WO2019188156A1 - 換気制御装置及び換気システム - Google Patents

換気制御装置及び換気システム Download PDF

Info

Publication number
WO2019188156A1
WO2019188156A1 PCT/JP2019/009554 JP2019009554W WO2019188156A1 WO 2019188156 A1 WO2019188156 A1 WO 2019188156A1 JP 2019009554 W JP2019009554 W JP 2019009554W WO 2019188156 A1 WO2019188156 A1 WO 2019188156A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust
air volume
air
supply
exhaust air
Prior art date
Application number
PCT/JP2019/009554
Other languages
English (en)
French (fr)
Inventor
一幸 小林
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to CA3092439A priority Critical patent/CA3092439A1/en
Priority to US16/978,848 priority patent/US11874004B2/en
Publication of WO2019188156A1 publication Critical patent/WO2019188156A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/0001Control or safety arrangements for ventilation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/46Improving electric energy efficiency or saving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/56Remote control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/65Electronic processing for selecting an operating mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/74Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
    • F24F11/77Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity by controlling the speed of ventilators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/56Remote control
    • F24F11/58Remote control using Internet communication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/0001Control or safety arrangements for ventilation
    • F24F2011/0002Control or safety arrangements for ventilation for admittance of outside air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/10Pressure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present invention relates to a ventilation control device and a ventilation system.
  • a ventilation system is known (see, for example, Patent Document 1).
  • the exhaust air volume or the air supply system is individually controlled so that ventilation is performed with the ventilation air volume required for the building where the ventilation system is constructed.
  • a building contractor, etc. of a building determines an exhaust air amount or an air supply amount to be assigned to each exhaust device and an air supply device, and individually for each exhaust device and the air supply device. Exhaust air volume or supply air volume was set.
  • the exhaust air volume or the supply air volume is not necessarily set in a balanced manner according to the capability of each exhaust system and the air supply apparatus. There was a fear that it was not done. That is, in the conventional ventilation system, a large exhaust air volume or air supply air volume is set to be biased to some exhaust devices or air supply devices, and as a result, useless energy may be consumed.
  • This invention was made in order to solve the said subject, and it aims at providing the ventilation system provided with the ventilation control apparatus which enables the energy saving operation of a ventilation system, and the ventilation control apparatus.
  • the ventilation control device of the present invention is connected to a plurality of exhaust devices that are installed in a building and can carry air from the inside to the outside of the building so as to communicate with each other.
  • the ventilation control device includes a total exhaust air volume reading unit, an exhaust device specification reading unit, an exhaust air volume distribution unit, and an exhaust air volume instruction unit.
  • the total exhaust air volume reading unit reads the total exhaust air volume set for the building.
  • the exhaust device specification reading unit reads the maximum exhaust air volume of each exhaust device as the specifications of each of the plurality of exhaust devices.
  • the exhaust air volume distribution unit distributes the exhaust air volume read by the total exhaust air volume read unit according to the maximum exhaust air volume of each exhaust device read by the exhaust device specification read unit, so that each of the plurality of exhaust devices Set the exhaust air volume.
  • the exhaust air volume instruction unit instructs the exhaust air volume set by the exhaust air volume distribution unit to each of the plurality of exhaust devices.
  • the ventilation system of the present invention includes a plurality of exhaust devices that are installed in a building and can convey air from the inside to the outside of the building, and a plurality of air supply units that are installed in the building and can carry air from the outside to the inside of the building.
  • An air device, a plurality of exhaust devices, and a ventilation control device connected to be communicable with the plurality of air supply devices are provided.
  • the total exhaust air amount set for the building is distributed according to the maximum exhaust air amount of each exhaust device, and the exhaust air amount of each exhaust device is set. Therefore, the exhaust air volume is set in a well-balanced manner according to the capabilities of each exhaust device. Therefore, there is an effect that the energy saving operation of the ventilation system can be enabled.
  • FIG. 1 is a connection schematic diagram of a ventilation system according to the first embodiment of the present invention.
  • FIG. 2 is a schematic functional block diagram of the ventilation control device according to the first embodiment of the present invention.
  • FIG. 3 is an electric block diagram of the ventilation control device.
  • FIG. 4 is a flowchart showing an exhaust air volume distribution process executed by the ventilation control device.
  • FIG. 5 is a flowchart showing an exhaust air volume calculation setting process executed by the ventilation control device.
  • FIG. 6 is a flowchart showing an actual exhaust air volume integration process executed by the ventilation control device.
  • FIG. 7 is a flowchart showing a supply air volume distribution process executed by the ventilation control device.
  • FIG. 8 is a flowchart showing a supply air amount calculation setting process executed by the ventilation control device.
  • FIG. 1 is a connection schematic diagram of a ventilation system according to the first embodiment of the present invention.
  • FIG. 2 is a schematic functional block diagram of the ventilation control device according to the first embodiment of the present invention.
  • FIG. 9 is a connection schematic diagram of a ventilation system according to the second embodiment of the present invention.
  • FIG. 10 is a schematic functional block diagram of a ventilation control device according to the second embodiment of the present invention.
  • FIG. 11 is a connection schematic diagram of the ventilation system.
  • FIG. 12 is a flowchart showing an exhaust air volume distribution process executed by the ventilation control device.
  • FIG. 13 is a flowchart showing group distribution exhaust air volume calculation setting processing executed in the ventilation control device.
  • FIG. 14 is a flowchart showing an in-group exhaust air volume calculation setting process executed by the ventilation control device.
  • FIG. 15 is a flowchart showing a supply air volume distribution process executed by the ventilation control device.
  • FIG. 16 is a flowchart showing the in-group supply air amount calculation setting process executed by the ventilation control device.
  • FIG. 17 is a schematic functional block diagram of a ventilation control device according to Embodiment 3 of the present invention.
  • FIG. 18 is a flowchart showing a supply air volume distribution process executed by the ventilation control device according to the third embodiment of the present invention.
  • FIG. 19 is a flowchart showing a group distribution supply air amount calculation setting process executed by the ventilation control device.
  • FIG. 1 is a connection schematic diagram of a ventilation system 40 according to the first embodiment.
  • the ventilation system 40 includes a ventilation control device 2, a plurality of exhaust devices 3, a plurality of air supply devices 4, and an input / output terminal 5.
  • the ventilation control device 2 is installed in a general house 1 which is an example of a building, and is connected to each exhaust device 3 and the air supply device 4 so as to be able to communicate with each other by wireless communication. 4 is controlled.
  • a general house 1 which is an example of a building
  • 4 is controlled.
  • the ventilation control device 2 distributes the total exhaust air volume required in the general house 1 according to the maximum exhaust air volume of each exhaust device 3, sets the exhaust air volume of each exhaust device 3, and sets the exhaust air amount to each exhaust device 3. Instruct the exhaust air volume set for the air flow.
  • the ventilation control device 2 acquires the actual exhaust air volume, which is the actual exhaust air volume, from each of the exhaust devices 3 and sets the total of these actual exhaust air volumes as the total supply air volume that should be supplied to the general house 1. . Then, the ventilation control device 2 distributes the set total air supply amount according to the maximum air supply amount of each air supply device 4, sets the air supply air amount of each air supply device 4, and each air supply device 4 The air supply air volume set for the air device 4 is instructed. As a result, the exhaust air volume or the air supply volume is set in a well-balanced manner according to the capabilities of each exhaust device 3 and the air supply device 4, so that the energy saving operation of the ventilation system 40 is enabled.
  • the exhaust device 3 is installed in the general house 1 and can convey air from the inside to the outside of the general house 1, and includes a buried ventilation fan, a wall-mounted ventilation fan, a range hood, a heat exchange air fan, and the like. In FIG. 1, four exhaust ventilation fans are illustrated as the exhaust device 3.
  • the air supply device 4 is installed in the ordinary house 1 and can convey air from the outside to the inside of the ordinary house 1, and corresponds to an air supply function or an air supply fan of a heat exchange fan.
  • FIG. 1 illustrates two air supply fans as the air supply device 4.
  • the input / output terminal 5 is communicably connected to the ventilation control device 2 by wireless communication.
  • the input / output terminal 5 accepts input of information necessary for constructing the ventilation system 40 and stores it in the ventilation control device 2, or the state of the ventilation system 40. Is acquired from the ventilation control device 2 and displayed.
  • Examples of the input / output terminal 5 include portable information terminals such as mobile phones, smartphones, and tablets.
  • the input / output terminal 5 is not necessarily connected to the ventilation control device 2 by wireless communication, and may be connected to the ventilation control device 2 so as to be communicable by wired communication.
  • the input / output terminal 5 may be realized by a wall-mounted remote controller, for example.
  • FIG. 2 is a schematic functional block diagram of the ventilation control device 2.
  • FIG. 3 is an electric block diagram of the ventilation control device 2.
  • the ventilation control device 2 includes a storage unit 11, a control unit 15, and a communication unit 27.
  • the communication unit 27 is connected to the input / output terminal 28 so as to be communicable with the input / output terminal 5 by radio communication, and the exhaust / air supply is communicably connected to each exhaust device 3 and the air supply device 4 by radio communication. And a device transmission / reception unit 29.
  • the input / output terminal transmission / reception unit 28 receives information necessary for constructing the ventilation system 40 input by the input / output terminal 5 and transmits the state of the ventilation system 40 to the input / output terminal 5.
  • the input / output terminal transmission / reception unit 28 may be connected to the Internet by broadband connection, or may be connected to the input / output terminal 5 via the Internet.
  • the exhaust / air supply device transmission / reception unit 29 transmits the exhaust air amount or the air supply air amount set by the distribution by the ventilation control device 2 to each exhaust device 3 and the air supply device 4. Further, the exhaust / air supply device transmission / reception unit 29 receives information on the specifications of each exhaust device 3 and the air supply device 4 and information on the operation state including the actual exhaust air volume or the actual air supply air volume in the actual operation. Receive.
  • the storage unit 11 stores information necessary for constructing the ventilation system 40, and includes at least a total exhaust air volume storage unit 12, an exhaust device specification storage unit 13, and an air supply device specification storage unit 14.
  • the total exhaust air volume storage unit 12 stores the total exhaust air volume necessary for ventilating the general house 1.
  • the total exhaust air volume is input by the user through the input / output terminal 5 and stored in the total exhaust air volume storage unit 12 via the input / output terminal transmission / reception unit 28.
  • the total exhaust air volume is a total amount of exhaust air to be exhausted from a predetermined building within a predetermined time.
  • the predetermined time is, for example, 1 hour, 3 hours, or 1 day (24 hours). It depends on the environment and arrangements. Therefore, in the first embodiment, the predetermined time is set as an example as a time that can be arbitrarily set by the user according to laws and regulations such as the environmental standards and ventilation standards of the building where the ventilation system is constructed, or the building-specific environmental conditions. 1 hour.
  • the exhaust device specification storage unit 13 stores information related to the specifications of each exhaust device 3 for a plurality of exhaust devices 3 connected to the ventilation control device 2.
  • Each exhaust device 3 stores an ID storage unit 3a that stores identification information (for example, a manufacturing number, a MAC address, etc.) for identifying the exhaust device 3, and a specification storage that stores information related to the specifications of the exhaust device 3. Part 3b.
  • the information related to the specifications of the exhaust device 3 includes at least the maximum exhaust air volume per unit time, the minimum exhaust air amount per unit time, and the output exhaust air amount in the exhaust device 3.
  • the maximum exhaust air volume is 80 CFM and the minimum exhaust air volume is 30 CFM.
  • Information indicating 30 CFM / 40 CFM / 50 CFM / 60 CFM / 70 CFM / 80 CFM as the exhaust air volume that can be output is stored in the specification storage unit 3 b.
  • the ventilation control device 2 When the ventilation control device 2 receives the identification information of the exhaust device 3 and the information related to the specification from each exhaust device 3 via the exhaust / air supply device transmitting / receiving unit 29, the ventilation control device 2 associates the identification information with the information related to the specification. In addition, it is stored in the exhaust device specification storage unit 13. Information regarding the specifications of each exhaust device 3 may be input by the user from the input / output terminal 5, and information regarding the specifications of the exhaust device 3 received via the input / output terminal transmitting / receiving unit 28 is stored in the exhaust device specification memory. It may be stored in the unit 13.
  • the air supply device specification storage unit 14 stores information regarding the specifications of each of the air supply devices 4 for the plurality of air supply devices 4 connected to the ventilation control device 2.
  • Each air supply device 4 stores an ID storage unit 4a in which identification information for identifying the air supply device 4 (for example, a manufacturing number, a MAC address, etc.) is stored, and information related to the specifications of the air supply device 4.
  • a specification storage unit 4b stores information regarding the specifications of each of the air supply devices 4 for the plurality of air supply devices 4 connected to the ventilation control device 2.
  • Each air supply device 4 stores an ID storage unit 4a in which identification information for identifying the air supply device 4 (for example, a manufacturing number, a MAC address, etc.) is stored, and information related to the specifications of the air supply device 4.
  • a specification storage unit 4b for example, a manufacturing number, a MAC address, etc.
  • the information related to the specifications of the air supply device 4 includes at least the maximum air supply amount per unit time, the minimum air supply amount per unit time, and the air supply air amount that can be output.
  • the maximum supply air volume is 50 CFM
  • the minimum supply air volume is 30 CFM
  • the output supply air volume is Information indicating 30 CFM / 40 CFM / 50 CFM is stored in the specification storage unit 4 b.
  • the ventilation control device 2 When the ventilation control device 2 receives the identification information of the air supply device 4 and the information related to the specification from each air supply device 4 via the exhaust / air supply device transmission / reception unit 29, the ventilation control device 2 Are associated and stored in the air supply device specification storage unit 14. Information regarding the specifications of each air supply device 4 may be input by the user from the input / output terminal 5, and information regarding the specifications of the air supply device 4 received via the input / output terminal transmitting / receiving unit 28 You may make it memorize
  • the control unit 15 controls operations of the plurality of exhaust devices 3 and the plurality of air supply devices 4 connected to the ventilation control device 2.
  • the control unit 15 includes a total exhaust air volume reading unit 16, an exhaust device specification reading unit 17, an exhaust air volume distribution unit 18, an exhaust air volume instruction unit 19, a notification processing unit 20, a capacity adjustment unit 21, an air supply device specification reading unit 22, It has at least an air volume distribution unit 23, a total supply air volume setting unit 24, an actual exhaust air volume acquisition unit 25, an intake air volume instruction unit 26, and an actual supply air volume acquisition unit 30.
  • the total exhaust air volume reading unit 16 reads the total exhaust air volume stored in the total exhaust air volume storage unit 12.
  • the read total exhaust air volume is used by the exhaust air volume distribution unit 18 and the capacity adjustment unit 21.
  • the exhaust device specification reading unit 17 provides information on the maximum exhaust air volume, the minimum exhaust air volume, and the exhaust air volume that can be output as the specifications of each exhaust device 3 connected to the ventilation control device 2. Read from the storage unit 13. The read information is used in the exhaust air volume distribution unit 18 and the capacity adjustment unit 21.
  • the exhaust air volume distribution unit 18 distributes the total exhaust air volume read by the total exhaust air volume reading unit 16 in accordance with the maximum exhaust air volume of each exhaust device 3 read by the exhaust device specification reading unit 17.
  • the exhaust air volume of the exhaust device 3 is set. Details of this distribution method will be described later with reference to the flowchart shown in FIG.
  • the exhaust air amount instruction unit 19 instructs the exhaust air amount set by the exhaust air amount distribution unit 18 for each exhaust device 3 to the corresponding exhaust device 3 via the exhaust / air supply device transmitting / receiving unit 29.
  • Each exhaust device 3 has a set air volume storage unit 3 c and stores the exhaust air volume instructed from the exhaust air volume instruction unit 19.
  • Each exhaust device 3 normally performs an exhaust operation with the exhaust air amount stored in the set air amount storage unit 3c, and changes to the state of the space where the exhaust device 3 is installed (humidity change, presence of people, presence of odor, etc.). The exhaust air volume is changed accordingly.
  • the notification processing unit 20 executes a process for causing the input / output terminal 5 to display setting conditions, operating conditions, and the like for each exhaust device 3 and the air supply device 4. Specifically, the notification processing unit 20 sets the exhaust air volume of each exhaust device 3 set by the exhaust air volume distribution unit 18 and the supply air amount of each air supply device 4 set by the supply air amount distribution unit 23 described later. Is displayed on the input / output terminal 5.
  • the notification processing unit 20 is acquired by an actual exhaust air volume that is an actual exhaust air volume in each exhaust device 3 acquired by an actual exhaust air volume acquisition unit 25 described later, and an actual intake air volume acquisition unit 30 described later.
  • the actual supply air volume, which is the actual supply air volume in each of the air supply devices 4 is displayed on the input / output terminal 5 as the operation status of each exhaust device 3 and the air supply device 4.
  • the notification processing unit 20 is configured such that the sum of the exhaust air volumes distributed by the exhaust air volume distributing unit 18 for each exhaust device 3 is less than the total exhaust air volume read by the total exhaust air volume reading unit 16, that is, the exhaust gas When there is a possibility that desired exhaust cannot be performed with the exhaust capability of the apparatus 3, a process for notifying that effect is executed.
  • the notification processing unit 20 is configured so that the sum of the exhaust air amounts distributed by the exhaust air amount distributing unit 18 for each exhaust device 3 exceeds the total exhaust air amount read by the total exhaust air amount reading unit 16, that is, the exhaust gas When there is a possibility of exhausting more than desired with the exhaust capability of the apparatus 3, processing for informing that effect is executed.
  • the notification processing unit 20 calculates the total supply air amount set by a later-described total supply air amount setting unit 24 as the sum of the supply air amounts distributed by the supply air amount distribution unit 23 for each of the air supply devices 4. When it is lower, that is, when there is a possibility that the desired air supply cannot be performed with the air supply capability of the air supply device 4, a process for notifying that effect is executed.
  • the notification processing unit 20 calculates the total supply air amount set by a later-described total supply air amount setting unit 24 as the sum of the supply air amounts distributed by the supply air amount distribution unit 23 for each of the air supply devices 4. In the case of exceeding, that is, when there is a possibility that the air supply capability of the air supply device 4 is more than desired, a process for notifying that is executed.
  • warning information is transmitted to the input / output terminal 5 via the input / output terminal transmitting / receiving unit 28. Based on this warning information, the input / output terminal 5 generates a warning sound or displays a warning screen, so that the user cannot perform desired exhaust with the exhaust capability of the exhaust device 3 or exhaust more than desired. It can be notified that the air supply is performed, or that the air supply capability of the air supply device 4 cannot provide the desired air supply or that the air supply is performed more than desired. Moreover, these warnings may be provided by providing a warning lamp in the ventilation control device 2 and lighting the warning lamp as the above processing.
  • the ventilation control device 2 may be configured to be able to store information for setting the validity or invalidity of the notification in the storage unit 11. Thereby, when the information for setting the notification validity is configured to be stored in the storage unit 11, the ventilation control device 2 transmits warning information to the input / output terminal 5, or sends the warning information to the ventilation control device 2. The provided warning lamp can be turned on. On the other hand, when the information for setting the notification invalidity is configured to be stored in the storage unit 11, the ventilation control device 2 does not transmit the warning information to the input / output terminal 5, and the ventilation control device 2 The provided warning lamp can be turned off. Therefore, when notification is not necessary as the specification of the ventilation control device 2, this notification can be prevented from being performed.
  • the valid / invalid setting may be performed from the input / output terminal 5 or may be performed by an operation switch (not shown) provided in the ventilation control device 2.
  • the input / output terminal 5 may be configured so that the warning information transmitted from the ventilation control device 2 can be set to be valid or invalid by the user. Thereby, in the input / output terminal 5, when the warning information transmitted from the ventilation control device 2 is set to be valid, a warning sound can be generated or a warning screen can be displayed based on the warning information. On the other hand, in the input / output terminal 5, when the warning information transmitted from the ventilation control device 2 is set to be invalid, it is possible to disable the sounding of the warning sound based on the warning information and the display of the warning screen. .
  • the capacity adjusting unit 21 calculates an integrated air volume obtained by integrating the actual exhaust air volume in each exhaust device 3 acquired by an actual exhaust air volume acquiring unit 25 described later, and the integrated air volume and the total exhaust air volume reading unit 16 The exhaust air volume of each exhaust device 3 is adjusted according to the total exhaust air volume required per predetermined time in the recognized ordinary house 1.
  • the capacity adjustment unit 21 instructs each exhaust device 3 to stop operation. .
  • the capacity adjustment unit 21 asks each exhaust device 3 to complete the exhaust with the total exhaust air volume in the predetermined time. To instruct operation at the maximum exhaust air volume.
  • the capacity adjustment unit 21 calculates an integrated air volume that is expected to be achieved in a predetermined time from the current integrated air volume, calculates an excess or deficiency with respect to the total exhaust air volume, and determines each exhaust device according to the magnitude of the excess or deficiency. 3 may be adjusted.
  • the air supply device specification reading unit 22 is configured to specify the maximum air supply amount, the minimum air supply amount, and the outputable air flow rate of each air supply device 4 as the specifications of each air supply device 4 connected to the ventilation control device 2.
  • the information is read from the air supply device specification storage unit 14.
  • the read information is used in the supply air volume distribution unit 23.
  • the actual exhaust air volume acquisition unit 25 acquires the actual exhaust air volume that is the actual exhaust air volume from each exhaust device 3. Each exhaust device 3 has an actual air volume storage unit 3d, and the exhaust air volume by actual operation is stored in the actual air volume storage unit 3d.
  • the actual exhaust air volume acquisition unit 25 acquires the actual exhaust air volume stored in the actual air volume storage unit 3d from each exhaust device 3 via the exhaust / air supply device transceiver unit 29.
  • the acquired actual exhaust air volume is used by the notification processing unit 20, the capacity adjusting unit 21, and the total supply air volume setting unit 24.
  • the total supply air volume setting unit 24 sets the total of the actual exhaust air volumes of the respective exhaust devices 3 acquired by the actual exhaust air volume acquisition unit 25 as the total supply air volume to be supplied to the general house 1. In this way, the total exhaust air volume stored and set in the total exhaust air volume storage unit 12 is not set as the total intake air volume, but the total actual exhaust air volume is set as the total intake air volume. In addition, it is possible to balance exhaust and air supply.
  • the total supply air volume setting unit 24 adds a certain ratio or a value obtained by adding an air volume to the general house 1 with respect to the total of the actual exhaust air volumes of the respective exhaust devices 3 acquired by the actual exhaust air volume acquisition unit 25. It may be set as the total supply air volume to be supplied. Thereby, in the ventilation system 40, the supercharging function which performs the air supply operation which added a fixed ratio or air volume with respect to the actual exhaust air volume is realizable.
  • the supply air amount distribution unit 23 distributes the total supply air amount set by the total supply air amount setting unit 24 according to the maximum supply air amount of each of the supply devices 4 read by the supply device specification reading unit 22. By doing so, the supply air volume of each supply device 4 is set. Details of this distribution method will be described later with reference to the flowchart shown in FIG.
  • the supply air amount instruction unit 26 sends the supply air amount set by the supply air amount distribution unit 23 for each supply device 4 to the corresponding supply device 4 via the exhaust / supply device transmission / reception unit 29. Instruct.
  • Each air supply device 4 has a set air volume storage unit 4 c and stores the air supply air volume instructed from the air supply air volume instruction unit 26.
  • Each air supply device 4 normally performs an air supply operation with the air supply amount stored in the set air amount storage unit 4c, and changes the air supply air amount according to the operating state of the exhaust device 3.
  • the actual supply air volume acquisition unit 30 acquires the actual supply air volume that is the actual supply air volume from each of the air supply devices 4.
  • Each air supply device 4 has an actual air volume storage unit 4d, and the air supply air volume by actual operation is stored in the actual air volume storage unit 4d.
  • the actual supply air volume acquisition unit 30 acquires the actual supply air volume stored in the actual air volume storage unit 4 d from each supply device 4 via the exhaust / air supply device transmission / reception unit 29.
  • the acquired actual supply air volume is displayed on the input / output terminal 5 by the notification processing unit 20 as indicating the operating status of each supply device 4.
  • the ventilation control device 2 is provided as a microcomputer as shown in FIG. That is, the ventilation control device 2 includes a CPU (Central Processing Unit) 31, a ROM (Read Only Memory) 33, a RAM (Random Access Memory) 32 as a storage unit 11, and a data flash memory 34. 36 is connected.
  • the ventilation control device 2 also includes a wireless communication module 35 as a device that functions as the communication unit 27, and the wireless communication module 35 is also connected to the internal bus 36.
  • the wireless communication module 35 enables communication by wireless communication with the input / output terminal 5, the exhaust device 3, and the air supply device 4 connected to the ventilation control device 2.
  • the CPU 31 uses, for example, the RAM 32 as a work area, executes a program stored in the ROM 33 or the data flash memory 34, and sends and receives data and commands to and from the storage unit 11 and each device based on the execution result. To control the operation.
  • the control unit 15 and each unit belonging to the control unit 15 are programs stored in the ROM 33 and the data flash memory 34, and execute predetermined processes by being executed by the CPU 31.
  • the data flash memory 34, the ROM 33, and the RAM 32 are not necessarily limited thereto, and other types of memories can be used as long as they function as memories.
  • the device such as the wireless communication module 35 is not necessarily provided in the microcomputer, and may be an external connection device.
  • FIG. 4 is a flowchart showing the exhaust air volume distribution process.
  • the exhaust air volume distribution process is a process of distributing the total exhaust air volume set for the general house 1 according to the maximum exhaust air volume of each exhaust device 3 and setting the exhaust air volume of each exhaust device 3. Further, the exhaust air volume distribution processing calculates an integrated air volume obtained by integrating the actual exhaust air volume in each exhaust device 3, and the exhaust air flow of each exhaust device 3 according to the integrated air volume and the total exhaust air volume required per predetermined time. Processing to adjust the air volume is also performed.
  • this exhaust air volume distribution process it is detected that a connection of a new exhaust device 3 is input from the input / output terminal 5 to the ventilation control device 2 or that a part of the connected exhaust device 3 has failed. This is executed when there is a change in the number of connected exhaust devices 3 that can be controlled. When a failure of some of the connected exhaust devices 3 is detected, the exhaust air volume distribution process is performed except for the exhaust device 3 where the failure is detected.
  • the detection of the failure of the exhaust device 3 may be performed by receiving a notification notifying the abnormality from the exhaust device 3 via the exhaust / air supply device transmitting / receiving unit 29, or of the exhaust device 3 received from the exhaust device 3. You may make it the ventilation control apparatus 2 judge by seeing a driving
  • the ventilation control device 2 reads the necessary total exhaust air volume set in the general house 1 from the total exhaust air volume storage unit 12 (S11). The process of S11 is executed by the total exhaust air volume reading unit 16. Next, the ventilation control device 2 reads information for specifying the exhaust device 3 connected to the ventilation control device 2 (S12). In S12, for example, the ventilation control device 2 accesses the exhaust device 3 connected via the exhaust / air supply device transmission / reception unit 29, and acquires the identification information stored in the ID storage unit 3a of each exhaust device 3. Thus, information for specifying the exhaust device 3 is read out. When the ventilation control device 2 directly accesses the exhaust device 3, the exhaust air volume can be distributed to the communicable exhaust device 3.
  • the ventilation control device 2 uses the information on the specifications of each exhaust device 3 specified by the processing of S12 as the information on the maximum exhaust air volume, the minimum exhaust air amount, and the output possible exhaust air amount of each exhaust device 3, and the exhaust device. Read from the specification storage unit 13 (S13). The processing of S13 is executed by the exhaust device specification reading unit 17.
  • the ventilation control device 2 executes the exhaust air volume calculation setting process (S14).
  • the exhaust air volume calculation setting process in S14 uses the information such as the total exhaust air volume read out in the process of S11 and the maximum exhaust air volume of each exhaust apparatus 3 read out in the process of S13, and the like. Is a process of calculating the exhaust air volume to be set. Details of the exhaust air volume calculation setting process will be described later with reference to FIG.
  • the ventilation control device 2 executes the actual exhaust air volume integration process (S15), and ends the exhaust air volume distribution process.
  • S15 an integrated air volume obtained by integrating the actual exhaust air volume in each exhaust device 3 is calculated, and according to the integrated air volume and the total exhaust air volume required per predetermined time, This is a process for adjusting the exhaust air volume. Details of the actual exhaust air volume integration processing will be described later with reference to FIG.
  • FIG. 5 is a flowchart showing the exhaust air volume calculation setting process (S14).
  • the exhaust air volume calculation process (S14) will be described while exemplifying a case where the total exhaust air volume set in the general house 1 is 320 CFM and the exhaust air volumes are distributed to the three exhaust devices ⁇ , ⁇ , ⁇ . To do. Exhaust devices ⁇ , ⁇ , and ⁇ can output exhaust air volume in increments of 10 CFM, and the maximum exhaust air volume / minimum exhaust air volume are 200/50 for exhaust device ⁇ and 150/50 for exhaust device ⁇ . Assume that the device ⁇ is 80/30.
  • the total exhaust air volume read by the total exhaust air volume reading unit 16 is the total amount of exhaust air to be exhausted from a predetermined building within a predetermined time, as described above.
  • the air volume to be exhausted per minute is set for each exhaust device 3 as the exhaust air volume. Therefore, in the exhaust air volume calculation setting process (S14), the total exhaust air volume distributed to each exhaust device 3 is changed from the total exhaust air volume read by the total exhaust air volume reading unit 16 to the total exhaust air volume to be exhausted per minute. Use the converted one.
  • the ventilation control device 2 first selects the exhaust device 3 for setting the exhaust air amount, and determines the order of the exhaust devices 3 to be set (S21). Specifically, the exhaust device 3 connected to the ventilation control device 2 specified by the processing of S12 of the exhaust air volume distribution processing (FIG. 4) is selected as the exhaust device 3 for setting the exhaust air volume, and the maximum exhaust air volume is set. The order of the exhaust devices 3 set in descending order is determined. In the above example, the exhaust air volume is set in the order of the exhaust device ⁇ , the exhaust device ⁇ , and the exhaust device ⁇ .
  • the ventilation control device 2 determines whether or not to distribute the exhaust air amount to the first exhaust device 3, that is, whether or not one exhaust air amount has not yet been distributed to the exhaust device 3. (S22). If it is determined that the exhaust air volume is distributed to the first exhaust device 3 (no exhaust air volume is distributed to the exhaust device 3 yet) (S22: Yes), then one The exhaust air volume for the eye exhaust device 3 (exhaust device ⁇ in the above example) is calculated by the following equation (1), and the total exhaust air volume is distributed (S23).
  • Exhaust air volume of the exhaust device 3 total exhaust air volume x maximum exhaust air volume of the exhaust device 3 / total of all maximum exhaust air volumes (1)
  • the exhaust air volume of the exhaust device ⁇ is calculated as follows.
  • the outputable exhaust air volume of the first exhaust device 3 that is equal to or larger than the exhaust air amount calculated by the processing of S23 and is closest to the exhaust air amount is set as the exhaust air amount to be distributed to the first exhaust device 3. (S24).
  • the exhaust air volume of the exhaust device ⁇ is set to 150 CFM.
  • the exhaust air volume of the first exhaust device 3 is set to the maximum exhaust air volume. Set to air volume.
  • the exhaust air volume of the first exhaust device 3 is set to the minimum exhaust air volume. Set to. Thereby, it is possible to prevent the exhaust air volume from being distributed outside the capacity range for the exhaust device 3.
  • the exhaust air volume set in the process of S24 is instructed to the corresponding exhaust device 3 via the exhaust / air supply device transmitting / receiving unit 29. That is, the process of S24 is executed by the exhaust air volume instruction unit 19.
  • the outputable exhaust air volume of the first exhaust device 3 that is equal to or larger than the exhaust air amount calculated in the process of S23 and is closest to the exhaust air volume is distributed to the first exhaust device 3.
  • the exhaust air volume is set as the exhaust air volume
  • the present invention is not necessarily limited to this.
  • the outputable exhaust air volume of the first exhaust device 3 closest to the exhaust air amount calculated by the process of S23 may be set as the exhaust air amount distributed to the first exhaust device 3.
  • the outputable exhaust air volume of the first exhaust device 3 that is equal to or less than the exhaust air amount calculated by the processing of S23 and is closest to the exhaust air amount is set as the exhaust air amount to be distributed to the first exhaust device 3. May be.
  • Exhaust air volume (remaining air volume) previous exhaust air volume (remaining air volume)-last allocated air volume (2)
  • the previous exhaust air volume (remaining air volume) is the total of the exhaust air volume (remaining air volume) that has not been allocated at the time of the previous exhaust air volume allocation
  • the immediately previous allocated air volume is the exhaust device 3 that has been allocated immediately before Is the exhaust air volume allocated to.
  • the exhaust air volume for the exhaust device 3 to be distributed next is calculated by the following expression (3) using the exhaust air volume (remaining air volume) calculated by the expression (2), and the total exhaust air volume is allocated. (S27).
  • Exhaust air volume of the exhaust device 3 exhaust air volume (remaining air volume) ⁇ the maximum exhaust air volume of the exhaust device 3 / the sum of the unallocated maximum exhaust air volume (3)
  • the sum of the undistributed maximum exhaust air volume is the sum of the maximum exhaust air volumes in the undistributed exhaust device 3.
  • the outputable exhaust air volume of the distribution target exhaust device 3 that is equal to or larger than the exhaust air flow calculated in the process of S27 and that is closest to the exhaust air flow is set as the exhaust air volume distributed to the distribution target exhaust device 3. (S28).
  • the exhaust air volume of the exhaust device 3 is set to the maximum exhaust air volume or the minimum exhaust air volume.
  • the exhaust air volume set in the process of S28 is instructed to the corresponding exhaust device 3 via the exhaust / air supply device transmitting / receiving unit 29. That is, the process of S28 is also executed by the exhaust air volume instruction unit 19.
  • the exhaust air amount of the exhaust device ⁇ is distributed as the second exhaust device 3
  • the exhaust air amount (residual air amount) is calculated in the process of S26 first.
  • the exhaust air volume that has not been allocated when the exhaust air volume of the first exhaust system ⁇ is allocated is the total exhaust air volume itself (320 CFM), and 150 CFM is allocated as the exhaust air volume to the first exhaust system ⁇ .
  • the exhaust air volume (remaining air volume) is as follows.
  • the exhaust air volume of the second exhaust device ⁇ is calculated as follows.
  • the exhaust air volume of the exhaust system ⁇ is allocated as the third exhaust system 3
  • the exhaust air volume is calculated in the process of S26 first.
  • the exhaust air volume that has not been allocated when the exhaust air volume of the second exhaust device ⁇ is allocated is 170 CFM, and 120 CFM is allocated to the second exhaust device ⁇ as the exhaust air volume. ) Is as follows.
  • the exhaust air volume (remaining air volume) calculated in the process of S26 is not changed.
  • the exhaust air volume of the exhaust device 3 is calculated. Therefore, when distributing the last exhaust device 3 as a distribution target, the processing of S27 is skipped after the processing of S26, and the exhaust air volume (remaining air volume) calculated in the processing of S26 is distributed by the exhaust device 3 to be distributed. As the calculated exhaust air volume, the process may proceed to S28.
  • all set exhaust airflows the sum of the exhaust airflows
  • the input / output terminal 5 is informed via the input / output terminal transceiver 28. Warning information indicating that the state is correct (S30), and the exhaust air volume calculation setting process is terminated.
  • the process of S30 is executed by the notification processing unit 20.
  • the input / output terminal 5 emits a warning sound or displays a warning screen based on this warning information, so that the user cannot perform desired exhaust with the exhaust capability of the exhaust device 3 or exhaust more than desired. Can tell you that it might happen.
  • the warning information includes information indicating whether or not all the set exhaust airflows are less than the total exhaust airflow.
  • each exhauster 3 is instructed to operate at the maximum exhaust airflow. Thereby, when the exhaust capability of the installed exhaust apparatus 3 is too low, each exhaust apparatus 3 can be operated with the maximum exhaust air volume, and can be as close as possible to the exhaust with the total exhaust air volume. Further, when the total set exhaust air volume is larger than the total exhaust air volume, the process of S30 instructs each exhaust device 3 to operate with the minimum exhaust air volume. Thereby, when the exhaust capability of the installed exhaust device 3 is too high, each exhaust device 3 can be operated with the minimum exhaust air volume and can be as close as possible to the exhaust with the total exhaust air volume.
  • each exhaust device 3 when warning information is transmitted to the input / output terminal 5, the operation of each exhaust device 3 may be stopped. In addition, when warning information is transmitted to the input / output terminal 5, whether or not to operate each exhaust device 3 may be selected at the time of installation of the ventilation control device 2 or by user settings.
  • each exhaust device 3 may be instructed to operate at the maximum exhaust air volume.
  • the operation of each exhaust apparatus 3 may be stopped when the exhaust air volume actually exhausted by each exhaust apparatus 3 (integrated air volume) reaches the total exhaust volume. This is because a warning is not necessarily required.
  • the exhaust air volume calculation setting process is terminated as it is.
  • the storage unit 11 stores setting information that invalidates the notification that there is a possibility that desired exhaust cannot be performed with the exhaust capability of the exhaust device 3 or that exhaust more than desired may be performed.
  • the warning information is not transmitted to the input / output terminal 5, and each exhaust gas is operated so as to operate with the maximum exhaust air volume or the minimum exhaust air volume depending on the magnitude relationship between the total exhaust air volume and the total exhaust air volume. Instruct the device 3.
  • FIG. 6 is a flowchart showing the actual exhaust air volume integration process (S15).
  • the necessary total exhaust air volume set in the general house 1 is read from the total exhaust air volume storage unit 12 (S31).
  • the process of S31 is executed by the total exhaust air volume reading unit 16.
  • the total exhaust air volume is different from the total exhaust air volume used in the exhaust air volume calculation setting process, and is the total exhaust air volume required per predetermined time (for example, 1 hour).
  • the actual exhaust air volume that is the actual exhaust air volume stored in the actual air volume storage unit 3d of each exhaust apparatus 3 is acquired from each exhaust apparatus 3 (S32).
  • the process of S32 is executed by the actual exhaust air volume acquisition unit 25.
  • each piece of information on the maximum exhaust air volume, the minimum exhaust air volume, and the outputable exhaust air volume of each exhaust device 3 is read from the exhaust device specification storage unit 13 as information on the specifications of each exhaust device 3 (S33).
  • the processing of S33 is executed by the exhaust device specification reading unit 17.
  • an integrated air volume is calculated by integrating the actual exhaust air volume exhausted from each exhaust apparatus 3 in one minute every minute from the actual exhaust air volume of each exhaust apparatus 3 acquired by the processing of S32 (S34).
  • the integrated air volume is reset to 0 every time a predetermined time elapses.
  • the actual exhaust air volume is integrated every predetermined time, and the exhaust air volume of each exhaust device 3 is adjusted according to the integrated air volume and the total exhaust air volume required per predetermined time.
  • the process of S34 is executed by the actual exhaust air volume integrating unit 60.
  • the exhaust air volume of each exhaust apparatus 3 is set to the maximum exhaust air volume. By doing so, it is possible to control so that exhaust of the total exhaust air volume in a predetermined time can be achieved as much as possible.
  • the processing of S34 to S38 is repeated every minute. Then, when it becomes an opportunity to newly start the execution of the exhaust air volume distribution process shown in FIG. 4, the processes of S34 to S38 are ended.
  • the processing of S34 to S38 is executed by the ability adjustment unit 21.
  • an integrated air volume that is expected to be achieved in a predetermined time is calculated from the current integrated air volume, an excess or deficiency with respect to the total exhaust air volume is calculated, and each exhaust device 3 according to the magnitude of the excess or deficiency.
  • the exhaust air volume may be set in a stepwise manner in accordance with each information of the maximum exhaust air volume, the minimum exhaust air volume, and the output possible exhaust air volume of each exhaust device 3 read in the process of S33. Specifically, if the integrated air volume expected to be achieved in a predetermined time is excessive with respect to the total exhaust air volume, a deceleration operation for setting the exhaust air volume of each exhaust device 3 to a small value is instructed according to the excess size. May be. Further, when the integrated air volume expected to be achieved in a predetermined time is insufficient with respect to the total exhaust air volume, an acceleration operation for setting the exhaust air volume of each exhaust device 3 to be large may be instructed according to the amount of the shortage. Good.
  • FIG. 7 is a flowchart showing the supply air volume distribution processing.
  • the sum of the actual exhaust air volumes when the exhaust device 3 is actually operated is set as the total supply air volume.
  • the total supply air volume is distributed according to the maximum supply air volume of the air supply device 4 and the supply air volume of each of the air supply devices 4 is set.
  • This supply air volume distribution process is executed after the exhaust air volume distribution process distributes the exhaust air volume to the exhaust apparatus 3 or when it is detected that some of the connected air supply apparatuses 4 have failed. Is done. When a failure of some of the connected air supply devices 4 is detected, an air supply air volume distribution process is performed except for the air supply device 4 where the failure is detected.
  • the detection of the failure of the air supply device 4 may be performed by receiving a notification of abnormality from the air supply device 4 via the exhaust / air supply device transmitting / receiving unit 29, or the supply air received from the air supply device 4.
  • the ventilation control device 2 may make a judgment by looking at the operation status of the air device 4. Further, when communication with the air supply device 4 cannot be performed for a predetermined time or more, it may be determined that the air supply device 4 has failed. In addition, when a failure of some of the air supply devices 4 is detected, the supply air volume distribution process is performed after waiting for a predetermined time required to obtain the total air supply volume (or total exhaust air volume). May be executed.
  • the actual exhaust air volume that is the actual exhaust air volume of each exhaust device 3 is read from each exhaust device 3 via the exhaust / air supply device transmitting / receiving unit 29 (S41).
  • the process of S41 is executed by the actual exhaust air volume acquisition unit 25.
  • S43 information for specifying the air supply device 4 connected to the ventilation control device 2 is read (S43).
  • S43 for example, by accessing the air supply device 4 connected via the exhaust / air supply device transmitting / receiving unit 29 and acquiring the identification information stored in the ID storage unit 4a of each air supply device 4, Information for specifying the air supply device 4 is read.
  • the ventilation control device 2 directly accesses the air supply device 4, the supply air volume can be distributed to the communicable air supply device 4.
  • each information of the maximum air supply amount, the minimum air supply amount, and the output air supply amount that can be output is supplied to each air supply device 4.
  • the process of S44 is executed by the air supply device specification reading unit 22.
  • the ventilation control device 2 executes the supply air volume calculation setting process (S45), and ends the supply air volume distribution process.
  • the supply air amount calculation setting process of S45 uses the total supply air volume set by the process of S42 and the information such as the maximum supply air volume of each of the air supply devices 4 read by the process of S44. This is a process of calculating an air supply amount to be set for the air supply device 4.
  • FIG. 8 is a flowchart showing the supply air amount calculation setting process (S45).
  • the supply air amount calculation process (S45) will be described by exemplifying a case where the total supply air amount is 320 CFM and the supply air amount is distributed to the two air supply devices ⁇ and ⁇ .
  • Each of the air supply devices ⁇ and ⁇ can output a supply air amount in increments of 10 CFM.
  • the maximum exhaust air amount / minimum exhaust air amount are 200/50 for the air supply device ⁇ and 150 / for the air supply device ⁇ . Let it be 50.
  • the ventilation control device 2 first selects the air supply device 4 for setting the air supply air amount, and determines the order of the air supply devices 4 to be set (S51). Specifically, the air supply device 4 connected to the ventilation control device 2 identified by the processing of S43 in the air supply air amount distribution processing (FIG. 7) is selected as the air supply device 4 for setting the air supply air amount. Then, the order of the air supply device 4 to be set is determined in descending order of the maximum air supply amount. In the above example, the air supply amount is set in the order of the air supply device ⁇ and the air supply device ⁇ .
  • the supply air volume By allocating the supply air volume in descending order of the maximum supply air volume, when the supply air volume is allocated to all of the air supply devices 4, the total of the supply air volume is less than the total supply air volume. The possibility can be reduced. However, in the supply air volume calculation setting process, it is not always necessary to distribute the supply air volume in the descending order of the maximum supply air volume, and the supply air volume may be distributed to the air supply device 4 in any order.
  • Air supply volume of the air supply device 4 total air supply volume ⁇ maximum air supply volume of the air supply apparatus 4 / total of all maximum air supply air volumes (4)
  • the air supply amount of the air supply device ⁇ is calculated as follows.
  • the outputable airflow volume of the first air supply device 4 that is equal to or larger than the airflow amount calculated by the process of S53 and is closest to the air supply airflow is distributed to the first air supply device 4. It sets as supply air volume to perform (S54).
  • the air supply amount of the air supply device ⁇ is set to 190 CFM.
  • the supply air of the first supply apparatus 4 Set the air flow to its maximum supply air flow. Further, in the process of S54, when the supply air volume calculated in the process of S53 is less than the minimum supply air volume of the first supply apparatus 4, the supply air volume of the first supply apparatus 4 Is set to the maximum supply air volume. Thereby, it is possible to prevent the supply air volume from being distributed outside the capacity range for the air supply device 4.
  • the air supply air volume set in the process of S54 is instructed to the corresponding air supply device 4 via the exhaust / air supply device transmitting / receiving unit 29. That is, the process of S54 is executed by the supply air volume instruction unit 26.
  • the outputable supply air volume of the first air supply device 4 that is equal to or greater than the supply air volume calculated in the process of S53 and that is closest to the supply air volume is the first supply air volume.
  • the supply air volume to be distributed to the air device 4 is set, it is not necessarily limited to this. For example, even if the outputable airflow volume of the first air supply device 4 that is closest to the airflow amount calculated by the process of S53 is set as the airflow amount to be distributed to the first air supply device 4. Good. Further, the outputable airflow volume of the first air supply device 4 that is equal to or less than the airflow amount calculated by the process of S53 and that is closest to the air supply airflow is distributed to the first air supply device 4. You may set as supply air volume to do.
  • Supply air volume (remaining air volume) previous supply air volume (remaining air volume)-last allocated air volume ... (5)
  • the previous supply air volume (remaining air volume) is the total of the supply air volume (remaining air volume) that was undistributed when the previous supply air volume was allocated, and the previous allocation air volume was allocated immediately before. This is the amount of air supplied to the air supply device 4.
  • the air supply amount for the air supply device 4 to be distributed next is calculated by the following equation (6) using the air supply amount (remaining air amount) calculated by the equation (5), and the total air supply amount is calculated. (S57).
  • Supply air volume of the air supply device 4 Supply air volume (remaining air volume) x Sum of the maximum air supply volume of the air supply apparatus 4 / Unallocated maximum supply air volume (6)
  • the sum of the unallocated maximum supply airflow is the sum of the maximum supply airflow in the undistributed supply device 4.
  • the outputable supply air volume of the distribution target air supply device 4 that is equal to or larger than the supply air flow amount calculated in the process of S57 and is closest to the supply air flow amount is distributed to the distribution target air supply device 4. It is set as the supply air volume (S58).
  • the supply air volume of the distribution target supply apparatus 4 is set to the maximum supply air volume or the minimum supply air volume.
  • the air supply amount set in the process of S58 is instructed to the corresponding air supply device 4 via the exhaust / air supply device transmitting / receiving unit 29. That is, the process of S58 is also executed by the supply air volume instruction unit 26.
  • the output possible supply air volume of the distribution target air supply device 4 closest to the supply air volume calculated by the process of S57 is supplied to the distribution target air supply device 4. You may set as supply air volume to distribute. Further, the supplyable air volume that can be output from the distribution target air supply device 4 that is equal to or less than the air supply air amount calculated by the processing of S57 and that is closest to the air supply air volume is distributed to the distribution target air supply device 4. It may be set as the air volume.
  • the processing of S56 to S58 will be described using the above example.
  • the air supply air amount (residual air amount) is calculated in the process of S56 first.
  • the supply air volume that has not been allocated when the supply air volume of the first air supply apparatus ⁇ is allocated is the total air supply volume itself (320 CFM). Since 190 CFM is allocated, the supply air volume (remaining air volume) is as follows.
  • the air supply air volume (remaining air volume) calculated in the process of S56 is not changed, and the final distribution is performed. It is calculated as the supply air volume of the target air supply device 4. Therefore, when distributing the last air supply apparatus 4 as an allocation object, the process of S57 is skipped after the process of S56, and the supply air volume (residual air volume) calculated in the process of S56 is the distribution target air supply apparatus. You may transfer to the process of S58 as the supply air volume calculated in 4.
  • all set supply air volumes are different from the total supply air volume (S59).
  • the input / output terminal 5 is passed through the input / output terminal transmitting / receiving unit 28, Warning information indicating such a state is transmitted (S60), and the supply air amount calculation setting process is terminated. Based on this warning information, the input / output terminal 5 emits a warning sound or displays a warning screen, so that the user cannot supply desired air with the air supply capability of the air supply device 4 or more than desired. It is possible to tell that there is a possibility that air supply will be performed.
  • the warning information includes information indicating whether or not all the set supply airflows are less than the total supply airflow.
  • each air supply unit 4 is instructed to operate at the maximum air supply airflow. As a result, when the air supply capacity of the installed air supply device 4 is too low, each air supply device 4 is operated with the maximum air supply amount so as to be as close as possible to the air supply with the total air supply amount. Can do. If all the set air supply airflows are larger than the total air supply airflow, in step S60, each air supply device 4 is instructed to operate with the minimum air supply airflow. As a result, when the air supply capacity of the installed air supply devices 4 is too high, each air supply device 4 is operated with the minimum air supply amount, and as close as possible to the air supply with the total air supply amount. Can do.
  • each air supply device 4 when the warning information is transmitted to the input / output terminal 5, the operation of each air supply device 4 may be stopped. Moreover, when the warning information is transmitted to the input / output terminal 5, whether or not to operate each air supply device 4 may be selected at the time of installation of the ventilation control device 2 or a user setting.
  • warning information is input / output terminal. 5 may be used to instruct each air supply device 4 to operate at the maximum exhaust air volume. Even when all the set air supply airflows are larger than the total air supply airflow, the actual air supply airflow of each air supply device 4 is controlled according to the actual airflow airflow of each air exhaust device 3, so that a good balance is achieved. This is because there is no need for warning because ventilation is possible.
  • the air supply airflow amount calculating and setting process is terminated.
  • the setting information that invalidates the notification that there is a possibility that desired air supply cannot be performed with the air supply capability of the air supply device 4 or that air supply more than desired may be performed is stored in the storage unit 11. If it is, the warning information is not transmitted to the input / output terminal 5 in the process of S60, and the maximum air supply amount or the minimum air supply amount is determined according to the magnitude relationship between the total air supply amount and the total air supply amount.
  • the air supply device 4 is instructed to operate at the air volume.
  • the total exhaust air volume set for the general house 1 is distributed according to the maximum exhaust air volume of each exhaust device 3, and each exhaust device. 3 is set.
  • the exhaust air volume is set in a well-balanced manner according to the capability of each exhaust device 3. Therefore, the energy saving operation of the ventilation system 40 can be enabled.
  • the total supply air volume is set from the sum of the actual exhaust air volumes of the exhaust devices 3, and the total supply air volume is distributed according to the maximum supply air volume of each of the air supply devices 4.
  • the supply air volume is set. Thereby, the exhaust air volume is set in a well-balanced manner according to the capability of each air supply device 4. Therefore, the energy saving operation of the ventilation system 40 can be enabled also from the aspect of air supply.
  • the exhaust and supply air can be controlled in a well-balanced manner.
  • each exhaust device 3 and the air supply device 4 connected to the ventilation control device 2 can be automatically allocated and set, the building contractor or the like of the building can set each exhaust device 3 and There is no need to individually set the exhaust air volume or the air supply volume for the air supply device 4, and complicated settings can be made unnecessary.
  • the ventilation control device 2 and the ventilation system 40 according to the second embodiment will be described with reference to FIGS.
  • the total exhaust air volume set in the general house 1 is distributed to the plurality of exhaust devices 3 installed, and the sum of the actual exhaust air volumes is used as the total supply air volume. The case where it distributes with respect to several air supply apparatus 4 was demonstrated.
  • the plurality of exhaust devices 3 and the air supply devices 4 installed in the general house 1 are divided into a plurality of groups.
  • the ventilation control apparatus 2 which concerns on 2nd Embodiment distributes the total exhaust air volume set to the general house 1 to each group first, and with respect to the exhaust apparatus 3 contained in the group in each group. Further distribute the exhaust air volume allocated. Moreover, the ventilation control apparatus 2 which concerns on 2nd Embodiment sets the sum total of the actual exhaust air volume by the exhaust apparatus 3 contained in the group for every group to the total supply air volume of the group, and supplies the supply included in the group. The total air supply amount set for the group is distributed to the air device 4.
  • the ventilation control device 2 and the ventilation system 40 according to the second embodiment will be described focusing on differences from the ventilation control device 2 and the ventilation system 40 according to the first embodiment.
  • symbol is attached
  • FIG. 9 is a connection schematic diagram of the ventilation system 40 according to the second embodiment.
  • five exhaust devices 3A to 3E (referred to as “exhaust device 3” when an arbitrary exhaust device is shown) and five air supply devices 4A to 4E are provided for the general house 1.
  • air supply device 4 In the case of showing an arbitrary air supply device, it is referred to as “air supply device 4”).
  • the exhaust devices 3A to 3E and the air supply devices 4A to 4E are divided into two groups G1 and G2.
  • the group G1 includes the exhaust devices 3A to 3C and the air supply devices 4A and 4B
  • the group G2 includes the exhaust devices 3D and 3E and the air supply devices 4C to 4E.
  • the grouping is performed by a grouping unit 52 (FIG. 10) of the ventilation control device 2 described later.
  • an air passage is formed in each level or the closed space.
  • air passages 6A and 6B are formed between the exhaust devices 3A to 3C and the air supply devices 4A and 4B
  • air passages 6C to 6E are formed between the exhaust devices 3D and 3E and the air supply devices 4C to 4E. Is done.
  • the ventilation control device 2 groups the exhaust device 3 and the air supply device 4 for each level and space, and the exhaust devices 3A to 3E are arranged so that the exhaust and the air supply are balanced in each group. And the exhaust air volume or the supply air volume of each of the air supply devices 4A to 4E is set. Thereby, the air path design from the supply space to the exhaust space can be facilitated even in each level or closed space.
  • FIG. 10 is a schematic functional block diagram of the ventilation control device 2.
  • the ventilation control device 2 according to the second embodiment is different from the ventilation control device 2 according to the first embodiment in that the storage unit 11 includes a group information storage unit 51 and the control unit 15 includes a grouping unit. 52 and the information change unit 53, and the exhaust air volume distribution unit 18 includes a group exhaust air volume distribution unit 18a and an individual exhaust air volume distribution unit 18b. Further, the processing of the supply air volume distribution unit 23 and the total supply air volume setting unit 24 is also different.
  • the group information storage unit 51 is associated with the group identification information for identifying the groups into which the exhaust devices 3A to 3E and the air supply devices 4A to 4E are divided, and the identification information of the exhaust devices and the air supply devices included in the corresponding group Remember. That is, the group information storage unit 51 stores information indicating a correspondence relationship between each exhaust device 3 and the air supply device 4 and a group including the exhaust device 3 and the air supply device 4.
  • the grouping unit 52 divides the exhaust devices 3A to 3E and the air supply devices 4A to 4E into a plurality of groups based on the information stored in the group information storage unit 51. For example, if the identification information between the exhaust devices 3A to 3C and the air supply devices 4A and 4B is stored in the group information storage unit 51 in association with the identification information of the group G1, the exhaust devices 3A to 3C are stored in the group G1. The air supply devices 4A and 4B are included. Further, if the identification information between the exhaust devices 3D and 3E and the air supply devices 4C to 4E is stored in association with the identification information of the group G2, the exhaust devices 3D and 3E and the air supply devices 4C to 4G are stored in the group G2. 4E is included.
  • the information changing unit 53 changes the information stored in the group information storage unit 51.
  • the closed space in the general house 1 may be changed by providing a new wall in the general house 1 or taking a wall on the contrary. In such a case, it is necessary to change the air path design in the general house 1.
  • the group of the air supply device 4C may be changed from the group G2 to the group G1, and a new air passage 6F may be formed instead of the air passage 6C.
  • the ventilation control device 2 increases the number of groups into which the exhaust devices 3A to 3E and the air supply devices 4A to 4E are divided, and the exhaust devices 3A to 3E included in each group.
  • the air supply devices 4A to 4E can be changed.
  • the group can be reset.
  • the initial setting or change of information stored in the group information storage unit 51 is performed by the input / output terminal 5. Then, the information is transmitted from the input / output terminal 5 to the control unit 15 via the input / output terminal transmission / reception unit 28, and the group information storage unit 51 is rewritten by the information change unit 53 according to the change content indicated by the information.
  • the initial setting or change of the grouping of the exhaust devices 3A to 3E and the air supply devices 4A to 4E can be performed.
  • the group exhaust air volume distribution unit 18a of the exhaust air volume distribution unit 18 distributes the total exhaust air volume read by the total exhaust air volume reading unit 16 to each group. Specifically, the total exhaust air volume is distributed to each group according to the sum of the maximum exhaust air volumes of the exhaust devices 3 included in each group, and the distributed exhaust air volume is set as the air volume to be exhausted by the group. Details of the group exhaust air volume distribution unit 18a will be described later with reference to FIG.
  • the individual exhaust air volume distribution unit 18b of the exhaust air volume distribution unit 18 distributes the exhaust air volume of each group distributed by the group exhaust air volume distribution unit 18a to the exhaust devices 3 included in the group. Specifically, in each group, the exhaust air volume distributed to the group is distributed according to the maximum exhaust air volume of each exhaust device 3 included in the group, and the distributed exhaust air volume is distributed to the air volume of the exhaust device 3. Set as. Details of the individual exhaust air volume distribution unit 18b will be described later with reference to FIG.
  • the total supply air volume setting unit 24 sets, for each group, the total actual exhaust air volume by the exhaust devices 3 included in the group as the total supply air volume of the group.
  • the air supply air amount distribution unit 23 uses the total air supply amount of the group set by the total air supply amount setting unit 24 for each group, and the air supply devices 4 included in the group. Are distributed in accordance with the maximum air supply amount, and the air supply amount of each air supply device 4 included in the group is set.
  • FIG. 12 is a flowchart showing the exhaust air volume distribution process.
  • the exhaust air volume distribution process is executed at the same timing as the exhaust air volume distribution process according to the first embodiment, and is also executed when information stored in the group information storage unit 51 is changed.
  • the same processes as S11 to S13 of the exhaust air volume distribution process (FIG. 4) according to the first embodiment are executed in S71 to S73.
  • a group distribution exhaust air volume calculation setting process is executed (S74), and an in-group exhaust air volume calculation setting process is further executed (S75).
  • an actual exhaust air volume integration process similar to S15 of the exhaust air volume distribution process (FIG. 4) according to the first embodiment is executed (S76), and the process exhaust air volume distribution process is terminated.
  • FIG. 13 is a flowchart showing the group distribution exhaust air volume calculation setting process (S74).
  • This group distribution exhaust air volume calculation setting process (S74) is a process of distributing the total exhaust air volume set in the general house 1 to each group.
  • the total exhaust air volume set in the general house 1 is 500 CFM
  • the group distributed exhaust air volume calculation setting process is illustrated while exemplifying the case of distributing the exhaust air volume to the two groups G1 and G2 shown in FIG. (S74) will be described.
  • the group G1 includes the exhaust devices 3A to 3C
  • the group G2 includes the exhaust devices 3D and 3E.
  • Each of the exhaust devices 3A to 3E can output an exhaust air volume in increments of 10 CFM.
  • the maximum exhaust air volume / minimum exhaust air volume is 200/50 for the exhaust device 3A, 150/50 for the exhaust device 3B, Assume that the exhaust device 3C is 80/30, the exhaust device 3D is 150/50, and the exhaust device 3E is 100/30.
  • the total exhaust air volume read by the total exhaust air volume reading unit 16 is the total amount of exhaust air to be exhausted from a predetermined building within a predetermined time.
  • the air volume to be exhausted per minute is set as the exhaust air volume for each exhaust device 3. Therefore, as the total exhaust air volume distributed to each exhaust device 3, in the group distributed exhaust air volume calculation setting process (S74), the total exhaust air to be exhausted per minute from the total exhaust air volume read by the total exhaust air volume reading unit 16 Use the amount converted.
  • the group distribution exhaust air volume calculation setting process (S74), first, a group for setting the exhaust air volume is selected, and the order of the groups to be set is determined (S81). Specifically, the groups stored in the group information storage unit 51 are selected as groups for setting the exhaust air volume, and the order of the groups to be set is in descending order of the sum of the maximum exhaust air volumes of the exhaust devices 3 included in each group. To decide. In the above example, since the sum of the maximum exhaust air volumes of the group G1 is 430 and the sum of the maximum exhaust air volumes of the group G2 is 250, the exhaust air volumes are set in the order of the group G1 and the group G2.
  • the exhaust air volume for the group G1 is calculated by the following equation (7), and the total exhaust air volume is distributed (S83).
  • Exhaust air volume of the group total exhaust air volume x sum of maximum exhaust air volume of the group / sum of all maximum exhaust air volumes (7)
  • the exhaust air volume of the group G1 is calculated as follows.
  • the exhaust air volume of the first group is set to the maximum exhaust air volume. Set to sum.
  • the exhaust air volume of the first group is set to the minimum exhaust air volume. To do. As a result, it is possible to prevent the exhaust air volume from being distributed to the exhaust device 3 outside the capacity range.
  • the outputable exhaust air volume of the first group that is equal to or larger than the exhaust air volume calculated in the process of S83 and that is closest to the exhaust air volume is used as the exhaust air volume to be distributed to the first group.
  • the outputable exhaust air volume of the first group closest to the exhaust air volume calculated by the process of S83 may be set as the exhaust air volume distributed to the first group.
  • the outputable exhaust air volume of the first group that is equal to or less than the exhaust air volume calculated by the process of S83 and that is closest to the exhaust air volume may be set as the exhaust air volume distributed to the first group.
  • Exhaust air volume (remaining air volume) previous exhaust air volume (remaining air volume)-last allocated air volume ... (8)
  • the previous exhaust air volume (remaining air volume) is the total of the unallocated exhaust air volume (remaining air volume) at the time of the previous exhaust air volume allocation. The exhaust air volume distributed.
  • the exhaust air volume for the group to be distributed next is calculated by the following expression (9) using the exhaust air volume (remaining air volume) calculated by the expression (8), and the total exhaust air volume is allocated.
  • Exhaust air volume of the group Exhaust air volume (remaining air volume) x Sum of maximum exhaust air volume of the group / Total unallocated maximum exhaust air volume ... (9)
  • the sum of the unallocated maximum exhaust air volume is the sum of the maximum exhaust air volumes in the unallocated group.
  • the outputable exhaust air volume of the allocation target group that is equal to or larger than the exhaust air volume calculated in the process of S87 and is closest to the exhaust air volume is set as the exhaust air volume distributed to the allocation target group (S88).
  • the distribution is performed when the exhaust air volume calculated in the process of S87 exceeds the sum of the maximum exhaust air volumes of the allocation target group or less than the sum of the minimum exhaust air volumes.
  • the exhaust air volume of the target group is set to the sum of the maximum exhaust air volumes or the sum of the minimum exhaust air volumes.
  • the exhaust air volume of the group G2 is allocated as the second group
  • the exhaust air volume (residual air volume) is calculated in the process of S26 first.
  • the exhaust air volume that was undistributed when the exhaust air volume of the first group G1 was allocated was the total exhaust air volume itself (500 CFM), and 320 CFM was allocated to the first group G1 as the exhaust air volume.
  • the air volume (residual air volume) is as follows.
  • the exhaust air volume of the second group G2 is set to 180 CFM.
  • the exhaust air volume (remaining air volume) calculated in the process of S86 is eventually used as it is in the process of S87, and the last group to be allocated. Is calculated as the exhaust air volume. Therefore, when allocating the last group as a distribution target, the process of S87 is skipped after the process of S86, and the exhaust air volume (remaining air volume) calculated in the process of S86 is calculated in the distribution target group. You may transfer to the process of S88 as an air volume.
  • all group set exhaust air volume the exhaust air volume set for all the groups to which the exhaust air volume has been allocated. Is determined whether or not the total sum (hereinafter referred to as “all group set exhaust air volume”) differs from the total exhaust air volume (S89).
  • the total exhaust air volume may not be reached even if all the groups to which the exhaust air volume is allocated are allocated to the maximum exhaust air volume that can be set.
  • the exhaust system 3 having a high capacity is installed in the general house 1, the total exhaust air volume may be exceeded even if all the groups to which the exhaust air volume is allocated are allocated to the settable minimum exhaust air volume. S89 determines whether such an event has occurred.
  • the input / output terminal 5 is notified via the input / output terminal transmitting / receiving unit 28. Warning information indicating such a state is transmitted (S90), and the group distribution exhaust air volume calculation setting process is terminated.
  • the process of S90 is executed by the notification processing unit 20. Based on this warning information, the input / output terminal 5 emits a warning sound or displays a warning screen, so that the user cannot perform desired exhaust with the exhaust capacity of the group or exhausts more than desired. I can tell you there is a possibility.
  • the warning information includes information indicating whether or not the exhaust airflow set for all groups is less than the total exhaust airflow.
  • the sum of the maximum exhaust airflows of the exhaust devices 3 included in the group is assigned to each group in the process of S90.
  • each group can be operated with the maximum exhaust air volume, and can be as close as possible to the exhaust with the total exhaust air volume.
  • the all group set exhaust air volume is larger than the total exhaust air volume
  • the sum of the minimum exhaust air volumes of the exhaust devices 3 included in the group is assigned to each group in the process of S90.
  • each exhaust device 3 when warning information is transmitted to the input / output terminal 5, the operation of each exhaust device 3 may be stopped. In addition, when warning information is transmitted to the input / output terminal 5, whether or not to operate each exhaust device 3 may be selected at the time of installation of the ventilation control device 2 or by user settings.
  • the warning information is displayed.
  • the total sum of the maximum exhaust air volumes of the exhaust devices 3 included in the group may be assigned to each group.
  • the operation of each exhaust apparatus 3 may be stopped when the exhaust air volume (integrated air volume) actually exhausted by each exhaust apparatus 3 reaches the total exhaust air volume. This is because there is no need for warning.
  • the group distributed exhaust air volume calculation setting process is terminated as it is.
  • the storage unit 11 stores setting information that invalidates notification that the desired exhaust cannot be performed with the exhaust capability of the group or that exhaust more than desired may be performed. It may be. If the setting information to be invalidated is stored, the warning information is not transmitted to the input / output terminal 5 in the process of S90, and according to the magnitude relationship between the all group set exhaust air volume and the total exhaust air volume.
  • Each group is assigned the sum of the maximum exhaust air volumes or the sum of the minimum exhaust air volumes of the exhaust devices 3 included in the group.
  • FIG. 14 is a flowchart showing the in-group exhaust air volume calculation setting process (S75).
  • the processes S101 to S110 of the in-group exhaust air volume calculation setting process (S75) are the same as S21 to S30 of the exhaust air volume calculation setting process (S14) (see FIG. 5) according to the first embodiment.
  • the exhaust air volume of the group assigned in the group distributed exhaust air volume calculation setting process (S74) is executed for each group, and each exhaust device 3 included in the group. On the other hand, it will be distributed according to the maximum exhaust air volume of each exhaust device 3. Then, the group distribution exhaust air amount calculation setting process (S75) is executed for all the groups, and the exhaust air amount is distributed to all the exhaust devices 3 connected to the ventilation control device 2.
  • FIG. 15 is a flowchart showing the supply air volume distribution processing. This supply air volume distribution process is executed at the same timing as the supply air volume distribution process according to the first embodiment.
  • the same process as S41 of the supply air volume distribution process (FIG. 7) according to the first embodiment is executed in S121.
  • the sum total of the actual exhaust air volume of the exhaust apparatus 3 contained in the said group is set as a required total supply air volume of each group (S122). That is, for each group, the sum of the actual exhaust air volumes of the exhaust devices 3 included in the group is used as the required total air supply amount of the group, and the supply air amount of the air supply devices 4 included in the group is distributed.
  • processing similar to S43 and S44 of the supply air volume distribution processing (FIG. 7) according to the first embodiment is executed in S123 and S124. Then, the in-group supply air volume calculation setting process is executed (S125), and the supply air volume distribution process is terminated.
  • FIG. 16 is a flowchart showing the in-group supply air amount calculation setting process (S125).
  • the processes S131 to S140 of the in-group supply air amount calculation setting process (S125) are the same as S51 to S60 of the supply air amount calculation setting process (S45) (see FIG. 8) according to the first embodiment.
  • the group supply air volume calculation setting process (S125) the total supply air volume of the group set in the process of S122 of the supply air volume distribution process (FIG. 15) is executed for each group. Are distributed according to the maximum air supply amount of each air supply device 4. Then, the group air supply amount calculation setting process (S125) is executed for all groups, and the air supply air amount is distributed to all the air supply devices 4 connected to the ventilation control device 2.
  • the plurality of exhaust devices 3 and the air supply devices 4 installed in the general house 1 are divided into a plurality of groups. Distribute airflow to each group. In each group, the exhaust air volume distributed to the exhaust devices 3 included in the group is further distributed. Moreover, the ventilation control apparatus 2 which concerns on 2nd Embodiment sets the sum total of the actual exhaust air volume by the exhaust apparatus 3 contained in the group for every group to the total supply air volume of the group, and supplies the supply included in the group. The total air supply amount set for the group is distributed to the air device 4.
  • the combination of the exhaust device 3 and the air supply device 4 can be controlled by grouping for each floor or space. You can control your mind in a well-balanced manner. Therefore, it is possible to easily design the air path from the air supply space to the exhaust space in each level or closed space.
  • the information changing unit 53 can change the group into which the exhaust devices 3A to 3E and the air supply devices 4A to 4E are divided, the air path design can be easily changed in accordance with the level of the building and the closed space. .
  • the ventilation control device 2 according to the second embodiment has the same effect as the ventilation control device 2 according to the first embodiment.
  • the ventilation control device 2 and the ventilation system 40 according to the third embodiment will be described with reference to FIGS. 17, 18, and 19.
  • the total exhaust air volume set in the general house 1 is distributed to the plurality of exhaust devices 3 installed, and the actual total exhaust of each exhaust device 3 is distributed.
  • the total air supply amount to be distributed to the air supply device 4 is set by the user regardless of whether the total exhaust air amount is distributed to the exhaust device 3 or not. The total air supply amount is distributed to the air supply device 4.
  • the ventilation control device 2 and the ventilation system 40 according to the third embodiment will be described focusing on differences from the ventilation control device 2 and the ventilation system 40 according to the first and second embodiments.
  • symbol is attached
  • FIG. 17 is a schematic functional block diagram of the ventilation control device 2 according to the third embodiment.
  • the description of a part of the configurations described in the first and second embodiments is omitted.
  • FIG. 18 is a flowchart showing a supply air volume distribution process executed by the CPU 31 of the ventilation control device 2 according to the third embodiment.
  • the necessary total supply air volume set in the general house 1 is read (S151).
  • the total air supply amount is preset by the user from the input / output terminal 5 and is stored in the total air supply amount storage unit 70 of the storage unit 11 via the input / output terminal transmission / reception unit 28.
  • the total supply air volume stored in the total supply air volume storage unit 70 is read.
  • the processing of S151 is executed by the total air supply amount reading unit 71.
  • FIG. 19 is a flowchart showing the group distribution supply air amount calculation setting process (S154).
  • This group distribution supply air volume calculation setting process (S154) is a process of distributing the total supply air volume set in the general house 1 to each group set in the grouping unit 52.
  • This group distribution supply air volume calculation setting process is the same as the group distribution exhaust air volume calculation setting process according to the second embodiment shown in FIG. That is, in the second embodiment, the total exhaust air volume is distributed to each group in the third embodiment in the same manner as the distribution of the total exhaust air volume to each group.
  • an in-group supply air amount calculation setting process is executed (S155).
  • This in-group supply air volume calculation setting process (S155) is the same process as the in-group supply air volume calculation setting process (S74) (FIG. 13) of the second embodiment. Then, after the in-group supply air volume calculation setting process (S155), the supply air volume distribution process is terminated.
  • the total air supply amount set for the general house 1 is distributed according to the maximum air supply amount of each air supply device 4, respectively.
  • the air supply amount of the air supply device 4 is set. Thereby, according to the capability of each air supply apparatus 4, an air supply air volume is set with sufficient balance. Therefore, the energy saving operation of the ventilation system 40 can be enabled.
  • the plurality of air supply devices 4 installed in the general house 1 are divided into a plurality of groups, and the total air supply amount set by the user is Allocate to each group.
  • the air supply air amount distributed to the air supply devices 4 included in the group is further distributed.
  • the plurality of air supply devices 4 installed in the general house 1 are divided into a plurality of groups, and the total air supply amount set by the user is distributed to each group.
  • the case where the air supply air amount distributed to the air supply devices 4 included in the group is further distributed has been described.
  • a plurality of air supply devices 4 installed in the general house 1 are divided into groups, and according to the maximum air supply amount of each air supply device 4 by the user.
  • the set total supply air volume may be distributed. Also by this, since the air supply air volume is set in a well-balanced manner according to the capability of each air supply device 4, the energy saving operation of the ventilation system 40 can be enabled.
  • the ventilation control device and the ventilation system can enable energy-saving operation, the ventilation control device and the ventilation system can be applied to a detached house or a complex house such as a condominium.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Fluid Mechanics (AREA)
  • Human Computer Interaction (AREA)
  • Ventilation (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

換気制御装置(2)は、総排気風量読出部(16)と、排気装置仕様読出部(17)と、排気風量配分部(18)と、排気風量指示部(19)と、を備える。総排気風量読出部(16)は、建物に対して設定される総排気風量を読み出す。排気装置仕様読出部(17)は、複数の排気装置(3)の各々の仕様として各排気装置(3)の最大排気風量を読み出す。排気風量配分部(18)は、総排気風量読出部(16)により読み出された排気風量を排気装置仕様読出部(17)により読み出された各排気装置(3)の最大排気風量に応じて配分することで、複数の排気装置(3)の各々の排気風量を設定する。排気風量指示部(19)は、複数の排気装置(3)の各々に対して、排気風量配分部(18)により設定された排気風量を指示する。

Description

換気制御装置及び換気システム
 本発明は、換気制御装置及び換気システムに関する。
 住宅等の建物に対して構築され、建物の内側から外側へ空気を搬送可能な排気装置と建物の外側から内側へ空気を搬送可能な給気装置とを各々複数有し、24時間換気を実施する換気システムが知られている(例えば、特許文献1参照)。
 このような換気システムの中には、その換気システムが構築された建物に対して必要となる換気風量で換気が行われるように、各々の排気装置及び給気装置に対して個別に排気風量又は給気風量を設定できるようにしたものがある。従来のこの種の換気システムでは、建物の建築・建設業者等が排気装置及び給気装置毎に割り当てるべき排気風量又は給気風量を判断し、各々の排気装置及び給気装置に対して個別に排気風量又は給気風量を設定していた。
特開2016-8794号公報
 しかしながら、従来の換気システムにおける各排気装置及び給気装置への排気風量又は給気風量の設定方法では、必ずしも各排気装置及び給気装置の能力に応じてバランスよく排気風量又は給気風量が設定されないおそれがあった。即ち、従来の換気システムでは、一部の排気装置又は給気装置に偏って大きな排気風量又は給気風量が設定されることとなり、結果として無駄なエネルギーを消費するおそれがあった。
 本発明は、上記課題を解決するためになされたものであり、換気システムの省エネルギー運転を可能とする換気制御装置及びその換気制御装置を備えた換気システムを提供することを目的とする。
 この目的を達成するために、本発明の換気制御装置は、建物に設置されて建物の内側から外側へ空気を搬送可能な複数の排気装置と通信可能に接続され、複数の排気装置の動作を制御する。換気制御装置は、総排気風量読出部と、排気装置仕様読出部と、排気風量配分部と、排気風量指示部と、を備える。総排気風量読出部は、建物に対して設定される総排気風量を読み出す。排気装置仕様読出部は、複数の排気装置の各々の仕様として各排気装置の最大排気風量を読み出す。排気風量配分部は、総排気風量読出部により読み出された排気風量を排気装置仕様読出部により読み出された各排気装置の最大排気風量に応じて配分することで、複数の排気装置の各々の排気風量を設定する。排気風量指示部は、複数の排気装置の各々に対して、排気風量配分部により設定された排気風量を指示する。
 また、本発明の換気システムは、建物に設置されて建物の内側から外側へ空気を搬送可能な複数の排気装置と、建物に設置されて建物の外側から内側へ空気を搬送可能な複数の給気装置と、複数の排気装置と複数の給気装置と通信可能に接続される換気制御装置と、を備えるものである。
 本発明の換気制御装置及び換気システムによれば、建物に対して設定される総排気風量が各排気装置の最大排気風量に応じて配分されて、各々の排気装置の排気風量が設定される。そのため、各排気装置の能力に応じてバランスよく排気風量が設定される。よって、換気システムの省エネルギー運転を可能にできるという効果がある。
図1は、本発明の第1実施形態に係る換気システムの接続概略図である。 図2は、本発明の第1実施形態に係る換気制御装置の概略機能ブロック図である。 図3は、同換気制御装置の電気ブロック図である。 図4は、同換気制御装置にて実行される排気風量配分処理を示すフローチャートである。 図5は、同換気制御装置にて実行される排気風量算出設定処理を示すフローチャートである。 図6は、同換気制御装置にて実行される実排気風量積算処理を示すフローチャートである。 図7は、同換気制御装置にて実行される給気風量配分処理を示すフローチャートである。 図8は、同換気制御装置にて実行される給気風量算出設定処理を示すフローチャートである。 図9は、本発明の第2実施形態に係る換気システムの接続概略図である。 図10は、本発明の第2実施形態に係る換気制御装置の概略機能ブロック図である。 図11は、同換気システムの接続概略図である。 図12は、同換気制御装置にて実行される排気風量配分処理を示すフローチャートである。 図13は、同換気制御装置にて実行されるグループ配分排気風量算出設定処理を示すフローチャートである。 図14は、同換気制御装置にて実行されるグループ内排気風量算出設定処理を示すフローチャートである。 図15は、同換気制御装置にて実行される給気風量配分処理を示すフローチャートである。 図16は、同換気制御装置にて実行されるグループ内給気風量算出設定処理を示すフローチャートである。 図17は、本発明の実施の形態3に係る換気制御装置の概略機能ブロック図である。 図18は、本発明の第3実施形態に係る換気制御装置にて実行される給気風量配分処理を示すフローチャートである。 図19は、同換気制御装置にて実行されるグループ配分給気風量算出設定処理を示すフローチャートである。
 以下、本発明を実施するための形態について添付図面を参照して説明する。なお、以下に説明する実施の形態は、いずれも本発明の好ましい一具体例を示すものである。したがって、以下の実施の形態で示される、数値、形状、材料、構成要素、構成要素の配置位置及び接続形態、並びに、ステップ(工程)及びステップの順序などは、一例であって本発明を限定する主旨ではない。よって、以下の実施の形態における構成要素のうち、本発明の最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。また、各図において、実質的に同一の構成に対しては同一の符号を付しており、重複する説明は省略又は簡略化する。
 (第1実施形態)
 まず、図1を参照して、本発明の第1実施形態に係る換気制御装置2及び換気システム40について説明する。図1は、第1実施形態に係る換気システム40の接続概略図である。
 換気システム40は、換気制御装置2と、複数の排気装置3と、複数の給気装置4と、入出力端末5とを備えて構成される。
 換気制御装置2は、建物の一例である一般住宅1内に設置され、各排気装置3及び給気装置4と無線通信により通信可能に接続されることにより、各々の排気装置3及び給気装置4の動作を制御する。換気制御装置2と各排気装置3及び給気装置4とが無線で接続されることにより、複雑な配線工事を不要とすることができる。ただし、換気制御装置2と各排気装置3及び給気装置4とを有線通信により通信可能に構成してもよい。
 特に、換気制御装置2は、一般住宅1において必要な総排気風量を各排気装置3の最大排気風量に応じて配分して、各々の排気装置3の排気風量を設定し、各排気装置3に対して設定された排気風量を指示する。
 また、換気制御装置2は、各々の排気装置3から実際の排気風量である実排気風量を取得し、これらの実排気量の合計を一般住宅1へ給気すべき総給気風量として設定する。そして、換気制御装置2は、その設定された総給気風量を各給気装置4の最大給気風量に応じて配分して、各々の給気装置4の給気風量を設定し、各給気装置4に対して設定された給気風量を指示する。これにより、各排気装置3及び給気装置4の能力に応じてバランスよく排気風量又は給気風量が設定されるので、換気システム40の省エネルギー運転を可能にしている。
 排気装置3は、一般住宅1に設置されて一般住宅1の内側から外側へ空気を搬送可能とするものであり、天埋換気扇、壁掛換気扇、レンジフード、熱交換気扇等が該当する。図1には、排気装置3として、4つの天埋換気扇を例示する。
 給気装置4は、一般住宅1に設置されて一般住宅1の外側から内側へ空気を搬送可能とするものであり、熱交換気扇の給気機能や給気ファン等が該当する。図1には、給気装置4として2つの給気ファンを例示する。
 入出力端末5は、換気制御装置2と無線通信により通信可能に接続され、換気システム40を構築するうえで必要な情報の入力を受け付けて換気制御装置2に記憶させたり、換気システム40の状態を換気制御装置2から取得して表示したりするものである。入出力端末5は、携帯電話、スマートフォン、タブレットといった携帯情報端末が例として挙げられる。
 なお、入出力端末5は、必ずしも無線通信により換気制御装置2と接続される必要はなく、有線通信により通信可能に換気制御装置2と接続されてもよい。この場合、入出力端末5は、例えば、壁掛のリモートコントローラにより実現されるものであってもよい。
 次いで、図2及び図3を参照して、換気制御装置2の各機能について説明する。図2は、換気制御装置2の概略機能ブロック図である。図3は、換気制御装置2の電気ブロック図である。
 図2に示す通り、換気制御装置2は、記憶部11と、制御部15と、通信部27とを有する。
 通信部27は、入出力端末5と無線通信により通信可能に接続される入出力端末送受信部28と、各排気装置3及び給気装置4と無線通信により通信可能に接続される排気・給気装置送受信部29とを備えている。
 入出力端末送受信部28は、入出力端末5にて入力された、換気システム40を構築するうえで必要な情報を受信し、換気システム40の状態を入出力端末5へ送信する。なお、入出力端末送受信部28は、インターネット等にブロードバンド接続するものであってもよく、インターネット経由で入出力端末5と通信可能に接続されてもよい。
 排気・給気装置送受信部29は、各排気装置3及び給気装置4に対し、換気制御装置2にて配分により設定した各々の排気風量又は給気風量を送信する。また、排気・給気装置送受信部29は、各排気装置3及び給気装置4より、各々の仕様に関する情報や、実際の運転における実排気風量又は実給気風量等を含む運転状態に関する情報を受信する。
 記憶部11は、換気システム40を構築するうえで必要な情報を記憶するものであり、総排気風量記憶部12、排気装置仕様記憶部13、給気装置仕様記憶部14を少なくとも備えている。
 総排気風量記憶部12は、一般住宅1を換気するために必要となる総排気風量を記憶するものである。総排気風量は、入出力端末5によりユーザによって入力され、入出力端末送受信部28を経由して総排気風量記憶部12に記憶される。
 この総排気風量は、当然ながら各建物の広さや部屋の数、住宅の気密性、断熱性能等に応じて異なるため、建物毎に異なる値が設定されることになる。総排気風量は、所定時間以内に所定の建物内から排気すべき排気量の総量であり、所定時間とは例えば1時間であったり、3時間であったり、1日(24時間)であったりと、環境や取り決め等により異なる。よって、第1実施形態では、所定時間を、換気システムが構築される建物の環境基準や換気基準等の法令、又は、建物固有の環境条件によってユーザが任意に設定できる時間として、一例としてこれを1時間とする。
 排気装置仕様記憶部13は、換気制御装置2に接続される複数の排気装置3について、各々の排気装置3の仕様に関する情報を記憶する。各排気装置3には、排気装置3を識別するための識別情報(例えば、製造番号、MACアドレス等)が記憶されるID記憶部3aと、排気装置3の仕様に関する情報が記憶される仕様記憶部3bとが設けられている。
 排気装置3の仕様に関する情報としては、排気装置3における、単位時間当たりの最大排気風量と、単位時間当たりの最小排気風量と、出力可能な排気風量とが少なくとも含まれる。例えば、一の排気装置3において、排気風量を30CFM(Cubic Feet per Minute)/40CFM/50CFM/60CFM/70CFM/80CFMの6段階に切り替え設定可能な場合、最大排気風量として80CFM、最小排気風量として30CFM、出力可能な排気風量として30CFM/40CFM/50CFM/60CFM/70CFM/80CFMを示す情報が、仕様記憶部3bに記憶される。
 換気制御装置2は、各々の排気装置3から、排気装置3の識別情報と、仕様に関する情報とを排気・給気装置送受信部29を経由して受信すると、識別情報と仕様に関する情報とを対応付けて、排気装置仕様記憶部13に記憶する。なお、各排気装置3の仕様に関する情報は、入出力端末5からユーザによって入力されてもよく、入出力端末送受信部28を経由して受信した排気装置3の仕様に関する情報が、排気装置仕様記憶部13に記憶されるようにしてもよい。
 給気装置仕様記憶部14は、換気制御装置2に接続される複数の給気装置4について、各々の給気装置4の仕様に関する情報を記憶する。各給気装置4には、給気装置4を識別するための識別情報(例えば、製造番号、MACアドレス等)が記憶されるID記憶部4aと、給気装置4の仕様に関する情報が記憶される仕様記憶部4bとが設けられている。
 給気装置4の仕様に関する情報としては、給気装置4における、単位時間当たりの最大給気風量と、単位時間当たりの最小給気風量と、出力可能な給気風量とが少なくとも含まれる。例えば、一の給気装置4において、給気風量を30CFM/40CFM/50CFMの3段階に切り替え設定可能な場合、最大給気風量として50CFM、最小給気風量として30CFM、出力可能な給気風量として30CFM/40CFM/50CFMを示す情報が、仕様記憶部4bに記憶される。
 換気制御装置2は、各々の給気装置4から、給気装置4の識別情報と、仕様に関する情報とを排気・給気装置送受信部29を経由して受信すると、識別情報と仕様に関する情報とを対応付けて、給気装置仕様記憶部14に記憶する。なお、各給気装置4の仕様に関する情報は、入出力端末5からユーザによって入力されてもよく、入出力端末送受信部28を経由して受信した給気装置4の仕様に関する情報が、給気装置仕様記憶部14に記憶されるようにしてもよい。
 制御部15は、換気制御装置2に接続された複数の排気装置3と複数の給気装置4との動作を制御するものである。制御部15は、総排気風量読出部16、排気装置仕様読出部17、排気風量配分部18、排気風量指示部19、報知処理部20、能力調整部21、給気装置仕様読出部22、給気風量配分部23、総給気風量設定部24、実排気風量取得部25、給気風量指示部26、実給気風量取得部30を少なくとも有している。
 総排気風量読出部16は、総排気風量記憶部12に記憶された総排気風量を読み出す。読み出された総排気風量は、排気風量配分部18及び能力調整部21にて使用される。
 排気装置仕様読出部17は、換気制御装置2に接続された各排気装置3の仕様として、各々の排気装置3の最大排気風量、最小排気風量、出力可能な排気風量の情報を、排気装置仕様記憶部13より読み出す。読み出されたこれらの情報は、排気風量配分部18及び能力調整部21にて使用される。
 排気風量配分部18は、総排気風量読出部16により読み出された総排気風量を排気装置仕様読出部17により読み出された各排気装置3の最大排気風量に応じて配分することで、各々の排気装置3の排気風量を設定する。この配分方法の詳細ついては、図5に示すフローチャートを参照して後述する。
 排気風量指示部19は、各排気装置3について排気風量配分部18により設定された排気風量を、排気・給気装置送受信部29を経由して対応する排気装置3に対して指示する。各排気装置3は、設定風量記憶部3cを有しており、排気風量指示部19から指示された排気風量を記憶する。各排気装置3は、通常時は設定風量記憶部3cに記憶された排気風量で排気運転を行い、排気装置3が設置された空間の状態(湿度変化、人の有無、臭気の有無等)に応じて排気風量を変化させる。
 報知処理部20は、各排気装置3及び給気装置4に対する設定状況や運転状況等を入出力端末5に表示させるための処理を実行する。具体的には、報知処理部20は、排気風量配分部18により設定された各排気装置3の排気風量や、後述の給気風量配分部23により設定された各給気装置4の給気風量を入出力端末5に表示させる。また、報知処理部20は、後述の実排気風量取得部25により取得された各々の排気装置3における実際の排気風量である実排気風量と、後述の実給気風量取得部30により取得された各々の給気装置4における実際の給気風量である実給気風量とを、各排気装置3及び給気装置4の運転状況として入出力端末5に表示させる。
 また、報知処理部20は、各々の排気装置3に対し排気風量配分部18により配分された排気風量の総和が総排気風量読出部16により読み出された総排気風量を下回る場合、即ち、排気装置3の排気能力では所望の排気ができない可能性がある場合に、その旨を報知するための処理を実行する。
 また、報知処理部20は、各々の排気装置3に対し排気風量配分部18により配分された排気風量の総和が総排気風量読出部16により読み出された総排気風量を上回る場合、即ち、排気装置3の排気能力では所望以上の排気が行われる可能性がある場合に、その旨を報知するための処理を実行する。
 更に、報知処理部20は、各々の給気装置4に対し給気風量配分部23により配分された給気風量の総和が後述の総給気風量設定部24により設定された総給気風量を下回る場合、即ち、給気装置4の給気能力では所望の給気ができない可能性がある場合に、その旨を報知するための処理を実行する。
 また、報知処理部20は、各々の給気装置4に対し給気風量配分部23により配分された給気風量の総和が後述の総給気風量設定部24により設定された総給気風量を上回る場合、即ち、給気装置4の給気能力では所望以上の給気が行われる可能性がある場合に、その旨を報知するための処理を実行する。
 これらの報知のための具体的な処理としては、例えば、入出力端末5に対し、入出力端末送受信部28を経由して警告情報を送信する。入出力端末5は、この警告情報に基づいて、警告音を発したり、警告画面を表示させたりすることで、ユーザに、排気装置3の排気能力では所望の排気ができない若しくは所望以上の排気が行われる旨、又は、給気装置4の給気能力では所望の給気ができない若しくは所望以上の給気が行われる旨を伝えることができる。また、換気制御装置2に警告用ランプを設け、上記処理として、その警告用ランプを点灯させることで、これらの報知を行ってもよい。
 なお、換気制御装置2は、上記報知の有効又は無効を設定する情報が、記憶部11に記憶可能に構成されてもよい。これにより、報知の有効を設定する情報が記憶部11に記憶可能に構成されている場合に、換気制御装置2は、入出力端末5に対して警告情報を送信したり、換気制御装置2に設けた警告用ランプを点灯させたりすることができる。一方、報知の無効を設定する情報が記憶部11に記憶可能に構成されている場合に、換気制御装置2は、入出力端末5に対する警告情報の送信を行わず、また、換気制御装置2に設けた警告用ランプを非点灯とすることができる。よって、換気制御装置2の仕様として報知が不要な場合は、この報知が行われないようにすることができる。この有効/無効の設定は、入出力端末5から行えるようにしてもよいし、換気制御装置2に設けられた操作スイッチ(図示せず)により行えるようにしてもよい。
 また、入出力端末5が、換気制御装置2から送信された警告情報を有効又は無効にユーザにより設定できるように構成されてもよい。これにより、入出力端末5において、換気制御装置2から送信された警告情報が有効に設定された場合は、その警告情報に基づいて、警告音を発したり、警告画面を表示したりできる。一方、入出力端末5において、換気制御装置2から送信された警告情報が無効に設定された場合は、その警告情報に基づく警告音の発音や、警告画面の表示を非実行とすることができる。
 能力調整部21は、後述の実排気風量取得部25にて取得された各々の排気装置3における実際の排気風量を積算した積算風量を算出し、その積算風量と、総排気風量読出部16により認識された一般住宅1において所定時間当たりに必要な総排気風量とに応じて、各々の排気装置3の排気風量を調整する。
 具体的には、積算風量が総排気風量に達すると判断される場合は、これ以上の排気動作が不要であるため、能力調整部21は各々の排気装置3に対して運転の停止指示を行う。一方、積算風量から所定時間で総排気風量を達成できない見込みであると判断される場合は、能力調整部21は、所定時間で総排気風量での排気を完了させるべく、各排気装置3に対して最大排気風量での運転を指示する。
 なお、能力調整部21は、現在の積算風量から所定時間で達成見込みの積算風量を算出し、総排気風量に対する過不足を算出して、その過不足の大きさに応じて、各々の排気装置3の排気風量を調整するようにしてもよい。
 給気装置仕様読出部22は、換気制御装置2に接続された各給気装置4の仕様として、各々の給気装置4の最大給気風量、最小給気風量、出力可能な給気風量の情報を、給気装置仕様記憶部14より読み出す。読み出されたこれらの情報は、給気風量配分部23にて使用される。
 実排気風量取得部25は、各々の排気装置3より実際の排気風量である実排気風量を取得する。各排気装置3は、実風量記憶部3dを有しており、実際の運転による排気風量が実風量記憶部3dに記憶される。実排気風量取得部25は、排気・給気装置送受信部29を経由して、各排気装置3から実風量記憶部3dに記憶される実排気風量を取得する。取得された実排気風量は、報知処理部20、能力調整部21及び総給気風量設定部24により使用される。
 総給気風量設定部24は、実排気風量取得部25により取得された各々の排気装置3の実排気風量の合計を、一般住宅1へ給気すべき総給気風量として設定する。このように、総排気風量記憶部12に記憶・設定された総排気風量を総給気風量とするのではなく、実排気風量の合計を総給気風量として設定するので、実際の換気運転に合わせて、排気と給気とのバランスをとることができる。
 なお、総給気風量設定部24は、実排気風量取得部25により取得された各々の排気装置3の実排気風量の合計に対して、一定の割合又は風量を加算した値を一般住宅1へ給気すべき総給気風量として設定してもよい。これにより、換気システム40において、実排気風量に対して一定の割合又は風量を加算した給気運転を行う過給機能を実現できる。
 給気風量配分部23は、総給気風量設定部24により設定された総給気風量を給気装置仕様読出部22により読み出された各給気装置4の最大給気風量に応じて配分することで、各々の給気装置4の給気風量を設定する。この配分方法の詳細ついては、図8に示すフローチャートを参照して後述する。
 給気風量指示部26は、各給気装置4について給気風量配分部23により設定された給気風量を、排気・給気装置送受信部29を経由して対応する給気装置4に対して指示する。各給気装置4は、設定風量記憶部4cを有しており、給気風量指示部26から指示された給気風量を記憶する。各給気装置4は、通常時は設定風量記憶部4cに記憶された給気風量で給気運転を行い、排気装置3の運転状況に応じて給気風量を変化させる。
 実給気風量取得部30は、各々の給気装置4より実際の給気風量である実給気風量を取得する。各給気装置4は、実風量記憶部4dを有しており、実際の運転による給気風量が実風量記憶部4dに記憶される。実給気風量取得部30は、排気・給気装置送受信部29を経由して、各給気装置4から実風量記憶部4dに記憶される実給気風量を取得する。取得された実給気風量は、報知処理部20によって、各給気装置4の運転状況を示すものとして入出力端末5に表示される。
 換気制御装置2は、図3に示すように、マイクロコンピュータとして設けられる。即ち、換気制御装置2は、内部にCPU(Central Processing Unit)31、ROM(Read Only Memory)33、記憶部11としてのRAM(Random Access Memory)32及びデータフラッシュメモリ34を備え、これらが内部バス36を介して接続されている。また、換気制御装置2は、通信部27として機能するデバイスとしての無線通信モジュール35も有しており、無線通信モジュール35も内部バス36に接続されている。無線通信モジュール35は、換気制御装置2に接続される入出力端末5、排気装置3、給気装置4との間で無線通信による通信を可能とする。
 CPU31は、例えばRAM32を作業領域として利用し、ROM33又はデータフラッシュメモリ34に記憶されているプログラムを実行し、実行結果に基づいて記憶部11や各デバイスとデータや命令を授受することにより各デバイスの動作を制御する。制御部15や、制御部15に属する各部は、ROM33やデータフラッシュメモリ34に記憶されているプログラムであり、CPU31に実行されることであらかじめ決められた処理を実行する。
 なお、データフラッシュメモリ34やROM33、RAM32は、必ずしもこれに限らず、メモリとして機能するのであれば他種のメモリを代用可能である。また、無線通信モジュール35等のデバイスは、必ずしもマイクロコンピュータ内に備える必要は無く、外部接続デバイスとしてもよい。
 次いで、図4を参照して、換気制御装置2のCPU31にて実行される排気風量配分処理について説明する。図4は、その排気風量配分処理を示すフローチャートである。排気風量配分処理は、一般住宅1に対して設定される総排気風量を各排気装置3の最大排気風量に応じて配分し、各々の排気装置3の排気風量を設定する処理である。また、排気風量配分処理は、各々の排気装置3における実排気風量を積算した積算風量を算出し、その積算風量と所定時間当たりに必要な総排気風量とに応じて、各排気装置3の排気風量を調整する処理も行う。
 この排気風量配分処理は、換気制御装置2に対し、新たな排気装置3の接続が入出力端末5より入力された場合や、接続された一部の排気装置3が故障したことが検知された場合等、制御可能な排気装置3の接続台数に変化があった場合に実行される。なお、接続された一部の排気装置3の故障が検知された場合は、その故障が検知された排気装置3を除いて、排気風量配分処理が行われる。
 排気装置3の故障の検知は、排気装置3から異常を知らせる通知を排気・給気装置送受信部29を介して受信することによって行われてもよいし、排気装置3から受信した排気装置3の運転状況を見て、換気制御装置2が判断するようにしてもよい。また、排気装置3との通信が予め定められた時間以上行えなかった場合に、排気装置3が故障したと判断してもよい。また、一部の排気装置3の故障が検知された場合は、総排気風量を得るために必要な所定時間が経過するのを待ってから、排気風量配分処理を実行するようにしてもよい。
 排気風量配分処理では、まず、換気制御装置2は、一般住宅1に設定された必要な総排気風量を総排気風量記憶部12より読み出す(S11)。このS11の処理は、総排気風量読出部16によって実行される。次いで、換気制御装置2は、換気制御装置2に接続された排気装置3を特定するための情報を読み出す(S12)。S12では、例えば、換気制御装置2は、排気・給気装置送受信部29を介して接続された排気装置3にアクセスし、各々の排気装置3のID記憶部3aに記憶された識別情報を取得することで、排気装置3を特定するための情報を読み出す。換気制御装置2が直接排気装置3にアクセスすることで、通信可能な排気装置3に対して排気風量の配分を行うことができる。
 次いで、換気制御装置2は、S12の処理により特定された各々の排気装置3の仕様に関する情報として、各排気装置3の最大排気風量、最小排気風量及び出力可能排気風量の各情報を、排気装置仕様記憶部13から読み出す(S13)。このS13の処理は、排気装置仕様読出部17によって実行される。
 そして、換気制御装置2は、排気風量算出設定処理を実行する(S14)。S14の排気風量算出設定処理は、S11の処理により読み出された総排気風量と、S13の処理により読み出された各排気装置3の最大排気風量等の情報を用いて、個々の排気装置3に対して設定すべき排気風量を算出する処理である。排気風量算出設定処理の詳細については、図5を参照して後述する。
 次いで換気制御装置2は、実排気風量積算処理を実行し(S15)、排気風量配分処理を終了する。S15の実排気風量積算処理は、各々の排気装置3における実排気風量を積算した積算風量を算出し、その積算風量と所定時間当たりに必要な総排気風量とに応じて、各排気装置3の排気風量を調整する処理である。実排気風量積算処理の詳細については、図6を参照して後述する。
 ここで、図5を参照して、排気風量算出設定処理(S14)の詳細について説明する。図5は、排気風量算出設定処理(S14)を示すフローチャートである。ここでは、一般住宅1に設定された総排気風量が320CFMであり、3つの排気装置α、β、γに対して排気風量を配分する場合を例示しながら、排気風量算出処理(S14)について説明する。排気装置α、β、γは、いずれも10CFM刻みで排気風量を出力可能であり、各々の最大排気風量/最小排気風量は、排気装置αが200/50、排気装置βが150/50、排気装置γが80/30であるとする。
 なお、総排気風量読出部16により読み出された総排気風量は、上述した通り、所定時間以内に所定の建物内から排気すべき排気量の総量である。これに対し、排気風量算出設定処理(S14)では、各排気装置3に対し、排気風量として1分当たりに排気すべき風量を設定する。よって、排気風量算出設定処理(S14)では、各排気装置3に配分する総排気風量として、総排気風量読出部16により読み出された総排気風量から1分当たりに排気すべき総排気量に換算したものを使用する。
 排気風量算出設定処理(S14)では、換気制御装置2は、まず、排気風量を設定する排気装置3を選択し、設定する排気装置3の順番を決定する(S21)。具体的には、排気風量配分処理(図4)のS12の処理により特定された、換気制御装置2に接続された排気装置3を、排気風量を設定する排気装置3として選択し、最大排気風量の大きい順に設定する排気装置3の順番を決定する。上記の例では、排気装置α、排気装置β、排気装置γの順番に、排気風量を設定する。最大排気風量の大きい順に排気風量を配分していくことで、全ての排気装置3に対して排気風量を配分した場合に、その排気風量の合計が総排気風量に満たなくなる可能性を少なくできる。ただし、排気風量算出設定処理(S14)では、必ずしも最大排気風量の大きい順に排気風量を配分する必要はなく、任意の順番で排気装置3に対し排気風量を配分してもよい。
 次いで、換気制御装置2は、1台目の排気装置3に対する排気風量の配分を行うか否か、つまり、まだ1台も排気装置3に対する排気風量の配分を行っていないか否かを判断する(S22)。そして、1台目の排気装置3に対する排気風量の配分を行う(まだ1台も排気装置3に対する排気風量の配分を行っていない)と判断される場合は(S22:Yes)、次いで、1台目の排気装置3(上記の例では排気装置α)に対する排気風量を次の(1)式にて算出し、総排気風量の配分を行う(S23)。
 当該排気装置3の排気風量
 =総排気風量×当該排気装置3の最大排気風量/全最大排気風量の総和…(1)
 例えば、上記の例では、排気装置αの排気風量を次のように算出する。
 排気装置αの排気風量=320×200/430=148.8CFM
 そして、S23の処理により算出した排気風量以上であって、その排気風量に最も近い1台目の排気装置3の出力可能排気風量を、その1台目の排気装置3に配分する排気風量として設定する(S24)。例えば、上記の例では、排気装置αの排気風量を150CFMに設定する。
 ただし、S24の処理では、S23の処理にて算出した排気風量が、1台目の排気装置3の最大排気風量を超えている場合に、1台目の排気装置3の排気風量をその最大排気風量に設定する。また、S24の処理では、S23の処理にて算出した排気風量が、1台目の排気装置3の最小排気風量未満である場合に、1台目の排気装置3の排気風量をその最小排気風量に設定する。これにより、排気装置3に対して、その能力範囲を外れて排気風量が配分されることを防ぐことができる。S24の処理で設定された排気風量は、排気・給気装置送受信部29を介して、該当する排気装置3に指示される。つまり、S24の処理は、排気風量指示部19によって実行される。
 なお、S24の処理では、S23の処理により算出した排気風量以上であって、その排気風量に最も近い1台目の排気装置3の出力可能排気風量を、その1台目の排気装置3に配分する排気風量として設定したが、必ずしもこれに限られるものではない。例えば、S23の処理により算出した排気風量に最も近い1台目の排気装置3の出力可能排気風量を、その1台目の排気装置3に配分する排気風量として設定してもよい。また、S23の処理により算出した排気風量以下であって、その排気風量に最も近い1台目の排気装置3の出力可能排気風量を、その1台目の排気装置3に配分する排気風量として設定してもよい。
 次いで、S21の処理にて選択された排気装置3に対して排気風量の配分が終了したか否かを判断し(S25)、終了していなければ(S25:No)、S22の処理に戻る。
 S22の判断の結果、2台目以降の排気装置3に対する排気風量の配分を行う(既に1台の排気装置3に対する排気風量の配分を行っている)と判断される場合は(S22:No)、S26の処理へ移行する。S26の処理では、総排気風量のうち、未配分の排気風量(残風量)を次の(2)式にて算出する。
 排気風量(残風量)=前回排気風量(残風量)-直前配分風量…(2)
 ここで、前回排気風量(残風量)は、前回の排気風量の配分時に未配分であった排気風量(残風量)の総計であり、直前配分風量は、直前に配分が行われた排気装置3に対して配分された排気風量である。
 次いで、次に配分対象となる排気装置3に対する排気風量を、(2)式で算出した排気風量(残風量)を用いて次の(3)式にて算出し、総排気風量の配分を行う(S27)。
 当該排気装置3の排気風量
 =排気風量(残風量)×当該排気装置3の最大排気風量/未配分最大排気風量の総和…(3)
 ここで未配分最大排気風量の総和は、未配分の排気装置3における最大排気風量の総和である。
 そして、S27の処理にて算出した排気風量以上であって、その排気風量に最も近い配分対象の排気装置3の出力可能排気風量を、その配分対象の排気装置3に配分する排気風量として設定する(S28)。このとき、S24の処理と同様に、S27の処理にて算出した排気風量が、配分対象の排気装置3の最大排気風量を超えているか、又は、最小排気風量未満である場合に、配分対象の排気装置3の排気風量を、最大排気風量又は最小排気風量に設定する。S28の処理で設定された排気風量は、排気・給気装置送受信部29を介して、該当する排気装置3に指示される。つまり、S28の処理も、排気風量指示部19によって実行される。
 S28の処理の後、S25の処理へ移行する。そして、S21の処理にて選択された全ての排気装置3について配分が終了するまで、S22~S28の処理が繰り返し実行される。このS22~S28の処理は、排気風量配分部18によって実行される。
 ここで、S26~S28の処理を上記の例で説明する。まず、2台目の排気装置3として排気装置βの排気風量を配分する場合、先にS26の処理にて排気風量(残風量)を算出する。1台目の排気装置αの排気風量の配分時に未配分であった排気風量は総排気風量そのもの(320CFM)であり、1台目の排気装置αには、排気風量として150CFMが配分されたので、排気風量(残風量)は以下の通りとなる。
 排気風量(残風量)=320-150=170CFM
 そして、S27の処理にて、2台目の排気装置βの排気風量を以下の通りに算出する。
 排気装置βの排気風量=170×150/230=110.8CFM
 そして、S28の処理にて、2台目の排気装置βの排気風量は、120CFMに設定される。
 次いで、3台目の排気装置3として排気装置γの排気風量を配分する場合も、先にS26の処理にて排気風量(残風量)を算出する。2台目の排気装置βの排気風量の配分時に未配分であった排気風量は170CFMであり、2台目の排気装置βには、排気風量として120CFMが配分されたので、排気風量(残風量)は以下の通りとなる。
 排気風量(残風量)=170-120=50CFM
 そして、S27の処理にて、3台目の排気装置γの排気風量を以下の通りに算出する。
 排気装置βの排気風量=50×80/80=50CFM
 そして、S28の処理にて、3台目の排気装置γの排気風量は、50CFMに設定される。
 なお、上述の式でわかる通り、配分対象として最後の排気装置3の配分を行う場合、S27の処理では、結局S26の処理で算出した排気風量(残風量)がそのまま、その最後の配分対象となる排気装置3の排気風量として算出されることとなる。よって、配分対象として最後の排気装置3の配分を行う場合は、S26の処理の後S27の処理をスキップし、S26の処理で算出した排気風量(残風量)を配分対象の排気装置3にて算出される排気風量として、S28の処理へ移行してもよい。
 S25の判断の結果、S21の処理にて選択された全ての排気装置3について配分が終了したと判断された場合(S25:Yes)、次いで、排気風量が配分された全ての排気装置3について設定された排気風量の総和(以下「全設定排気風量」という)が、総排気風量と異なるか否かを判断する(S29)。
 一般住宅1に能力の低い排気装置3を設置した場合、排気風量を配分した排気装置3を全て最大排気風量に設定しても総排気風量に満たない場合があり得る。一方で、一般住宅1に能力の高い排気装置3を設置した場合、排気風量を配分した排気装置3を全て最小排気風量に設定しても総排気風量を超える場合もあり得る。S29は、そのような事象が起きているか否かを判断する。
 そして、S29の判断の結果、全設定排気風量が総排気風量と異なると判断される場合は(S29:Yes)、入出力端末5に対し、入出力端末送受信部28を経由して、そのような状態であることを示す警告情報を送信し(S30)、排気風量算出設定処理を終了する。S30の処理は、報知処理部20によって実行される。入出力端末5は、この警告情報に基づいて、警告音を発したり、警告画面を表示させたりすることで、ユーザに、排気装置3の排気能力では所望の排気ができない又は所望以上の排気が行われる可能性がある旨を伝えることができる。
 ここで、警告情報は、全設定排気風量が総排気風量未満であるのか否かを示す情報を含めるのが好ましい。その情報の内容に応じて入出力端末5による報知方法を変更することで、ユーザに、排気装置3の排気能力では所望の排気ができない可能性があるのか、所望以上の排気が行われる可能性があるのかを明確に知らせることができる。
 また、全設定排気風量が総排気風量未満である場合、S30の処理では、各排気装置3に対して最大排気風量にて運転するように指示する。これにより、設置された排気装置3の排気能力が低くすぎる場合には、各々の排気装置3を最大排気風量で運転させ、総排気風量での排気に可能な限り近づけることができる。また、全設定排気風量が総排気風量より大きい場合、S30の処理では、各排気装置3に対して最小排気風量にて運転するように指示する。これにより、設置された排気装置3の排気能力が高すぎる場合には、各々の排気装置3において最小排気風量で運転させ、総排気風量での排気に可能な限り近づけることができる。
 なお、S30の処理において、警告情報を入出力端末5へ送信した場合に、各排気装置3の運転を停止するようにしてもよい。また、警告情報を入出力端末5へ送信した場合に各排気装置3の運転を行うか否かを、換気制御装置2の設置時やユーザの設定によって選択できるようにしてもよい。
 また、S29の処理において、全設定排気風量が総排気風量未満であるか否かだけを判断して、全設定排気風量が総排気風量未満である場合に、警告情報を入出力端末5へ送信し、各排気装置3に対して最大排気風量にて運転するように指示するようにしてもよい。全設定排気風量が総排気風量より大きい場合は、各排気装置3により実際に排気された排気風量(積算風量)が総排気量に達したときに各排気装置3の運転を停止すればよく、必ずしも警告の必要がないためである。
 S29の処理の結果、全設定排気風量が総排気風量と等しいと判断される場合は(S29:No)、そのまま排気風量算出設定処理を終了する。なお、上述したように、排気装置3の排気能力では所望の排気ができない又は所望以上の排気が行われる可能性がある旨の報知を無効とする設定情報が記憶部11に記憶されている場合は、S30の処理において、入出力端末5に対して警告情報を送信せず、全設定排気風量と総排気風量との大小関係に応じて最大排気風量又は最小排気風量にて運転するよう各排気装置3に対して指示する。
 次いで、図6を参照して、実排気風量積算処理(S15)の詳細について説明する。図6は、実排気風量積算処理(S15)を示すフローチャートである。
 実排気風量積算処理(S15)では、まず、一般住宅1に設定された必要な総排気風量を総排気風量記憶部12より読み出す(S31)。このS31の処理は、総排気風量読出部16によって実行される。なお、この総排気風量は、排気風量算出設定処理で使用される総排気風量と異なり、所定時間(例えば1時間)当たりに必要な総排気風量である。
 次いで、各々の排気装置3より、各排気装置3の実風量記憶部3dに記憶される実際の排気風量である実排気風量を取得する(S32)。このS32の処理は、実排気風量取得部25によって実行される。
 次いで、各々の排気装置3の仕様に関する情報として、各排気装置3の最大排気風量、最小排気風量及び出力可能排気風量の各情報を、排気装置仕様記憶部13から読み出す(S33)。このS33の処理は、排気装置仕様読出部17によって実行される。
 次いで、S32の処理により取得した各排気装置3の実排気風量から、1分毎にその1分間で各排気装置3から排気される実排気風量を積算した積算風量を算出する(S34)。ただし、S34の処理では、所定時間が経過する毎に積算風量を0にリセットする。これにより、所定時間毎に実排気風量が積算され、その積算風量と所定時間当たりに必要な総排気風量とに応じて、各排気装置3の排気風量を調整する。S34の処理は、実排気風量積算部60によって実行される。
 そして、S34の処理により算出した積算風量が、S31の処理により読み出された総排気風量より大きいか否かを判断する(S35)。その結果、積算風量が総排気風量より大きいと判断される場合は(S35:Yes)、積算風量が総排気風量に達したことを意味する。よって、この場合、各排気装置3に対して停止指令を送信する(S36)。これにより、所定時間が経過する前に積算風量が総排気風量に達した場合は、各排気装置3の排気運転を停止させることで、必要以上に排気が行われることを抑制できる。なお、S36の処理を実行後は、積算風量が総排気風量に達しているので、所定時間が経過するまでS34の処理による積算風量の算出を停止してもよい。
 一方、S35の処理の結果、積算風量が総排気風量以下であると判断された場合(S35:No)、次いで、S34により算出された積算風量とその時点での各排気装置3の実排気風量とから所定時間で達成見込みの積算風量を算出し、その所定時間で積算風量が総排気風量を達成できない見込みであるか否かを判断する(S37)。その結果、所定時間で総排気風量を達成できない見込みであると判断される場合は(S37:Yes)、各排気装置3へ、最大排気風量での運転を指示する(S38)。これにより、各排気装置3に設定された現在の排気風量で運転を続けていては、所定時間で総排気風量を達成できない見込みである場合に、各排気装置3の排気風量を最大排気風量とすることで、所定時間での総排気風量の排気を可能な限り達成できるように制御できる。
 一方、S37の処理の結果、所定時間で総排気風量を達成できる見込みであると判断される場合は(S37:No)、S36やS38の処理をスキップし、現在各排気装置3に設定されている排気風量を維持する。
 S34~S38の処理は、1分毎に繰り返し行われる。そして、新たに図4に示す排気風量配分処理の実行を開始する契機となった場合に、S34~S38の処理を終了する。このS34~S38の処理は、能力調整部21によって実行される。
 なお、S37の処理では、現在の積算風量から所定時間で達成見込みの積算風量を算出し、総排気風量に対する過不足を算出して、その過不足の大きさに応じて、各々の排気装置3の排気風量を、S33の処理にて読み出した各排気装置3の最大排気風量、最小排気風量及び出力可能排気風量の各情報に応じて段階的に設定するようにしてもよい。具体的には、所定時間で達成見込みの積算風量が総排気風量に対して過剰な場合は、その剰余分の大きさに応じて、各排気装置3の排気風量を小さく設定する減速運転を指示してもよい。また、所定時間で達成見込みの積算風量が総排気風量に対して不足な場合は、その不足分の大きさに応じて、各排気装置3の排気風量を大きく設定する加速運転を指示してもよい。
 次いで、図7を参照して、換気制御装置2のCPU31にて実行される給気風量配分処理について説明する。図7は、その給気風量配分処理を示すフローチャートである。給気風量配分処理は、排気装置3を実際に運転した場合の実排気風量の総和を総給気風量として設定する。そして、給気風量配分処理は、総給気風量を給気装置4の最大給気風量に応じて配分し、各々の給気装置4の給気風量を設定する。
 この給気風量配分処理は、排気風量配分処理にて排気装置3に対する排気風量の配分が行われた後や、接続された一部の給気装置4が故障したことが検知された場合に実行される。なお、接続された一部の給気装置4の故障が検知された場合は、その故障が検知された給気装置4を除いて、給気風量配分処理が行われる。
 給気装置4の故障の検知は、給気装置4から異常を知らせる通知を排気・給気装置送受信部29を介して受信することによって行われてもよいし、給気装置4から受信した給気装置4の運転状況を見て、換気制御装置2が判断するようにしてもよい。また、給気装置4との通信が予め定められた時間以上行えなかった場合に、給気装置4が故障したと判断してもよい。また、一部の給気装置4の故障が検知された場合は、総給気風量(又は総排気風量)を得るために必要な所定時間が経過するのを待ってから、給気風量配分処理を実行するようにしてもよい。
 給気風量配分処理では、まず、各排気装置3の実際に排気風量である実排気風量を、排気・給気装置送受信部29を経由して各排気装置3より読み出す(S41)。このS41の処理は、実排気風量取得部25によって実行される。
 次いで、S41にて読み出した各排気装置3の実排気風量の総和(全排気風量)を、給気に必要な総給気風量として設定する(S42)。このS42の処理は、総給気風量設定部24によって実行される。
 次いで、換気制御装置2に接続された給気装置4を特定するための情報を読み出す(S43)。S43では、例えば、排気・給気装置送受信部29を介して接続された給気装置4にアクセスし、各々の給気装置4のID記憶部4aに記憶された識別情報を取得することで、給気装置4を特定するための情報を読み出す。換気制御装置2が直接給気装置4にアクセスすることで、通信可能な給気装置4に対して、給気風量の配分を行うことができる。
 次いで、S44の処理により特定された各々の給気装置4の仕様に関する情報として、各給気装置4の最大給気風量、最小給気風量及び出力可能給気風量の各情報を、給気装置仕様記憶部14から読み出す(S44)。このS44の処理は、給気装置仕様読出部22によって実行される。
 そして、換気制御装置2は、給気風量算出設定処理を実行し(S45)、給気風量配分処理を終了する。S45の給気風量算出設定処理は、S42の処理により設定された総給気風量と、S44の処理により読み出された各給気装置4の最大給気風量等の情報を用いて、個々の給気装置4に対して設定すべき給気風量を算出する処理である。
 ここで、図8を参照して、給気風量算出設定処理(S45)の詳細について説明する。図8は、給気風量算出設定処理(S45)を示すフローチャートである。ここでは、総給気風量が320CFMであり、2つの給気装置α、βに対して給気風量を配分する場合を例示しながら、給気風量算出処理(S45)について説明する。各給気装置α、βは、いずれも10CFM刻みで給気風量を出力可能であり、各々の最大排気風量/最小排気風量は、給気装置αが200/50、給気装置βが150/50であるとする。
 給気風量算出設定処理(S45)では、換気制御装置2は、まず、給気風量を設定する給気装置4を選択し、設定する給気装置4の順番を決定する(S51)。具体的には、給気風量配分処理(図7)のS43の処理により特定された、換気制御装置2に接続された給気装置4を、給気風量を設定する給気装置4として選択し、最大給気風量の大きい順に設定する給気装置4の順番を決定する。上記の例では、給気装置α、給気装置βの順番に、給気風量を設定する。最大給気風量の大きい順に給気風量を配分していくことで、全ての給気装置4に対して給気風量を配分した場合に、その給気風量の合計が総給気風量に満たなくなる可能性を少なくできる。ただし、給気風量算出設定処理では、必ずしも最大給気風量の大きい順に給気風量を配分する必要はなく、任意の順番で給気装置4に対し給気風量を配分してもよい。
 次いで、1台目の給気装置4に対する給気風量の配分を行うか否か、つまり、まだ1台も給気装置4に対する給気風量の配分を行っていないか否かを判断する(S52)。そして、1台目の給気装置4に対する給気風量の配分を行う(まだ1台も給気装置4に対する給気風量の配分を行っていない)と判断される場合は(S52:Yes)、次いで、1台目の給気装置4(上記の例では給気装置α)に対する給気風量を次の(4)式にて算出し、総給気風量の配分を行う(S53)。
 当該給気装置4の給気風量
 =総給気風量×当該給気装置4の最大給気風量/全最大給気風量の総和…(4)
 例えば、上記の例では、給気装置αの給気風量を次のように算出する。
 給気装置αの給気風量=320×200/350=182.8CFM
 そして、S53の処理により算出した給気風量以上であって、その給気風量に最も近い1台目の給気装置4の出力可能給気風量を、その1台目の給気装置4に配分する給気風量として設定する(S54)。例えば、上記の例では、給気装置αの給気風量を190CFMに設定する。
 ただし、S54の処理では、S53の処理にて算出した給気風量が、1台目の給気装置4の最大給気風量を超えている場合に、1台目の給気装置4の給気風量をその最大給気風量に設定する。また、S54の処理では、S53の処理にて算出した給気風量が、1台目の給気装置4の最小給気風量未満である場合に、1台目の給気装置4の給気風量をその最大給気風量に設定する。これにより、給気装置4に対して、その能力範囲を外れて給気風量が配分されることを防ぐことができる。S54の処理で設定された給気風量は、排気・給気装置送受信部29を介して、該当する給気装置4に指示される。つまり、S54の処理は、給気風量指示部26によって実行される。
 なお、S54の処理では、S53の処理により算出した給気風量以上であって、その給気風量に最も近い1台目の給気装置4の出力可能給気風量を、その1台目の給気装置4に配分する給気風量として設定したが、必ずしもこれに限られるものではない。例えば、S53の処理により算出した給気風量に最も近い1台目の給気装置4の出力可能給気風量を、その1台目の給気装置4に配分する給気風量として設定してもよい。また、S53の処理により算出した給気風量以下であって、その給気風量に最も近い1台目の給気装置4の出力可能給気風量を、その1台目の給気装置4に配分する給気風量として設定してもよい。
 次いで、S51の処理にて選択された給気装置4に対して給気風量の配分が終了したか否かを判断し(S55)、終了していなければ(S55:No)、S52の処理に戻る。
 S52の判断の結果、2台目以降の給気装置4に対する給気風量の配分を行う(既に1台の給気装置4に対する給気風量の配分を行っている)と判断される場合は(S52:No)、S56の処理へ移行する。S56の処理では、総給気風量のうち、未配分の給気風量(残風量)を次の(5)式にて算出する。
 給気風量(残風量)=前回給気風量(残風量)-直前配分風量…(5)
 ここで、前回給気風量(残風量)は、前回の給気風量の配分時に未配分であった給気風量(残風量)の総計であり、直前配分風量は、直前に配分が行われた給気装置4に対して配分された給気風量である。
 次いで、次に配分対象となる給気装置4に対する給気風量を、(5)式で算出した給気風量(残風量)を用いて次の(6)式にて算出し、総給気風量の配分を行う(S57)。
 当該給気装置4の給気風量
 =給気風量(残風量)×当該給気装置4の最大給気風量/未配分最大給気風量の総和…(6)
 ここで未配分最大給気風量の総和は、未配分の給気装置4における最大給気風量の総和である。
 そして、S57の処理にて算出した給気風量以上であって、その給気風量に最も近い配分対象の給気装置4の出力可能給気風量を、その配分対象の給気装置4に配分する給気風量として設定する(S58)。このとき、S54の処理と同様に、S57の処理にて算出した給気風量が、配分対象の給気装置4の最大給気風量を超えているか、又は、最小給気風量未満である場合に、配分対象の給気装置4の給気風量を、最大給気風量又は最小給気風量に設定する。S58の処理で設定された給気風量は、排気・給気装置送受信部29を介して、該当する給気装置4に指示される。つまり、S58の処理も、給気風量指示部26によって実行される。
 なお、S58の処理では、S54の処理と同様に、S57の処理により算出した給気風量に最も近い配分対象の給気装置4の出力可能給気風量を、その配分対象の給気装置4に配分する給気風量として設定してもよい。また、S57の処理により算出した給気風量以下であって、その給気風量に最も近い配分対象の給気装置4の出力可能給気風量を、その配分対象の給気装置4に配分する給気風量として設定してもよい。
 S58の処理の後、S55の処理へ移行する。そして、S51の処理にて選択された全ての給気装置4について配分が終了するまで、S52~S58の処理が繰り返し実行される。このS52~S58の処理は、給気風量配分部23によって実行される。
 ここで、S56~S58の処理を上記の例で説明する。2台目の給気装置4として給気装置βの給気風量を配分する場合、先にS56の処理にて給気風量(残風量)を算出する。1台目の給気装置αの給気風量の配分時に未配分であった給気風量は総給気風量そのもの(320CFM)であり、1台目の給気装置αには、給気風量として190CFMが配分されたので、給気風量(残風量)は以下の通りとなる。
 給気風量(残風量)=320-190=130CFM
 そして、S57の処理にて、2台目の給気装置βの給気風量を以下の通りに算出する。
 給気装置βの給気風量=130×150/150=130CFM
 そして、S58の処理にて、2台目の給気装置βの給気風量は、130CFMに設定される。
 なお、上述の式でわかる通り、配分対象として最後の給気装置4の配分を行う場合、S57の処理では、結局S56の処理で算出した給気風量(残風量)がそのまま、その最後の配分対象となる給気装置4の給気風量として算出されることとなる。よって、配分対象として最後の給気装置4の配分を行う場合は、S56の処理の後S57の処理をスキップし、S56の処理で算出した給気風量(残風量)を配分対象の給気装置4にて算出される給気風量として、S58の処理へ移行してもよい。
 S55の判断の結果、S51の処理にて選択された全ての給気装置4について配分が終了したと判断された場合(S55:Yes)、次いで、給気風量が配分された全ての給気装置4について設定された給気風量の総和(以下「全設定給気風量」という)が、総給気風量と異なるか否かを判断する(S59)。
 一般住宅1に能力の高い給気装置4を設置した場合、給気風量を配分した給気装置4を全て最大給気風量に設定しても総給気風量に満たない場合があり得る。また、一般住宅1に能力の低い給気装置4を設置した場合、給気風量を配分した給気装置4を全て最小給気風量に設定しても総給気風量を超える場合もあり得る。S59は、そのような事象が起きているか否かを判断する。
 そして、S59の判断の結果、全設定給気風量が総給気風量と異なると判断される場合は(S59:Yes)、入出力端末5に対し、入出力端末送受信部28を経由して、そのような状態であることを示す警告情報を送信し(S60)、給気風量算出設定処理を終了する。入出力端末5は、この警告情報に基づいて、警告音を発したり、警告画面を表示させたりすることで、ユーザに、給気装置4の給気能力では所望の給気ができない又は所望以上の給気が行われる可能性がある旨を伝えることができる。
 ここで、警告情報は、全設定給気風量が総給気風量未満であるのか否かを示す情報を含めるのが好ましい。その情報の内容に応じて入出力端末5による報知方法を変更することで、ユーザに、給気装置4の給気能力では所望の給気ができない可能性があるのか、所望以上の給気が行われる可能性があるのかを明確に知らせることができる。
 また、全設定給気風量が総給気風量未満である場合、S60の処理では、各給気装置4に対して最大給気風量にて運転するように指示する。これにより、設置された給気装置4の給気能力が低くすぎる場合には、各々の給気装置4を最大給気風量で運転させ、総給気風量での給気に可能な限り近づけることができる。また、全設定給気風量が総給気風量より大きい場合、S60の処理では、各給気装置4に対して最小給気風量にて運転するように指示する。これにより、設置された給気装置4の給気能力が高すぎる場合には、各々の給気装置4において最小給気風量で運転させ、総給気風量での給気に可能な限り近づけることができる。
 なお、S60の処理において、警告情報を入出力端末5へ送信した場合に、各給気装置4の運転を停止するようにしてもよい。また、警告情報を入出力端末5へ送信した場合に各給気装置4の運転を行うか否かを、換気制御装置2の設置時やユーザの設定によって選択できるようにしてもよい。
 また、S59の処理において、全設定給気風量が総給気風量未満であるか否かだけを判断して、全設定給気風量が総排気風量未満である場合に、警告情報を入出力端末5へ送信し、各給気装置4に対して最大排気風量にて運転するように指示するようにしてもよい。全設定給気風量が総給気風量より大きい場合であっても、各給気装置4の実際の給気風量を各排気装置3の実際の排気風量に応じて制御することで、バランスのよい換気が行えるので、必ずしも警告の必要がないためである。
 S59の処理の結果、全設定給気風量が総給気風量と等しいと判断される場合は(S59:No)、そのまま給気風量算出設定処理を終了する。なお、上述したように、給気装置4の給気能力では所望の給気ができない又は所望以上の給気が行われる可能性がある旨の報知を無効とする設定情報が記憶部11に記憶されている場合は、S60の処理において、入出力端末5に対して警告情報を送信せず、全設定給気風量と総給気風量との大小関係に応じて最大給気風量又は最小給気風量にて運転するよう各給気装置4に対して指示する。
 以上、第1実施形態に係る換気制御装置2及び換気システム40では、一般住宅1に対して設定される総排気風量が各排気装置3の最大排気風量に応じて配分されて、各々の排気装置3の排気風量が設定される。これにより、各排気装置3の能力に応じてバランスよく排気風量が設定される。よって、換気システム40の省エネルギー運転を可能にできる。また、各排気装置3の実排気風量の総和から総給気風量を設定し、総給気風量が各給気装置4の最大給気風量に応じて配分されて、各々の給気装置4の給気風量が設定される。これにより、各給気装置4の能力に応じてバランスよく排気風量が設定される。よって、給気の面からも換気システム40の省エネルギー運転を可能にできる。
 そして、総給気風量は、排気装置3の実排気風量の総和から設定されるので、排気と給気をバランスよく制御できる。
 また、換気制御装置2に接続された各排気装置3及び給気装置4の排気風量又は給気風量を自動で配分し、設定できるので、建物の建築・建設業者等が各々の排気装置3及び給気装置4に対して個別に排気風量又は給気風量を設定する必要がなく、複雑な設定を不要とすることができる。
 (第2実施形態)
 次いで、図9~図16を参照して、第2実施形態に係る換気制御装置2及び換気システム40について説明する。第1実施形態に係る換気制御装置2では、一般住宅1に設定された総排気風量を設置された複数の排気装置3に対して配分し、また、実排気風量の総和を総給気風量として複数の給気装置4に対して配分する場合について説明した。これに対し、第2実施形態に係る換気制御装置2では、一般住宅1に設置された複数の排気装置3及び給気装置4を複数のグループに分割する。そして、第2実施形態に係る換気制御装置2は、まず、一般住宅1に設定された総排気風量を、各グループに配分し、各グループの中で、そのグループに含まれる排気装置3に対して配分された排気風量を更に配分する。また、第2実施形態に係る換気制御装置2は、グループ毎に、そのグループに含まれる排気装置3による実排気風量の総和をそのグループの総給気風量に設定し、そのグループに含まれる給気装置4に対して、そのグループに設定された総給気風量を配分する。
 以下、第2実施形態に係る換気制御装置2及び換気システム40について、第1実施形態に係る換気制御装置2及び換気システム40と相違する点を中心に説明する。第1実施形態に係る換気制御装置2及び換気システム40と同一の構成については、同一の符号を付し、その説明を省略する。
 図9は、本第2実施形態に係る換気システム40の接続概略図である。図9に例示する換気システム40では、一般住宅1に対し、5つの排気装置3A~3E(任意の排気装置を示す場合は「排気装置3」と称す)と、5つの給気装置4A~4E(任意の給気装置を示す場合は「給気装置4」と称す)とが設置されている。排気装置3A~3Eと給気装置4A~4Eとが、2つのグループG1及びG2に分割されている。図9の例では、グループG1に、排気装置3A~3Cと給気装置4A、4Bとを含め、グループG2に、排気装置3D、3Eと給気装置4C~4Eとを含めている。グループ化は、後述する換気制御装置2のグループ化部52(図10)によって行われる。
 ここで、建物が複数の階層を持つ構造や一定の閉鎖空間を持つような構造である場合、各階層や閉鎖空間内で風路が形成される。例えば、排気装置3A~3Cと給気装置4A、4Bとの間で風路6A、6Bが形成され、排気装置3D、3Eと給気装置4C~4Eとの間で風路6C~6Eが形成される。
 そこで、換気制御装置2は、そのような各階層や空間毎に排気装置3及び給気装置4をグループ化し、各グループの中で排気と給気のバランスがとれるように、排気装置3A~3E及び給気装置4A~4Eの各々の排気風量又は給気風量を設定する。これにより、各階層や閉鎖空間内でも給気空間から排気空間への風路設計を容易にすることができる。
 次いで、図10を参照して、第2実施形態に係る換気制御装置2の各機能について説明する。図10は、換気制御装置2の概略機能ブロック図である。
 第2実施形態に係る換気制御装置2が第1実施形態に係る換気制御装置2と相違する点は、記憶部11にグループ情報記憶部51を備えている点と、制御部15にグループ化部52及び情報変更部53を備えている点と、排気風量配分部18がグループ排気風量配分部18aと個別排気風量配分部18bとを備えている点である。また、給気風量配分部23及び総給気風量設定部24も、その処理が異なっている。
 グループ情報記憶部51は、排気装置3A~3E及び給気装置4A~4Eを分割するグループを識別するためのグループ識別情報に対応付けて、該当するグループに含める排気装置及び給気装置の識別情報を記憶する。つまり、グループ情報記憶部51には、各々の排気装置3及び給気装置4と、排気装置3及び給気装置4とが含まれるグループとの対応関係を示す情報が記憶される。
 グループ化部52は、グループ情報記憶部51に記憶された情報に基づいて、排気装置3A~3E及び給気装置4A~4Eを複数のグループに分割する。例えば、グループ情報記憶部51において、グループG1の識別情報に対応付けて排気装置3A~3Cと給気装置4A、4Bとの識別情報が記憶されていれば、グループG1に排気装置3A~3Cと給気装置4A、4Bとを含める。また、グループG2の識別情報に対応付けて、排気装置3D、3Eと給気装置4C~4Eとの識別情報が記憶されていれば、グループG2に、排気装置3D、3Eと給気装置4C~4Eとを含める。
 情報変更部53は、グループ情報記憶部51に記憶されている情報を変更するものである。例えば、一般住宅1内に新たな壁を設けたり、逆に壁をとったりするなどして、一般住宅1内の閉鎖空間が変更されることがある。そのような場合、一般住宅1内の風路設計を変更する必要がある。例えば、図11に示すように、給気装置4CのグループをグループG2からグループG1へ変更し、風路6Cに代えて、新たな風路6Fを形成することが考えられる。
 このような場合に備え、第2実施形態に係る換気制御装置2は、排気装置3A~3E及び給気装置4A~4Eを分割するグループを増やしたり、各グループに含まれる排気装置3A~3E及び給気装置4A~4Eを変更したりできる。また、新たに排気装置や給気装置を設置した場合に、グループを設定しなおすことができる。
 グループ情報記憶部51に記憶される情報の初期設定や変更は、入出力端末5により行われる。そして、入出力端末5より入出力端末送受信部28を経由して制御部15にその情報が伝送され、その情報が示す変更内容に従って、情報変更部53によりグループ情報記憶部51が書き換えることにより、排気装置3A~3E及び給気装置4A~4Eのグループ化の初期設定又は変更を行うことができる。
 図10に戻り、排気風量配分部18のグループ排気風量配分部18aは、総排気風量読出部16により読み出された総排気風量を各グループに配分する。具体的には、各グループに含まれる排気装置3の最大排気風量の合計に応じて、総排気風量を各グループに配分し、配分された排気風量をそのグループが排気すべき風量として設定する。グループ排気風量配分部18aの詳細については、図13を参照して後述する。
 排気風量配分部18の個別排気風量配分部18bは、グループ排気風量配分部18aにより配分された各グループの排気風量を、各々のグループで、そのグループに含まれる排気装置3に配分する。具体的には、各々のグループで、そのグループに配分された排気風量を、そのグループに含まれる各排気装置3の最大排気風量に応じて配分し、配分された排気風量を排気装置3の風量として設定する。個別排気風量配分部18bの詳細については、図14を参照して後述する。
 第2実施形態に係る総給気風量設定部24は、グループ毎に、そのグループに含まれる排気装置3による実排気風量の合計をそのグループの総給気風量に設定する。
 また、第2実施形態に係る給気風量配分部23は、グループ毎に、総給気風量設定部24により設定された当該グループの総給気風量を、そのグループに含まれる各給気装置4の最大給気風量に応じて配分し、そのグループに含まれる各々の給気装置4の給気風量を設定する。
 次いで、図12を参照して、第2実施形態に係る換気制御装置2のCPU31にて実行される排気風量配分処理について説明する。図12は、その排気風量配分処理を示すフローチャートである。この排気風量配分処理は、第1実施形態に係る排気風量配分処理と同様のタイミングで実行されるほか、グループ情報記憶部51に記憶される情報が変更された場合にも実行される。
 第2実施形態に係る排気風量配分処理では、まず、第1実施形態に係る排気風量配分処理(図4)のS11~S13と同様の処理を、S71~S73にて実行する。そして、グループ配分排気風量算出設定処理を実行し(S74)、更に、グループ内排気風量算出設定処理を実行する(S75)。その後、第1実施形態に係る排気風量配分処理(図4)のS15と同様の実排気風量積算処理を実行して(S76)、処理排気風量配分処理を終了する。
 ここで、図13を参照して、グループ配分排気風量算出設定処理(S74)の詳細について説明する。図13は、グループ配分排気風量算出設定処理(S74)を示すフローチャートである。このグループ配分排気風量算出設定処理(S74)は、一般住宅1に設定された総排気風量を、各グループに配分する処理である。
 ここでは、一般住宅1に設定された総排気風量が500CFMであり、図9に示した2つのグループG1、G2に対して排気風量を配分する場合を例示しながら、グループ配分排気風量算出設定処理(S74)について説明する。なお、グループG1には排気装置3A~3Cが含まれ、グループG2には排気装置3D、3Eが含まれるものとする。また、各排気装置3A~3Eは、いずれも10CFM刻みで排気風量を出力可能であり、各々の最大排気風量/最小排気風量は、排気装置3Aが200/50、排気装置3Bが150/50、排気装置3Cが80/30、排気装置3Dが150/50、排気装置3Eが100/30であるとする。
 なお、第1実施形態と同様に、総排気風量読出部16により読み出される総排気風量は、定時間以内に所定の建物内から排気すべき排気量の総量である。一方、グループ配分排気風量算出設定処理(S74)及びグループ内排気風量算出設定処理(S75)では、各排気装置3に対し、排気風量として1分当たりに排気すべき風量を設定する。よって、各排気装置3に配分する総排気風量として、グループ配分排気風量算出設定処理(S74)では、総排気風量読出部16により読み出された総排気風量から1分当たりに排気すべき総排気量に換算したものを使用する。
 グループ配分排気風量算出設定処理(S74)では、まず、排気風量を設定するグループを選択し、設定するグループの順番を決定する(S81)。具体的には、グループ情報記憶部51に記憶されたグループを、排気風量を設定するグループとして選択し、各グループに含まれる排気装置3の最大排気風量の総和が大きい順に、設定するグループの順番を決定する。上記の例では、グループG1の最大排気風量の総和が430であり、グループG2の最大排気風量の総和が250であるので、グループG1、グループG2の順番に排気風量を設定する。
 最大排気風量の総和の大きい順に各グループの排気風量を配分していくことで、全てのグループに対して排気風量を配分した場合に、その排気風量の合計が総排気風量に満たなくなる可能性を少なくできる。ただし、グループ配分排気風量算出設定処理では、必ずしも最大排気風量の合計の大きい順に、各グループへ排気風量を配分する必要はなく、任意の順番で各グループに対し排気風量を配分してもよい。
 次いで、1組目のグループに対する排気風量の配分を行うか否か、つまり、まだ1組もグループに対する排気風量の配分を行っていないか否かを判断する(S82)。そして、1組目のグループに対する排気風量の配分を行う(まだ1組もグループに対する排気風量の配分を行っていない)と判断される場合は(S82:Yes)、次いで、1組目のグループ(上記の例ではグループG1)に対する排気風量を次の(7)式にて算出し、総排気風量の配分を行う(S83)。
 当該グループの排気風量
 =総排気風量×当該グループの最大排気風量の総和/全最大排気風量の総和…(7)
 例えば、上記の例では、グループG1の排気風量を次のように算出する。
 グループG1の排気風量=500×430/680=316.2CFM
 そして、S83の処理により算出した排気風量以上であって、その排気風量に最も近い1組目のグループにて出力可能な排気風量を、その1組目のグループに配分する排気風量として設定する(S84)。例えば、上記の例では、グループG1の排気風量を320CFMに設定する。
 ただし、S84の処理では、S83の処理にて算出した排気風量が、1組目のグループの最大排気風量の総和を超えている場合に、1組目のグループの排気風量をその最大排気風量の総和に設定する。また、S84の処理では、S83の処理にて算出した排気風量が、1組目のグループの最小排気風量の総和未満である場合に、1組目のグループの排気風量をその最小排気風量に設定する。これにより、結果として、排気装置3に対して、その能力範囲を外れて排気風量が配分されることを防ぐことができる。
 なお、S84の処理では、S83の処理により算出した排気風量以上であって、その排気風量に最も近い1組目のグループの出力可能排気風量を、その1組目のグループに配分する排気風量として設定したが、必ずしもこれに限られるものではない。例えば、S83の処理により算出した排気風量に最も近い1組目のグループの出力可能排気風量を、その1組目のグループに配分する排気風量として設定してもよい。また、S83の処理により算出した排気風量以下であって、その排気風量に最も近い1組目のグループの出力可能排気風量を、その1組目のグループに配分する排気風量として設定してもよい。
 次いで、S81の処理にて選択されたグループに対して排気風量の配分が終了したか否かを判断し(S85)、終了していなければ(S85:No)、S82の処理に戻る。
 S82の判断の結果、2組目以降のグループに対する排気風量の配分を行う(既に1組のグループに対する排気風量の配分を行っている)と判断される場合は(S22:No)、S86の処理へ移行する。S86の処理では、総排気風量のうち、未配分の排気風量(残風量)を次の(8)式にて算出する。
 排気風量(残風量)=前回排気風量(残風量)-直前配分風量…(8)
 ここで、前回排気風量(残風量)は、前回の排気風量の配分時に未配分であった排気風量(残風量)の総計であり、直前配分風量は、直前に配分が行われたグループに対して配分された排気風量である。
 次いで、次に配分対象となるグループに対する排気風量を、(8)式で算出した排気風量(残風量)を用いて次の(9)式にて算出し、総排気風量の配分を行う。
 当該グループの排気風量
 =排気風量(残風量)×当該グループの最大排気風量の総和/未配分最大排気風量の総和…(9)
 ここで未配分最大排気風量の総和は、未配分のグループにおける最大排気風量の総和である。
 そして、S87の処理にて算出した排気風量以上であって、その排気風量に最も近い配分対象のグループの出力可能排気風量を、その配分対象のグループに配分する排気風量として設定する(S88)。このとき、S84の処理と同様に、S87の処理にて算出した排気風量が、配分対象のグループの最大排気風量の総和を超えているか、又は、最小排気風量の総和未満である場合に、配分対象のグループの排気風量を、最大排気風量の総和又は最小排気風量の総和に設定する。
 S88の処理の後、S85の処理へ移行する。そして、S81の処理にて選択された全てのグループについて配分が終了するまで、S82~S88の処理が繰り返し実行される。このS82~S88の処理は、グループ排気風量配分部18aによって実行される。
 ここで、S86~S88の処理を上記の例で説明する。2組目のグループとしてグループG2の排気風量を配分する場合、先にS26の処理にて排気風量(残風量)を算出する。1組目のグループG1の排気風量の配分時に未配分であった排気風量は総排気風量そのもの(500CFM)であり、1組目のグループG1には、排気風量として320CFMが配分されたので、排気風量(残風量)は以下の通りとなる。
 排気風量(残風量)=500-320=180CFM
 そして、S87の処理にて、2組目のグループG2の排気風量を以下の通りに算出する。
 グループG2の排気風量=180×250/250=180CFM
 そして、S88の処理にて、2組目のグループG2の排気風量は、180CFMに設定される。
 なお、上述の式でわかる通り、配分対象として最後のグループの配分を行う場合、S87の処理では、結局S86の処理で算出した排気風量(残風量)がそのまま、その最後の配分対象となるグループの排気風量として算出されることとなる。よって、配分対象として最後のグループの配分を行う場合は、S86の処理の後S87の処理をスキップし、S86の処理で算出した排気風量(残風量)を配分対象のグループにて算出される排気風量として、S88の処理へ移行してもよい。
 S85の判断の結果、S81の処理にて選択された全てのグループについて配分が終了したと判断された場合(S85:Yes)、次いで、排気風量が配分された全てのグループについて設定された排気風量の総和(以下「全グループ設定排気風量」という)が、総排気風量と異なるか否かを判断する(S89)。
 一般住宅1に能力の低い排気装置3を設置した場合、排気風量を配分したグループを全て設定可能な最大排気風量に配分しても総排気風量に満たない場合があり得る。一方で、一般住宅1に能力の高い排気装置3を設置した場合、排気風量を配分したグループを全て設定可能な最小排気風量に配分しても総排気風量を超える場合もあり得る。S89は、そのような事象が起きているか否かを判断する。
 そして、S89の判断の結果、全グループ設定排気風量が総排気風量と異なると判断される場合は(S89:Yes)、入出力端末5に対し、入出力端末送受信部28を経由して、そのような状態であることを示す警告情報を送信し(S90)、グループ配分排気風量算出設定処理を終了する。S90の処理は、報知処理部20によって実行される。入出力端末5は、この警告情報に基づいて、警告音を発したり、警告画面を表示させたりすることで、ユーザに、グループの排気能力では所望の排気ができない又は所望以上の排気が行われる可能性がある旨を伝えることができる。
 ここで、警告情報は、全グループ設定排気風量が総排気風量未満であるのか否かを示す情報を含めるのが好ましい。その情報の内容に応じて入出力端末5による報知方法を変更することで、ユーザに、グループの排気能力では所望の排気ができない可能性があるのか、所望以上の排気が行われる可能性があるのかを明確に知らせることができる。
 また、全グループ設定排気風量が総排気風量未満である場合、S90の処理では、各グループに対してそのグループに含まれる排気装置3の最大排気風量の総和を割り当てる。これにより、設置された排気装置3の排気能力が低くすぎる場合には、各々のグループを最大排気風量で運転させ、総排気風量での排気に可能な限り近づけることができる。また、全グループ設定排気風量が総排気風量より大きい場合、S90の処理では、各グループに対してそのグループに含まれる排気装置3の最小排気風量の総和を割り当てる。これにより、設置された排気装置3の排気能力が高すぎる場合には、各々のグループにおいて最小排気風量で運転させ、総排気風量での排気に可能な限り近づけることができる。
 なお、S90の処理において、警告情報を入出力端末5へ送信した場合に、各排気装置3の運転を停止するようにしてもよい。また、警告情報を入出力端末5へ送信した場合に各排気装置3の運転を行うか否かを、換気制御装置2の設置時やユーザの設定によって選択できるようにしてもよい。
 また、S89の処理において、全グループ設定排気風量が総排気風量未満であるか否かだけを判断して、全グループ設定排気風量が総排気風量未満である場合に、警告情報を入出力端末5へ送信し、各グループに対してそのグループに含まれる排気装置3の最大排気風量の総和を割り当てるようにしてもよい。全グループ設定排気風量が総排気風量より大きい場合は、各排気装置3により実際に排気された排気風量(積算風量)が総排気量に達したときに各排気装置3の運転を停止すればよく、必ずしも警告の必要がないためである。
 S89の処理の結果、全グループ設定排気風量が総排気風量と等しいと判断される場合は(S89:No)、そのままグループ配分排気風量算出設定処理を終了する。なお、第1実施形態と同様に、グループの排気能力では所望の排気ができない又は所望以上の排気が行われる可能性がある旨の報知を無効とする設定情報が記憶部11に記憶されるようにしてもよい。この無効とする設定情報が記憶されている場合は、S90の処理において、入出力端末5に対して警告情報を送信せずに、全グループ設定排気風量と総排気風量との大小関係に応じて、各グループに対して、そのグループに含まれる排気装置3の最大排気風量の総和又は最小排気風量の総和を割り当てる。
 次いで、図14を参照して、グループ内排気風量算出設定処理(S75)について説明する。図14は、そのグループ内排気風量算出設定処理(S75)を示すフローチャートである。このグループ内排気風量算出設定処理(S75)の各処理S101~S110は、第1実施形態に係る排気風量算出設定処理(S14)(図5参照)のS21~S30と同一である。
 ただし、グループ内排気風量算出設定処理(S75)では、グループ毎に実行され、グループ配分排気風量算出設定処理(S74)にて割り当てられたグループの排気風量が、そのグループに含まれる各排気装置3に対し、それぞれの排気装置3の最大排気風量に応じて配分されることとなる。そして、グループ配分排気風量算出設定処理(S75)は、全てのグループについて実行され、換気制御装置2に接続された全ての排気装置3に対して、排気風量が配分される。
 次いで、図15を参照して、第2実施形態に係る換気制御装置2のCPU31にて実行される給気風量配分処理の詳細について説明する。図15は、その給気風量配分処理を示すフローチャートである。この給気風量配分処理は、第1実施形態に係る給気風量配分処理と同様のタイミングで実行される。
 第2実施形態に係る給気風量配分処理では、まず、第1実施形態に係る給気風量配分処理(図7)のS41と同様の処理をS121にて実行する。そして、各グループの必要総給気風量として、当該グループ内に含まれる排気装置3の実排気風量の総和を設定する(S122)。つまり、グループ毎に、そのグループに含まれる排気装置3の実排気風量の総和をそのグループの必要総給気風量として、そのグループに含まれる給気装置4の給気風量が配分されることとなる。これにより、各グループの中で、排気と給気のバランスよく制御でき、各階層や閉鎖空間に応じて設定したグループの中で、給気空間から排気空間への風路設計を容易にすることができる。
 次いで、第1実施形態に係る給気風量配分処理(図7)のS43、S44と同様の処理をS123、S124にて実行する。そして、グループ内給気風量算出設定処理を実行し(S125)、給気風量配分処理を終了する。
 ここで、図16を参照して、グループ内給気風量算出設定処理(S125)について説明する。図16は、そのグループ内給気風量算出設定処理(S125)を示すフローチャートである。このグループ内給気風量算出設定処理(S125)の各処理S131~S140は、第1実施形態に係る給気風量算出設定処理(S45)(図8参照)のS51~S60と同一である。
 ただし、グループ内給気風量算出設定処理(S125)では、グループ毎に実行され、給気風量配分処理(図15)のS122の処理にて設定された当該グループの総給気風量が、そのグループに含まれる各給気装置4に対し、それぞれの給気装置4の最大給気風量に応じて配分されることとなる。そして、グループ給気風量算出設定処理(S125)は、全てのグループについて実行され、換気制御装置2に接続された全ての給気装置4に対して、給気風量が配分される。
 以上、第2実施形態に係る換気制御装置2では、一般住宅1に設置された複数の排気装置3及び給気装置4を複数のグループに分割し、まず、一般住宅1に設定された総排気風量を、各グループに配分する。そして、各グループの中で、そのグループに含まれる排気装置3に対して配分された排気風量を更に配分する。また、第2実施形態に係る換気制御装置2は、グループ毎に、そのグループに含まれる排気装置3による実排気風量の総和をそのグループの総給気風量に設定し、そのグループに含まれる給気装置4に対して、そのグループに設定された総給気風量を配分する。
 これにより、複数の階層や閉鎖空間を持つ建物である場合に、各階層や空間毎に排気装置3と給気装置4の組み合わせをグループ化して制御することができ、そのグループ内で排気と給気とをバランスよく制御できる。よって、各階層や閉鎖空間内での給気空間から排気空間への風路設計を容易とすることができる。
 また、情報変更部53により、排気装置3A~3E及び給気装置4A~4Eを分割するグループを変更できるので、建物内の階層や閉鎖空間の状態に合わせて、風路設計を容易に変更できる。
 その他、第2実施形態に係る換気制御装置2は、第1実施形態に係る換気制御装置2と同様の構成によって、同一の効果を奏する。
 (第3実施形態)
 次いで、図17、図18及び図19を参照して、第3実施形態に係る換気制御装置2及び換気システム40について説明する。第1及び第2実施形態に係る換気制御装置2では、一般住宅1に設定された総排気風量を設置された複数の排気装置3に対して配分し、また、各排気装置3の実総排気風量の総和を給気装置4に対して配分する総給気風量に設定して、設置された複数の給気装置4に対して配分する場合について説明した。これに対し、第3実施形態では、排気装置3に対する総排気風量の配分の有無にかかわらず、給気装置4に対して配分する総給気風量をユーザから設定されるものとし、その設定された総給気風量を給気装置4に対して配分する。
 以下、第3実施形態に係る換気制御装置2及び換気システム40について、第1及び第2実施形態に係る換気制御装置2及び換気システム40と相違する点を中心に説明する。第1及び第2実施形態に係る換気制御装置2及び換気システム40と同一の構成については、同一の符号を付し、その説明を省略する。
 図17は、第3実施形態に係る換気制御装置2の概略機能ブロック図である。なお、図17には、第1及び第2実施形態で説明済みの一部の構成については記載を省略している。
 図18は、本第3実施形態に係る換気制御装置2のCPU31にて実行される給気風量配分処理を示すフローチャートである。
 この給気風量配分処理では、まず、一般住宅1に設定された必要な総給気風量を読み出す(S151)。総給気風量は、入出力端末5からユーザによって予め設定されており、入出力端末送受信部28を経由して記憶部11の総給気風量記憶部70に記憶されている。S151の処理では、総給気風量記憶部70に記憶された総給気風量を読み出す。このS151の処理は、総給気風量読出部71によって実行される。
 次いで、第1実施形態の43及びS44と同様の処理を、S152及びS153にて実行する。そして、グループ配分給気風量算出設定処理を実行する(S154)。
 ここで、図19を参照して、グループ配分給気風量算出設定処理(S154)の詳細について説明する。図19は、グループ配分給気風量算出設定処理(S154)を示すフローチャートである。このグループ配分給気風量算出設定処理(S154)は、一般住宅1に設定された総給気風量を、グループ化部52にて設定される各グループに配分する処理である。
 このグループ配分給気風量算出設定処理は、図13に示す第2実施形態に係るグループ配分排気風量算出設定処理に対し、「排気」を全て「給気」に置き換えたものである。つまり、第2実施形態において総排気風量の各グループへの配分と同様の方法で、第3実施形態では、ユーザより設定された総給気風量の各グループへの配分を行う。
 図18に戻り説明を続ける。S154の処理の後、グループ内給気風量算出設定処理を実行する(S155)。このグループ内給気風量算出設定処理(S155)は、第2実施形態のグループ内給気風量算出設定処理(S74)(図13)と同一の処理である。そして、グループ内給気風量算出設定処理(S155)の後、給気風量配分処理を終了する。
 以上、第3実施形態に係る換気制御装置2及び換気システム40では、一般住宅1に対して設定される総給気風量が各給気装置4の最大給気風量に応じて配分されて、各々の給気装置4の給気風量が設定される。これにより、各給気装置4の能力に応じて、バランスよく給気風量が設定される。よって、換気システム40の省エネルギー運転を可能にできる。
 特に、第3実施形態に係る換気制御装置2及び換気システム40では、一般住宅1に設置された複数の給気装置4を複数のグループに分割し、ユーザより設定された総給気風量を、各グループに配分する。そして、各グループの中で、そのグループに含まれる給気装置4に対して配分された給気風量を更に配分する。これにより、複数の階層や閉鎖空間を持つ建物である場合に、各階層や空間毎に排気装置3と給気装置4の組み合わせをグループ化して制御することができ、各階層や閉鎖空間内での給気空間から排気空間への風路設計を容易とすることができる。
 以上、実施形態に基づき本発明を説明したが、本発明は上記実施形態に何ら限定されるものではなく、本発明の趣旨を逸脱しない範囲内で種々の改良変形が可能であることは容易に推察できるものである。例えば、各実施形態は、それぞれ、他の実施形態が有する構成の一部又は複数部分を、その実施形態に追加し或いはその実施形態の構成の一部又は複数部分と交換等することにより、その実施形態を変形して構成するようにしても良い。また、上記各実施形態で挙げた数値は一例であり、他の数値を採用することは当然可能である。
 上記第1及び第2実施形態において、複数の排気装置3と複数の給気装置4に対して、それぞれ排気風量又は給気風量の配分を行う場合について説明したが、排気装置3のみ排気風量の配分を行ってもよい。これにより、各排気装置3の能力に応じて、バランスよく排気風量が設定されるので、換気システム40の省エネルギー運転を可能にできる。
 また、上記第3実施形態において、一般住宅1に設置された複数の給気装置4を複数のグループに分割し、ユーザより設定された総給気風量を各グループに配分した上で、各グループの中で、そのグループに含まれる給気装置4に対して配分された給気風量を更に配分する場合について説明した。これに対し、上記第1実施形態と同様に、一般住宅1に設置された複数の給気装置4をグループに分割することなく、各給気装置4の最大給気風量に応じて、ユーザにより設定された総給気風量を配分してもよい。これによっても、各給気装置4の能力に応じて、バランスよく給気風量が設定されるので、換気システム40の省エネルギー運転を可能にできる。
 本発明に係る換気制御装置及び換気システムは、省エネルギー運転を可能にできるため、戸建て住宅やマンション等の複合住宅に適用可能である。
 1  一般住宅
 2  換気制御装置
 3  排気装置
 3a  ID記憶部
 3b  仕様記憶部
 3c  設定風量記憶部
 3d  実風量記憶部
 3A  排気装置
 3B  排気装置
 3C  排気装置
 3D  排気装置
 3E  排気装置
 4  給気装置
 4a  ID記憶部
 4b  仕様記憶部
 4c  設定風量記憶部
 4d  実風量記憶部
 4A  給気装置
 4B  給気装置
 4C  給気装置
 4D  給気装置
 4E  給気装置
 5  入出力端末
 6A  風路
 6B  風路
 6C  風路
 6D  風路
 6E  風路
 6F  風路
 11  記憶部
 12  総排気風量記憶部
 13  排気装置仕様記憶部
 14  給気装置仕様記憶部
 15  制御部
 16  総排気風量読出部
 17  排気装置仕様読出部
 18  排気風量配分部
 18a  グループ排気風量配分部
 18b  個別排気風量配分部
 19  排気風量指示部
 20  報知処理部
 21  能力調整部
 22  給気装置仕様読出部
 23  給気風量配分部
 24  総給気風量設定部
 25  実排気風量取得部
 26  給気風量指示部
 27  通信部
 28  入出力端末送受信部
 29  排気・給気装置送受信部
 31  CPU
 32  RAM
 33  ROM
 34  データフラッシュメモリ
 35  無線通信モジュール
 36  内部バス
 40  換気システム
 51  グループ情報記憶部
 52  グループ化部
 53  情報変更部
 60  実排気風量積算部
 70  総給気風量記憶部
 71  総給気風量読出部

Claims (16)

  1.  建物に設置されて前記建物の内側から外側へ空気を搬送可能な複数の排気装置と通信可能に接続され、前記複数の排気装置の動作を制御する換気制御装置であって、
     前記建物に対して設定される総排気風量を読み出す総排気風量読出部と、
     前記複数の排気装置の各々の仕様として各排気装置の最大排気風量を読み出す排気装置仕様読出部と、
     前記総排気風量読出部により読み出された前記総排気風量を前記排気装置仕様読出部により読み出された前記各排気装置の最大排気風量に応じて配分することで、前記複数の排気装置の各々の排気風量を設定する排気風量配分部と、
     前記複数の排気装置の各々に対して、前記排気風量配分部により設定された前記排気風量を指示する排気風量指示部と、を備える換気制御装置。
  2.  前記換気制御装置は、
     前記建物に設置された前記建物の外側から内側へ空気を搬送可能な複数の給気装置と通信可能に接続され、前記複数の給気装置の動作を制御するものであり、
     前記複数の排気装置の各々より実際の排気風量である実排気風量を取得する実排気風量取得部と、
     前記実排気風量取得部により取得された前記複数の排気装置の前記実排気風量の合計を、前記建物へ給気すべき総給気風量として設定する総給気風量設定部と、
     前記複数の給気装置の仕様として各給気装置の最大給気風量を読み出す給気装置仕様読出部と、
     前記総給気風量設定部により設定された前記総給気風量を前記給気装置仕様読出部により読み出された前記各給気装置の最大給気風量に応じて配分することで、前記複数の給気装置の各々の給気風量を設定する給気風量配分部と、
     前記複数の給気装置の各々に対して、前記給気風量配分部により設定された前記給気風量を指示する給気風量指示部と、を備える請求項1記載の換気制御装置。
  3.  前記複数の排気装置を複数のグループに分割するグループ化部を備え、
     前記排気風量配分部は、
     前記グループ化部により分割された前記複数のグループの各々に含まれる排気装置の前記最大排気風量の合計に応じて、前記総排気風量読出部により読み出された前記総排気風量を配分することで、前記グループの各々の排気風量を設定するグループ排気風量配分部と、
     前記グループ毎に、前記グループ排気風量配分部により設定された前記グループの排気風量を、前記グループに含まれる前記各排気装置の最大排気風量に応じて配分することで、前記グループに含まれる前記排気装置の各々の排気風量を設定する個別排気風量配分部と、を備える請求項1記載の換気制御装置。
  4.  前記複数の排気装置と前記複数の給気装置とを複数のグループに分割するグループ化部を備え、
     前記排気風量配分部は、
     前記グループ化部により分割された前記複数のグループの各々に含まれる排気装置の前記最大排気風量の合計に応じて、前記総排気風量読出部により読み出された前記総排気風量を配分することで、前記グループの各々の排気風量を設定するグループ排気風量配分部と、
     前記グループ毎に、前記グループ排気風量配分部により設定された当該グループの排気風量を、前記グループに含まれる前記各排気装置の最大排気風量に応じて配分することで、前記グループに含まれる前記排気装置の各々の排気風量を設定する個別排気風量配分部と、を備え、
     前記総給気風量設定部は、
     前記グループ化部により分割されたグループ毎に、前記グループに含まれる排気装置の前記実排気風量の合計に応じて、前記グループにおける総給気風量を設定し、
     前記給気風量配分部は、
     前記グループ毎に、前記総給気風量設定部により設定された前記グループの総給気風量を、前記グループに含まれる前記給気装置の各々の最大給気風量に応じて配分することで、前記グループに含まれる前記給気装置の各々の給気風量を設定する請求項2に記載の換気制御装置。
  5.  前記排気装置の各々と前記排気装置の各々が含まれるグループとの対応関係を示す情報を記憶するグループ情報記憶部と、
     一の排気装置が含まれるグループの変更を受け付け、その変更内容に従って前記グループ情報記憶部に記憶される前記情報を変更する情報変更部と、を備える請求項3に記載の換気制御装置。
  6.  前記排気装置の各々及び前記給気装置の各々と前記排気装置の各々又は前記給気装置の各々が含まれるグループとの対応関係を示す情報を記憶するグループ情報記憶部と、
     一の排気装置又は給気装置が含まれるグループの変更を受け付け、変更内容に従って前記グループ情報記憶部に記憶される前記情報を変更する情報変更部と、を備える請求項4に記載の換気制御装置。
  7.  前記排気風量配分部は、
     一の排気装置に対して配分により設定した前記排気風量が前記一の排気装置の前記最大排気風量を超える場合に、前記最大排気風量を前記一の排気装置の排気風量として設定する請求項1に記載の換気制御装置。
  8.  前記排気装置仕様読出部は、
     前記排気装置の各々の仕様として各排気装置の最小排気風量を読み出し、
     前記排気風量配分部は、
     一の排気装置に対して配分により設定した前記排気風量が前記一の排気装置の前記最小排気風量未満である場合に、前記最小排気風量を前記一の排気装置の排気風量として設定する請求項1に記載の換気制御装置。
  9.  前記給気風量配分部は、
     一の給気装置に対して配分により設定した前記給気風量が前記一の給気装置の前記最大給気風量を超える場合に、前記最大給気風量を前記一の給気装置の給気風量として設定する請求項2に記載の換気制御装置。
  10.  前記給気装置仕様読出部は、
     前記給気装置の各々の仕様として各給気装置の最小給気風量を読み出し、
     前記給気風量配分部は、
     一の給気装置に対して配分により設定した前記給気風量が前記一の給気装置の前記最小給気風量未満である場合に、前記最小給気風量を前記一の給気装置の給気風量として設定する請求項2に記載の換気制御装置。
  11.  前記排気装置の各々に対し前記排気風量配分部により配分された前記排気風量の総和が前記総排気風量読出部により読み出された前記総排気風量を下回る場合に、その旨を報知するための処理を実行する報知処理部を備える請求項1に記載の換気制御装置。
  12.  前記排気装置の各々に対し前記排気風量配分部により配分された前記排気風量の総和が前記総排気風量読出部により読み出された前記総排気風量を上回る場合に、その旨を報知するための処理を実行する報知処理部を備える請求項1に記載の換気制御装置。
  13.  前記排気装置各々より実際の排気風量である実排気風量を取得する実排気風量取得部と、
     前記実排気風量取得部により取得された前記排気装置の各々における前記実排気風量を積算した積算風量を算出する実排気風量積算部と、
     前記実排気風量積算部により算出された前記積算風量と所定時間当たりに必要な排気風量とに応じて前記排気装置各々の排気風量を調整する能力調整部と、を備える請求項1に記載の換気制御装置。
  14.  前記能力調整部は、
     前記実排気風量積算部により算出された前記積算風量が所定時間当たりに必要な排気風量に達する場合に、前記排気装置の各々に対して運転の停止指示を行う請求項13に記載の換気制御装置。
  15.  建物に設置されて該建物の外側から内側へ空気を搬送可能な複数の給気装置と通信可能に接続され、該複数の給気装置の動作を制御する換気制御装置であって、
     前記建物に対して設定される総給気風量を読み出す総給気風量読出部と、
     前記複数の給気装置の各々の仕様として各給気装置の最大給気風量を読み出す給気装置仕様読出部と、
     前記総給気風量読出部により読み出された前記総給気風量を前記給気装置仕様読出部により読み出された前記各給気装置の最大給気風量に応じて配分することで、前記複数の給気装置の各々の給気風量を設定する給気風量配分部と、
     前記複数の給気装置の各々に対して、前記給気装置について前記給気風量配分部により設定された前記給気風量を指示する給気風量指示部と、を備える換気制御装置。
  16.  建物に設置されて前記建物の内側から外側へ空気を搬送可能な複数の排気装置と、
     前記建物に設置されて前記建物の外側から内側へ空気を搬送可能な複数の給気装置と、
     前記複数の排気装置と前記複数の給気装置と通信可能に接続される請求項1に記載の換気制御装置と、を備える換気システム。
PCT/JP2019/009554 2018-03-26 2019-03-11 換気制御装置及び換気システム WO2019188156A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CA3092439A CA3092439A1 (en) 2018-03-26 2019-03-11 Ventilation control device and ventilation system
US16/978,848 US11874004B2 (en) 2018-03-26 2019-03-11 Ventilation control device and ventilation system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-057380 2018-03-26
JP2018057380A JP6967705B2 (ja) 2018-03-26 2018-03-26 換気制御装置及び換気システム

Publications (1)

Publication Number Publication Date
WO2019188156A1 true WO2019188156A1 (ja) 2019-10-03

Family

ID=68058169

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/009554 WO2019188156A1 (ja) 2018-03-26 2019-03-11 換気制御装置及び換気システム

Country Status (4)

Country Link
US (1) US11874004B2 (ja)
JP (1) JP6967705B2 (ja)
CA (1) CA3092439A1 (ja)
WO (1) WO2019188156A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6967705B2 (ja) * 2018-03-26 2021-11-17 パナソニックIpマネジメント株式会社 換気制御装置及び換気システム
WO2022204262A1 (en) * 2021-03-24 2022-09-29 Coil Master Corporation Fan array diagnostic and monitoring system and method
WO2022269685A1 (ja) * 2021-06-21 2022-12-29 日立ジョンソンコントロールズ空調株式会社 換気システム

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0518573A (ja) * 1991-07-09 1993-01-26 Mitsubishi Electric Corp 換気システム
JP2004301349A (ja) * 2003-03-28 2004-10-28 Matsushita Electric Ind Co Ltd 換気システム
KR20120106196A (ko) * 2011-03-18 2012-09-26 삼성중공업 주식회사 실내의 환기량 제어 시스템 및 그 방법
JP2016008794A (ja) * 2014-06-25 2016-01-18 三菱電機株式会社 換気システム
WO2017159208A1 (ja) * 2016-03-17 2017-09-21 パナソニックIpマネジメント株式会社 換気制御装置及び換気システム

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7275533B2 (en) * 2003-03-06 2007-10-02 Exhausto, Inc. Pressure controller for a mechanical draft system
US7127850B1 (en) * 2003-09-16 2006-10-31 Fex Jr J Patrick Internal building pressure apparatus and method
US20070032187A1 (en) * 2005-08-03 2007-02-08 Mingsheng Liu Air handling unit fan control systems and methods
US20080179408A1 (en) * 2007-01-30 2008-07-31 Johnson Controls Technology Company Sensor-free optimal control of air-side economizer
US20100048123A1 (en) * 2008-08-25 2010-02-25 O'gorman Lawrence System and method for energy efficient air cooling, exchange and circulation
DK179101B1 (en) * 2010-08-23 2017-10-30 Inventilate Holding Aps A method for controlling a ventilation system for the ventilation of an enclosure and a ventilation system
JP2014074554A (ja) * 2012-10-05 2014-04-24 Mitsubishi Electric Corp 換気システム、換気方法、換気制御装置及びプログラム
US11156176B2 (en) * 2016-12-16 2021-10-26 Ford Global Technologies, Llc Systems and methods for a split exhaust engine system
US10670285B2 (en) * 2017-04-20 2020-06-02 Trane International Inc. Personal comfort variable air volume diffuser
JP6967705B2 (ja) * 2018-03-26 2021-11-17 パナソニックIpマネジメント株式会社 換気制御装置及び換気システム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0518573A (ja) * 1991-07-09 1993-01-26 Mitsubishi Electric Corp 換気システム
JP2004301349A (ja) * 2003-03-28 2004-10-28 Matsushita Electric Ind Co Ltd 換気システム
KR20120106196A (ko) * 2011-03-18 2012-09-26 삼성중공업 주식회사 실내의 환기량 제어 시스템 및 그 방법
JP2016008794A (ja) * 2014-06-25 2016-01-18 三菱電機株式会社 換気システム
WO2017159208A1 (ja) * 2016-03-17 2017-09-21 パナソニックIpマネジメント株式会社 換気制御装置及び換気システム

Also Published As

Publication number Publication date
CA3092439A1 (en) 2019-10-03
US11874004B2 (en) 2024-01-16
JP2019168187A (ja) 2019-10-03
JP6967705B2 (ja) 2021-11-17
US20210003302A1 (en) 2021-01-07

Similar Documents

Publication Publication Date Title
WO2019188156A1 (ja) 換気制御装置及び換気システム
US11768002B2 (en) Systems and methods to control a communication rate between a thermostat and a cloud based server
US10635119B2 (en) Method and system for configuring wireless sensors in an HVAC system
US20140041846A1 (en) Hvac system with multiple equipment interface modules
EP2913598B1 (en) Air conditioner and operation method thereof
US10083132B2 (en) Management of building and household appliances using portable computing device
CN108278728B (zh) 一种多用户注册使用的空调控制系统及其控制方法
JP2020051680A (ja) 換気空調システム
KR102206461B1 (ko) 공기조화기 시스템 및 그 동작방법
US20220349607A1 (en) Home appliance system, control method, and non-transitory computer-readable medium
US10883737B2 (en) Ventilation control device
JP2009222349A (ja) Vav制御システム
EP3786539B1 (en) Ventilation system
US20210285677A1 (en) Air-conditioning system and application program
JP5465336B2 (ja) 空気調和機制御装置、設備機器システム及びプログラム
US11946658B2 (en) Ventilation air conditioning system and outdoor air supply fan
KR102521766B1 (ko) 공조 관리 시스템
US20240361032A1 (en) Systems and methods for blower control in an hvac system
KR102101655B1 (ko) 벤츄리 타입의 가변풍량조절기의 제어 시스템 및 이의 제어 방법
WO2015111149A1 (ja) 空気調和システム
JP2010223482A (ja) 空調システム
CA3129752A1 (en) Air conditioning system, air-conditioning control program, and storage medium storing air-conditioning control program
JPWO2020035928A1 (ja) 空気調和機のインターフェイス
JP2020198498A (ja) 遠隔制御システム
KR20080070210A (ko) 시스템 에어컨 및 그 제어방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19776584

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3092439

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19776584

Country of ref document: EP

Kind code of ref document: A1