WO2017168530A1 - 基板の配線経路の検査方法及び検査システム - Google Patents

基板の配線経路の検査方法及び検査システム Download PDF

Info

Publication number
WO2017168530A1
WO2017168530A1 PCT/JP2016/059974 JP2016059974W WO2017168530A1 WO 2017168530 A1 WO2017168530 A1 WO 2017168530A1 JP 2016059974 W JP2016059974 W JP 2016059974W WO 2017168530 A1 WO2017168530 A1 WO 2017168530A1
Authority
WO
WIPO (PCT)
Prior art keywords
wiring
inspection
substrate
resistance value
wiring path
Prior art date
Application number
PCT/JP2016/059974
Other languages
English (en)
French (fr)
Inventor
直基 松本
Original Assignee
堺ディスプレイプロダクト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 堺ディスプレイプロダクト株式会社 filed Critical 堺ディスプレイプロダクト株式会社
Priority to JP2018507852A priority Critical patent/JPWO2017168530A1/ja
Priority to US16/090,192 priority patent/US10663815B2/en
Priority to CN201680084197.9A priority patent/CN109073695A/zh
Priority to PCT/JP2016/059974 priority patent/WO2017168530A1/ja
Publication of WO2017168530A1 publication Critical patent/WO2017168530A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136286Wiring, e.g. gate line, drain line
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/52Testing for short-circuits, leakage current or ground faults
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1345Conductors connecting electrodes to cell terminals
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/006Electronic inspection or testing of displays and display drivers, e.g. of LED or LCD displays
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136254Checking; Testing
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0421Structural details of the set of electrodes
    • G09G2300/0426Layout of electrodes and connections
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals

Definitions

  • the present invention relates to a method and system for inspecting a wiring path of a substrate, in which a contact probe is brought into contact with a plurality of electrically independent wiring paths formed on a substrate and a defect in the wiring path in contact with the contact probe is inspected. It is about.
  • a contact probe When inspecting a plurality of wiring defects formed on the substrate, a contact probe is brought into contact with the end of the wiring, and a short circuit or an insulation resistance is inspected via the probe.
  • Patent Document 1 discloses a wiring inspection machine for inspecting electrical defects in wiring of printed wiring boards and various semiconductor package substrates.
  • a first inspection stage for inspecting open and short using conductive rubber and a second inspection stage using a flying prober that does not require an inspection jig are provided.
  • Patent Document 2 discloses a circuit board including a contact probe capable of contacting a plurality of conductor patterns formed on a circuit board, and a short-circuit plate for electrically short-circuiting the plurality of conductor patterns on the circuit board. An inspection device is described. The contact probe and the short-circuit plate can be selectively used according to the inspection item.
  • the present invention has been made in view of the circumstances as described above, and when inspecting a plurality of wirings formed on a substrate, whether or not the probe is actually electrically connected to the wirings, It aims at providing the technique which can be confirmed easily at low equipment cost.
  • An inspection method is a method of performing an electrical inspection of a wiring path of a substrate having a surface on which a plurality of wiring paths that are electrically independent from each other are formed, Arranging a probe set in a connection terminal area where one end of each of the plurality of wiring paths is formed, and short-circuiting an arbitrary pair of the plurality of wiring paths in an area excluding the connection terminal area of the plurality of wiring paths And a step of determining whether or not a first resistance value measured between the pair under a condition in which the pair is short-circuited is lower than a predetermined value.
  • An inspection system is an inspection system that performs an electrical inspection of a wiring path of a substrate having a surface on which a plurality of electrically independent wiring paths are formed.
  • a probe set to be arranged in a connection terminal area where one end of each is formed, and a flexible conductive element that is arranged in an area excluding the connection terminal area of the plurality of wiring paths to short-circuit any pair of the plurality of wiring paths
  • an inspection apparatus provided with a determination unit for determining whether or not the first resistance value measured between the pair under a condition in which the pair is short-circuited is lower than a predetermined value. It is said.
  • the present invention when inspecting a plurality of electrically independent wiring paths formed on a substrate, whether or not the probe is actually electrically connected to the wiring can be easily determined at a low equipment cost. It is possible to realize a method for inspecting a wiring path of a substrate that can be confirmed. Furthermore, according to the inspection system of the present invention, the electrical inspection of the wiring path of the substrate having a surface on which a plurality of electrically independent wiring paths are formed can be easily performed.
  • 1 is a block diagram schematically showing a configuration of a substrate wiring path inspection system according to an embodiment. It is a flowchart which shows operation
  • route inspection system which concerns on one Embodiment. 1 is a block diagram schematically showing a configuration of a substrate wiring path inspection system according to an embodiment. It is a block diagram which shows roughly the structure of the test
  • each of them may be composed of a single wiring or a plurality of wirings.
  • the individual signals to be propagated by a plurality of wiring paths independent from each other may be the same signal or all different signals.
  • one end (connection terminal) of a wiring path for contacting an electrode of a contact probe is formed when an electrical inspection (for example, insulation inspection, continuity inspection, etc.) of the wiring path of the substrate is performed.
  • the connection terminal region is referred to as a first region, and the connection terminal region where the other end that does not contact the electrode of the contact probe is formed is referred to as a second region.
  • FIG. 1 is a block diagram schematically showing a configuration of an inspection system according to this embodiment for performing an electrical inspection of a wiring path formed on a TFT substrate (array substrate) of a liquid crystal panel.
  • a TFT substrate to which this embodiment is applied, a substrate before bonding with a counter substrate (CF substrate) may be used, or a liquid crystal panel after bonding and liquid crystal encapsulation may be used.
  • the inspection system 100 includes a probe set 2, an inspection device 4, and a conductive rubber (flexible conductor) 9. The probe set 2 is inspected by a wiring code via a switch circuit 3. Connected with.
  • the inspection system 100 is executed on a TFT substrate (substrate) 1 as shown in FIG.
  • a wiring path 31 that propagates the first signal, a wiring path 32 that propagates the second signal, a wiring path 33 that propagates the third signal, and a wiring path 34 that propagates the fourth signal are electrically connected.
  • they are formed as a plurality of wiring paths independent of each other.
  • the probe set 2 shown in FIG. 1 has a configuration in which a plurality of probes (electrodes) used for electrical inspection of a wiring path are arranged in parallel.
  • FPC Flexible Printed Circuits
  • various probe sets known in the art can be used as a probe set for executing this embodiment as a contact probe capable of conducting electrical connection required for electrical inspection simply by contacting an electrode or the like. It is.
  • a COF Chip On Film
  • a chip driver IC
  • the electrodes A, B, C, and D in the probe set 2 are connected to the ends of the four wiring paths 31, 32, 33, and 34 formed on the surface of the TFT substrate 1 and the connection terminal regions. Contact is made in (first region).
  • Such a connection terminal region is preferably formed at the edge of the surface of the TFT substrate 1 in order to facilitate electrical connection with the outside of the substrate.
  • a probe head including the probe set 2 can move the probe head itself so that the substrate can be easily replaced even when the size of the substrate to be inspected is large.
  • the inspector manually sets the electrodes A, B, C, and D to the same end portions of the plurality of wiring paths 31, 32, 33, and 34 while viewing the captured image of the camera.
  • the probe set 2 and a plurality of wiring paths 31 and 32 are pressed by pressing the probe set 2 using a pressing portion such as rubber along the Z direction. , 33 and 34 can be assisted.
  • the TFT substrate is composed of a region (active region) where a large number of wirings and a large number of pixels are arranged in a matrix and a region (frame region) surrounding the active region.
  • the auxiliary capacitor wiring path includes a large number of row-directional wirings (auxiliary capacitor bus lines) formed across the active region in the row direction, and column-directional wiring (extending the frame region in the column direction).
  • First and second auxiliary capacity trunk lines), and one end and the other end of the auxiliary capacity bus line are connected to the first auxiliary capacity trunk line and the second auxiliary capacity trunk line, respectively.
  • a control signal for controlling the auxiliary capacitance is supplied from the auxiliary capacitance control unit to the auxiliary capacitance main wiring, and then via the auxiliary capacitance bus line connected to the main wiring, The data is sent to the auxiliary capacity connected to the auxiliary capacity bus line.
  • a large liquid crystal panel that realizes display in accordance with the area gradation method has a large number of auxiliary capacitor bus lines connected to auxiliary capacitors provided in each pixel (sub-pixel) arranged in a matrix.
  • the embodiment is preferably used in the manufacturing process.
  • the substrate 1 to which the inspection system 100 according to the present embodiment is applied is a TFT substrate 1 of a liquid crystal panel
  • the wiring paths 31, 32, 33, and 34 are auxiliary devices that supply signals for controlling the auxiliary capacitance. This is a wiring path for the capacitor.
  • the first auxiliary capacitance trunk wiring (wiring extending in the vertical direction on the left side in the figure) or the second auxiliary capacitance trunk wiring (right side in the figure) on the TFT substrate.
  • the number of wirings extending in the up and down direction is not limited to four, and may be two, six, twelve, or the like.
  • the number of auxiliary capacity bus lines (wiring extending in the horizontal direction in the figure) is not the same as the number of first auxiliary capacity main lines or second auxiliary capacity main lines, and one end of each auxiliary capacity bus line is the first auxiliary capacity. Any one of the main wirings may be connected, and the other end of each auxiliary capacity bus line may be connected to any one of the second auxiliary capacity main wirings.
  • the number of electrodes formed on the film probe may be changed according to the number of auxiliary capacity trunk wires.
  • the auxiliary capacity trunk wiring is formed with a terminal width of 0.05 mm and a terminal pitch of 0.072 mm
  • the total capacity of the electrode terminals of the probe set and the terminal pitch is set to 2 mm or less. Contact between the connection terminal of the trunk wiring and the electrode of the probe set can be easily performed.
  • the switch circuit 3 is connected to each of the electrodes A, B, C, and D of the probe set 2 through a wiring cord, and corresponds to the electrodes A, B, C, and D according to an instruction signal from the inspection device 4. Two selected from the four wiring cords are connected to the input terminal of the inspection device 4.
  • the inspection device 4 is configured by a personal computer, and is provided with a display screen 5, an operation unit 6, a resistance measurement unit 7, and a control unit 8.
  • the display screen 5 displays operation information, inspection results, and the like of the inspection apparatus 4 necessary for the inspector.
  • the operation unit 6 receives an operation input from the inspector to the inspection apparatus 4.
  • the resistance measuring unit 7 applies a low current to the selected wiring cord and measures the resistance value between the wiring paths corresponding to the wiring cord.
  • the control unit 8 not only functions as a determination unit that determines the magnitude of the resistance value measured by the resistance measurement unit 7, but also includes the arrangement of the probe set 2, the arrangement of the conductive rubber 9, the selection of the wiring cord, and the resistance measurement unit 7.
  • the information processing necessary for the operation of the inspection apparatus 4 is performed.
  • the conductive rubber 9 is a jig for short-circuiting a plurality of wiring paths, and at any location (including connection terminals in the second area) except for the first area of the plurality of wiring paths 31, 32, 33, and 34. By being arranged so as to be in contact with all of the plurality of wiring paths, the plurality of wiring paths 31, 32, 33, and 34 are short-circuited together. Since a plurality of wiring paths can be short-circuited at once, it is not necessary to change the position of the conductive rubber 9 in accordance with the selection of the wiring cord.
  • the electrodes A, B, C, and D of the probe set 2 are brought into contact with the connection terminals in the first region, and the second of the plurality of wiring paths 31, 32, 33, and 34 is obtained.
  • the present embodiment is executed by short-circuiting the connection terminals in the region or by short-circuiting the plurality of wiring paths 31, 32, 33, 34 at an arbitrary position of the wiring path excluding the first region and the second region. be able to.
  • the resistance value between the wiring paths may be measured between the two wiring paths. However, in order to reduce the number of steps, one wiring path and the other wiring paths are measured. It is preferable to carry out between a group of wiring paths (wiring path group). That is, in this embodiment, for example, the resistance value between the wiring path 31 and the wiring path groups 32, 33, 34, the resistance value between the wiring path 32 and the wiring path groups 31, 33, 34, the wiring path 33. It is preferable that the resistance value between the wiring path group 31, 32, and 34 or the resistance value between the wiring path 34 and the wiring path group 31, 32, 33 is measured.
  • the switch circuit 3 connects all four wiring cords corresponding to the electrodes A, B, C, and D of the probe set 2 to the input terminal of the inspection device 4, and the control unit 8 measures the resistance value.
  • a wiring code corresponding to one wiring path to be performed and a wiring code group corresponding to a wiring path group including other wiring paths are selected.
  • a defect occurs in the wiring path 31 or the probe set.
  • this inspection is performed between the wiring path 31 and the wiring path groups 32, 33, and 34, if the measured resistance value R is lower than a predetermined value, a short circuit may occur in the wiring path 31. Recognize.
  • the relationship between one and one whose resistance value is to be measured, or the relationship between one and a group is referred to as a “pair” or “pair”.
  • a “pair” or “wiring code pair” selected from four wiring codes may be two wiring codes or a pair of one wiring code and a group (three wiring codes). In some cases.
  • the inspection system 100 is an inspection system that performs an electrical inspection on the substrate 1 having a surface on which a plurality of wiring paths 31, 32, 33, and 34 that are electrically independent from each other are formed.
  • a probe set 2 to be arranged in a connection terminal area where one end of each of the plurality of wiring paths is formed, and an arbitrary pair of the wiring paths arranged in an area excluding the connection terminal area of the plurality of wiring paths
  • a flexible conductor 9 that is short-circuited and a determination unit 8 that determines whether or not the first resistance value measured between the pair under a condition where the pair is short-circuited are lower than a predetermined value are provided.
  • an inspection device 4 an inspection device 4.
  • the “pair” is intended to be two.
  • the TFT substrate 1 of the liquid crystal panel to be inspected is set on the inspection line (S1).
  • the TFT substrate 1 to be inspected may be provided as a liquid crystal panel that is bonded to a counter substrate (CF substrate) and in which liquid crystal is sealed.
  • the probe head including the probe set 2 is disposed in the first region so that the electrodes A, B, C, and D of the probe set 2 are in contact with the connection terminals in the first region (S3).
  • the conductive rubber 9 is disposed so as to be in contact with the auxiliary capacitance wiring paths 31, 32, 33, 34 in the second region, and between the auxiliary capacitance wiring paths 31, 32, 33, 34. Is short-circuited (S5).
  • the switch circuit 3 makes a pair (two) from the four wiring cords connected to the electrodes A, B, C, and D. Then, this pair of wiring cords is connected to the input terminal of the inspection device 4 (S9).
  • the resistance measurement unit 7 measures the resistance value R between the pair of wiring cords connected to the input terminal (S9) (S11), and the control unit 8 determines that the resistance value R measured by the resistance measurement unit 7 is It is determined whether it is smaller than a predetermined value (for example, 1 k ⁇ , 100 k ⁇ , etc.) (S13). That is, the control unit 8 is also a determination unit 8 that determines whether or not the first resistance value measured between the pair under a condition where the pair is short-circuited is lower than a predetermined value.
  • a predetermined value for example, 1 k ⁇ , 100 k ⁇ , etc.
  • the control unit 8 determines whether or not the resistance value R between all the wiring cord pairs has been measured (S17). If the measurement has not been completed, the switch circuit 3 causes the unmeasured wiring cord to be measured. A pair is selected, and this wire cord pair is connected to the input terminal of the inspection device 4 (S9).
  • the control unit 8 ends the preliminary inspection and displays the results (S15, 24) recorded in the preliminary inspection on the display screen 5 ( S19).
  • the main inspection is performed subsequent to the preliminary inspection, the conductive rubber 9 is removed, and the short circuit between the auxiliary capacitor wiring paths 31, 32, 33, and 34 is released (S23).
  • the switch circuit 3 is a pair (2 from the four wiring cords connected to the electrodes A, B, C, and D. This wiring code pair is selected and connected to the input terminal of the inspection device 4 (S31).
  • the resistance measurement unit 7 measures the resistance value between the pair of wiring cords connected to the input terminal (S31) (S33), and the control unit 8 determines that the resistance value measured by the resistance measurement unit 7 is an insulation resistance. It is determined whether it corresponds to a value (S35). That is, the control unit 8 determines whether or not the resistance value (second resistance value) measured between the pair under a condition where the pair is not short-circuited is lower than the insulation resistance value (predetermined value). It is also the determination part 8.
  • the control unit 8 determines whether or not the resistance values between all the wiring cord pairs have been measured (S39). If the measurement has not been completed, the switch circuit 3 causes the unmeasured wiring cord pairs to be measured. Is selected and this pair of wiring cords is connected to the input terminal of the inspection device 4 (S31).
  • the control unit 8 displays the results (S37, 45) recorded in the main inspection on the display screen 5 together with the preliminary inspection results (S41). . That is, the control unit 8 is also the determination unit 8 that further determines whether or not a short circuit is formed between the plurality of wiring paths based on the determination result for the first resistance value and the determination result for the second resistance value. In this state, when the operation unit 6 accepts an inspection end operation (S43), all the inspections are ended.
  • the conductive rubber contact failure, the probe set contact failure, the probe breakage or failure, the resistance measurement unit It is assumed that a failure, breakage of the wiring cord, or the like has occurred. Accordingly, whether or not the resistance value R (S9, 11) obtained by changing the arrangement of at least one of the probe set and the conductive rubber (S26, 27) with respect to the wiring cord pair is lower than a predetermined value. May be executed again (S13), and the result may be displayed on the display screen 5 (S19). In this case, if the resistance value R (S9, 11) does not become lower than the predetermined value (S13), the inspection can be temporarily ended (S25), and the probe set can be replaced.
  • the determination unit 8 determines whether a short circuit is formed between the plurality of wiring paths based on the determination result for the first resistance value and the determination result for the second resistance value. And, if necessary, when the measured values of the first resistance value and the second resistance value are higher than the predetermined value, the measured value of the probe set 2 is set to be lower than the predetermined value. Change the placement and make further decisions. Further, in the wiring cord pair in which the resistance value not corresponding to the insulation resistance value in this inspection is measured, the resistance value obtained after changing the arrangement of at least one of the probe set and the conductive rubber corresponds to the insulation resistance value. It may be determined again whether or not the result is displayed on the display screen 5.
  • the equipment cost and the work time can be reduced.
  • the number of probe sets required for conducting the continuity test can be reduced from two to one, so that the wiring on the TFT substrate of the liquid crystal panel can be reduced by about half of the conventional cost. It is possible to perform a route inspection.
  • the inspector performs setting and removal of the TFT substrate 1 on the inspection line, placement and removal of the probe set 2, and placement and removal of the conductive rubber 9, and operations other than these are performed from the operation unit 6 that has received an instruction from the inspector.
  • the embodiment in which the control unit 8 controls all operations except for setting the TFT substrate 1 on the inspection line is also included in the scope of the present embodiment. .
  • the substrate 1 to which the inspection system 100 according to the present embodiment is applied is a TFT substrate 1 of a liquid crystal panel
  • a signal for controlling an auxiliary capacitance is sent to a plurality of wiring paths formed on the surface of the substrate 1.
  • a wiring path to supply a signal for generating the reference potential of the common electrode may be included.
  • FIG. 4 is a block diagram schematically showing a configuration of an inspection system according to the present embodiment for performing an electrical inspection of a wiring path formed on the TFT substrate of the liquid crystal panel.
  • FIG. 4 shows a TFT substrate in which a plurality of connection portions T with the counter substrate for applying a predetermined potential to the common electrode provided on the counter substrate are formed at the substrate edge.
  • a liquid crystal panel after bonding and liquid crystal encapsulation is used instead of a substrate before bonding with a counter substrate (CF substrate).
  • the inspection system 100 includes probe sets 2a and 2b, an inspection device 4 and a conductive rubber 9.
  • the probe sets 2a and 2b are connected to the inspection device 4 by a wiring cord via a switch circuit 3a. ing.
  • the inspection system 100 according to the present embodiment is executed on a TFT substrate (substrate) 1a as shown in FIG.
  • a TFT substrate (substrate) 1a On the surface of the substrate 1a, wiring paths 31, 32, 33, 34 for auxiliary capacitance are formed as in the first embodiment, and a plurality of wiring paths 35 for the common electrode are electrically independent from each other. It is formed as one of the wiring paths.
  • the wiring path 35 of the common electrode is intended to be a path from the connection terminal in the first region of the TFT substrate 1a to the common electrode on the counter substrate through the connection portion T.
  • the connection portion T is shown as a common electrode wiring path 35.
  • the probe sets 2a and 2b in this embodiment are FPC (or COF) formed on a polyimide film as in the first embodiment, and the electrodes A, B, C, and D are placed on the surface of the TFT substrate 1a.
  • the electrodes E are brought into contact with the ends of the four auxiliary capacitor wiring paths 31, 32, 33, 34 formed above, and the ends of the common electrode wiring paths 35 formed on the surface of the TFT substrate 1 a. Contact with.
  • the probe set 2a used in the first embodiment the total width of the terminal and the terminal pitch of the electrode of the probe set is 2 mm or less
  • the electrodes on a single FPC cannot be brought into precise contact with the auxiliary capacitor wiring paths 31, 32, 33, and 34 and the common electrode wiring path 35.
  • the electrical inspection between the auxiliary capacitor wiring path 34 and the common electrode wiring path 35 can be performed in the same manner as in the first embodiment.
  • the electrical inspection is performed by using only the single probe set 2a as in the first embodiment. It can be performed.
  • Other configurations and operations are the same as those of the first embodiment described above, and thus description thereof is omitted. By executing this embodiment, it is possible to reduce the risk of wiring burning when the liquid crystal panel is lit in a pseudo manner without driving a transistor.
  • FIG. 5 is a block diagram schematically showing a configuration of an inspection system according to the present embodiment for performing an electrical inspection of a wiring path formed on the TFT substrate of the liquid crystal panel.
  • FIG. 5 shows a TFT substrate in which a plurality of connection portions T,... With a counter substrate for applying a predetermined potential to a common electrode provided on the counter substrate are formed at the substrate edge.
  • a liquid crystal panel after bonding and liquid crystal encapsulation is used instead of a substrate before bonding with a counter substrate (CF substrate).
  • the common electrode wiring path 35 is intended to be a path from the connection terminal in the first region of the TFT substrate 1a to the common electrode on the counter substrate through the connection portion T.
  • the connection terminal to the connection portion T are shown as a common electrode wiring path 35.
  • the inspection device 4a is configured by a personal computer, and includes a display screen 5, an operation unit 6, a resistance measurement unit 7, a voltage application unit 7a, and a control unit 8.
  • the voltage application unit 7a applies a predetermined voltage all at once to the wiring paths 31, 32, 33, and 34 of the auxiliary capacitance and the wiring path 35 of the common electrode through all of the wiring cords connected to the switch circuit 3a. Then, all the pixels formed on the surface of the TFT substrate 1a of the liquid crystal panel are turned on.
  • the liquid crystal panel When local stress (pressing, suction, etc.) is applied to the liquid crystal panel, the distance between the counter substrate (CF substrate) and the array substrate (TFT substrate) changes locally, resulting in cell thickness unevenness, As a result, uneven brightness occurs when the panel is lit. According to the present embodiment, since the liquid crystal panel can be lit in a pseudo manner, the presence or absence of luminance unevenness in the panel can be confirmed. Since other configurations and operations are the same as those of the second embodiment described above, description thereof is omitted. Since the lighting inspection and the cell thickness unevenness inspection in such a liquid crystal panel are performed after confirming that the probe sets 2a and 2b are normally connected to the wiring path on the TFT substrate, the risk of burning the wiring is reduced. To do.
  • an embodiment of the present invention has been described as an inspection system for performing an electrical inspection of a wiring path formed on a TFT substrate of a liquid crystal panel, but an inspection method (substrate An inspection method for performing an electrical inspection of a wiring path is also an embodiment of the present invention. That is, an inspection method including the step of arranging the probe set of the system, the step of arranging the conductive rubber (flexible conductor) of the system, and the step of executing the determination in the system is an aspect of the present invention. This is an embodiment.
  • the present invention can be used in circuit board and liquid crystal panel manufacturing processes, and is particularly effective for insulation inspection of auxiliary capacitor wiring paths or common electrode wiring paths of liquid crystal panels and cell thickness unevenness inspection of liquid crystal panels. is there.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Mathematical Physics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Theoretical Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)

Abstract

電気的に互いに独立した複数の配線経路が形成された表面を有する基板の配線経路の電気的検査を行う際に、プローブが確実に配線経路と電気的に接続されているか否かを、低設備コストで簡単に確認することができる基板配線経路の検査システムを提供する。 基板1上に形成された複数の配線経路31~34の端部に接触させられるプローブセット2と、配線経路31~34を前記端部以外で短絡させる可撓性導電体9と、可撓性導電体9によって短絡させた配線31~34から選択された配線対の間の抵抗値が所定値よりも低いか否かを判定する判定部8が設けられた検査装置4とを備える構成である。

Description

基板の配線経路の検査方法及び検査システム
 本発明は、基板上に形成された電気的に互いに独立した複数の配線経路にコンタクトプローブを接触させ、コンタクトプローブを接触させた配線経路の欠陥を検査する基板の配線経路の検査方法及び検査システムに関するものである。
 基板上に形成された複数の配線の欠陥を検査する際、配線の端部にコンタクトプローブを接触させて、プローブ経由でショート又は絶縁抵抗等の検査を行う。
 特許文献1には、プリント配線板及び各種半導体パッケージ用基板の配線の電気的不良を検査する布線検査機が開示されている。導電ゴムを用いてオープン、ショートを検査する第1検査ステージと、検査治具を必要としないフライングプローバを用いた第2検査ステージとを備えている。
 特許文献2には、回路基板上に形成された複数の導体パターンにそれぞれ接触可能なコンタクトプローブと、回路基板上の複数の導体パターンを電気的に短絡する為の短絡板とを備えた回路基板検査装置が記載されている。コンタクトプローブ及び短絡板を検査項目に応じて選択的に使用可能に構成されている。
特開2004-132861号公報 特開2000-193705号公報
 基板表面に形成されている複数の配線経路の間でのショートの有無を検査する場合、配置したプローブが配線経路と接触しているか否かは、目視によって確認されているだけであって、実際に配線経路及びプローブが電気的に接続しているか否かは確認されていない。その為、位置ズレ、押さえ不足、テスター故障又はケーブル断線等の接触不良による絶縁であるか否かを判別したり、正常な配線経路の間での絶縁であるか否かを判別したりすることができず、接触不良による絶縁を、正常な配線経路の間での絶縁と誤判定してしまう不具合が生じ得る。
 このような不具合を回避するための対策として、検査プローブヘッドを2つ用いて、同じ配線経路の異なる端部の間にて導通確認をする方法が挙げられる。しかし、このような方法では設備コスト及び作業量が2倍必要になる。
 また、上述した特許文献1に記載された布線検査機、及び特許文献2に記載された回路基板検査装置においても、プローブ類が実際に電気的に接続されているか否かを確認していない。
 本発明は、上述したような事情に鑑みてなされたものであり、基板上に形成された複数の配線を検査する際に、プローブが実際に配線に電気的に接続されているか否かを、低設備コストで簡便に確認することができる技術を提供することを目的とする。
 本発明の一実施形態に係る検査方法は、電気的に互いに独立した複数の配線経路が形成された表面を有する基板の配線経路の電気的検査を行う方法であって、
 上記複数の配線経路の各々の一端が形成された接続端子領域にプローブセットを配置するステップと、上記複数の配線経路の上記接続端子領域を除く領域で該複数の配線経路の任意の一対を短絡させるステップと、上記一対を短絡させた条件下にて該一対の間で測定した第1抵抗値が所定値よりも低いか否かを判定するステップとを含むことを特徴としている。
 本発明の一実施形態に係る検査システムは、電気的に互いに独立した複数の配線経路が形成された表面を有する基板の配線経路の電気的検査を行う検査システムであり、上記複数の配線経路の各々の一端が形成された接続端子領域に配置させるプローブセットと、上記複数の配線経路の上記接続端子領域を除く領域に配置して該複数の配線経路の任意の一対を短絡させる可撓性導電体と、上記一対を短絡させた条件下にて該一対の間で測定した第1抵抗値が所定値よりも低いか否かを判定する判定部が設けられた検査装置とを備えることを特徴としている。
 本発明によれば、基板上に形成された電気的に互いに独立した複数の配線経路を検査する際に、プローブが実際に配線に電気的に接続されているか否かを低設備コストで簡単に確認できる基板の配線経路の検査方法を実現することができる。
 さらに、本発明に係る検査システムによれば、電気的に互いに独立した複数の配線経路が形成された表面を有する基板の配線経路の電気的検査を簡便に行うことができる。
一実施形態に係る基板配線経路検査システムの構成を概略的に示すブロック図である。 一実施形態に係る基板配線経路検査システムの動作を示すフローチャートである。 一実施形態に係る基板配線経路検査システムの動作を示すフローチャートである。 一実施形態に係る基板配線経路検査システムの構成を概略的に示すブロック図である。 一実施形態に係る液晶パネルの検査システムの構成を概略的に示すブロック図である。
 本発明が適用されるべき基板において、複数の配線経路は電気的に互いに独立していれば、その各々が単一の配線から構成されていても複数の配線から構成されていてもよく、電気的に互いに独立した複数の配線経路によって伝播されるべき個々の信号は全て同一の信号であっても、全てが異なる信号であってもよい。
 また、本明細書中において、基板の配線経路の電気的検査(例えば、絶縁検査、導通検査等)を行う場合にコンタクトプローブの電極を接触させる配線経路の一端(接続端子)が形成されている接続端子領域を第1領域と称し、コンタクトプローブの電極を接触させない他端が形成されている接続端子領域を第2領域と称する。
 以下に、本発明を図面に基づいて、複数の配線から構成された複数の配線経路の各々が異なる信号を伝播する態様を用いて説明する。
 〔第1実施形態〕
 図1は、液晶パネルのTFT基板(アレイ基板)に形成された配線経路の電気的検査を行うための、本実施形態に係る検査システムの構成を概略的に示すブロック図である。本実施形態が適用されるTFT基板として、対向基板(CF基板)との貼合せの前の基板が用いられても、貼合せ及び液晶封入の後の液晶パネルが用いられてもよい。
 本実施形態に係る検査システム100は、プローブセット2、検査装置4及び導電ゴム(可撓性導電体)9を備えており、プローブセット2は、スイッチ回路3を介して配線コードによって検査装置4と接続されている。
 本実施形態に係る検査システム100は、図1に示されるようなTFT基板(基板)1に対して実行される。基板1の表面上には、第1信号を伝播する配線経路31、第2信号を伝播する配線経路32、第3信号を伝播する配線経路33、第4信号を伝播する配線経路34が、電気的に互いに独立した複数の配線経路として形成されている。
 図1に示したプローブセット2は、配線経路の電気的検査に用いられる探針(電極)が複数並列した構成を有している。本実施形態を簡便に実行するためのプローブセット2として、ポリイミドフィルム上に4本の電極A,B,C,Dが並列して形成されたFPC(Flexible Printed Circuits)を用いて以下に説明するが、本実施形態を実行するためのプローブセットには、電極等に接触させるだけで電気的な検査のために必要な導通を行い得るコンタクトプローブとして当該分野で公知の種々のプローブセットが利用可能である。なお、FPCにチップ(ドライバIC)が搭載されたCOF(Chip On Film)もまた、本実施形態におけるプローブセットとして利用可能である。
 図1に示すように、プローブセット2における電極A,B,C,Dを、TFT基板1の表面上に形成された4本の配線経路31,32,33,34の端部と接続端子領域(第1領域)にて接触させる。このような接続端子領域は、基板外部との電気的接続を容易にするために、TFT基板1の表面の縁部に形成されていることが好ましい。
 プローブセット2を備えるプローブヘッド(図示せず)は、検査対象である基板のサイズが大きい場合であっても基板の入替えを容易に行うことができるように、プローブヘッド自体を大きく移動させることが可能なX軸移動ガイドと、位置調整用のカメラと、カメラの撮影画像を見ながら、プローブヘッド位置の微調整が可能なX、Y軸移動ガイドと、カメラのフォーカスを調整する為のZ軸移動ガイドとを備えている。
 このようなプローブヘッドを用いれば、検査者は、カメラの撮影画像を見ながら手動で、電極A,B,C,Dを、複数の配線経路31,32,33,34の端部と同一のXY位置に電極A,B,C,Dを移動させた後に、Z方向に沿ってゴム等の押圧部を用いてプローブセット2を押圧することにより、プローブセット2と複数の配線経路31,32,33,34との接触を補助することができる。
 TFT基板は、多数の配線及び多数の画素がマトリクス状に配設された領域(アクティブ領域)及びアクティブ領域を囲繞する領域(額縁領域)から構成されている。このようなTFT基板において、補助容量の配線経路は、アクティブ領域を行方向に横切って形成された多数の行方向配線(補助容量バスライン)と、額縁領域を列方向に延伸する列方向配線(第1及び第2の補助容量幹配線)とを備えており、補助容量バスラインの一端及び他端がそれぞれ第1補助容量幹配線及び第2補助容量幹配線と接続されている。
 補助容量の配線経路を有する液晶パネルにおいて、補助容量を制御する制御信号は、補助容量制御部から補助容量幹配線へ供給され、次いで、該幹配線と接続された補助容量バスラインを介して、該補助容量バスラインと接続された補助容量へ送られる。特に、面積階調法に従う表示を実現する大型の液晶パネルは、マトリクス状に配置された各画素(副画素)に設けられた補助容量に接続された補助容量バスラインが多数形成されているので、その製造工程において本実施形態が好適に用いられる。具体的には、上記液晶パネルの欠陥を検査する際に、複数の補助容量の配線経路の一端にプローブを接触させて配線経路間のショートの有無を検査する。
 すなわち、本実施形態に係る検査システム100が適用される上記基板1は、液晶パネルのTFT基板1であり、上記配線経路31,32,33,34は、補助容量を制御する信号を供給する補助容量の配線経路である。
 図1には、4本の配線経路が示されているが、TFT基板における第1補助容量幹配線(図中左側にて上下方向に延伸する配線)又は第2補助容量幹配線(図中右側にて上下方向に延伸する配線)の本数は4本に限られることはなく、2本、6本、12本等であってもよい。補助容量バスライン(図中左右方向に延伸する配線)の本数は第1補助容量幹配線又は第2補助容量幹配線の本数と同一でなく、補助容量バスラインの各々の一端が第1補助容量幹配線のいずれか1つと接続され、補助容量バスラインの各々の他端が第2補助容量幹配線のいずれか1つと接続されていればよい。
 また、補助容量幹配線の本数に応じて、フィルムプローブに形成される電極の数が変更されてもよい。例えば、補助容量幹配線が、端子幅が0.05mm、端子ピッチが0.072mmで形成されている場合、プローブセットの電極の端子及び端子ピッチの幅合計を2mm以下とすることによって、補助容量幹配線の接続端子とプローブセットの電極との接触を簡易に行うことができる。
 スイッチ回路3は、プローブセット2の電極A,B,C,Dの各々と配線コードを介して接続されており、検査装置4からの指示信号に従って、電極A,B,C,Dに対応する4本の配線コードから選択した2本を検査装置4の入力端子へ接続する。
 検査装置4は、パーソナルコンピュータによって構成されており、表示画面5、操作部6、抵抗測定部7及び制御部8が設けられている。
 表示画面5は、検査者に必要な検査装置4の操作情報及び検査結果等を表示する。
 操作部6は、検査者から検査装置4への操作入力を受け付ける。
 抵抗測定部7は、選択された配線コードへ低電流を通電するとともに該配線コードに対応する配線経路の間の抵抗値を測定する。
 制御部8は、抵抗測定部7が測定した抵抗値の大小を判定する判定部として機能するだけでなく、プローブセット2の配置、導電ゴム9の配置、配線コードの選択、抵抗測定部7での測定を制御するとともに、検査装置4の動作に必要な情報処理を行う。
 導電ゴム9は、複数の配線経路を短絡させる治具であり、複数の配線経路31,32,33,34の第1領域を除く任意の箇所(第2領域の接続端子を含む。)にて上記複数の配線経路の全てに接するように配置されることにより、複数の配線経路31,32,33,34の間を一括で短絡させる。複数の配線経路を一括で短絡することができるので、配線コードの選択に応じた導電ゴム9の位置変更を必要としない。
 図1の構成を有するTFT基板1に対して、プローブセット2の電極A,B,C,Dを第1領域で接続端子と接触させ、複数の配線経路31,32,33,34の第2領域における接続端子を短絡させるか、あるいは、第1領域及び第2領域を除く配線経路の任意の箇所で複数の配線経路31,32,33,34を短絡させることによって、本実施形態を実行することができる。
 なお、本実施形態において、配線経路の間の抵抗値の測定は、2本の配線経路の間で行われてもよいが、工程数を低減させるために、1本の配線経路とそれ以外の配線経路からなる一群(配線経路群)との間で行われることが好ましい。すなわち、本実施形態では、例えば、配線経路31と配線経路群32,33,34との間の抵抗値、配線経路32と配線経路群31,33,34との間の抵抗値、配線経路33と配線経路群31,32,34との間の抵抗値、または、配線経路34と配線経路群31,32,33との間の抵抗値が測定されることが好ましい。この場合、スイッチ回路3は、プローブセット2の電極A,B,C,Dに対応する4本の配線コードの全てを検査装置4の入力端子へ接続し、制御部8は、抵抗値が測定されるべき1本の配線経路に対応する配線コードと、それ以外の配線経路からなる配線経路群に対応する配線コード群を選択する。
 例えば、配線経路31と配線経路群32,33,34との間で予備検査を行った際に、測定した抵抗値Rが所定値以上であると、配線経路31またはプローブセットに不具合が生じていることがわかる。また、配線経路31と配線経路群32,33,34との間で本検査を行った際に、測定した抵抗値Rが所定値よりも低いと、配線経路31において短絡が生じていることがわかる。
 本明細書中において、抵抗値が測定されるべき1本と1本との間の関係、あるいは1本と一群との間の関係を「一対」または「対」と称する。例えば、4本の配線コードから選択される「一対」または「配線コード対」は、2本の配線コードの場合もあれば、1本の配線コードと一群(3本の配線コード)との対の場合もある。
 このように、本実施形態に係る検査システム100は、電気的に互いに独立した複数の配線経路31,32,33,34が形成された表面を有する基板1に対する電気的検査を行う検査システムであり、上記複数の配線経路の各々の一端が形成された接続端子領域に配置させるプローブセット2と、上記複数の配線経路の上記接続端子領域を除く領域に配置して該配線経路の任意の一対を短絡させる可撓性導電体9と、上記一対を短絡させた条件下にて該一対の間で測定した第1抵抗値が所定値よりも低いか否かを判定する判定部8が設けられた検査装置4と、を備えている。
 このような構成を有する検査システムの動作を、図2,3のフローチャートを参照しながら以下に説明する。なお、簡略化のために、以下の説明では「一対」は2本であることが意図される。
 先ず、検査対象である液晶パネルのTFT基板1が検査ラインにセットされる(S1)。なお、検査対象であるTFT基板1は、対向基板(CF基板)と貼り合わせられかつ液晶が封入されている液晶パネルとして提供されてもよい。
 次に、プローブセット2の電極A,B,C,Dが第1領域の各接続端子に接触するように、プローブセット2を備えるプローブヘッドが第1領域に配置される(S3)。
 次に、導電ゴム9が、第2領域にて補助容量の配線経路31,32,33,34に一括して接触するように配置され、補助容量の配線経路31,32,33,34の間をショートさせる(S5)。
 この状態で、操作部6が、予備検査の開始操作を受け付けると(S7)、スイッチ回路3が、電極A,B,C,Dに接続された4本の配線コードから一対(2本)を選択し、この対の配線コードを検査装置4の入力端子へ接続する(S9)。
 次に、抵抗測定部7は、入力端子へ接続された(S9)配線コード対の間の抵抗値Rを測定し(S11)、制御部8は、抵抗測定部7が測定した抵抗値Rが所定値(例えば、1kΩ、100kΩ等)よりも小さいか否かを判定する(S13)。すなわち、制御部8は、上記一対を短絡させた条件下にて該一対の間で測定した第1抵抗値が所定値よりも低いか否かを判定する判定部8でもある。
 制御部8は、抵抗値Rが所定値よりも小さければ(S13)、抵抗値Rを正常として記録し(S15)、抵抗値Rが所定値よりも小さくなければ(S13)、抵抗値Rをエラーとして記録する(S24)。
 制御部8は、次に、全ての配線コード対の間の抵抗値Rを測定し終えたか否かを判定し(S17)、測定し終えていなければ、スイッチ回路3が、未測定の配線コード対を選択し、この配線コード対を検査装置4の入力端子へ接続する(S9)。
 制御部8は、全ての配線コード対の抵抗値Rを測定し終えていれば(S17)、予備検査を終了し、予備検査で記録した結果(S15,24)を表示画面5に表示する(S19)。
 予備検査に引き続いて本検査を行う場合、導電ゴム9が取り除かれて、補助容量の配線経路31,32,33,34の間の一括ショートが解除される(S23)。
 この状態で、操作部6が、本検査の開始操作を受け付けると(図3のS29)、スイッチ回路3が、電極A,B,C,Dに接続された4本の配線コードから一対(2本)を選択し、この配線コード対を検査装置4の入力端子へ接続する(S31)。
 次に、抵抗測定部7は、入力端子へ接続された(S31)配線コード対の間の抵抗値を測定し(S33)、制御部8は、抵抗測定部7が測定した抵抗値が絶縁抵抗値に相当するか否かを判定する(S35)。すなわち、制御部8は、上記一対を短絡させていない条件下にて該一対の間で測定した抵抗値(第2抵抗値)が絶縁抵抗値(所定値)よりも低いか否かを判定する判定部8でもある。
 制御部8は、抵抗測定部7が測定した抵抗値が絶縁抵抗値に相当すれば(S35)、その抵抗値を正常として記録し(S37)、抵抗測定部7が測定した抵抗値が絶縁抵抗値に相当しなければ(S35)、その抵抗値をエラーとして記録する(S45)。
 制御部8は、次に、全ての配線コード対の間の抵抗値を測定し終えたか否かを判定し(S39)、測定し終えていなければ、スイッチ回路3が、未測定の配線コード対を選択し、この配線コード対を検査装置4の入力端子へ接続する(S31)。
 制御部8は、全ての配線コード対の抵抗値を測定し終えていれば(S39)、本検査で記録した結果(S37,45)を予備検査の結果とともに表示画面5に表示する(S41)。すなわち、制御部8は、第1抵抗値についての判定結果及び第2抵抗値についての判定結果によって複数の配線経路の間で短絡が形成されているか否かをさらに判定する判定部8でもある。
 この状態で、操作部6が、検査の終了操作を受け付けると(S43)、全ての検査を終了する。
 なお、予備検査において所定値以上の上記抵抗値Rが測定された配線コード対において(図2のS21)、導電ゴムの接触不良、プローブセットの接触不良、プローブの破損又は故障、抵抗測定部の故障、配線コードの断線等が生じていることが想定される。そこで、この配線コード対に関してプローブセット及び導電ゴムの少なくとも一方の配置を変更した上(S26,27)で得られた抵抗値R(S9,11)が所定値よりも低くなるか否かの判定を再度実行し(S13)、その結果を表示画面5に表示してもよい(S19)。この場合、抵抗値R(S9,11)が所定値よりも低くならなければ(S13)、一旦、検査を終了し(S25)、プローブセットの交換等を行うことが可能である。
 すなわち、本実施形態に係る検査システム100において、判定部8は、第1抵抗値についての判定結果及び第2抵抗値についての判定結果によって複数の配線経路の間で短絡が形成されているか否かをさらに判定し、必要に応じて、第1抵抗値及び第2抵抗値の測定値が上記所定値よりも高い場合に、該測定値が該所定値よりも低くなるように上記プローブセット2の配置を変更し、さらなる判定を行う。
 また、本検査における絶縁抵抗値に相当しない上記抵抗値が測定された配線コード対において、プローブセット及び導電ゴムの少なくとも一方の配置を変更した上で得られた抵抗値が絶縁抵抗値に相当するか否かの判定を再度実行し、その結果を表示画面5に表示してもよい。
 本実施形態に従えば、安価なプローブセット及び導電ゴムを使用するので、設備コスト及び作業時間を低減させることができる。しかも、本実施形態に従えば、導通検査を行うために必要であったプローブセットの数を2つから1つに減らすことができるため、従来の約半分の費用で液晶パネルのTFT基板における配線経路の検査を実施することが可能である。
 なお、検査ラインへのTFT基板1のセット、プローブセット2の配置及び取り外し、導電ゴム9の配置及び取り外しを検査者が行い、これら以外の動作を、検査者の指示を受け付けた操作部6からの情報に従って制御部8が制御する態様にて説明したが、検査ラインへTFT基板1をセットすることを除く動作の全てを制御部8が制御する態様もまた、本実施形態の範囲に含まれる。
 〔第2実施形態〕
 本実施形態に係る検査システム100が適用される上記基板1が液晶パネルのTFT基板1である場合、基板1の表面上に形成されている複数の配線経路には、補助容量を制御する信号を供給する配線経路(補助容量の配線経路)だけでなく、共通電極の基準電位を生成する信号を供給する配線経路(共通電極の配線経路)が含まれていてもよい。
 図4は、液晶パネルのTFT基板に形成された配線経路の電気的検査を行うための、本実施形態に係る検査システムの構成を概略的に示すブロック図である。図4には、対向基板に設けられた共通電極に所定の電位を与えるための対向基板との複数の接続部T、…が基板辺縁部に形成されているTFT基板が示されているが、本実施形態が適用されるTFT基板として、対向基板(CF基板)との貼合せの前の基板でなく、貼合せ及び液晶封入の後の液晶パネルが用いられる。
 本実施形態に係る検査システム100は、プローブセット2a,2b、検査装置4及び導電ゴム9を備えており、プローブセット2a,2bは、スイッチ回路3aを介して配線コードによって検査装置4と接続されている。
 本実施形態に係る検査システム100は、図4に示されるようなTFT基板(基板)1aに対して実行される。基板1aの表面上には、第1実施形態と同様に補助容量の配線経路31,32,33,34が形成されており、さらに、共通電極の配線経路35が電気的に互いに独立した複数の配線経路の1つとして形成されている。
 共通電極の配線経路35は、TFT基板1aの第1領域の接続端子から接続部Tを経て対向基板上の共通電極に至るまでの経路が意図されるが、図中では便宜上、上記接続端子から接続部Tまでを共通電極の配線経路35として示す。
 本実施形態におけるプローブセット2a,2bは、第1実施形態と同様に、ポリイミドフィルム上に電極形成されたFPC(またはCOF)であり、電極A,B,C,Dを、TFT基板1aの表面上に形成された4本の補助容量の配線経路31,32,33,34の端部と接触させ、電極Eを、TFT基板1aの表面上に形成された共通電極の配線経路35の端部と接触させる。
 補助容量の配線経路34と共通電極の配線経路35との間が2mm以上離隔している場合は、第1実施形態で用いたプローブセット2a(プローブセットの電極の端子及び端子ピッチの幅合計が2mm以下)では、補助容量の配線経路31,32,33,34及び共通電極の配線経路35に単一のFPC(またはCOF)上の電極を正確に接触させることができない。
 しかし、2つのプローブセット2a,2bを使用することによって、補助容量の配線経路34と共通電極の配線経路35との間での電気的な検査を第1実施形態と同様に行うことができる。補助容量の配線経路34と共通電極の配線経路35との間が2mm未満である場合は、第1実施形態1と同様に単一のプローブセット2aのみを使用することによって、上記電気的な検査を行うことができる。
 その他の構成及び動作は、上述した第1実施形態1と同じであるので、説明を省略する。
 本実施形態を実行することにより、トランジスタを駆動することなく液晶パネルを疑似的に点灯する際に配線が焼ける危険性を低減することができる。
 〔第3実施形態〕
 図5は、液晶パネルのTFT基板に形成された配線経路の電気的検査を行うための、本実施形態に係る検査システムの構成を概略的に示すブロック図である。図5には、対向基板に設けられた共通電極に所定の電位を与えるための対向基板との複数の接続部T、…が基板辺縁部に形成されているTFT基板が示されているが、本実施形態が適用されるTFT基板として、対向基板(CF基板)との貼合せの前の基板でなく、貼合せ及び液晶封入の後の液晶パネルが用いられる。
 また、本実施形態においても、共通電極の配線経路35は、TFT基板1aの第1領域の接続端子から接続部Tを経て対向基板上の共通電極に至るまでの経路が意図されるが、図中では便宜上、上記接続端子から接続部Tまでを共通電極の配線経路35として示す。
 検査装置4aは、パーソナルコンピュータによって構成されており、表示画面5、操作部6、抵抗測定部7、電圧印加部7a及び制御部8が設けられている。
 電圧印加部7aは、スイッチ回路3aと接続された配線コードの全てを介して、補助容量の配線経路31,32,33,34及び共通電極の配線経路35に対して一斉に所定電圧を印加して、液晶パネルのTFT基板1aの表面上に形成されている全ての画素を点灯させる。
 プローブセットとTFT基板に形成された配線経路との間で正確な接続が形成されていない状態で、補助容量の配線経路及び共通電極の配線経路に電圧を印加すると、配線が焼けてしまう危険性がある。しかし、第2実施形態を実行することによって上記接続が形成されていることを確認することができるので、配線を焼く危険性が大いに低減する。
 また、液晶パネルのTFT基板に形成された補助容量の配線経路及び共通電極の配線経路に電圧を印加すると、トランジスタを駆動することなく液晶パネルを疑似的に点灯することができる。
 液晶パネルに局所的なストレス(押圧、吸引等)が加えられると、対向基板(CF基板)とアレイ基板(TFT基板)との間の距離が局所的に変化してセル厚ムラが発生し、その結果、パネル点灯時に輝度ムラが発生する。本実施形態に従えば、液晶パネルを疑似的に点灯することができるので、パネルにおける輝度ムラの有無を確認することができる。
 その他の構成及び動作は、上述した第2実施形態と同じであるので、説明を省略する。
 このような液晶パネルにおける点灯検査及びセル厚ムラ検査は、プローブセット2a,2bがTFT基板上の配線経路と正常に接続していることを確認した上で行われるので、配線を焼くリスクが低減する。
 なお、液晶パネルにおける点灯検査及びセル厚ムラ検査もまた、配線経路の電気的検査として本実施形態の範疇である。
 以上のように、液晶パネルのTFT基板に形成された配線経路の電気的検査を行うための検査システムとして本発明の一実施形態を説明してきたが、この検査システムを実行する検査方法(基板の配線経路の電気的検査を行う検査方法)もまた、本発明の一態様である。すなわち、上記システムのプローブセットを配置するステップと、上記システムの導電ゴム(可撓性導電体)を配置するステップと、上記システムにおける判定を実行するステップとを含む検査方法は、本発明の一実施形態といえる。
 本発明は、回路基板及び液晶パネルの製造工程等で利用することができ、特に液晶パネルの補助容量の配線経路または共通電極の配線経路の絶縁検査、及び液晶パネルのセル厚ムラ検査に有効である。
 1,1a TFT基板(基板)
 2,2a,2b プローブセット
 3,3a スイッチ回路
 4,4a 検査装置
 5 表示画面
 6 操作部
 7 抵抗測定部
 7a 電圧印加部
 8 制御部(判定部)
 9 導電ゴム(可撓性導電体)
 31,32,33,34 補助容量の配線経路(配線経路)
 35 共通電極の配線経路(配線経路)

Claims (8)

  1.  電気的に互いに独立した複数の配線経路が形成された表面を有する基板の配線経路の電気的検査を行う検査方法であって、
     前記複数の配線経路の各々の一端が形成された接続端子領域にプローブセットを配置するステップと、
     前記複数の配線経路の前記接続端子領域を除く領域で該複数の配線経路の任意の一対を短絡させるステップと、
     前記一対を短絡させた条件下にて該一対の間で測定した第1抵抗値が所定値よりも低いか否かを判定するステップと
     を含むことを特徴とする基板の配線経路の検査方法。
  2.  前記基板が、液晶パネルのTFT基板であり、前記配線経路が、補助容量を制御する信号を供給する配線経路、又は共通電極の基準電位を生成する信号を供給する配線経路である、請求項1に記載の基板の配線経路の検査方法。
  3.  前記一対を短絡させていない条件下にて該一対の間で測定した第2抵抗値が所定値よりも低いか否かを判定するステップをさらに含む、請求項1又は2に記載の基板の配線経路の検査方法。
  4.  第1抵抗値についての判定結果及び第2抵抗値についての判定結果によって複数の配線経路の間で短絡が形成されているか否かを判定するステップをさらに含む、請求項3に記載の基板の配線経路の検査方法。
  5.  電気的に互いに独立した複数の配線経路が形成された表面を有する基板の配線経路の電気的検査を行う検査システムであって、
     前記複数の配線経路の各々の一端が形成された接続端子領域に配置するプローブセットと、
     前記複数の配線経路の前記接続端子領域を除く領域に配置して該複数の配線経路の任意の一対を短絡させる可撓性導電体と、
     前記一端を短絡させた条件下にて該一対の間で測定した第1抵抗値が所定値よりも低いか否かを判定する判定部が設けられた検査装置と
     を備えることを特徴とする検査システム。
  6.  前記基板が、液晶パネルのTFT基板であり、前記配線経路が、補助容量を制御する信号を供給する配線経路、又は共通電極の基準電位を生成する信号を供給する配線経路である、請求項5に記載の検査システム。
  7.  前記判定部が、前記一対を短絡させていない条件下にて該一対の間で測定した第2抵抗値が所定値よりも低いか否かをさらに判定する、請求項5又は6に記載の検査システム。
  8.  前記判定部が、第1抵抗値についての判定結果及び第2抵抗値についての判定結果によって複数の配線経路の間で短絡が形成されているか否かをさらに判定する、請求項7に記載の検査システム。
PCT/JP2016/059974 2016-03-28 2016-03-28 基板の配線経路の検査方法及び検査システム WO2017168530A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018507852A JPWO2017168530A1 (ja) 2016-03-28 2016-03-28 基板の配線経路の検査方法及び検査システム
US16/090,192 US10663815B2 (en) 2016-03-28 2016-03-28 Inspection method and inspection system for wiring path of substrate
CN201680084197.9A CN109073695A (zh) 2016-03-28 2016-03-28 基板的配线路径的检查方法及检查系统
PCT/JP2016/059974 WO2017168530A1 (ja) 2016-03-28 2016-03-28 基板の配線経路の検査方法及び検査システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/059974 WO2017168530A1 (ja) 2016-03-28 2016-03-28 基板の配線経路の検査方法及び検査システム

Publications (1)

Publication Number Publication Date
WO2017168530A1 true WO2017168530A1 (ja) 2017-10-05

Family

ID=59963643

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/059974 WO2017168530A1 (ja) 2016-03-28 2016-03-28 基板の配線経路の検査方法及び検査システム

Country Status (4)

Country Link
US (1) US10663815B2 (ja)
JP (1) JPWO2017168530A1 (ja)
CN (1) CN109073695A (ja)
WO (1) WO2017168530A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109658855B (zh) * 2019-01-25 2021-03-23 合肥京东方显示技术有限公司 阵列基板、显示模组及其测试方法、显示面板
CN112763511B (zh) * 2020-12-24 2022-07-29 深圳市华星光电半导体显示技术有限公司 显示面板的线路缺陷的检测方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63111474A (ja) * 1986-10-30 1988-05-16 Eastern:Kk プリント配線板のパタ−ン検査方法及びその装置
JPH0695143A (ja) * 1992-09-10 1994-04-08 Toshiba Corp 電子映像装置
JP2000171512A (ja) * 1998-12-09 2000-06-23 Sony Corp プリント配線板の導通検査装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6297080B1 (en) * 1998-11-09 2001-10-02 Lg. Philips Lcd Co. Ltd. Method of crystallizing a silicon film and a method of manufacturing a liquid crystal display apparatus
JP2000193705A (ja) 1998-12-28 2000-07-14 Hioki Ee Corp 回路基板検査装置
JP3707404B2 (ja) * 2001-08-03 2005-10-19 ソニー株式会社 検査方法、半導体装置、及び表示装置
JP2004132861A (ja) 2002-10-11 2004-04-30 Toppan Printing Co Ltd 布線検査機及び布線検査方法並びに布線検査システム
JP4537261B2 (ja) * 2005-05-31 2010-09-01 シャープ株式会社 検査装置
KR101437866B1 (ko) * 2007-10-15 2014-09-05 삼성디스플레이 주식회사 표시장치 및 그 제어방법
KR101305379B1 (ko) * 2009-07-21 2013-09-06 엘지디스플레이 주식회사 씨오지 타입 액정표시장치 및 이의 검사방법
JP5628139B2 (ja) 2011-10-18 2014-11-19 シャープ株式会社 配線欠陥検査方法
CN103955309B (zh) * 2014-04-14 2017-08-25 京东方科技集团股份有限公司 显示面板及其驱动方法、显示装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63111474A (ja) * 1986-10-30 1988-05-16 Eastern:Kk プリント配線板のパタ−ン検査方法及びその装置
JPH0695143A (ja) * 1992-09-10 1994-04-08 Toshiba Corp 電子映像装置
JP2000171512A (ja) * 1998-12-09 2000-06-23 Sony Corp プリント配線板の導通検査装置

Also Published As

Publication number Publication date
US20190113788A1 (en) 2019-04-18
CN109073695A (zh) 2018-12-21
US10663815B2 (en) 2020-05-26
JPWO2017168530A1 (ja) 2018-12-20

Similar Documents

Publication Publication Date Title
US6937004B2 (en) Test mark and electronic device incorporating the same
JP4353171B2 (ja) 電子機器、光学パネル、検査プローブ、光学パネルの検査装置、光学パネルの検査方法
JP2009282285A (ja) 画像表示装置、およびその実装検査方法
KR100818563B1 (ko) 디스플레이 패널 검사방법 및 장치
KR101281980B1 (ko) 오토 프로브 장치 및 이를 이용한 액정패널 검사방법
JP2820233B2 (ja) 表示装置の検査装置および検査方法
JP2009244077A (ja) 基板検査装置及びその方法
KR20190110164A (ko) 평판표시장치
WO2017168530A1 (ja) 基板の配線経路の検査方法及び検査システム
KR20070051818A (ko) 검사 프로브, 검사 장치 및 광학 패널의 검사 방법
JP2012173598A (ja) 液晶表示装置
KR20070108589A (ko) 표시기판의 검사방법 및 이를 이용한 표시기판의 검사장치
US9761162B2 (en) Array substrate for display panel and method for inspecting array substrate for display panel
CN109195321B (zh) 软性电路板、显示面板及显示装置
KR102092070B1 (ko) 디스플레이 장치의 검사 방법
KR20060075173A (ko) 액정 표시 장치의 테스트 장치 및 그 테스트 방법
KR100916218B1 (ko) 평판 디스플레이 패널의 멀티 검사장치
KR200458562Y1 (ko) 필름 시트 형 프로브를 가진 액정 패널 테스트 프로브 장치
KR100891498B1 (ko) 액정패널 검사장치
KR100671342B1 (ko) 전기구동소자 검사 장치 및 방법
KR20110066752A (ko) 액정패널 검사 장치
US20240087492A1 (en) Display substrate, test method for the same and display device
KR20170009212A (ko) 영상표시패널 검사용 프로브 유닛
JP6724503B2 (ja) 表示装置用基板およびその製造方法、表示パネルならびに表示装置
JP3177330B2 (ja) アクティブマトリクス表示装置の検査装置及び検査方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018507852

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16896750

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16896750

Country of ref document: EP

Kind code of ref document: A1