5-ジ(ベンゾイルパーオキシ)ヘキサン、t-ブチルパーオキシ2-エチルヘキシルモノカーボネート、ジ(2-t-ブチルパーオキシイソプロピル)ベンゼン、ジクミルパーオキサイド、ジ-t-ヘキシルパーオキサイド、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサン、ジ-t-ヘキシルパーオキサイド、t-ブチルクミルパーオキサイド、ジ-t-ブチルパーオキサイド、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキシン-3、p-メンタンハイドロパーオキサイド、t-ブチルパーオキシアリルモノカーボネート、メチルエチルケトンパーオキサイド、1,1,3,3-テトラメチルブチルハイドロパーオキサイド、t-ブチルハイドロパーオキサイド、クミンハイドロパーオキサイド、ジイソプロピルベンゼンハイドロパーオキサイドなどが挙げられる。これらは単独で用いてもよいし、2種以上を混合して用いてもよい。
 不飽和ポリエステル樹脂(a3)用の硬化促進剤としては、たとえば、金属石鹸類、金属キレート類、アミン類などが挙げられる。
 金属石鹸類としては、たとえば、オクチル酸亜鉛、オクチル酸バナジウム、ナフテン酸銅、ナフテン酸コバルト、ナフテン酸バリウム等があげられる。
 金属キレート類としては、たとえば、バナジウムアセチルアセテート、コバルトアセチルアセテート、鉄アセチルアセトネート等が挙げられる。
 アミン類としては、たとえば、
 アニリン、ジエタノールアニリン、
 N,N-置換アニリン〔N,N-ジメチルアニリン、N,N-ジエチルアニリン、N,N-ビス(ヒドロキシエチル)アニリン等〕、
 p-トルイジン、m-トルイジン、N-エチル-m-トルイジン、
 N,N-置換-p-トルイジン〔N,N-ジメチル-p-トルイジン、N,N-ビス(2-ヒドロキシエチル)-p-トルイジン、N,N-ビス(2-ヒドロキシプロピル)-p-トルイジン等〕、
 4-(N,N-置換アミノ)ベンズアルデヒド〔4-(N,N-ジメチルアミノ)ベンズアルデヒド、4-[N,N-ビス(2-ヒドロキシエチル)アミノ]ベンズアルデヒド、4-(N-メチル-N-ヒドロキシエチルアミノ)ベンズアルデヒド等〕、
 トリエタノールアミン、ジエチレントリアミン、ピリジン、フェニルモルホリン、ピペリジンなどが挙げられる。
 <硬化性組成物(X)の製造方法>
 硬化性組成物(X)は、以下の製造方法により製造することができる。図3は、硬化性組成物(X)の製造方法の概略を示すフローチャートである。当該製造方法は、予備分散ステップ(S01)、せん断分散ステップ(S02)、および、硬化性組成物調製ステップ(S03)を含む。以下、各ステップを説明する。
 《予備分散ステップ(S01)》
 予備分散ステップ(S01)では、第1エポキシ樹脂(a1)に、親水性無機粒子(D)を分散させることにより、第1分散液を調製する。
 本ステップでの分散方法は、特に制限されない。本ステップでは、当該技術の分野において、通常用いられる手段によって、第1エポキシ樹脂(a1)に親水性無機粒子(D)を分散させることができる。たとえば、一般的な自転公転式攪拌機等を使用することができる。
 《せん断分散ステップ(S02)》
 せん断分散ステップ(S02)では、高圧で、第1分散液および第2エポキシ樹脂(a2)を所定のノズル内に噴射する。噴流内に発生するせん断力により、親水性無機粒子を破砕し、液中に分散させる。これにより第2分散液を調製する。
 本ステップでは、湿式高圧せん断分散装置が好適に用いられる。
 親水性無機粒子(D)は、通常、二次粒子、三次粒子等の凝集形態をとっている。本ステップでは、親水性無機粒子(D)に、強いせん断力を加えることにより、凝集を破砕する。親水性無機粒子(D)は、ナノオーダーの一次粒径を有する程度に、破砕される。同時に、破砕された親水性無機粒子(D)を媒質に分散させる。これにより、第2分散液が調製される。
 このとき、親水性無機粒子(D)の親水基(たとえばシラノール基等)と、第1エポキシ樹脂(a1)の親水基(たとえば、ヒドロキシ基、エーテル基等)との相互作用により、親水性無機粒子(D)が第1エポキシ樹脂(a1)に取り囲まれる。このため、親水性無機粒子(D)の再凝集、沈降が抑制される。すなわち、均一な分散状態が形成され、なおかつ、その状態が安定して維持され得る。
 本ステップにおいて、分散液に加える圧力には注意を要する。分散液に加える圧力は、好ましくは100MPa以上200MPa以下(より好ましくは150MPa以上200MPa以下)である。圧力が過度に高いと、一次粒子が破砕され、活性面が露出する。そのため、再凝集が起こりやすくなる可能性がある。圧力が過度に低いと、親水性無機粒子(D)を十分に破砕、分散させることができない可能性がある。
 《硬化性組成物調製ステップ(S03)》
 硬化性組成物調製ステップ(S03)では、第2分散液に、硬化剤(B)および硬化促進剤(C)を加えて攪拌する。これにより硬化性組成物(X)が調製される。
 本ステップでの攪拌方法は、特に制限されない。本ステップでは、当該技術の分野において、通常用いられる手段によって、攪拌することができる。たとえば、一般的な攪拌機等を使用することができる。攪拌後、必要に応じて、真空脱気処理等を行ってもよい。以上より、硬化性組成物(X)を製造することができる。
 なお上記の必須成分以外に、当該技術の分野において、通常配合され得る各種添加剤を併用してもよい。そうした添加剤は、せん断分散ステップ(S02)において、添加するとよい。
 <硬化物(Y)>
 硬化物(Y)は、硬化性組成物(X)の硬化物である。硬化物(Y)は、典型的には、硬化性組成物(X)を加熱することにより、生成される。硬化物(Y)は、用途に応じて、様々な形態、形状で使用される。硬化物(Y)は、たとえば、含浸、塗布、注型、シート成形等の各種成形方法により、所望の形状に成形され得る。
 硬化物(Y)は、絶縁性能および耐熱性に優れる。そのため硬化物(Y)は、絶縁性能および耐熱性の少なくとも一方が必要される用途に好適である。硬化物(Y)は、たとえば、回転機、送変電機器等の重電機器の絶縁部材に好適である。絶縁部材としては、たとえば、ワニス、絶縁塗料、ケーブル被覆材料、絶縁シート、封止材料等が挙げられる。
 図2は、参考形態に係る硬化物を示す概念図である。この参考形態では、カップリング剤を用いて、無機粒子をエポキシ樹脂中に分散させている。硬化物20は、エポキシ樹脂16および無機粒子13を含む。無機粒子13の表面には、カップリング剤に由来する被覆層15が形成されている。
 被覆層15は、絶縁破壊の強さで、エポキシ樹脂16に劣る。そのため電極14から、高電圧が印加されると、被覆層15を伝って絶縁劣化パス17が進展する。また被覆層15は、エポキシ樹脂16よりも耐熱性が低い。そのため硬化物20では、全体としての耐熱性も低くなり得る。
 図1は、第1実施形態に係る硬化物(Y)を示す概念図である。硬化物10は、エポキシ樹脂6および親水性無機粒子3を含む。前述のように、エポキシ樹脂6は、水溶性が高い第1エポキシ樹脂(a1)を含む。そのため硬化物10では、エポキシ樹脂6と、親水性無機粒子3との相互作用により、親水性無機粒子3の凝集、沈降が抑制されている。その結果、部分放電の起点となるボイドの発生も抑制されている。
 硬化物10では、カップリング剤に頼らずに、均一な分散状態を実現している。つまり硬化物10は、カップリング剤を実質的に含まない。そのため、電極4から高電圧が印加されても、絶縁劣化パス7は長く進展することができない。またカップリング剤の添加に伴う、耐熱性の低下も実質的に排除できる。
 <第2実施形態>
 本発明の第2実施形態は、回転機である。
 <回転機>
 回転機は、発電機であってもよい。回転機は、電動機であってもよい。発電機および電動機は、通常、回転子および固定子を備える。図4は、第2実施形態の回転機の要部を示す概略図である。図4では、回転機の固定子のスロット出口部が示されている。
 第2実施形態に係る回転機の概要は、次のとおりである。
 回転機は、回転子(図示せず)および固定子102を備える。固定子102は、コイル導体103と、コイル導体103を被覆する絶縁層104を含む。絶縁層104は、第1実施形態の硬化物(Y)を含む。回転機は、硬化物(Y)の絶縁性能および耐熱性に基づき、絶縁寿命、信頼性に優れる。
 固定子について説明する。
 固定子鉄心101には、スロット107が設けられている。スロット107は、スペーサ106によって、上段と下段とに分けられている。スロット107の上段および下段には、それぞれ固定子102が配置されている。固定子102は、ウェッジ105によって、スロット107内に固定されている。固定子102は、コイル導体103および絶縁層104を含む。絶縁層104は、コイル導体103を被覆している。
 固定子102は、次のようにして製造される。先ず、絶縁被覆された素線を準備する。素線は導電性を有する。素線の材質は、たとえば、銅、アルミニウム、銀等である。素線によりコイル導体103を構成する。コイル導体103の周囲に、マイカテープを巻き付ける。マイカテープは、テープの一部が互いに重なるように、複数回巻き付ける。重なる部分の幅は、たとえば、マイカテープの幅の半分程度である。
 次いで、マイカテープを巻き付けたコイル導体103を、所定の金型内に配置する。金型内に、第1実施形態の硬化性組成物(X)を含浸する。含浸後、金型内を加圧すると共に、硬化性組成物(X)を加熱する。金型を加熱することにより、硬化性組成物(X)を加熱してもよい。コイル導体103を加熱することにより、硬化性組成物(X)を加熱してもよい。加熱温度は、たとえば、100℃以上250℃以下程度である。
 圧力は、たとえば、5kg/cm2以上100kg/cm2以下程度である。加圧時間は、たとえば、0.5時間以上24時間以下程度である。これにより硬化性組成物(X)が硬化する。すなわち、硬化物(Y)を含む絶縁層104が形成される。
 絶縁層104が形成された後、金型から固定子102を取り離す。離型を容易にするために、コイル導体103にマイカテープを巻き付けた後、その表面に離型剤を塗布しておくことが好ましい。離型剤は、当該技術の分野において通常用いられるものでよい。
 以下、実施例を挙げて説明する。ただし、本発明は以下の例に限定されるべきでない。
 <硬化性組成物(X)およびその硬化物(Y)の製造>
 以下のようにして、各種硬化性組成物(X)およびその硬化物(Y)を製造した。
 <材料の準備>
 以下の材料を準備した。
 《第1エポキシ樹脂(a1)》
 A種:ポリグリシジルエーテル
 B種:ジグリセロールポリグリシジルエーテル
 C種:ソルビトールポリグリシジルエーテル(高分子量)
 D種:ソルビトールポリグリシジルエーテル
 E種:ポリエチレングリセロールジグリシジルエーテル
 F種:ポリエチレングリコールグリシジルエーテル
 G種:ポリグリシジルエーテル
 《第2エポキシ樹脂(a2)》
 ビスフェノールA型エポキシ樹脂
 《硬化剤(B)》
 酸無水物系硬化剤
 《硬化促進剤(C)》
 イミダゾール系硬化促進剤
 《親水性無機粒子(D)》
 親水性フュームドシリカ
 疎水性フュームドシリカ(比較例4に使用)
 <実施例1~15>
 下記表1に示す配合量に従って、第1エポキシ樹脂(a1)に親水性無機粒子(D)を分散させた。これにより第1分散液を調製した(S01)。分散操作には、自転公転式攪拌機を用いた。回転数は2000rpm、攪拌時間は2分間とした。
 下記表1に示す配合量に従って、第1分散液に、第2エポキシ樹脂(a2)を加えた。湿式高圧せん断分散装置を用いて、親水性無機粒子(D)を破砕し、分散させた。処理圧力は、150MPa以上200MPa以下の範囲内で調整した。これにより第2分散液を調製した(S02)。
 下記表1に示す配合量に従って、第2分散液に、硬化剤(B)および硬化促進剤(C)を加え、攪拌した。攪拌後、真空脱気処理を行った。以上より、硬化性組成物(X)を調製した(S03)。
 <比較例1>
 下記表1に示す配合量に従って、上記と同様にして、硬化性組成物を調製した。下記表1に示すように、比較例1は、第1エポキシ樹脂(a1)の水溶率が99質量%を超える例である。
 <比較例2>
 下記表1に示すように、第1エポキシ樹脂(a1)を配合しないことを除いては、実施例1~15と同様にして、硬化性組成物を調製した。
 <比較例3>
 下記表1に示すように、親水性無機粒子(D)を配合しないことを除いては、実施例1~15と同様にして、硬化性組成物を調製した。
 <比較例4>
 下記表1に示すように、親水性無機粒子(D)に代えて、疎水性無機粒子を配合することを除いては、実施例1~15と同様にして、硬化性組成物を調製した。
 <比較例5>
 下記表1に示す配合に従って、上記と同様にして、硬化性組成物を調製した。比較例5は、第1エポキシ樹脂(a1)の水溶率が20質量%未満の例である。
Figure JPOXMLDOC01-appb-T000001
 <評価>
 以下のようにして、材料および硬化性組成物を評価した。
 《水溶率》
 前述の方法により、第1エポキシ樹脂(a1)の水溶率を測定した。結果を上記表1に示す。
 《粘度》
 E型粘度計により、第1エポキシ樹脂(a1)の粘度を測定した。結果を上記表1に示す。
 《分散性》
 沈降法により、硬化性組成物の分散性を評価した。評価手順は次のとおりである。ガラス容器に硬化性組成物を入れた。ガラス容器をよく振った後、静置した。静置後、ガラス容器の片側から光を照射し、光を照射していない側から硬化性組成物の透明性を評価した。分散性は、A、B、Cの3水準で評価した。実施例1の分散性を基準として、基準よりも良いものをA、基準と同等であるものをB、基準よりも悪いものをCとした。結果を上記表1に示す。
 《一次粒径の平均値》
 硬化性組成物を150℃で180分間加熱した。これにより硬化物を得た。SEMを用いて、硬化物に含まれる無機粒子の一次粒径の平均値を測定した。一次粒径は10個の粒子について測定した。10個の算術平均値を求めた。結果を上記表1に示す。
 《成形性》
 離型試験により、硬化物の成形性を評価した。評価手順は次のとおりである。板状の金型を準備した。板状の金型に硬化性組成物を注入した。硬化性組成物を加熱することにより、硬化性組成物を硬化させ、板状の硬化物を得た。硬化物を金型から取り外した。硬化物の取り外し易さを次の3水準で評価した。硬化物を容易に取り外すことが出来た場合をA、硬化物に破損が生じることなく取り外すことができた場合をB、硬化物が脆く、取り外す際に破損が生じた場合をCとした。結果を上記表1に示す。
 《耐熱性》
 ガラス転移温度(Tg)により、硬化物の耐熱性を評価した。Tgは、動的粘弾性測定により求めた。測定は引張モードで行った。損失正接(tanδ)の温度依存性を示すグラフにおいて、tanδがピークを示す温度をTgとした。実施例1のTgを基準として、基準よりも高いものをA、基準と同等であるものをB、基準よりも低いものをCとした。結果を上記表1に示す。Tgが高い程、耐熱性が良好である。
 《初期耐圧》
 絶縁破壊試験によって、硬化物の初期耐圧を評価した。「JIS C 2110-1 固体電気絶縁材料-絶縁破壊の強さの試験方法-第1部:商用周波数交流電圧印加による試験」に準拠して、絶縁破壊の強さを測定した。測定は10回行った。10回の結果の算術平均値を代表値として採用した。初期耐圧は、A、B、Cの3水準で評価した。実施例1の絶縁破壊の強さを基準として、基準よりも強いものをA、基準と同等であるものをB、基準よりも弱いものをCとした。結果を上記表1に示す。
 《耐部分放電性》
 部分放電開始電圧(Partial Discharge Inception Voltage;PDIV)により、耐部分放電性を評価した。PDIVの測定は10回行った。10回の結果の算術平均値を代表値として採用した。耐部分放電性は、A、B、Cの3水準で評価した。実施例1のPDIVを基準として、基準よりも高いものをA、基準と同等であるものをB、基準よりも低いものをCとした。結果を上記表1に示す。
 <結果と考察>
 上記表1から分かるように、実施例1~15は、比較例1~5に比べて、絶縁性能(初期耐圧および耐部分放電性)が向上している。またそれに伴う耐熱性の低下が抑制されている。水溶率が20質量%以上99質量%以下である第1エポキシ樹脂(a1)と、親水性無機粒子(D)との相互作用により、親水性無機粒子(D)の分散性が向上したためと考えられる。
 実施例1および比較例1の結果に基づき、第1エポキシ樹脂(a1)の水溶率について考察する。
 エポキシ樹脂の水溶率を高めるためには、ヒドロキシ基、エーテル基等の親水基を導入するだけでなく、分子骨格中の不飽和結合(二重結合および三重結合)の比率を低減し、飽和結合(単結合)の比率を相対的に増加させる必要がある。しかし、不飽和結合の比率が低下すると、耐熱性が低下する。
 実施例1(水溶率:64質量%)では、分子内の飽和結合および不飽和結合の比率が好適であるため、水溶率と耐熱性とを両立できると考えられる。一方、比較例1(水溶率:100質量%)では、不飽和結合の比率が過度に低いため、耐熱性の低下を招いたと考えられる。
 実施例1、比較例2および比較例4の結果に基づき、親水性無機粒子(D)の分散性について考察する。
 実施例1の硬化性組成物においては、水溶率が高い第1エポキシ樹脂(a1)が親水性無機粒子(D)の周囲を取り囲むため、親水性無機粒子(D)の分散性が向上し、なおかつ分散状態が安定であると考えられる。これに対して、第1エポキシ樹脂(a1)を含まない比較例2では、親水性無機粒子(D)が凝集しやすい。そのため親水性無機粒子(D)を一度分散させても、その後に再凝集してしまう。親水性無機粒子(D)の凝集、沈降により、絶縁劣化および部分放電の起点となるボイドが形成される。その結果、初期耐圧および耐部分放電性が低下していると考えられる。
 比較例4は、水溶率が高い第1エポキシ樹脂(a1)を含む。しかし無機粒子が疎水性である。そのため第1エポキシ樹脂(a1)と無機粒子とが馴染まず、分散性が低下していると考えられる。その結果、初期耐圧および部分放電性が低下していると考えられる。
 実施例3、実施例11および実施例12の間における、初期耐圧および耐部分放電性の優劣は、親水性無機粒子(D)の一次粒径の平均値によって説明できる。
 すなわち、一次粒径が絶縁劣化パスよりも大きいと、絶縁劣化パスの進展を阻害しやすいと考えられる。一方、一次粒径が過度に大きくなると沈降しやすくなるため、分散性が維持できず、絶縁性能が低下する。したがって、一次粒径の平均値には、これらを両立できる適当な範囲が存在すると考えられる。今回の結果から、その範囲は0.5nm以上1200nm以下であると結論付けられる。
 <実施例16>
 実施例1~15と同様の15種類の硬化性組成物(X)の各々に、不飽和ポリエステル樹脂(a3)として、親水性基を有する不飽和ポリエステル樹脂(エポキシ(メタ)アクリレート)を、混合物(本実施例の硬化性組成物)の全量(すなわち、実施例1~15と同様の硬化性組成物(X)および不飽和ポリエステル樹脂(a3)の合計量)に対して、0、10または23体積%添加した。さらに、不飽和ポリエステル樹脂(a3)の硬化剤として、アルキルケトンパーオキサイドを不飽和ポリエステル樹脂(a3)の添加量に対して1質量%添加し、不飽和ポリエステル樹脂(a3)の硬化促進剤としてナフテン酸金属石鹸を不飽和ポリエステル樹脂(a3)の添加量に対して0.5質量%添加した。
 それ以外の点は、実施例1~15と同様にして、硬化性組成物(X)およびその硬化物(Y)を製造した。その際、それぞれの硬化性組成物(X)の硬化時間を測定した。なお、硬化時間は樹脂組成物のゲル化時間により判定し、ゲル化し流動性を失した時点を硬化時間として規定した。
 図5に、不飽和ポリエステル樹脂(a3)の添加率と、硬化性組成物(X)の硬化時間との関係をプロットしたグラフを示す。なお、ここでは、実施例3と同様の硬化性組成物(X)を用いた場合の結果のみを示している。図5の結果から、不飽和ポリエステル樹脂(a3)の添加によって、硬化性組成物(X)の硬化時間が短縮されることが分かる。これは、不飽和ポリエステル樹脂(a3)の添加によって、上述のとおり3次元架橋が効率良く進行するため、架橋密度が短時間で増加したためであると考えられる。
 今回開示された実施形態および実施例はすべての点で例示である。今回開示された実施形態および実施例は、制限的に解釈されるべきでない。
 本発明の範囲は、上記した説明でなく、請求の範囲によって画定されるべきである。本発明の範囲には、請求の範囲と均等の意味での全ての変更が含まれる。また本発明の範囲には、請求の範囲と均等の範囲内での全ての変更も含まれる。
 3 親水性無機粒子、4,14 電極、6,16 エポキシ樹脂、7,17 絶縁劣化パス、10,20 硬化物、13 無機粒子、15 被覆層、101 固定子鉄心、102 固定子、103 コイル導体、104 絶縁層、105 ウェッジ、106 スペーサ、107 スロット。

Claims (13)

  1.  エポキシ樹脂、
     硬化剤、
     硬化促進剤および
     親水性無機粒子
    を含み、
     前記エポキシ樹脂は、第1エポキシ樹脂および第2エポキシ樹脂を含み、
     前記第1エポキシ樹脂は、親水基を有する鎖状脂肪族エポキシ樹脂であり、かつ水溶率が20質量%以上99質量%以下であり、
     前記第2エポキシ樹脂は、環状脂肪族エポキシ樹脂、芳香族エポキシ樹脂および複素環式エポキシ樹脂からなる群より選択される少なくとも1種を含む、硬化性組成物。
  2.  前記第1エポキシ樹脂は、グリシジルエーテル化合物である、請求項1に記載の硬化性組成物。
  3.  前記第1エポキシ樹脂は、グリセロール骨格を有するポリグリシジルエーテル化合物である、請求項2に記載の硬化性組成物。
  4.  前記第1エポキシ樹脂および前記第2エポキシ樹脂の合計に対する前記第1エポキシ樹脂の割合は、26体積%以上54体積%以下である、請求項1~請求項3のいずれか1項に記載の硬化性組成物。
  5.  前記第1エポキシ樹脂は、粘度が20mPa・s以上21200mPa・s以下である、請求項1~請求項4のいずれか1項に記載の硬化性組成物。
  6.  1分子中に2個以上の(メタ)アクリロイル基を含み、親水性基を有する、不飽和ポリエステル樹脂を含む、請求項1~請求項5のいずれか1項に記載の硬化性組成物。
  7.  前記不飽和ポリエステル樹脂が、前記第1エポキシ樹脂にメタ(アクリロイル)基が導入されてなるエポキシアクリレート樹脂である、請求項6に記載の硬化性組成物。
  8.  前記親水性無機粒子は、表面に親水基を有する、請求項1~請求項7のいずれか1項に記載の硬化性組成物。
  9.  前記親水性無機粒子は、表面が親水性ポリマーで被覆されている、請求項1~8のいずれか1項に記載の樹脂硬化物。
  10.  前記親水性無機粒子は、一次粒径の平均値が0.5nm以上1200nm以下である、請求項1~請求項9のいずれか1項に記載の硬化性組成物。
  11.  前記硬化性組成物は、前記親水性無機粒子を2体積%以上54体積%以下含む、請求項1~請求項10のいずれか1項に記載の硬化性組成物。
  12.  請求項1~請求項11のいずれか1項に記載の硬化性組成物の硬化物。
  13.  回転子および固定子を備え、
     前記固定子は、コイル導体と、前記コイル導体を被覆する絶縁層とを含み、
     前記絶縁層は、請求項12に記載の硬化性組成物の硬化物を含む、回転機。
PCT/JP2016/088053 2016-03-31 2016-12-21 硬化性組成物およびその硬化物ならびに回転機 WO2017168880A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP16897096.0A EP3438200B1 (en) 2016-03-31 2016-12-21 Curable composition, cured object obtained therefrom, and rotary device
US16/086,126 US20200032046A1 (en) 2016-03-31 2016-12-21 Curable composition, cured product thereof, and rotary device
CN201680082248.4A CN108884296B (zh) 2016-03-31 2016-12-21 固化性组合物及其固化物以及旋转机
JP2017531923A JP6279161B1 (ja) 2016-03-31 2016-12-21 硬化性組成物およびその硬化物ならびに回転機

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016071396 2016-03-31
JP2016-071396 2016-03-31

Publications (1)

Publication Number Publication Date
WO2017168880A1 true WO2017168880A1 (ja) 2017-10-05

Family

ID=59963925

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/088053 WO2017168880A1 (ja) 2016-03-31 2016-12-21 硬化性組成物およびその硬化物ならびに回転機

Country Status (5)

Country Link
US (1) US20200032046A1 (ja)
EP (1) EP3438200B1 (ja)
JP (1) JP6279161B1 (ja)
CN (1) CN108884296B (ja)
WO (1) WO2017168880A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022044358A1 (ja) * 2020-08-31 2022-03-03 東芝三菱電機産業システム株式会社 レジン製造方法及び絶縁構造製造方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180041086A1 (en) * 2016-08-03 2018-02-08 Schlumberger Technology Corporation Polymeric materials
DE102017125177A1 (de) * 2017-10-26 2019-05-02 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e. V. Elektrisches Bauteil mit Isolationsschicht und Verfahren zu dessen Herstellung

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59207606A (ja) * 1983-05-10 1984-11-24 Mitsubishi Electric Corp 変圧器用シ−ト巻コイルの絶縁コ−テイング用樹脂組成物
JPH08239555A (ja) * 1995-01-26 1996-09-17 Ciba Geigy Ag 硬化性エポキシ樹脂配合物
JPH0912676A (ja) * 1995-06-28 1997-01-14 Sumitomo Bakelite Co Ltd 液晶セルの組立用シール材組成物
JP2005330390A (ja) * 2004-05-20 2005-12-02 Yaskawa Electric Corp エポキシ樹脂組成物およびそれを用いたモールドモータ
JP2006176678A (ja) * 2004-12-22 2006-07-06 Matsushita Electric Works Ltd エポキシ樹脂組成物及び電子部品
WO2009110345A1 (ja) * 2008-03-07 2009-09-11 オムロン株式会社 一液性エポキシ樹脂組成物およびその利用

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55166467A (en) * 1979-05-22 1980-12-25 Mitsubishi Electric Corp Manufacture of stator for rotary electric machine
JP4556455B2 (ja) * 2004-03-16 2010-10-06 株式会社明電舎 含浸用樹脂組成物
US20100222520A1 (en) * 2005-12-28 2010-09-02 Kaneka Corporation Curable composition for both thermal radical curing and latent thermal curing with epoxy
DE102009046157A1 (de) * 2009-10-29 2011-05-05 Henkel Ag & Co. Kgaa Vormischung und Verfahren zur Herstellung einer thermisch expandierbaren und härtbaren Epoxid-basierten Masse
CN104995822A (zh) * 2013-01-07 2015-10-21 三菱电机株式会社 旋转电机的定子线圈及其制造方法、以及旋转电机
WO2015056508A1 (ja) * 2013-10-16 2015-04-23 三菱電機株式会社 水分散型絶縁ワニス組成物、それを用いた絶縁コイル及び密閉型電動圧縮機の製造方法、絶縁コイル並びに密閉型電動圧縮機

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59207606A (ja) * 1983-05-10 1984-11-24 Mitsubishi Electric Corp 変圧器用シ−ト巻コイルの絶縁コ−テイング用樹脂組成物
JPH08239555A (ja) * 1995-01-26 1996-09-17 Ciba Geigy Ag 硬化性エポキシ樹脂配合物
JPH0912676A (ja) * 1995-06-28 1997-01-14 Sumitomo Bakelite Co Ltd 液晶セルの組立用シール材組成物
JP2005330390A (ja) * 2004-05-20 2005-12-02 Yaskawa Electric Corp エポキシ樹脂組成物およびそれを用いたモールドモータ
JP2006176678A (ja) * 2004-12-22 2006-07-06 Matsushita Electric Works Ltd エポキシ樹脂組成物及び電子部品
WO2009110345A1 (ja) * 2008-03-07 2009-09-11 オムロン株式会社 一液性エポキシ樹脂組成物およびその利用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3438200A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022044358A1 (ja) * 2020-08-31 2022-03-03 東芝三菱電機産業システム株式会社 レジン製造方法及び絶縁構造製造方法

Also Published As

Publication number Publication date
JP6279161B1 (ja) 2018-02-14
EP3438200A1 (en) 2019-02-06
EP3438200B1 (en) 2020-10-07
JPWO2017168880A1 (ja) 2018-04-05
US20200032046A1 (en) 2020-01-30
CN108884296A (zh) 2018-11-23
CN108884296B (zh) 2021-04-09
EP3438200A4 (en) 2019-05-01

Similar Documents

Publication Publication Date Title
JP5756082B2 (ja) ダイレクトオーバーモールディング
JP5738261B2 (ja) エポキシ‐ビニル共重合型液状樹脂組成物、その硬化物、製造方法及び硬化物を用いた絶縁材料、電子・電気機器
JP5587248B2 (ja) 電気絶縁材料およびこれを用いた高電圧機器
WO2008023692A1 (fr) Formule de résine pour moulage, matériau isolant l'utilisant et structure isolante
JP2010523747A (ja) 硬化性エポキシ樹脂組成物
JP6279161B1 (ja) 硬化性組成物およびその硬化物ならびに回転機
JP4002831B2 (ja) 機械的強度の高い充填エポキシ樹脂系
TWI693256B (zh) 用於製備戶外物品之熱固性環氧樹脂組成物及所得到的物品
CN102159614A (zh) 环氧树脂组合物
JP2019131629A (ja) 絶縁ワニス、絶縁ワニス硬化物、固定子コイル及び回転電機
JP6310730B2 (ja) エポキシ樹脂組成物およびそれを用いた電力機器
EP2751161B1 (en) Process for the impregnation of air core reactors, impregnated air core reactor and use of an impregnation system
KR20100111454A (ko) 고압절연용 에폭시/실리카 멀티콤포지트의 제조방법 및 이로부터 제조된 멀티콤포지트
JP4476646B2 (ja) 高電圧機器用の絶縁樹脂組成物、絶縁材料とその製造方法、および絶縁構造体
JP6275056B2 (ja) 絶縁樹脂組成物、絶縁部材、回転電機及び発電機
EP1873206A1 (en) Nano-composite dielectrics
JP2012188533A (ja) 揺変性液状絶縁ワニス並びにそれを用いた電気機器絶縁物及び電動モーター
WO2022162805A1 (ja) 絶縁樹脂組成物、硬化物、回転機用コイル、および回転機
JP2011116879A (ja) 不飽和ポリエステル樹脂組成物
JP2014031391A (ja) エポキシ樹脂およびそれを用いた電気機器

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017531923

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016897096

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016897096

Country of ref document: EP

Effective date: 20181031

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16897096

Country of ref document: EP

Kind code of ref document: A1