WO2017159208A1 - 換気制御装置及び換気システム - Google Patents

換気制御装置及び換気システム Download PDF

Info

Publication number
WO2017159208A1
WO2017159208A1 PCT/JP2017/005877 JP2017005877W WO2017159208A1 WO 2017159208 A1 WO2017159208 A1 WO 2017159208A1 JP 2017005877 W JP2017005877 W JP 2017005877W WO 2017159208 A1 WO2017159208 A1 WO 2017159208A1
Authority
WO
WIPO (PCT)
Prior art keywords
ventilation
exhaust
unit
control
time
Prior art date
Application number
PCT/JP2017/005877
Other languages
English (en)
French (fr)
Inventor
直之 舟田
政之 佐々木
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to CA3011578A priority Critical patent/CA3011578A1/en
Priority to US16/069,577 priority patent/US10782042B2/en
Priority to JP2018505368A priority patent/JP6941767B2/ja
Priority to CN201780010458.7A priority patent/CN108603682B/zh
Publication of WO2017159208A1 publication Critical patent/WO2017159208A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/49Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring ensuring correct operation, e.g. by trial operation or configuration checks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/0001Control or safety arrangements for ventilation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/61Control or safety arrangements characterised by user interfaces or communication using timers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F7/00Ventilation
    • F24F7/007Ventilation with forced flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2120/00Control inputs relating to users or occupants
    • F24F2120/20Feedback from users
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present invention relates to a ventilation control device and a ventilation system.
  • a ventilation system having a plurality of ventilation devices that take in air from the outside or discharge air to the outside in a building such as a house is known (see, for example, Patent Document 1).
  • the ventilation system described in Patent Document 1 stops the operation of the exhaust fan as an example of a ventilation device, and is outside the preset range.
  • the central control device is connected to a sanitary exhaust device such as a bathroom and a washroom, a range hood fan, and an air conditioner through a communication line.
  • the central control device operates a sanitary exhaust device or a range hood fan as an example of a ventilation device when the exhaust blower is stopped, and a sanitary exhaust device or a range hood fan when the exhaust blower is operated. Is supposed to stop.
  • the exhaust is performed as necessary, so that ventilation is performed for 24 hours, and excessive exhaust can be suppressed, so that the loss of air conditioning energy is suppressed.
  • a plurality of ventilation devices are connected to a ventilation control device that supervises control of each control target device. Therefore, the ventilation control device can control each ventilation device in conjunction with each other.
  • the ventilation apparatus to be used is comprised from the several manufacturer, the manufacturer controls the ventilation apparatus which cooperates by using an external server.
  • the ventilation control device is usually not connected to an external network when moving in.
  • the ventilation device is composed of a plurality of manufacturers, that is, in the case of a mechanism that links the ventilation device using an external server, the linkage function of the ventilation control device cannot be provided. It functions only as a ventilation device.
  • the contractor needs to make a setting for connecting the external server to the ventilation control device again.
  • an object of the present invention is to provide a ventilation control device that dynamically changes the control of the ventilation device according to the connection status to the external server. is there.
  • a ventilation control device is connected to a plurality of ventilation devices capable of transporting air between the inside and outside of a building so as to be communicable and controls the operation of the plurality of ventilation devices.
  • the ventilation control device includes a home communication module that communicates with the ventilator via a home network, and an external communication module that communicates with an external server provided outside the building via the external network. Further, the ventilation control device includes a determination unit that determines whether communication with an external server via the external communication module is possible, a control determination unit that determines a control method of the ventilation device based on a determination result of the determination unit, and a control determination.
  • a ventilation operation control unit that controls the ventilation device based on the control method determined by the unit.
  • the connected ventilation device can be individually controlled.
  • the ventilation device can be controlled in a coordinated manner.
  • FIG. 1 is a connection schematic diagram of a home network according to an embodiment.
  • FIG. 2 is a schematic diagram of a ventilation control device and an external server connected via the external network according to the embodiment.
  • FIG. 3 is a schematic functional block diagram of the ventilation control device according to the embodiment.
  • FIG. 4 is a configuration diagram of the ventilation control device according to the embodiment.
  • FIG. 5 is a graph illustrating an example of the operation of the ventilation device controlled by the ventilation control device according to the embodiment.
  • FIG. 6 is a schematic functional block diagram of the ventilation device according to the embodiment.
  • FIG. 7 is a configuration diagram of a function providing unit of the exhaust device according to the embodiment.
  • FIG. 8 is a flowchart showing external server connection confirmation processing of the ventilation control device according to the embodiment.
  • FIG. 9 is a flowchart illustrating a control process at the time of disconnection of the ventilation control device according to the embodiment.
  • FIG. 10 is a diagram illustrating an example of provision information of the ventilation device according to the embodiment.
  • FIG. 11 is a diagram illustrating a combination of ventilation devices selected by the ventilation control device according to the embodiment.
  • FIG. 1 is a connection schematic diagram of the home network according to the present embodiment.
  • FIG. 2 is a schematic diagram of a ventilation control device and an external server connected via the external network according to the embodiment.
  • the ventilation system includes a ventilation control device 2, an exhaust device 3, and an air supply device 7 for introducing outside air into the house.
  • the ventilation control device 2 is installed in the general house 1 and is connected to the ceiling ventilation fan 4, the wall-mounted ventilation fan 6, the range hood 5, and the air supply device 7 through the home network 38 so as to communicate with each other.
  • the ventilation control device 2 is communicably connected to the external server 61 via the external network 60.
  • the ventilation control device 2 is connected so as to be communicable with, for example, a plurality of ventilation devices 70 and an external server 61 arranged in the house, but is not particularly limited to wired or wireless.
  • Exhaust device 3 corresponds to a buried ventilation fan 4, a wall-mounted ventilation fan 6, a range hood 5, a heat exchange fan (not shown), and the like.
  • the exhaust device 3 is a device having an exhaust function for exhausting air from the inside of the general house 1 to the outside.
  • the air supply device 7 corresponds to an air supply function or an air supply fan of a heat exchange air fan.
  • the air supply device 7 is a device having an air supply function for supplying air from the outside to the inside of the general house 1 from the outside.
  • the air supply device 7 does not necessarily include a fan.
  • the air supply device 7 has an air passage communicating between the inside and outside of the house and an opening / closing portion that opens and closes the air passage, and the opening / closing portion can be electrically opened and closed. That's fine.
  • the exhaust device 3 corresponds to the exhaust device 3 and the air supply device 7.
  • the ventilation device 70 is a device having at least one function of exhaust or air supply.
  • the information input terminal 8 is communicably connected to the ventilation control device 2 via the home network 38 or the external network 60.
  • the information input terminal 8 stores information necessary for configuring the ventilation system of the present embodiment in the ventilation control device 2, and examples thereof include a mobile phone, a smartphone, and a tablet.
  • FIG. 3 is a schematic functional block diagram of the ventilation control device 2 according to the embodiment.
  • FIG. 4 is a configuration diagram of the ventilation device 2 according to the embodiment.
  • FIG. 5 is a graph showing an example of the operation of the ventilation device controlled by the ventilation control device 2 according to the embodiment.
  • the ventilation control device 2 includes a communication unit 9, a storage unit 10, and a control unit 73.
  • the control unit 73 includes a ventilation operation control unit 76 and an exhaust amount control unit 11.
  • the communication unit 9 includes a broadband transmission / reception unit 12 that is communicably connected to the information input terminal 8 and the external server 61, a ventilation reception unit 15 that receives radio signals from the individual ventilation devices 70, and individual ventilation units.
  • the apparatus 70 is provided with a ventilation transmission unit 16 that performs operation instructions wirelessly. That is, the broadband transceiver 12 corresponds to the external communication module.
  • the ventilation receiver 15 and the ventilation transmitter 16 correspond to the in-home communication module.
  • the broadband transmission / reception unit 12, the ventilation reception unit 15, and the ventilation transmission unit 16 may be configured as a single unit as long as they have respective functions.
  • the ventilation receiver 15 includes a transmission unit 22 (see FIG. 6) of the ceiling ventilation fan 4 and the wall-mounted ventilation fan 6, a transmission unit 23 (see FIG. 6) of the range hood 5, and a transmission unit 28 of the air supply device 7 (see FIG. 6). ) Is received.
  • the ventilation transmitter 16 uses the operation of the controller 73 instructing each ventilator 70 as a radio signal, as a radio signal, the receiving unit 24 (see FIG. 6) of the ceiling ventilation fan 4 and the wall-mounted ventilation fan 6, and the receiving unit 25 (see FIG. 6) of the range hood 5. 6), and is transmitted to the receiving unit 29 (see FIG. 6) of the air supply device 7.
  • the storage unit 10 includes a non-connection control storage unit 74, a connection control storage unit 75, a target exhaust total storage unit 14, and an exhaust capacity storage unit 13, and requires information that the control unit 73 handles in processing. Can be read and written according to the above.
  • the non-connection control storage unit 74 stores a procedure for controlling the ventilation device 70 when the ventilation control device 2 is not connected to the external server 61, that is, a control specification as a non-connection control program.
  • the case where it is not connected with the external server 61 means the case where the ventilation control apparatus 2 cannot communicate with the external server 61.
  • the case where there is no connection contract to the external network 60 or the case where the ventilation control device 2 cannot communicate with the external server 61 due to a trouble in the external network 60 is included.
  • the connection-time control storage unit 75 stores a procedure for controlling the ventilation device 70 when the ventilation control device 2 is connected to the external server 61, that is, a control specification as a connection-time control program.
  • a control specification as a connection-time control program.
  • the case where it connects with the external server 61 means the case where the ventilation control apparatus 2 can communicate with the external server 61 normally.
  • the total target exhaust amount storage unit 14 obtains the target total exhaust amount input to the information input terminal 8 via the communication unit 9, that is, the broadband transceiver unit 12 and the home network 38.
  • the target exhaust total amount set by the user is stored in the target exhaust total storage unit 14.
  • the target total exhaust amount varies depending on the size of each house, the number of rooms, the airtightness of the house, the heat insulation performance, and the like. Therefore, the target exhaust total amount is set to a different value for each house.
  • the target total exhaust amount is the total amount of exhaust to be exhausted from a predetermined house within a predetermined time.
  • the predetermined time referred to here is, for example, one day (24 hours), or three hours, and varies depending on the environment and the agreement of laws and regulations. Therefore, in the present embodiment, the predetermined time is a time that can be arbitrarily set by the user in accordance with laws and regulations such as the environmental standards and ventilation standards of the residential building to which the ventilation device 70 is attached, or environmental conditions unique to the house. Time.
  • the exhaust capacity storage unit 13 stores the exhaust capacity of each of the at least one exhaust apparatus 3 connected to the ventilation control apparatus 2.
  • Examples of the exhaust capacity include the maximum exhaust amount per unit time of the exhaust device 3.
  • the exhaust capacity settings and the exhaust amount per unit time in the settings may be stored in association with each other.
  • Examples of the exhaust capacity setting include first speed, second speed, weak, medium, and strong.
  • the exhaust capacity may be input from the information input terminal 8, for example, or may be acquired by the control unit 73 by making an inquiry to the newly connected exhaust device 3 and stored in the exhaust capacity storage unit 13. Good.
  • the exhaust capacity storage unit 13 may store the air supply capacity of the air supply device 7 in the same manner as the exhaust capacity.
  • the ventilation operation control unit 76 includes a determination unit 77, a control determination unit 78, and a change confirmation unit 79.
  • the determination unit 77 determines whether communication with the external server 61 is possible via the broadband transmission / reception unit 12, that is, the external communication module. Here, if there is a normal response from the external server 61, the determination unit 77 determines that communication with the external server 61 is possible, that is, it is possible. On the other hand, if there is no normal response from the external server 61, the determination unit 77 determines that communication with the external server 61 is impossible, that is, no.
  • the control determination unit 78 determines the control method of the ventilation device 70 based on the determination result of the determination unit 77.
  • the control determination unit 78 receives the determination result of the determination unit 77 and, when communication with the external server 61 is possible, the connection time control program stored in the connection time control storage unit 75. Decide to adopt a control method using In addition, when communication with the external server 61 is not possible, the control determination unit 78 determines to adopt a control method using a non-connection time control program stored in the non-connection time control storage unit 74.
  • the change confirmation unit 79 accesses the external server 61 when the determination unit 77 determines that communication with the external server 61 is possible.
  • the external server 61 stores values determined by laws and regulations concerning the latest non-connection control program, connection control program, and environmental standards and ventilation standards for residential buildings. Then, the change confirmation unit 79 accesses the external server 61 and confirms whether or not the program or the like has been changed. When a change is confirmed in the above program or the like, the corresponding program or the like is updated. Specifically, the non-connection time control program and the connection time control program stored in the storage unit 10 are updated.
  • the value related to the ventilation control stored in the storage unit 10 is updated.
  • the value related to the ventilation control is the above-described target exhaust total amount, that is, the total amount of exhaust to be exhausted from a predetermined house within a predetermined time, and the predetermined time.
  • the ventilation operation control unit 76 controls the ventilation device 70 based on the control method determined by the control determination unit 78.
  • the ventilation operation control unit 76 executes the control method determined to be adopted by the control determination unit 78, that is, the non-connection time control program or the connection time control program, thereby causing the ventilation transmission unit 16 to A control command is transmitted to each ventilator 70 via the control unit. Specific transmission contents will be described later.
  • the exhaust amount control unit 11 includes an exhaust amount acquisition unit 17, an integration unit 18, a remaining exhaust amount calculation unit 19, a shortest exhaust time calculation unit 20, an exhaust setting unit 71, and a calculation unit 72.
  • the exhaust amount acquisition unit 17 acquires an existing exhaust amount that is an exhaust amount that has already been exhausted by each of the exhaust devices 3 connected to the ventilation control device 2.
  • the acquired exhaust amount is acquired as follows, for example.
  • the exhaust amount acquisition unit 17 receives the exhaust amount per unit time from the exhaust device 3 via the communication unit 9 at the timing when the exhaust device 3 starts exhausting.
  • the exhaust amount acquisition unit 17 receives the changed exhaust amount per unit time from the exhaust device 3 via the communication unit 9 at the timing when the exhaust device 3 changes the exhaust amount setting. Further, the exhaust amount acquisition unit 17 receives the fact that the exhaust device 3 has stopped from the exhaust device 3 via the communication unit 9 at the timing when the exhaust device 3 stops exhaust.
  • the exhaust amount acquisition unit 17 that has received them acquires the existing exhaust amount that has already been exhausted by the exhaust device 3 by multiplying the exhaust amount per unit time by the time during which the exhaust amount has been operated.
  • the exhaust amount acquisition unit 17 may inquire the exhaust amount of each exhaust device 3 via the communication unit 9 at predetermined time intervals. In response to this, the exhaust device 3 sends the exhaust amount exhausted between the previous inquiry and the current inquiry to the exhaust amount acquisition unit 17 via the communication unit 9.
  • the exhaust amount acquisition unit 17 can acquire the existing exhaust amounts of all the exhaust devices 3.
  • the accumulating unit 18 acquires and adds all the already exhausted amounts acquired by the exhaust amount acquiring unit 17 at predetermined time intervals, that is, adds up. As a result, the total exhaust amount 43 (see FIG. 5) exhausted from the home via all the exhaust devices 3 connected to the ventilation control device 2 can be calculated.
  • the remaining exhaust gas total calculation unit 19 subtracts the already exhausted total amount 43 calculated by the integrating unit 18 from the target exhaust total amount per predetermined time stored in the target exhaust total amount storage unit 14 to thereby obtain the target exhaust total amount.
  • a remaining exhaust gas total amount 44 (see FIG. 5), which is a shortage of exhaust gas amount, is calculated.
  • the timing at which the remaining exhaust gas amount calculation unit 19 calculates the remaining exhaust gas amount 44 is naturally performed within a time shorter than a predetermined time when the target exhaust gas total amount is set.
  • the shortest exhaust time calculation unit 20 calculates the target exhaust total amount when exhaust is performed using the maximum exhaust capacity of all exhaust devices 3 connected to the ventilation control device 2 and stored in the exhaust capacity storage unit 13.
  • the shortest exhaust time 45 (see FIG. 5), which is the time required to achieve, is calculated.
  • the exhaust setting unit 71 achieves the target total exhaust amount 46 from a predetermined time for achieving the target total exhaust amount 46 (see FIG. 5) and a time B (see FIG. 5) in which the total exhaust amount 43 is calculated.
  • the remaining time 42 (see FIG. 5), which is the remaining time until the predetermined time, is calculated. As shown in FIG. 5, the remaining time 42 is calculated by taking the difference between a predetermined time D (for example, 3 hours) and an elapsed time (for example, 30 minutes) from the starting point A to the time B. . This remaining time 42 is the time left to achieve the target total exhaust amount 46.
  • the remaining exhaust gas total amount 44 which is a total exhaust amount that is insufficient with respect to the target exhaust total amount 46 is calculated by the remaining exhaust gas total amount calculating unit 19.
  • the ventilation control device 2 can determine from the remaining time 42 and the remaining exhaust amount 44, for example, how much the exhaust device 3 should be operated on average during the remaining time 42, for example. Become. The details of how each exhaust device 3 is operated during the remaining time 42 will be described later. For example, all the exhaust devices 3 are operated at the maximum exhaust air volume for the time until the remaining exhaust amount is exhausted. A control pattern may be used. This makes it possible to achieve the target exhaust amount 46 in the shortest time.
  • the operation of the exhaust device 3 during the remaining time 42 is preferably energy efficient, that is, operated with energy saving.
  • the calculation part 72 determines the optimal control pattern of each ventilation apparatus 70 by calculation based on the energy consumption and exhaust air volume of each ventilation apparatus 70.
  • the exhaust setting unit 71 transmits an operation command to each ventilation device 70 via the ventilation transmission unit 16 to control it.
  • the ventilation control device 2 is provided as a microcomputer 40 as shown in FIG.
  • the microcomputer 40 includes a CPU 31 (Central Processing Unit), a RAM 32 (Random Access Memory), and a ROM 33 (Read Only Memory), and an HDD 34 (Hard Disk Drive) as the storage unit 10.
  • the microcomputer 40 includes a wired communication module 37 and a wireless communication module 36.
  • the wired communication module 37 and the wireless communication module 36 function as the communication unit 9, and the CPU 31, the RAM 32, the ROM 33, and the HDD 34 are connected via the internal bus 41.
  • the CPU 31 uses, for example, the RAM 32 as a work area, executes a program stored in the ROM 33, and controls the operation of each device by exchanging data and commands with the storage unit 10 and each device based on the execution result. To do.
  • the control unit 73 and each unit belonging to the control unit 73 are programs stored in the ROM 33 and the HDD 34, and execute predetermined processing by being executed by the CPU 31.
  • the HDD 34, the ROM 33, and the RAM 32 are not necessarily limited thereto, and other types of memories can be substituted as long as they function as memories.
  • the devices such as the wireless communication module 36 and the wired communication module 37 are not necessarily provided in the microcomputer 40 and may be externally connected.
  • FIG. 6 is a schematic functional block diagram of the ventilation device 70 according to the embodiment.
  • FIG. 7 is a configuration diagram of the function providing unit 66 of the exhaust device 3 according to the embodiment.
  • the built-in ventilation fan 4 and the wall-mounted ventilation fan 6, which are examples of the exhaust device 3, include a transmission unit 22, a reception unit 24, and a storage unit 26.
  • the range hood 5, which is an example of the exhaust device 3, includes a transmission unit 23, a reception unit 25, and a storage unit 27.
  • the air supply device 7 further includes a transmission unit 28, a reception unit 29, and a storage unit 30.
  • the receiving unit 24 and the receiving unit 25 of the exhaust device 3 receive an operation command from the control unit 73 configuring the ventilation control device 2 via the communication unit 9.
  • the operation command received by the exhaust device 3 is, for example, a provision information transmission command, which will be described later, or a target air volume Qs.
  • the receiving unit 29 of the air supply device 7 receives an operation command from the control unit 73 via the communication unit 9.
  • the operation command received by the air supply device 7 is, for example, transmission of provided information or a command to open / close the vent.
  • the transmission unit 22 and the transmission unit 23 read provision information to be provided from the storage unit 26 and the storage unit 27 in response to the provision information transmission command described above, and wirelessly communicate with the ventilation control device 2 via the home network 38. Send with.
  • the storage unit 26 and the storage unit 27 store provision information that may be requested from the ventilation control device 2.
  • the provided information stored in the storage unit 26 and the storage unit 27 includes an operation status indicating whether the built-in ventilation fan 4 or the like is in operation, an exhaust amount setting (weak, medium, strong, etc.) if in operation, Examples include, but are not limited to, an exhaust air volume per unit time corresponding to the exhaust gas volume setting.
  • the ceiling ventilation fan 4 but also the wall-mounted ventilation fan 6, the range hood 5, the air supply device 7, and other various exhaust devices and air supply devices are basically connected to the ventilation control device 2 and function. It has a configuration.
  • the buried ventilation fan 4, the wall-mounted ventilation fan 6, and the range hood 5 further include a function providing unit 66 that provides a blowing function.
  • the function providing unit 66 executes exhaust with an air volume corresponding to the target air volume Qs. That is, as shown in FIG. 7, the function providing unit 66 includes a fin 67, a motor 80 including a sensorless brushless DC motor that rotates the fin 67, and a motor control circuit 81 that drives the motor 80.
  • the motor 80 includes a stator 82 wound with windings and a rotor 83 provided with a magnet.
  • the motor control circuit 81 converts the AC voltage supplied from the commercial power source PS into a DC voltage by the AC conversion circuit 84.
  • the converted DC voltage is smoothed by the smoothing capacitor 85, and the smoothed DC voltage is applied to the inverter circuit 86.
  • the inverter circuit 86 has six switching elements 87a to 87f, and drives the motor 80 composed of a sensorless brushless DC motor by controlling the switching elements 87a to 87f.
  • the inverter circuit 86 is configured by connecting a first arm 88, a second arm 89, and a third arm 90 in a three-phase bridge shape.
  • the first arm 88 is formed by connecting a switching element 87a and a switching element 87d in series.
  • the second arm 89 is formed by connecting a switching element 87b and a switching element 87e in series.
  • the third arm 90 is formed by connecting a switching element 87c and a switching element 87f in series.
  • the switching element 87a, the switching element 87b, and the switching element 87c are arranged on the upper stage of each arm.
  • a switching element 87d, a switching element 87e, and a switching element 87f are arranged in the lower stage of each arm.
  • the switching elements arranged in the upper and lower stages alternately repeat the ON / OFF operation, thereby changing the direction of the current flowing through the winding of the motor 80.
  • the inverter circuit 86 is PWM-controlled according to a duty ratio input from a speed control unit 96 described later.
  • a shunt resistor 91 is inserted for each phase between the lower stage of each phase of the inverter circuit 86 (the lower stage of each arm) and the negative potential side (the ground of the motor control circuit 81).
  • the amplifying unit 92 amplifies the potential difference between both ends of the shunt resistor 91 that is generated by the current flowing through the shunt resistor 91.
  • the amplification unit 92 outputs the amplified potential difference between both ends of the shunt resistor 91 to the current detection unit 93.
  • the current detection unit 93 detects the current of each phase flowing through the motor 80 from the value input from the amplification unit 92 and outputs it to the rotation detection unit 94. Then, the rotation detection unit 94 detects the number of rotations of the motor 80 and the position of the rotor 83 based on the current detected by the current detection unit 93.
  • the current value of any one of the current values of each phase detected by the current detection unit 93 and the rotation speed detected by the rotation detection unit 94 are input to an air volume calculation unit 95 as a comparison unit.
  • the air volume calculation unit 95 includes a current value corresponding to one of the current values of each phase detected by the current detection unit 93 and the rotation speed detected by the rotation detection unit 94 and the target air volume Qs (target value).
  • the current value) and the rotation speed (target rotation speed) are respectively compared. That is, the air volume calculation unit 95 compares the current value of any one of the current values of each phase detected by the current detection unit 93 with the current value corresponding to the target air volume Qs, and the rotation detected by the rotation detection unit 94.
  • the number and the rotation speed corresponding to the target air volume Qs are compared. Then, the air volume calculation unit 95 determines whether the air flow rate is higher or lower than the target air volume Qs based on the comparison result, and transmits the result to the speed control unit 96.
  • the target air volume calculating unit 97 receives the target air volume Qs sent from the control unit 73 shown in FIG. 3 via the receiving unit 24 and the receiving unit 25, and changes the target air volume Qs with the air volume calculating unit 95 and the amplification factor change. To the unit 98.
  • the amplification factor changing unit 98 changes the amplification factor of the amplification unit 92 of a predetermined phase according to the target air volume Qs.
  • the speed control unit 96 controls the rotation speed of the motor 80 formed of a sensorless brushless DC motor by changing the duty ratio with respect to the inverter circuit 86 based on the comparison result of the air volume calculation unit 95. Then, the motor 80 outputs the necessary air volume by changing the rotation speed.
  • the function providing unit 66 configuring the exhaust device 3 can keep the air volume constant only by being given the target air volume Qs without changing the resistance (pressure loss) of the duct connecting the exhaust system 3 to the outside of the building. Can be controlled.
  • the in-home network 38 connecting the ventilation control device 2, the exhaust device 3, and the air supply device 7 includes, for example, wireless communication using Digital Enhanced Cordless Telecommunications or Wi-FI (registered trademark) system.
  • FIG. 8 is a flowchart which shows the external server connection confirmation process of the ventilation control apparatus 2 which concerns on embodiment.
  • S means a step.
  • the steps are not always processed in ascending order of numerical values.
  • the determination unit 77 attempts to access the external server 61 via the broadband transmission / reception unit 12 (S101). Note that the address of the external server 61 is registered in the storage unit 10 in advance, for example. .
  • the change confirmation unit 79 confirms the change with respect to the external server 61 (S103).
  • the target of the change confirmation is information on the non-connection control program, the connection control program, and the target total exhaust amount.
  • the non-connection time control program and the connection time control program can be changed by, for example, comparing the version of each program stored in the external server 61 with the version of each program stored in the storage unit 10. Determined.
  • the information related to the target total exhaust amount is, for example, information related to a predetermined time that is a time for exhausting specified by law and information related to the exhaust amount that should be exhausted from the house within the predetermined time.
  • the predetermined time here is, for example, 3 hours, and the displacement is a multiple of the capacity of the building, for example, 1.5 times.
  • the storage location is a non-connection control storage unit 74 if the connection control program is connected, a connection control storage unit 75 if the connection control program, and a predetermined storage in the storage unit 10 if the target exhaust amount. It is an area.
  • the control determination unit 78 determines to perform connection time control as a control method. That is, the ventilation operation control unit 76 controls the ventilation device 70 via the communication unit 9 based on the connection time control program (S106).
  • control determination unit 78 determines to perform control of the non-connection control as the control method without performing the change confirmation by the change confirmation unit 79.
  • ventilation operation control part 76 controls ventilator 70 based on a control program at the time of non-connection (S102No-> S107).
  • the ventilation control device 2 can dynamically change the control of the ventilation device 70 according to the connection status to the external server 61. For this reason, when the ventilation control device 2 is not connected to an external network at the time of occupancy, the possible range is, for example, between the ventilation devices of the same manufacturer as the ventilation control device 2 by the non-connection control. Can work together. Then, after the ventilation control device 2 can be connected to the external network, the external server 61 is automatically used, and the ventilation device provided by a manufacturer different from the ventilation control device 2 can be operated in cooperation. Needless to say, it is not necessary that the contractor visits again after the external network is opened and the setting of the ventilation control device 2 is changed.
  • the ventilation device 70 when not connected to an external network, the ventilation device 70 functions only as a simple ventilation device 70. According to the ventilation control device 2 according to the present embodiment, even when the ventilation control device 2 is not connected to an external network, the ventilation control device 2 can operate in cooperation between the ventilation devices 70 of the same manufacturer. Furthermore, when the ventilation control device 2 according to the present embodiment is connected to an external network, it is possible to operate in cooperation with the ventilation device 70 of a different manufacturer by using an external server.
  • a non-connection time control process when the ventilation control device 2 is not connected to an external network and a connection time control process when it is connected to an external network will be described.
  • FIG. 9 is a flowchart illustrating a control process at the time of disconnection of the ventilation control device 2 according to the embodiment.
  • the ventilation control device 2 corresponds to a target exhaust total amount 46 set in advance by the information input terminal 8 and a predetermined time D (a predetermined time corresponding to the target exhaust total amount 46, which is 3 hours in the present embodiment). ) And the total volume to be ventilated by law in the building is stored in the storage unit 10.
  • the following processing is targeted for a plurality of ventilation devices 70 connected to the ventilation control device 2, for example.
  • the ventilation device 70 having a manufacturer different from that of the ventilation control device 2 is connected to the ventilation control device 2 or the like, if the ventilation control device 2 is not connected to the external server 61, the same manufacturer as the ventilation control device 2 is used. In some cases, it may not be possible to cooperate with the ventilator 70. In such a case, it is assumed that cooperation is performed only between the ventilation devices 70 that can cooperate, and the ventilation device 70 that cannot cooperate can be controlled only on / off from the ventilation control device 2.
  • the ventilation device 70 that can be linked is, for example, the ventilation device of the same manufacturer as the ventilation control device 2, and the ventilation device 70 that cannot be linked is, for example, the ventilation device of a manufacturer different from the ventilation control device 2. .
  • the ventilation control device 2 starts a timer from the starting point A to start control of the exhaust air volume (S201).
  • Time D indicates 3 hours after the starting point A, and after the timer reaches time D, it is reset and starts again from 0. These are repeated as a routine unless the setting of time D is changed.
  • the wall-mounted ventilation fan 6 is operated with an exhaust air flow of 30 cfm from the starting point A to the time B at the start of the timer and stopped at the time B at the intention of the user.
  • the time of the starting point A and the exhaust air volume (30 cfm) at the timing of the starting point A, the time of the time B and the exhaust air volume (0 cfm) at the timing of the time B are respectively transmitted from the transmitting unit 22 via the ventilation receiving unit 15. Then, it is transmitted to the exhaust amount acquisition unit 17.
  • the exhaust amount acquisition unit 17 calculates the existing exhaust amount from the starting point A to the time B based on the transmitted information and transmits it to the integrating unit 18. The calculation is based on a predetermined time interval (for example, 1 second) on the assumption that the operation is already performed (exhaust air volume (30 cfm)) from time A to time B when no information is obtained from the ventilator 70. Every).
  • the accumulating unit 18 calculates the total exhaust amount 43 by adding the existing exhaust amount acquired by the exhaust amount acquiring unit 17 (S202). Here, since only the wall-mounted ventilation fan 6 is operating, the exhaust amount of the wall-mounted ventilation fan 6 is equal to the total exhaust amount 43.
  • the exhaust amount control unit 11 always monitors whether the total exhaust amount 43 has reached the target total exhaust amount 46 (S203).
  • the total residual exhaust amount calculation unit 19 calculates the total residual exhaust amount 44 from the difference between the total total exhaust amount 43 and the target total exhaust amount 46 (S203 No ⁇ S204). ). Further, the shortest exhaust time calculation unit 20 calculates the shortest exhaust time 45 necessary for exhausting the remaining exhaust amount 44 by the maximum exhaust capacity of the exhaust device 3 connected to the ventilation control device 2 (S205). The maximum exhaust capacity is assumed to be 150 cfm for the ceiling ventilation fan 4, 30 cfm for the wall-mounted ventilation fan 6, and 150 cfm for the range hood 5.
  • the exhaust setting unit 71 compares the shortest exhaust time 45 with the remaining time 42 remaining until the time D (S206). If the remaining time 42 is sufficiently longer than the shortest exhaust time 45 at time B, the exhaust setting unit 71 determines to maintain the current exhaust capability (S206 No ⁇ S202).
  • the exhaust setting unit 71 instructs each exhaust device 3 via the ventilation transmission unit 16 to forcibly start the exhaust operation with the maximum exhaust amount (forced shortest exhaust operation) (S206 Yes ⁇ S207). ).
  • the shortest exhaust time 45 and the remaining time 42 are compared to determine the start of the forced shortest exhaust operation (S206). For example, the maximum exhaust capacity of the exhaust device 3 and the remaining time 42 are multiplied. The maximum exhaustable total amount (not shown) and the remaining exhaust total amount 44 may be compared. In this case, when the maximum exhaustable total amount is larger than the remaining exhaust total amount 44, the current state is maintained, and when the maximum exhaustable total amount becomes equal to or less than the remaining exhaust total amount 44, the forced shortest exhaust operation is started. The effect of can be realized.
  • the ceiling ventilation fan 4 is 150 cfm
  • the wall-mounted ventilation fan 6 is 30 cfm
  • the range hood 5 is 150 cfm, that is, the operation is started from time C with the maximum displacement.
  • the target exhaust total amount 46 is reached at time D (repetition of S207 ⁇ S202 ⁇ S203).
  • the exhaust setting unit 71 stops the forced shortest exhaust operation and at the same time And the already exhausted total amount 43 is reset to 0 (S203 ⁇ S208 ⁇ S209 ⁇ S212).
  • the forced shortest exhaust operation was performed in the last remaining time 42 from the time C to the time D in the predetermined 3 hours, but any of the exhaust devices 3 between the time B and the time C depending on the intention of the user.
  • the target exhaust total amount 46 is satisfied before a plurality of units are operated and the forced shortest exhaust operation is performed.
  • the exhaust setting unit 71 instructs the exhaust device 3 to maintain the current state without performing the forced shortest exhaust operation (S208 ⁇ S210). If 3 hours elapses, the timer and the total exhaust amount 43 are reset to 0 (S211 Yes ⁇ S212).
  • the ventilation control device 2 can control the operation of the exhaust device 3 so that the target exhaust total amount 46 is satisfied within a predetermined time. Furthermore, the total exhaust amount operated by all the exhaust devices 3 connected within a predetermined three hours is counted, and the control is performed without greatly exceeding the target total exhaust amount 46 to appeal the energy saving effect. be able to.
  • the above process is a non-connection control process, when communication with the external server 61 becomes possible, within a predetermined time (for example, 3 hours) or within the predetermined time that may be changed by laws and regulations. By updating the amount of exhaust that should be exhausted from within the house, it becomes possible to control in compliance with the latest laws and regulations.
  • the exhaust amount to be exhausted When the exhaust amount to be exhausted is updated, for example, it can be calculated by multiplying the exhaust amount acquired by the control unit 73 using the total volume already stored in the storage unit 10.
  • the calculation method is not limited because it varies depending on laws and regulations. Furthermore, because it is a non-connected control process, ventilation devices that cannot be linked are not considered in the total exhaust amount 43, but from the viewpoint of legal compliance, the target exhaust total amount 46 can be reliably achieved. Can do.
  • the air supply device 7 receives the information of the total exhaust amount from the ventilation control device 2 by the exhaust device 3 (the buried ventilation fan 4, the wall-mounted ventilation fan 6, and the range hood 5) through the receiving unit 29, thereby being equivalent to the total exhaust amount. Work to supply the amount of air supply to the house.
  • the operation of the air supply device 7 is intended to balance the exhaust amount and the air supply amount, and provides the effect of preventing the house from becoming an extremely negative pressure.
  • the above-described control process at the time of non-connection has the following configuration. That is, the exhaust setting unit 71 sets the exhaust capacity in addition to the on-time when the ventilation device 70 can set a plurality of types of exhaust capacity.
  • the exhaust setting unit 71 does not stop or operate the exhaust of the ventilation device 70 when the total exhaust amount 43 exceeds the target total exhaust amount 46 within a predetermined time.
  • the exhaust setting unit 71 achieves the total exhaust amount of the target exhaust amount 46 with the maximum exhaust capacity of the exhaust device 3 in the remaining time 42.
  • connection time control process based on the connection time control program of the ventilation control device 2 will be described with reference to FIGS. 2 and 3.
  • the ventilation operation control unit 76 operates based on the connected control program. Although there are various operations in this operation, for example, a range hood 5 (first ventilation device) and a wall-mounted ventilation fan 6 (second ventilation device) provided in the same room will be exemplified. In addition, it is assumed that the manufacturer of the range hood 5 and the manufacturer of the wall-mounted ventilation fan 6 are different. For example, when the range hood 5 starts to operate, information related to the operation, such as the exhaust capacity and the ambient temperature, is transmitted to the external server 61a of the manufacturer of the range hood 5 via the ventilation operation control unit 76.
  • the external server 61a transmits the received information regarding the operation to the external server 61b of a manufacturer different from the manufacturer of the wall-mounted ventilation fan 6, that is, the manufacturer of the range hood 5.
  • the external server 61b transmits a command to change the operation to, for example, the wall-mounted ventilation fan 6 based on the information related to the operation of the range hood 5.
  • the command to change the operation includes on / off switching, air volume change, and the like.
  • the command for changing the operation is received by the ventilation operation control unit 76 from the external server 61b through the communication unit 9 and transmitted to the wall-mounted ventilation fan 6 through the communication unit 9.
  • the wall-mounted ventilation fan 6 When receiving the command, the wall-mounted ventilation fan 6 operates the function providing unit 66 in accordance with the command. Thereby, a cooperative operation is possible between the ventilation devices 70 provided by different manufacturers.
  • control process at the time of connection is not particularly limited to this control, and further details are omitted.
  • FIG. 10 is a diagram illustrating an example of provision information of the ventilation device 70 according to the embodiment.
  • the product information 58 unique to the ventilation device 70 and the current information 59 of the ventilation device 70 may be transmitted to the ventilation control device 2 as the provision information 47.
  • the product information 58 includes a product ID 51, an exhaust capacity 52 indicating the settable air volume of the ventilator 70, a mounted sensor 53 indicating the type of sensor mounted on the ventilator 70, and the like.
  • the current information 59 includes a current air volume 54 indicating the current operation status, a sensor state 55 indicating the detection status of the mounted sensor, and a forced operation indicating whether the user is forcibly operating the ventilator. 56 and power consumption 57 indicating power consumption at the current air volume.
  • the calculation unit 72 grasps, for example, the electrical characteristics of each connected ventilator 70 and selects the combination of the ventilator 70 that consumes the least amount of power. be able to.
  • the ventilation control device 2 can realize exhaust control that not only satisfies the target exhaust total amount 46 but also suppresses power consumption.
  • FIG. 11 is a diagram showing a combination of ventilation devices 70 selected by the ventilation control device 2 according to the embodiment.
  • FIG. 11 shows a combination of the ventilators 70 when the amount of exhaust air required within a predetermined time in the house is 250 cfm.
  • the calculation unit 72 can select the optimum combination 65 that consumes the lowest power from the information on the air volume and the power consumption of each ventilator 70, and control the ventilator 70.
  • the ventilation control device and the ventilation system according to the present invention can dynamically change the control of the ventilation device according to the connection status to the external server, and thus can be applied to a complex house such as a detached house or an apartment. is there.

Abstract

換気制御装置(2)は、換気装置と宅内ネットワークを介して通信する宅内通信モジュールと、建物外に設けられた外部サーバと外部ネットワークを介して通信する外部通信モジュールと、外部通信モジュールを介した外部サーバとの通信の可否を判定する判定部(77)と、判定部(77)の判定結果に基づいて換気装置の制御方法を決定する制御決定部(78)と、制御決定部(78)が決定した制御方法に基づいて換気装置を制御する換気動作制御部(76)と、を備えた換気制御装置(2)を提供する。

Description

換気制御装置及び換気システム
 本発明は、換気制御装置及び換気システムに関する。
 住宅等の建物内に、外部から空気を取り込んだり、外部に空気を排出したりする換気装置を複数有する換気システムが知られている(例えば特許文献1参照)。
 特許文献1に記載の換気システムは、屋外温度センサの測定温度が、予め設定された範囲内の場合に換気装置の一例としての排気用送風機の運転を停止させ、予め設定された範囲外の場合に排気用送風機を運転させる集中管理装置を有する。集中管理装置には、建物内の居室の空気を建物外に排気する排気用送風機の他、浴室や洗面所などのサニタリー排気装置、レンジフードファンや空調設備が通信回線によって有線接続されている。そして、集中管理装置は、排気用送風機を停止させた際には換気装置の一例としてのサニタリー排気装置やレンジフードファンを運転させ、排気用送風機を運転する際にはサニタリー排気装置やレンジフードファンを停止させるようになっている。これにより、排気が必要に応じて行われることで24時間換気が実施され、過剰な排気を抑えることが可能となるため、空調エネルギーのロスが抑えられるようになっている。
特開2016-8794号公報
 ところで、上記のような住宅等に用いられる換気システムでは、各制御対象機器の制御を統括する換気制御装置に対して複数の換気装置が接続されている。そのため、換気制御装置は、各換気装置を連動して制御することが可能となっている。また、例えば利用する換気装置が複数のメーカーから構成されているような場合には、外部サーバを利用することで、メーカーが異なる換気装置を連携させて制御している。
 しかしながら、例えば新築住宅に代表されるように、換気制御装置は、入居時には外部ネットワークと接続されていないのが通常である。このため、換気装置が複数のメーカーから構成されている、つまり、外部サーバを利用して換気装置を連携させる仕組みの場合には、換気制御装置の連携機能を提供できず、各換気装置は、単なる換気装置としてしか機能しない。そして、入居後であってユーザが外部ネットワークを契約し、換気制御装置を外部ネットワークと接続した後に、例えば施工業者が改めて外部サーバ接続のための設定を、換気制御装置に対して行う必要がある。
 そこで本発明は、上記課題を解決するためになされたものであって、その目的は、外部サーバへの接続状況に応じて動的に換気装置の制御を変更する換気制御装置を提供することにある。
 上記課題を解決するために、本発明に係る換気制御装置は、建物の内外の間で空気を搬送可能な複数の換気装置と通信可能に接続され、複数の換気装置の動作を制御する換気制御装置である。換気制御装置は、換気装置と宅内ネットワークを介して通信する宅内通信モジュールと、建物の外に設けられた外部サーバと外部ネットワークを介して通信する外部通信モジュールと、を備える。さらに、換気制御装置は、外部通信モジュールを介した外部サーバとの通信の可否を判定する判定部と、判定部の判定結果に基づいて換気装置の制御方法を決定する制御決定部と、制御決定部が決定した制御方法に基づいて換気装置を制御する換気動作制御部と、を備える。
 本発明に係る換気制御装置によれば、外部サーバに接続できない場合であっても接続した換気装置を個別で制御でき、外部サーバに接続できる場合には換気装置を連携制御させることができる。
図1は、実施の形態に係る宅内ネットワークの接続概略図である。 図2は、実施の形態に係る外部ネットワークを介して接続される換気制御装置と外部サーバの概略図である。 図3は、実施の形態に係る換気制御装置の概略機能ブロック図である。 図4は、実施の形態に係る換気制御装置の構成図である。 図5は、実施の形態に係る換気制御装置によって制御される換気装置の動作の一例を示すグラフである。 図6は、実施の形態に係る換気装置の概略機能ブロック図である。 図7は、実施の形態に係る排気装置の機能提供部の構成図である。 図8は、実施の形態に係る換気制御装置の外部サーバ接続確認処理を示すフローチャートである。 図9は、実施の形態に係る換気制御装置の非接続時制御処理を示すフローチャートである。 図10は、実施の形態に係る換気装置の提供情報の一例を示す図である。 図11は、実施の形態に係る換気制御装置が選択する換気装置の組み合わせを示す図である。
 以下、本発明の実施の形態について、図面を参照しながら説明する。なお、以下に説明する実施の形態は、いずれも本発明の好ましい一具体例を示すものである。したがって、以下の実施の形態で示される、数値、形状、材料、構成要素、構成要素の配置位置及び接続形態、並びに、ステップ(工程)及びステップの順序などは、一例であって本発明を限定する主旨ではない。よって、以下の実施の形態における構成要素のうち、本発明の最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。また、各図において、実質的に同一の構成に対しては同一の符号を付しており、重複する説明は省略又は簡略化する。
 (実施の形態)
 最初に、本発明に係る換気システムの概要について図1、図2を参照しながら説明する。なお、図1は、本実施の形態に係る宅内ネットワークの接続概略図である。図2は、実施の形態に係る外部ネットワークを介して接続される換気制御装置と外部サーバの概略図である。
 [換気システム]
 本実施の形態に係る換気システムは、換気制御装置2と、排気装置3と、宅内に外気を導入する給気装置7とを備える。
 換気制御装置2は、一般住宅1内に設置され、天埋換気扇4、壁掛換気扇6、レンジフード5、給気装置7と、宅内ネットワーク38を介して通信可能に接続されている。換気制御装置2は、外部サーバ61と外部ネットワーク60を介して通信可能に接続されている。換気制御装置2は、例えば宅内に配置される複数の換気装置70や外部サーバ61と通信可能に接続されるが、特に有線、無線は限定しない。
 排気装置3は、天埋換気扇4、壁掛換気扇6、レンジフード5、熱交換気扇(図示せず)等が該当する。排気装置3は、言い換えると、一般住宅1の内部から外部への排気を行う排気機能を有する装置である。
 給気装置7は、熱交換気扇の給気機能や給気ファン等が該当する。給気装置7は、言い換えると、外部から一般住宅1の外部から内部への給気を行う給気機能を有する装置である。ただし、給気装置7は必ずしもファンを備えている必要は無く、例えば宅内外を連通する風路と、当該風路を開閉する開閉部があり、この開閉部を電気的に開閉できるものであればよい。
 換気装置70は、排気装置3と、給気装置7とが該当する。換気装置70は、言い換えると、排気或いは給気のいずれか一方の機能を少なくとも有する装置である。
 情報入力用端末8は、宅内ネットワーク38または外部ネットワーク60を介して換気制御装置2と通信可能に接続される。情報入力用端末8は、本実施の形態の換気システムを構成するうえで必要な情報を換気制御装置2に記憶させるもので、携帯電話、スマートフォン、タブレットといった機器が例として挙げられる。
 続いて、図3、図4、図5を参照しながら換気制御装置2、天埋換気扇4、壁掛換気扇6、レンジフード5、給気装置7を構成する各機能について説明する。なお、図3は、実施の形態に係る換気制御装置2の概略機能ブロック図である。図4は、実施の形態に係る換気装置2の構成図である。図5は、実施の形態に係る換気制御装置2によって制御される換気装置の動作の一例を示すグラフである。
 [換気制御装置]
 換気制御装置2は、図3に示すように、通信部9と、記憶部10と、制御部73とを備える。そして制御部73は、換気動作制御部76と排気量制御部11とを備える。
 通信部9は、情報入力用端末8や外部サーバ61と通信可能に接続されるブロードバンド用送受信部12と、個々の換気装置70からの無線信号を受信する換気用受信部15と、個々の換気装置70に運転指示を無線で行う換気用送信部16とを備えている。つまり、ブロードバンド用送受信部12が外部通信モジュールに該当する。また、換気用受信部15と換気用送信部16とが宅内通信モジュールに該当する。当然ながら、ブロードバンド用送受信部12と、換気用受信部15と、換気用送信部16とは一体として構成してもよく、それぞれの機能を備えていればよい。
 換気用受信部15は、天埋換気扇4及び壁掛換気扇6の送信部22(図6参照)、レンジフード5の送信部23(図6参照)、給気装置7の送信部28(図6参照)から送信される無線信号を受信する。
 換気用送信部16は、制御部73が各換気装置70に指示する動作を無線信号として天埋換気扇4及び壁掛換気扇6の受信部24(図6参照)、レンジフード5の受信部25(図6参照)、給気装置7の受信部29(図6参照)へ送信する。
 記憶部10は、非接続時制御記憶部74と、接続時制御記憶部75と、目標排気総量記憶部14と、排気能力記憶部13とを備え、制御部73が処理上で扱う情報を必要に応じて読み出し、また書き込みすることができる。
 非接続時制御記憶部74は、換気制御装置2が外部サーバ61と接続していない場合の、換気装置70を制御する手順、すなわち制御仕様を非接続時制御プログラムとして記憶している。なお、外部サーバ61と接続していない場合とは、換気制御装置2が、外部サーバ61と通信できない場合を意味する。例えば、外部サーバ61が機能していても、外部ネットワーク60への接続契約が無い場合や外部ネットワーク60のトラブルにより、換気制御装置2が外部サーバ61と通信できない場合も含まれる。
 接続時制御記憶部75は、換気制御装置2が外部サーバ61と接続している場合の、換気装置70を制御する手順、すなわち制御仕様を接続時制御プログラムとして記憶している。なお、外部サーバ61と接続している場合とは、換気制御装置2が、外部サーバ61と正常に通信できる場合を意味する。
 目標排気総量記憶部14は、情報入力用端末8に入力された宅内の目標排気総量を、通信部9、すなわちブロードバンド用送受信部12や宅内ネットワーク38を経由して入手する。言い換えると、例えばユーザが情報入力用端末8を利用して、宅内の目標排気総量を設定することで、目標排気総量記憶部14にユーザが設定した目標排気総量が記憶される。当然ながら目標排気総量は、各住宅の広さや部屋の数、住宅の気密性、断熱性能等に応じて異なる。よって、目標排気総量は住宅ごとに異なる値が設定されることになる。目標排気総量は、所定時間以内に所定の住宅内から排気すべき排気量の総量である。ここでいう所定時間とは、例えば1日(24時間)であったり、あるいは3時間であったり環境や法令による取り決めなどにより異なる。よって本実施の形態では、所定時間は、換気装置70が取り付けられる住宅建物の環境基準や換気基準等の法令、または住宅固有の環境条件によってユーザが任意に設定できる時間とし、一例としてこれを3時間とする。
 排気能力記憶部13は、換気制御装置2に接続される少なくとも1つの排気装置3のそれぞれの排気能力を記憶する。排気能力としては、例えば、排気装置3の単位時間当たりの最大排気量が挙げられる。また、排気装置3の排気能力(排気設定)を複数に設定可能な場合は、排気能力の設定とこの設定における単位時間当たりの排気量とを対応付けて記憶してもよい。排気能力の設定としては、例えば1速、2速や、弱、中、強などがある。排気能力は、例えば情報入力用端末8から入力されてもよいし、制御部73が、新たに接続された排気装置3に問合せを行うことによって取得し、排気能力記憶部13に記憶してもよい。また後述する排気量と給気量とのバランスをとる目的のため、排気能力記憶部13は、給気装置7の給気能力も排気能力同様に記憶してもよい。
 換気動作制御部76は、判定部77と、制御決定部78と、変更確認部79とを備える。
 判定部77は、ブロードバンド用送受信部12、すなわち外部通信モジュールを介して外部サーバ61との通信の可否を判定する。ここで、判定部77は、外部サーバ61から正常な応答があれば、外部サーバ61と通信可能、すなわち可と判定する。これに対して、判定部77は、外部サーバ61から正常な応答がなければ、外部サーバ61と通信不可能、すなわち否と判定する。
 制御決定部78は、判定部77の判定結果に基づいて、換気装置70の制御方法を決定する。本実施の形態では、制御決定部78は、判定部77の判定結果を受信し、外部サーバ61との通信が可である場合には、接続時制御記憶部75に格納された接続時制御プログラムを利用した制御方法の採用を決定する。また、制御決定部78は、外部サーバ61との通信が否である場合には、非接続時制御記憶部74に格納された非接続時制御プログラムを利用した制御方法の採用を決定する。
 変更確認部79は、判定部77が外部サーバ61との通信を可であると判定した場合、外部サーバ61にアクセスする。外部サーバ61には、最新の非接続時制御プログラム、接続時制御プログラム、住宅建物の環境基準や換気基準の法令によって決定される値が保存されている。そして、変更確認部79は、外部サーバ61にアクセスして、上記プログラムなどの変更の有無を確認する。そして、上記プログラムなどに変更が確認された場合には、該当するプログラムなどを更新する。具体的には、記憶部10に記憶される非接続時制御プログラムや接続時制御プログラムを更新する。また、住宅建物の環境基準や換気基準の法令によって決定される値のうち、換気制御に関するものの値に変更が確認された場合には、記憶部10に記憶された、換気制御に関する値を更新する。換気制御に関する値とは、具体的には、上述の目標排気総量、すなわち所定時間以内に所定の住宅内から排気すべき排気量の総量及びその所定時間などである。
 換気動作制御部76は、制御決定部78が決定した制御方法に基づいて換気装置70を制御する。本実施の形態では、換気動作制御部76は、制御決定部78にて採用を決定された制御方法、つまり非接続時制御プログラムや接続時制御プログラムを実行することで、換気用送信部16を介して各換気装置70に対して制御命令を送信する。なお、具体的な送信内容については後述する。
 排気量制御部11は、排気量取得部17と、積算部18と、残排気総量算出部19と、最短排気時間算出部20と、排気設定部71と、演算部72とを備える。
 排気量取得部17は、換気制御装置2に接続される排気装置3それぞれが既に排気した排気量である既排気量を取得する。ここで既排気量の取得は、例えば以下のように行われる。
 すなわち、排気量取得部17は、排気装置3が排気を開始したタイミングで、単位時間当たりの排気量を排気装置3から通信部9を介して受信する。また、排気量取得部17は、排気装置3が排気量設定を変更したタイミングで、変更後の単位時間当たりの排気量を排気装置3から通信部9を介して受信する。さらに、排気量取得部17は、排気装置3が排気を停止したタイミングで、停止した旨を排気装置3から通信部9を介して受信する。これらを受信した排気量取得部17は、単位時間当たりの排気量と、当該排気量で動作した時間とを掛け算することで、排気装置3が既に排気した既排気量を取得する。
 また、別の方法としては、所定の時間間隔で、排気量取得部17が、各排気装置3に通信部9を介して既排気量の問合せを行ってもよい。これに対して排気装置3が、前回の問合せから今回の問合せまでの間に排気した既排気量を、通信部9を介して排気量取得部17に返信する。
 上記処理を換気制御装置2に接続されている全ての排気装置3に対して行うことにより、排気量取得部17は、全ての排気装置3の既排気量を取得することができる。
 積算部18は、所定の時間間隔で、排気量取得部17が取得した全ての既排気量を取得して足し合わせ、すなわち積算する。これにより、換気制御装置2に接続された全ての排気装置3を介して宅内から排気された既排気総量43(図5参照)を算出することができる。
 残排気総量算出部19は、目標排気総量記憶部14に記憶された所定時間あたりの目標排気総量から、積算部18が算出した、既排気総量43を減算することによって、目標排気総量に対して不足している排気総量である、残排気総量44(図5参照)を算出する。ここで、残排気総量算出部19が残排気総量44を算出するタイミングは、当然、目標排気総量が設定された所定時間よりも短い時間内に行われる。
 最短排気時間算出部20は、排気能力記憶部13に記憶されている、換気制御装置2に接続された全ての排気装置3の最大排気能力を用いて排気を行った場合の、目標排気総量を達成するまでに必要な時間である最短排気時間45(図5参照)を算出する。
 排気設定部71は、目標排気総量46(図5参照)を達成するための所定時間と、既排気総量43を算出した時間B(図5参照)とから、目標排気総量46を達成するための所定時間までの残りの時間である残時間42(図5参照)を算出する。残時間42の算出は、図5に示すように、所定時間である時間D(例えば3時間)と、起点Aから時間Bまでの経過時間(例えば30分)との差を取ることで行われる。この残時間42は、すなわち目標排気総量46を達成するために残された時間である。また、目標排気総量46に対して不足している排気総量である残排気総量44は、残排気総量算出部19によって算出される。これより、換気制御装置2は、残時間42と残排気総量44とから、例えば残時間42の間に平均してどの程度の排気量で排気装置3を動作させればよいかを判断可能となる。なお、残時間42の間、どのように各排気装置3を動作させるかの詳細については後述するが、例えば全ての排気装置3を、残排気量を排気するまでの時間、最大排気風量で動作させるという制御パターンとしてもよい。これにより、最短時間で目標排気総量46を達成することが可能となる。当然、他の制約がないのであれば残時間42の間の排気装置3の動作は、エネルギー効率が高く、すなわち省エネルギーで動作させることが好ましい。このような場合には、演算部72が、各換気装置70の消費エネルギーと排気風量とに基づいて各換気装置70の最適な制御パターンを演算により決定する。制御パターンが決定されると、排気設定部71は、換気用送信部16を介して各換気装置70に動作命令を送信し、制御する。
 なお、各部の動作についてはフローチャートを利用して後述する。
 換気制御装置2は、図4に示すように、マイクロコンピュータ40として設けられる。マイクロコンピュータ40は、内部にCPU31(Central Processing Unit)、RAM32(Random Access Memory)、ROM33(Read Only Memory)を備え、記憶部10としてHDD34(Hard Disk Drive)を備える。また、マイクロコンピュータ40は、有線通信モジュール37及び無線通信モジュール36を含む。有線通信モジュール37及び無線通信モジュール36は、通信部9として機能し、CPU31、RAM32、ROM33、HDD34が内部バス41を介して接続されている。CPU31は、例えばRAM32を作業領域として利用し、ROM33に記憶されているプログラムを実行し、当該実行結果に基づいて記憶部10や各デバイスとデータや命令を授受することにより各デバイスの動作を制御する。
 制御部73や、当該制御部73に属する各部は、ROM33やHDD34に記憶されているプログラムであり、CPU31に実行されることであらかじめ決められた処理を実行する。HDD34やROM33、RAM32は、必ずしもこれに限らず、メモリとして機能するのであれば他種のメモリを代用可能である。
 無線通信モジュール36、有線通信モジュール37等のデバイスは、必ずしもマイクロコンピュータ40に備える必要は無く、外部接続としてもよい。
 続いて、図6、図7を参照しながら排気装置3、給気装置7を構成する各機能について説明する。なお図6は、実施の形態に係る換気装置70の概略機能ブロック図である。図7は、実施の形態に係る排気装置3の機能提供部66の構成図である。
 [排気装置と給気装置]
 図6に示すように、排気装置3の一例として挙げられる天埋換気扇4、壁掛換気扇6は、送信部22と、受信部24と、記憶部26とを備える。また、排気装置3の一例であるレンジフード5は、送信部23と、受信部25と、記憶部27とを備える。さらに給気装置7は、送信部28と、受信部29と、記憶部30とを備える。
 例えば排気装置3の受信部24、受信部25は、換気制御装置2を構成する制御部73から通信部9を介して動作命令を受信する。排気装置3が受信する動作命令とは、例えば後述の提供情報の送信命令や、目標風量Qsである。給気装置7の受信部29は、制御部73から通信部9を介して動作命令を受信する。給気装置7が受信する動作命令とは、例えば提供情報の送信や、通風口の開閉命令である。
 送信部22、送信部23は、例えば上述の提供情報の送信命令に対して、記憶部26、記憶部27から提供すべき提供情報を読み出し、宅内ネットワーク38を介して換気制御装置2に無線通信で送信する。
 記憶部26、記憶部27は、換気制御装置2から要求される可能性のある提供情報を記憶する。記憶部26、記憶部27が記憶する提供情報は、天埋換気扇4などが運転中か否かを示す運転状況と、運転中であればその排気量設定(弱、中、強など)と、排気量設定に対応する単位時間当たりの排気風量等が挙げられるが、これに限定されない。
 なお、天埋換気扇4に限らず、壁掛換気扇6、レンジフード5、給気装置7、その他様々な排気装置、給気装置も換気制御装置2に接続されて機能する際には基本的に上記構成を有する。
 また、天埋換気扇4、壁掛換気扇6、レンジフード5は、送風機能を提供する機能提供部66をさらに備える。
 機能提供部66は、受信部24や受信部25を介して換気制御装置2から上述の目標風量Qsを受信すると、当該目標風量Qsに応じた風量で排気を実行する。すなわち図7に示すように、機能提供部66は、フィン67と、フィン67を回転させるセンサレスブラシレスDCモータからなるモータ80と、モータ80を駆動するモータ制御回路81を備える。モータ80は巻線を巻装した固定子82と磁石を備えた回転子83からなる。
 図7において、モータ制御回路81は、商用電源PSから供給される交流電圧を、交流変換回路84にて直流電圧に変換する。変換された直流電圧は、平滑コンデンサ85にて平滑化され、平滑化された直流電圧が、インバータ回路86に印加される。インバータ回路86は6個のスイッチング素子87a~87fを有しており、各スイッチング素子87a~87fを制御することで、センサレスブラシレスDCモータからなるモータ80を駆動している。
 インバータ回路86は、第1アーム88と、第2アーム89と、第3アーム90とを三相ブリッジ状に結線して構成される。ここで、第1アーム88は、スイッチング素子87aとスイッチング素子87dとを直列接続してなる。第2アーム89は、スイッチング素子87bとスイッチング素子87eとを直列接続してなる。第3アーム90は、スイッチング素子87cとスイッチング素子87fとを直列接続してなる。本実施の形態では、スイッチング素子87a、スイッチング素子87b、スイッチング素子87cが、各アームの上段に配置されている。また、スイッチング素子87d、スイッチング素子87e、スイッチング素子87fが、各アームの下段に配置されている。上段、下段に配置されたスイッチング素子が、交互にON/OFF動作を繰り返すことで、モータ80の巻線に流れる電流の向きを変化させている。インバータ回路86は、後述する速度制御部96から入力されるデューティ比に従って、PWM制御される。
 また、インバータ回路86の各相の下段(各アームの下段)と負電位側(モータ制御回路81のグランド)の間には、相ごとにシャント抵抗91が挿入されている。増幅部92は、このシャント抵抗91に流れる電流により発生する、シャント抵抗91の両端の電位差を増幅する。
 増幅部92は、増幅したシャント抵抗91の両端の電位差を電流検出部93に出力する。電流検出部93は、増幅部92から入力された値からモータ80に流れる各相の電流を検出し、回転検出部94に出力する。そして、回転検出部94は、電流検出部93で検出された電流に基づいてモータ80の回転数と回転子83の位置を検出する。
 また電流検出部93で検出した各相の電流値のうちのいずれか1相の電流値及び回転検出部94で検出した回転数が、比較部としての風量演算部95に入力される。風量演算部95は、電流検出部93で検出した各相の電流値のうちのいずれか1相の電流値及び回転検出部94が検出した回転数と、目標風量Qsに対応する電流値(目標電流値)及び回転数(目標回転数)とをそれぞれ比較する。つまり、風量演算部95は、電流検出部93で検出した各相の電流値のいずれか1相の電流値と目標風量Qsに対応する電流値とを比較し、回転検出部94が検出した回転数と目標風量Qsに対応する回転数とを比較する。そして、風量演算部95は、その比較結果に基づいて送風量が目標風量Qsに対して高いか低いかを判断し、その結果を速度制御部96へ送信する。
 目標風量演算部97は、図3に示す制御部73から受信部24や受信部25を経由して送られてくる目標風量Qsを受信し、この目標風量Qsを風量演算部95と増幅率変更部98に送信する。
 増幅率変更部98は、この目標風量Qsの大きさに応じて所定の相の増幅部92の増幅率を変更する。
 速度制御部96は、風量演算部95の比較結果に基づいて、インバータ回路86に対してデューティ比を変更することで、センサレスブラシレスDCモータからなるモータ80の回転数を制御する。そして、モータ80は、回転数を可変させて必要な風量を出力する。
 以上の構成により、排気装置3を構成する機能提供部66は、排気装置3から建物の外部に繋がるダクトの抵抗(圧損)を変更しなくても、目標風量Qsを与えられるのみで風量を一定に制御できる。
 [宅内ネットワーク]
 換気制御装置2と排気装置3と給気装置7とを接続する宅内ネットワーク38は、例えば、Digital Enhanced Cordless TelecommunicationsやWi-FI(登録商標)方式を用いた無線通信などがある。
 [外部サーバ接続確認処理]
 続いて、図3及び図8を参照しながら外部サーバ接続確認処理について説明する。なお図8は、実施の形態に係る換気制御装置2の外部サーバ接続確認処理を示すフローチャートである。図8において、Sはステップを意味する。ただし、ステップは数値の小さい順に処理されるとは限らない。
 換気制御装置2を起動すると、判定部77は、ブロードバンド用送受信部12を介して外部サーバ61にアクセスを試みる(S101)なお、外部サーバ61のアドレスは、例えばあらかじめ記憶部10に登録されている。
 ここで、外部サーバ61にアクセスが可能である場合、変更確認部79は、外部サーバ61に対して変更の確認を行う(S103)。変更確認の対象は、非接続時制御プログラム、接続時制御プログラム、目標排気総量に関する情報である。ここで、非接続時制御プログラム、接続時制御プログラムの変更は、例えば外部サーバ61に保存されている各プログラムのバージョンと、記憶部10に記憶されている各プログラムのバージョンとを比較することで判定される。また目標排気総量に関する情報は、例えば法令で指定された、排気を行う時間である所定時間に関する情報と、当該所定時間内に住宅内から排気すべき排気量に関する情報である。ここでいう所定時間は、例えば3時間であり、排気量は、建物の容量に対する倍数であり、例えば1.5倍等である。
 ここで、変更がある場合には、当該変更があるデータ、プログラムを外部サーバ61から取得し、記憶部10内のデータ、プログラムを更新する(S104Yes→S105)。保存する場所は、非接続時制御プログラムであれば、非接続時制御記憶部74、接続時制御プログラムであれば接続時制御記憶部75、目標排気量であれば記憶部10内の所定の記憶領域である。
 変更が無い場合には、上述の更新は行わない(S104No)。
 そして、判定部77の判定において、外部サーバ61にアクセスが可能であるため、制御決定部78は、制御方法として接続時制御の制御を行う決定をする。つまりそして、換気動作制御部76は、接続時制御プログラムに基づいて、通信部9を介して換気装置70を制御する(S106)。
 他方、判定部77の判定において、外部サーバ61にアクセスができない場合、変更確認部79による変更確認を行うことなく、制御決定部78は、制御方法として非接続時制御の制御を行う決定をする。そして、換気動作制御部76は、非接続時制御プログラムに基づいて、換気装置70を制御する(S102No→S107)。
 以上のように、換気制御装置2は、外部サーバ61への接続状況に応じて動的に換気装置70の制御を変更できる。このため、入居時に換気制御装置2が外部ネットワークと接続されていないような場合には、非接続時制御によって、例えば、換気制御装置2と同一メーカーである換気装置の間などで、可能な範囲で連携して動作することができる。そして、換気制御装置2が外部ネットワークと接続可能となった後には自動的に外部サーバ61を利用して、換気制御装置2と異なるメーカーが提供する換気装置も連携動作させることができる。当然ながら、外部ネットワークが開通してから改めて施工業者が訪問し、換気制御装置2の設定を変更するようなことも必要ない。
 さらに、排気装置3に風量を一定に制御できる上述の機能提供部66を利用することで、排気装置3の環境が変わった場合であっても、各排気装置3のダクト内の例えばダンパー等の抵抗(圧損)を調節・変更する必要が無く、施工業者の再訪問が不要になる。
 従来に係る換気制御装置では、外部ネットワークと接続されていない場合には、換気装置70は、単なる換気装置70としてしか機能しなかった。本実施の形態に係る換気制御装置2によれば、換気制御装置2が外部ネットワークと接続されていない場合でも同一メーカーの換気装置70の間で連携して動作することができる。さらに、本実施の形態に係る換気制御装置2が外部ネットワークと接続された場合には、外部サーバを利用することで、異なるメーカーの換気装置70とも連携して動作することができる。以下、換気制御装置2が、外部ネットワークと接続されていない場合の非接続時制御処理及び外部ネットワークと接続されている場合の接続時制御処理について述べる。
 [非接続時制御処理]
 続いて、図3、図5、図9を参照しながら、換気制御装置2の非接続時制御プログラムに基づく非接続時制御処理について説明する。図9は、実施の形態に係る換気制御装置2の非接続時制御処理を示すフローチャートである。なお、換気制御装置2は、あらかじめ情報入力用端末8によって設定された目標排気総量46と、目標排気総量46を達成させる所定の時間D(所定時間に該当し、本実施の形態においては3時間)と、建物内で法令上の換気対象となる総体積を記憶部10に記憶しているものとする。また、以下の処理は、例えば換気制御装置2に接続される複数の換気装置70が対象である。しかし、換気制御装置2とメーカーが異なる換気装置70が換気制御装置2に接続されている場合などには、換気制御装置2が外部サーバ61に接続されていないと、換気制御装置2と同一メーカーの換気装置70と連携できない場合がある。このような場合には、連携できる換気装置70の間のみで連携するものとし、連携できない換気装置70については換気制御装置2からオン・オフの制御のみが可能であるものとする。ここで、連携できる換気装置70とは、例えば換気制御装置2と同一メーカーの換気装置のことであり、連携できない換気装置70とは、例えば換気制御装置2と異なるメーカーの換気装置のことである。
 換気制御装置2は、排気風量の制御を開始するべく起点Aからタイマーを開始する(S201)。時間Dは起点Aから3時間後を示し、タイマーが時間Dに到達した後はリセットされて再び0からタイマーを開始する。これらは時間Dの設定変更がない限り、ルーチンとして繰り返される。
 ここで壁掛換気扇6が使用者の意思によってタイマー開始時の起点Aから時間Bまで30cfmの排気風量で運転し、時間Bで停止したと仮定する。この場合、起点Aのタイミングで起点Aの時刻と排気風量(30cfm)が、時間Bのタイミングでの時間Bの時刻と排気風量(0cfm)が、それぞれ送信部22から換気用受信部15を経由して排気量取得部17に送信される。
 排気量取得部17は、これら送信された情報に基づき、起点Aから時間Bまでの既排気量を算出して積算部18に送信する。当該算出は、換気装置70から情報が得られていない起点Aから時間Bの間も既に得られた条件(排気風量(30cfm))で動作しているものとして、所定の時間間隔(例えば1秒毎)で算出される。
 積算部18は、排気量取得部17が取得した既排気量を足し合わせることにより、既排気総量43を算出する(S202)。ここでは、壁掛換気扇6しか動作していないため、壁掛換気扇6の既排気量=既排気総量43となる。
 なお、排気量制御部11では、既排気総量43が目標排気総量46に到達しているか否かを常に監視する(S203)。
 ここで、既排気総量43が目標排気総量46に到達していない場合、残排気総量算出部19は、既排気総量43と目標排気総量46の差から残排気総量44を算出する(S203No→S204)。また最短排気時間算出部20は、換気制御装置2に接続されている排気装置3の最大排気能力によって残排気総量44を排気する際に必要な最短排気時間45を算出する(S205)。なお、最大排気能力は、天埋換気扇4が150cfm、壁掛換気扇6が30cfm、レンジフード5が150cfmであるものとする。
 続いて、排気設定部71は、最短排気時間45と時間Dまでに残された残時間42とを比較する(S206)。ここで時間Bの時点では残時間42が最短排気時間45よりも十分に大きい場合、排気設定部71は、現状の排気能力を維持する判断を行う(S206No→S202)。
 その後、使用者によって換気装置70の運転が行われないまま、残時間42と最短排気時間45が等しくなる時間Cに到達したとする。この場合、排気設定部71は、各排気装置3に対して強制的に最大排気量で排気運転を開始(強制最短排気運転)するよう換気用送信部16を介して指示を行う(S206Yes→S207)。
 ここで、上記処理では最短排気時間45と残時間42の比較を行い、強制最短排気運転の開始を判断(S206)するとしたが、例えば排気装置3の最大排気能力と残時間42の掛け算から得られる最大排気可能総量(図示せず)と、残排気総量44とを比較してもよい。この場合、最大排気可能総量が残排気総量44よりも大きい場合は現状を維持し、また最大排気可能総量が残排気総量44と同等以下となった場合は強制最短排気運転を開始するもので同様の効果を実現できる。
 上記指示に従い天埋換気扇4は150cfm、壁掛換気扇6は30cfm、レンジフード5は150cfm、すなわち最大排気量で時間Cから運転を開始する。これにより、時間Dにおいて目標排気総量46に到達する(S207→S202→S203の繰り返し)。
 その後、タイマーが時間Dに到達し、残排気総量44及び残時間42が0に到達し目標排気総量46を満足したと判断すると、排気設定部71は、強制最短排気運転を停止し、同時にタイマーと既排気総量43を0にリセットする(S203→S208→S209→S212)。
 図5において、所定3時間のうち時間Cから時間Dの最後の残時間42で強制最短排気運転を行ったが、もし使用者の意思によって時間Bから時間Cの間に排気装置3のいずれか、もしくは複数台が運転し、強制最短排気運転を行うより以前に目標排気総量46を満足する場合が想定される。このような場合には、排気設定部71は、強制最短排気運転は行わず現状を維持するように排気装置3に指示を出す(S208→S210)。そしてそのまま3時間が経過すればタイマーと既排気総量43を0にリセット(S211Yes→S212)する。
 上記に示す処理により、換気制御装置2は、目標排気総量46を所定時間内に満足するよう排気装置3の運転を制御することができる。またさらに、所定の3時間内で接続されるすべての排気装置3が運転した排気総量をカウントし、その排気総量が目標排気総量46を大きく超過させることなく制御を行うことで省エネルギー効果を訴求することができる。なお、上記処理は非接続時制御処理ではあるが、外部サーバ61と通信可能となった場合には、法令などにより変更される可能性のある所定時間(例えば3時間)や当該所定時間内に住宅内から排気すべき排気量を更新することで、最新の法令を順守した制御が可能となる。排気すべき排気量が更新された場合は、例えば既に記憶部10に記憶されている総体積を利用して、制御部73が取得した排気量と掛け算を行うことにより算出が可能である。なお、算出方法は法令などにより様々であるため限定しない。さらに、非接続時制御処理であるため、連携できない換気装置については既排気総量43に考慮されていないが、法令順守の観点で見た場合には確実に目標排気総量46の排気を達成することができる。
 また給気装置7は、換気制御装置2から排気装置3(天埋換気扇4、壁掛換気扇6、レンジフード5)による総排気量の情報を、受信部29を通じて受け取ることで、総排気量と同等量となる給気量を宅内に供給するよう働く。この給気装置7の動作は排気量と給気量のバランスをとることが目的であり、宅内が極端な負圧になることを防止する効果を提供するものである。
 なお、上述した非接続時制御処理は以下の構成が示されている。つまり、排気設定部71は、換気装置70が複数種の排気能力を設定可能な場合にはオン時間に加えて当該排気能力も設定する。
 また、排気設定部71は、所定時間以内に既排気総量43が目標排気総量46を超えた場合には換気装置70の排気を停止もしくは運転させない。
 また、排気設定部71は、残時間42において、排気装置3の最大の排気能力で目標排気総量46の排気総量を達成させる。
 [接続時制御処理]
 続いて、図2、図3を用いて換気制御装置2の接続時制御プログラムに基づく接続時制御処理について説明する。
 判定部77が外部サーバ61と通信可能と判断した場合には、換気動作制御部76は、接続時制御プログラムに基づいて動作する。当該動作においては様々な動作があるが、一例として、例えば同一の部屋に設けられたレンジフード5(第1の換気装置)と壁掛換気扇6(第2の換気装置)を例に挙げる。また、レンジフード5のメーカーと壁掛換気扇6のメーカーとは異なるとする。例えばレンジフード5が動作を開始すると、当該動作に関する情報である例えば排気能力や周囲温度などが、換気動作制御部76を介してレンジフード5のメーカーの外部サーバ61aに送信される。外部サーバ61aは、受信した動作に関する情報を、壁掛換気扇6のメーカー、つまり、レンジフード5のメーカーとは異なるメーカーの外部サーバ61bに送信する。当該外部サーバ61bが、レンジフード5の動作に関する情報に基づいて、例えば壁掛換気扇6に動作を変更する命令を送信する。ここで動作を変更する命令とは、オン・オフの切替や風量変更などが含まれる。上記動作を変更する命令は、換気動作制御部76が通信部9を介して外部サーバ61bから受信し、通信部9を介して壁掛換気扇6に送信される。
 壁掛換気扇6は、命令を受信すると、当該命令に応じて機能提供部66を動作させる。これにより、異なるメーカーが提供する換気装置70同士で連携動作が可能となる。
 なお、接続時制御処理の詳細内容については、とくにこの制御に限定しないため、さらなる詳細については省略する。
 [提供情報と演算部による省エネルギー制御]
 図10は、実施の形態に係る換気装置70の提供情報の一例を示す図である。本実施の形態では、上記の換気装置70、例えば天埋換気扇4及び壁掛換気扇6の記憶部26、記憶部27、記憶部30で取り扱う提供情報47の例は運転状況と排気風量とした。しかしながら、図10に示すように、換気装置70固有の製品情報58と、換気装置70の現在情報59を提供情報47として換気制御装置2に送信する構成としても良い。ここで、製品情報58とは、製品ID51と、換気装置70が持つ設定可能な風量を示す排気能力52と、換気装置70が搭載しているセンサの種類を示す搭載センサ53などがある。また、現在情報59とは、現在の運転状況を示す現在風量54と、搭載センサの検知状況を示すセンサ状態55と、使用者が強制的に換気装置を運転させているか否かを示す強制運転56と、現在風量での消費電力を示す消費電力57などがある。
 これら換気装置70固有の製品情報58と現在情報59により、演算部72は、例えば接続される個々の換気装置70の電気特性を把握し、最も消費電力が少なくなる換気装置70の組み合わせを選択することができる。これにより、換気制御装置2は、目標排気総量46を満足するだけでなく、消費電力も抑制する排気制御を実現することも可能となる。
 図11は、実施の形態に係る換気制御装置2が選択する換気装置70の組み合わせを示す図である。図11には、宅内において所定時間内に必要な排気風量を250cfmとした場合の換気装置70の組み合わせを示している。この場合、演算部72は、個々の換気装置70の風量とその消費電力の情報から消費電力が最も低くなる最適な組み合わせ65を選択し、換気装置70を制御することが実現可能となる。
 以上のように、本発明に係る換気制御装置、換気システムは、外部サーバへの接続状況に応じて動的に換気装置の制御を変更できるため、戸建て住宅やマンション等の複合住宅に適用可能である。
 1  一般住宅
 2  換気制御装置
 3  排気装置
 4  天埋換気扇
 5  レンジフード
 6  壁掛換気扇
 7  給気装置
 8  情報入力用端末
 9  通信部
 10,26,27,30  記憶部
 11  排気量制御部
 12  ブロードバンド用送受信部
 13  排気能力記憶部
 14  目標排気総量記憶部
 15  換気用受信部
 16  換気用送信部
 17  排気量取得部
 18  積算部
 19  残排気総量算出部
 20  最短排気時間算出部
 22,23,28  送信部
 24,25,29  受信部
 31  CPU
 32  RAM
 33  ROM
 34  HDD
 36  無線通信モジュール
 37  有線通信モジュール
 38  宅内ネットワーク
 40  マイクロコンピュータ
 41  内部バス
 42  残時間
 43  既排気総量
 44  残排気総量
 45  最短排気時間
 46  目標排気総量
 47  提供情報
 51  製品ID
 52  排気能力
 53  搭載センサ
 54  現在風量
 55  センサ状態
 56  強制運転
 57  消費電力
 58  製品情報
 59  現在情報
 60  外部ネットワーク
 61  外部サーバ
 65  組み合わせ
 66  機能提供部
 70  換気装置
 71  排気設定部
 72  演算部
 73  制御部
 74  非接続時制御記憶部
 75  接続時制御記憶部
 76  換気動作制御部
 77  判定部
 78  制御決定部
 79  変更確認部
 80  モータ
 81  モータ制御回路
 82  固定子
 83  回転子
 84  交流変換回路
 85  平滑コンデンサ
 86  インバータ回路
 87a,87b,87c,87d,87e,87f  スイッチング素子
 88  第1アーム
 89  第2アーム
 90  第3アーム
 91  シャント抵抗
 92  増幅部
 93  電流検出部
 94  回転検出部
 95  風量演算部
 96  速度制御部
 97  目標風量演算部
 98  増幅率変更部

Claims (8)

  1. 建物の内外の間で空気を搬送可能な複数の換気装置と通信可能に接続され複数の前記換気装置の動作を制御する換気制御装置であって、
     前記換気装置と宅内ネットワークを介して通信する宅内通信モジュールと、
     前記建物の外に設けられた外部サーバと外部ネットワークを介して通信する外部通信モジュールと、
     前記外部通信モジュールを介した前記外部サーバとの通信の可否を判定する判定部と、
     前記判定部の判定結果に基づいて前記換気装置の制御方法を決定する制御決定部と、
     前記制御決定部が決定した制御方法に基づいて前記換気装置を制御する換気動作制御部と、を備えた換気制御装置。
  2. 前記外部通信モジュールが前記外部サーバに接続していない場合における前記換気装置の制御仕様である非接続時制御プログラムを記憶する非接続時制御記憶部と、
    前記外部通信モジュールが前記外部サーバに接続している場合における前記換気装置の制御仕様である接続時制御プログラムを記憶する接続時制御記憶部と、を備え、
    前記換気動作制御部は、
     前記判定部により前記外部通信モジュールが前記外部サーバと接続されていないと判定された場合には前記制御決定部により決定された前記非接続時制御プログラムに基づいて前記換気装置を制御し、
     前記判定部により前記外部サーバと接続されていると判定された場合には前記制御決定部により決定された前記接続時制御プログラムに基づいて前記換気装置を制御する請求項1に記載の換気制御装置。
  3. 前記接続時制御プログラムに基づく前記換気動作制御部の制御は、
     前記外部サーバに保存された前記接続時制御プログラムを取得し、前記外部サーバに保存された前記接続時制御プログラムに基づいて前記換気装置を制御する請求項2に記載の換気制御装置。
  4. 前記接続時制御プログラムに基づく前記換気動作制御部の制御は、
     複数の前記換気装置のうちの第1の換気装置の動作に関する情報を前記外部サーバに送信し、
     前記外部サーバから複数の前記換気装置のうちの第2の換気装置の動作の変更に関する情報を取得し、
     前記変更に関する情報に基づいて前記第2の換気装置の動作を変更する命令を前記第2の換気装置に送信する請求項2に記載の換気制御装置。
  5. 所定時間以内に排気すべき排気量の総量である目標排気総量を記憶する目標排気総量記憶部と、
    前記換気制御装置に接続された少なくとも1つの前記換気装置それぞれの排気能力を記憶する排気能力記憶部と、
    前記換気制御装置に接続された少なくとも1つの前記換気装置それぞれが排気した既排気量を取得する排気量取得部と、
    前記排気量取得部が取得した既排気量を積算して既排気総量を算出する積算部と、
    前記積算部が積算した前記既排気総量と前記目標排気総量記憶部が記憶する前記目標排気総量と前記所定時間に到達するまでの残時間と前記排気能力記憶部が記憶する前記換気装置の排気能力とに基づいて前記残時間以内に前記目標排気総量の排気を達成するように、前記換気制御装置に接続された少なくとも1つの前記換気装置を制御する排気量制御部と、
    を備えた請求項1に記載の換気制御装置。
  6. 前記排気量制御部は、
     前記排気能力で前記目標排気総量を達成するための最短排気時間を算出する最短排気時間算出部と、
     少なくとも前記所定時間に到達するよりも前記最短排気時間以上前のタイミングで前記積算部が算出した前記既排気総量と前記目標排気総量とに基づいて前記目標排気総量に到達するまでに必要な残りの排気総量である残排気総量を算出する残排気総量算出部と、
     前記残排気総量算出部が算出した残排気総量を基に、前記換気制御装置に接続された少なくとも1つの前記換気装置のオン時間を設定する排気設定部と、
    を備えた請求項5記載の換気制御装置。
  7. 前記残時間と少なくとも1つの前記換気装置それぞれの単位時間あたりのエネルギー効率及び前記エネルギー効率に対応する排気量とに基づいて、前記残時間で前記目標排気総量の排気を達成させ、且つ最も前記エネルギー効率が高い少なくとも1つの前記換気装置の制御パターンを演算する演算部を備え、
    前記排気設定部は、
     前記演算部の演算結果に基づいて接続された少なくとも1つの前記換気装置を制御する請求項5に記載の換気制御装置。
  8. 建物の内外の間で空気を搬送可能な複数の換気装置と、
    前記換気装置と通信可能に接続され、複数の前記換気装置の動作を制御する換気制御装置とを備えた換気システムであって、
    前記換気制御装置は、
     前記換気装置と宅内ネットワークを介して通信する宅内通信モジュールと、
     前記建物の外に設けられた外部サーバと外部ネットワークを介して通信する外部通信モジュールと、
     前記外部通信モジュールを介した前記外部サーバとの通信の可否を判定する判定部と、
     前記判定部の判定結果に基づいて前記換気装置の制御方法を決定する制御決定部と、
     前記制御決定部が決定した制御方法に基づいて前記換気装置を制御する換気動作制御部と、を備え、
    前記換気装置は、
     モータと、
     前記モータを制御するモータ制御回路とを備え、
    前記モータ制御回路は、
     上段と下段からなり、相反するON/OFF動作を行う2つのスイッチング素子を直流電圧に直列に接続してなる三つのアームを三相ブリッジ状に結線し、三相PWM方式の交流電圧を前記モータに印加するインバータ回路と、
     前記インバータ回路の各相の下段と負電位側の間に相ごとに挿入したシャント抵抗と、
     前記シャント抵抗の端子間電圧を増幅する増幅部と、
     前記増幅部の出力から前記モータに流れる各相の電流を検出する電流検出部と、
     前記電流検出部で検出された電流に基づいて前記モータの回転数を検出する回転検出部と、
     前記電流検出部で検出した各相の電流値のうちいずれか1相の電流値と目標風量に対応する目標電流値とを比較するとともに、前記回転検出部で検出される回転数と前記目標風量に対応する目標回転数とを比較する風量演算部と、
     前記風量演算部の比較結果に基づいて、前記インバータ回路に対してデューティを可変させて前記モータの回転数を制御する速度制御部と、を備えた換気システム。
PCT/JP2017/005877 2016-03-17 2017-02-17 換気制御装置及び換気システム WO2017159208A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CA3011578A CA3011578A1 (en) 2016-03-17 2017-02-17 Ventilation control apparatus and ventilation system
US16/069,577 US10782042B2 (en) 2016-03-17 2017-02-17 Ventilation control apparatus and ventilation system
JP2018505368A JP6941767B2 (ja) 2016-03-17 2017-02-17 換気制御装置及び換気システム
CN201780010458.7A CN108603682B (zh) 2016-03-17 2017-02-17 换气控制装置以及换气系统

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016-053355 2016-03-17
JP2016053355 2016-03-17
JP2016-187655 2016-09-27
JP2016187655 2016-09-27

Publications (1)

Publication Number Publication Date
WO2017159208A1 true WO2017159208A1 (ja) 2017-09-21

Family

ID=59850924

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/005877 WO2017159208A1 (ja) 2016-03-17 2017-02-17 換気制御装置及び換気システム

Country Status (5)

Country Link
US (1) US10782042B2 (ja)
JP (1) JP6941767B2 (ja)
CN (1) CN108603682B (ja)
CA (1) CA3011578A1 (ja)
WO (1) WO2017159208A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018054164A (ja) * 2016-09-27 2018-04-05 パナソニックIpマネジメント株式会社 換気制御装置
WO2019058569A1 (ja) * 2017-09-20 2019-03-28 シャープ株式会社 空気清浄機およびネットワークシステム
JP2019066120A (ja) * 2017-10-03 2019-04-25 リンナイ株式会社 換気システム
JP2019168187A (ja) * 2018-03-26 2019-10-03 パナソニックIpマネジメント株式会社 換気制御装置及び換気システム
WO2020213657A1 (ja) * 2019-04-15 2020-10-22 ダイキン工業株式会社 ファンユニット、ファンユニットシステム及び空気処理システム
US11614244B2 (en) 2019-04-15 2023-03-28 Daikin Industries, Ltd. Air conditioning system
US11976837B2 (en) 2019-04-15 2024-05-07 Daikin Industries, Ltd. Air conditioning system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017039529A1 (en) * 2015-09-03 2017-03-09 Robert Bosch (Sea) Pte. Ltd. Methods for determining a target operation point, target operation point determination devices, and user input devices
US20190063769A1 (en) * 2017-08-28 2019-02-28 Field Controls, L.L.C. Fresh air ventilation control system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004028387A (ja) * 2002-06-24 2004-01-29 Daikin Ind Ltd 空気調和装置の遠隔管理制御システム及び管理サーバ
JP2010165331A (ja) * 2008-12-16 2010-07-29 Daikin Ind Ltd 集中管理システム
JP2015142403A (ja) * 2014-01-28 2015-08-03 パナソニックIpマネジメント株式会社 換気装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110223850A1 (en) * 2011-05-16 2011-09-15 EchoFirst Inc. Method and system of ventilation for a healthy home configured for efficient energy usage and conservation of energy resources
CN102878644B (zh) * 2011-07-14 2014-12-17 王纪彭 一种数据机房变风量智能气流调控系统
JP6035942B2 (ja) * 2012-07-25 2016-11-30 ダイキン工業株式会社 モータ駆動制御装置
JP2016008794A (ja) 2014-06-25 2016-01-18 三菱電機株式会社 換気システム
CN104456813B (zh) * 2014-10-17 2017-09-26 成都四为电子信息股份有限公司 一种铁路站房给排风监控系统和方法
US10520214B2 (en) * 2015-07-01 2019-12-31 Mitsubishi Electric Corporation Air-conditioning system control apparatus and air-conditioning system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004028387A (ja) * 2002-06-24 2004-01-29 Daikin Ind Ltd 空気調和装置の遠隔管理制御システム及び管理サーバ
JP2010165331A (ja) * 2008-12-16 2010-07-29 Daikin Ind Ltd 集中管理システム
JP2015142403A (ja) * 2014-01-28 2015-08-03 パナソニックIpマネジメント株式会社 換気装置

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018054164A (ja) * 2016-09-27 2018-04-05 パナソニックIpマネジメント株式会社 換気制御装置
US11175058B2 (en) 2017-09-20 2021-11-16 Sharp Kabushiki Kaisha Air cleaner and network system
WO2019058569A1 (ja) * 2017-09-20 2019-03-28 シャープ株式会社 空気清浄機およびネットワークシステム
JPWO2019058569A1 (ja) * 2017-09-20 2020-09-03 シャープ株式会社 空気清浄機およびネットワークシステム
JP7002554B2 (ja) 2017-09-20 2022-01-20 シャープ株式会社 空気清浄機およびネットワークシステム
JP2019066120A (ja) * 2017-10-03 2019-04-25 リンナイ株式会社 換気システム
JP7033425B2 (ja) 2017-10-03 2022-03-10 リンナイ株式会社 換気システム
WO2019188156A1 (ja) * 2018-03-26 2019-10-03 パナソニックIpマネジメント株式会社 換気制御装置及び換気システム
US11874004B2 (en) 2018-03-26 2024-01-16 Panasonic Intellectual Property Management Co., Ltd. Ventilation control device and ventilation system
JP2019168187A (ja) * 2018-03-26 2019-10-03 パナソニックIpマネジメント株式会社 換気制御装置及び換気システム
US11976837B2 (en) 2019-04-15 2024-05-07 Daikin Industries, Ltd. Air conditioning system
JP2021101111A (ja) * 2019-04-15 2021-07-08 ダイキン工業株式会社 空気処理システム
CN113710965A (zh) * 2019-04-15 2021-11-26 大金工业株式会社 空气处理系统
WO2020213658A1 (ja) * 2019-04-15 2020-10-22 ダイキン工業株式会社 空気処理システム
JP7085584B2 (ja) 2019-04-15 2022-06-16 ダイキン工業株式会社 空気処理システム
CN113710965B (zh) * 2019-04-15 2022-09-06 大金工业株式会社 空气处理系统
US11614244B2 (en) 2019-04-15 2023-03-28 Daikin Industries, Ltd. Air conditioning system
AU2020259881B2 (en) * 2019-04-15 2023-04-27 Daikin Industries, Ltd. Fan unit, fan unit system, and air treatment system
WO2020213657A1 (ja) * 2019-04-15 2020-10-22 ダイキン工業株式会社 ファンユニット、ファンユニットシステム及び空気処理システム
JP2021101139A (ja) * 2019-04-15 2021-07-08 ダイキン工業株式会社 空気処理システム

Also Published As

Publication number Publication date
US10782042B2 (en) 2020-09-22
JP6941767B2 (ja) 2021-09-29
US20190024929A1 (en) 2019-01-24
CN108603682B (zh) 2021-02-09
CN108603682A (zh) 2018-09-28
CA3011578A1 (en) 2017-09-21
JPWO2017159208A1 (ja) 2019-01-24

Similar Documents

Publication Publication Date Title
WO2017159208A1 (ja) 換気制御装置及び換気システム
US10732651B2 (en) Smart-home proxy devices with long-polling
US9915435B2 (en) Intelligent HVAC control including automatic furnace shutdown event processing
US8100746B2 (en) Indoor air quality systems and methods
US10670290B2 (en) Multi air conditioner
US11686494B2 (en) Systems and methods for air temperature control using a target time based control plan
US11686488B2 (en) Systems and methods for controlling rate of change of air temperature in a building
JP6008819B2 (ja) 機器制御システム
JP6178980B2 (ja) 換気装置
WO2018061962A1 (ja) 換気制御装置
JP6175937B2 (ja) 換気制御装置、換気システムおよび建物
JP6019402B2 (ja) 換気装置
JP6116442B2 (ja) 換気システム、及び、換気システムの制御方法
JP7178550B2 (ja) 換気空調システム及び外気導入ファン
WO2014129189A1 (ja) 換気装置
WO2022147278A1 (en) Systems and methods for controlling rate of change of air temperature in a building
JP6019403B2 (ja) 換気装置
CA3014273A1 (en) Systems and methods for air temperature control using a target time based control plan

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018505368

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 3011578

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17766215

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17766215

Country of ref document: EP

Kind code of ref document: A1