WO2017154740A1 - 高純度錫及びその製造方法 - Google Patents

高純度錫及びその製造方法 Download PDF

Info

Publication number
WO2017154740A1
WO2017154740A1 PCT/JP2017/008342 JP2017008342W WO2017154740A1 WO 2017154740 A1 WO2017154740 A1 WO 2017154740A1 JP 2017008342 W JP2017008342 W JP 2017008342W WO 2017154740 A1 WO2017154740 A1 WO 2017154740A1
Authority
WO
WIPO (PCT)
Prior art keywords
tin
purity
less
electrolytic
ppm
Prior art date
Application number
PCT/JP2017/008342
Other languages
English (en)
French (fr)
Inventor
伊森 徹
竹本 幸一
Original Assignee
Jx金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jx金属株式会社 filed Critical Jx金属株式会社
Priority to JP2017531647A priority Critical patent/JP6457093B2/ja
Priority to EP17763080.3A priority patent/EP3428320B1/en
Priority to US15/775,731 priority patent/US11118276B2/en
Priority to CN201910893030.2A priority patent/CN110565115B/zh
Priority to CN201780002499.1A priority patent/CN107849716B/zh
Publication of WO2017154740A1 publication Critical patent/WO2017154740A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B25/00Obtaining tin
    • C22B25/08Refining
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C13/00Alloys based on tin
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C1/00Electrolytic production, recovery or refining of metals by electrolysis of solutions
    • C25C1/14Electrolytic production, recovery or refining of metals by electrolysis of solutions of tin
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C7/00Constructional parts, or assemblies thereof, of cells; Servicing or operating of cells
    • C25C7/04Diaphragms; Spacing elements
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C7/00Constructional parts, or assemblies thereof, of cells; Servicing or operating of cells
    • C25C7/06Operating or servicing
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/30Electroplating: Baths therefor from solutions of tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties

Definitions

  • the present invention relates to high-purity tin (Sn) with few particles and a method for producing the same.
  • a commercially available method for producing high-purity tin is generally an electrolytic method from an acidic electrolytic bath such as tin sulfamate, tin sulfate, or tin chloride.
  • Patent Document 1 99.95% by weight or more of tin is used as an anode and the liquid composition is Sn: 30 to 150 g / L, and a radioactive isotope is used for the purpose of reducing ⁇ -rays.
  • a method is described in which electrolysis is carried out at 30 to 200 g / L of sulfamic acid containing almost no elements, electrolysis conditions of cathode current density: 0.5 to 2.0 Amp / dm 2 , and liquid temperature: 15 to 50 ° C. ( Claim 2 of patent document 1.
  • Patent Document 2 specifies sulfuric acid 90 to 240 g / L and JIS K 8180 that at least meet the standards for reagent primary sulfuric acid specified in JIS K 8951 for the purpose of reducing alpha rays.
  • an electrolytic solution containing 10 to 50 g / L of hydrochloric acid that at least meets the specifications of reagent grade primary hydrochloric acid tin having a purity of 99.97% by weight or more is used as an anode for electrolysis. A manufacturing method is described (claim 1 of Patent Document 2).
  • Patent Document 3 describes a method for removing lead by electrolytic purification of impurities in metallic tin. Specifically, in the electrolytic purification of tin using an electrolytic solution composed of a mixed acid of sulfuric acid and silicic acid, the tin electrolytic solution is extracted from the electrolytic bath and led to the precipitation bath, and strontium carbonate is added to the electrolytic solution in the precipitation bath. Then, lead in the liquid is precipitated at a liquid temperature of 35 ° C. or lower, and then the electrolytic solution containing this precipitate is guided to a filter to separate the precipitate, and the electrolytic solution from which the precipitate has been removed is returned to the electrolytic cell. A method for electrolytic purification of high-purity tin characterized by performing electrolytic purification of tin is described (claim 1 of Patent Document 3).
  • Patent Document 4 tin as a raw material is leached with an acid, for example, sulfuric acid, and this leaching solution is used as an electrolytic solution.
  • a method of performing electrolytic purification using an anode is described, whereby high-purity tin having a purity of 5N or more (excluding O, C, N, H, S, and P gas components) can be obtained.
  • 3N level tin is used as an anode and electrolytic purification is performed in a sulfuric acid bath or hydrochloric acid bath under conditions of an electrolysis temperature of 10 to 80 ° C. and a current density of 0.1 to 50 A / dm 2 .
  • impurities are adsorbed by suspending oxides such as titanium oxide, aluminum oxide, and tin oxide, activated carbon, and carbon in an electrolytic solution.
  • the present invention was created in view of the above circumstances, and one of its purposes is to provide high-purity tin with suppressed particles. Another object of the present invention is to provide a method for producing high-purity tin with suppressed particles.
  • the present inventor examined the cause of this, and as a result, tin oxide (SnO, SnO 2 ), tin sulfide (SnS, SnS 2 ) combined with gas component elements such as oxygen (O) and sulfur (S), silicon dioxide ( It has been found that contaminants from outside the system such as SiO 2 ) are the causative substances of the particles, and the present invention has been reached. According to the results of the study by the present inventor, in order to effectively suppress particles, a two-stage refining is employed in which, after purifying tin, electrolytic purification in a sulfuric acid bath is performed, followed by electrolytic purification in a hydrochloric acid bath.
  • the anode side electrolyte in the electrolytic cell in which the positive and negative electrodes are separated by a diaphragm is extracted, and after removing lead and oxide sludge in the extracted electrolytic solution, Circulating to the cathode side and reducing the surface area of electrodeposited tin by adding a smoothing agent to the electrolytic solution to plate the electrodeposited tin.
  • Primary obtained by sulfuric acid bath electrolytic purification in the first stage The purified tin is taken out from the electrolytic cell, melted and cast to obtain an anode plate. At this time, the carbon of the smoothing agent component is removed by evaporation.
  • a hydrochloric acid bath electrolytic purification is performed using a different electrolytic tank from the first-stage electrolytic tank, and the smoothing agent component is involved in the electrodeposited tin.
  • a smoothing agent is not used, the electrolytic solution in the electrolytic cell is extracted, the particles in the extracted electrolytic solution are removed, and then circulated to the electrolytic cell again. It has been found that it is effective to perform the operation of removing oxygen by reducing oxides that cause particles contained in the refined tin by dissolving and casting subrefined tin in a reducing gas atmosphere.
  • the present invention has been completed on the basis of the above knowledge, and in one aspect, it is high-purity tin having a purity of 5N (99.999% by mass) or more, and 1 g of particles having a particle diameter of 0.5 ⁇ m or more. It is high-purity tin with 50,000 or less inside.
  • the number of particles having a particle size of 0.5 ⁇ m or more is 10,000 or less per 1 g.
  • the content concentrations of iron, copper, lead, and sulfur are each 0.5 ppm by mass or less.
  • the content concentration of antimony is 1 mass ppm or less.
  • the oxygen concentration is less than 5 ppm by mass.
  • the raw material tin having a total content of nickel, lead, antimony and zinc of 30 ppm by mass or less is used as an anode, and at least the cathode chamber is added with a smoothing agent for reducing the surface area of electrodeposited tin, and electrolytically purified.
  • Step 1 for obtaining primary purified electrodeposited tin with increased purity on the surface of the cathode wherein at least part of the tin sulfate solution on the anode chamber side is extracted and lead in the extracted tin sulfate solution is extracted as well as Removing the product sludge
  • step 1 include sending a lead and tin sulfate solution obtained by removing the oxide sludge to the cathode compartment,
  • the primary purified electrodeposited tin, or the cast tin after the primary purified electrodeposited tin is heated and melted and cast, is used as an anode, and the cathode is obtained by electrolytic purification in an electrolytic bath using a hydrochloric acid tin chloride solution as an electrolyte.
  • Step 2 of obtaining needle-like secondary purified electrodeposited tin on the surface, wherein at least a part of the tin chloride solution was withdrawn from the electrolytic cell, and the particles in the tin chloride solution were brought from Step 1 After removing the residual component of the smoothing agent, returning the tin chloride solution from which particles and the residual component of the smoothing agent have been removed to the electrolytic cell again; Step 3 comprising melt casting the acicular secondary purified electrodeposited tin in a reducing gas atmosphere; It is a manufacturing method of the high purity tin containing this.
  • the smoothing agent is one or more hydroxyl groups via one or more methylene groups and / or one or more ethylene oxide groups, or directly.
  • a nonionic surfactant comprising a compound having a structure bonded to an aryl group.
  • the smoothing agent includes polyoxyethylene alkylphenyl ether.
  • the step 1 further includes a step of adding an antioxidant together with the smoothing agent to the tin sulfate solution.
  • High-purity tin according to the present invention when used as a molten metal, oxygen, sulfur, silicon is extremely reduced, can suppress the formation of unwanted particles, without causing clogging in the fine flow path, It is possible to suppress the hindrance to the ultra-fine processing process.
  • sulfur that is difficult to be removed by the first-stage purification using a sulfuric acid bath can be reduced by performing two-stage purification that is further purified using a hydrochloric acid bath after being purified using a sulfuric acid bath.
  • Non-metallic inclusions can be extremely reduced by removing the substances and further dissolving and casting electrodeposited tin deposited in a needle shape in a hydrochloric acid bath in a reducing atmosphere. Specifically, high-purity metallic tin having 50,000 particles or less per 1 g of particles having a particle size of 0.5 ⁇ m or more can be obtained.
  • the structural example of the electrolytic purification apparatus for implementing the process 1 and manufacturing primary refined electrodeposition tin is shown.
  • the structural example of the electrolytic purification apparatus for implementing the process 2 and manufacturing secondary refined electrodeposition tin is shown.
  • the elemental analysis result of the refined tin in an Example and a comparative example, and the particle number measurement result are shown.
  • the results of elemental analysis of purified tin and the measurement results of the number of particles in Examples and Comparative Examples are shown (continuation of FIG. 3-1).
  • a method for producing high-purity tin according to the present invention uses an acidic tin sulfate solution as an electrolytic solution, and separates an anode chamber and a cathode chamber by disposing a diaphragm between the anode and the cathode.
  • Step 1 of obtaining electrodeposited tin with increased purity on the surface of the cathode by electrolytic purification using raw material tin as an anode in a bath is included.
  • Step 1 can be performed using, for example, the electrolytic purification apparatus shown in FIG.
  • the electrolytic purification apparatus is connected to an electrolytic cell 1, a purified solution tank 2 that extracts at least a part of the electrolytic solution in the electrolytic cell 1 and cleans the electrolytic solution, and a purified solution tank 2.
  • a filtering device 3, a storage tank 5 for storing the purified electrolytic solution, and liquid feeding lines 4a to 4d for feeding the electrolytic solution are provided.
  • the electrolytic cell 1 is provided with a cathode 11 and an anode 12.
  • the electrolytic cell 1 is partitioned by a diaphragm 14 into a cathode chamber 13 in which the cathode 11 is disposed and an anode chamber 15 in which the anode 12 is disposed.
  • the diaphragm 14 is disposed between the cathode 11 and the anode 12 in order to prevent impurity ions generated from the anode 12 from being deposited on the cathode 11.
  • An ion exchange membrane is preferably used as the diaphragm 14.
  • the raw material tin used for the anode 12 has a lead content of preferably 20 ppm or less, more preferably 10 ppm or less, and even more preferably 5 ppm or less in order to further reduce the lead content of electrodeposited tin.
  • the raw material tin preferably has an iron content of 5 ppm or less, preferably 1 ppm or less, and an antimony content of 5 ppm or less, preferably 1 ppm or less.
  • the total content of copper, iron, indium, nickel, lead, antimony and zinc is desirably 30 ppm or less, and preferably 10 ppm or less.
  • a metal plate such as tin, aluminum, stainless steel, titanium, or a graphite plate can be used.
  • the purity is preferably 99.9% by mass (3N) or more, and 99.995% by mass (4N5) or more. Is more preferable.
  • the purity of typical raw material tin is 99.95 to 99.99% by mass (3N5 to 4N).
  • the purity of is 99.99-99.995% by mass (4N-4N5).
  • the measuring method of the impurity element contained in raw material tin is the same as that of the high purity tin mentioned later.
  • a smoothing agent for improving the surface properties of electrodeposited tin to the electrolytic solution.
  • a smoothing agent a nonionic interface comprising a compound having a structure in which one or a plurality of hydroxyl groups are bonded to an aryl group via one or a plurality of methylene groups and / or one or a plurality of ethylene oxide groups It is preferred to use an activator.
  • the potential difference problem between tin and lead can be solved, and the subsequent dissolution
  • the casting yield in the casting process is improved, and electrodeposited tin with high purity and good surface properties can be obtained.
  • compounds represented by the following chemical formulas (1) to (4) can be preferably used: (In the formulas (1) to (4), m and n are each an integer of 0 to 12, a, b and c are each an integer of 1 to 3, k is an integer of 4 to 24, and R is hydrogen or substituted. Or an organic group such as an unsubstituted alkyl group, a substituted or unsubstituted aryl group, a substituted or unsubstituted aralkyl group (typically having 1 to 3 carbon atoms)
  • the smoothing agent is selected from the group consisting of ⁇ -naphthol, ⁇ -naphthol, EO (ethylene oxide) adduct of ⁇ -naphthol, EO adduct of ⁇ -naphthol, and polyoxyethylene alkylphenyl ether. More than seeds can be used. Of these, ⁇ -naphthol and polyoxyethylene nonylphenyl ether are preferably used.
  • a chain compound having a hydroxyl group that does not have an aryl group decomposes during electrolysis, and may not be suitable for the present embodiment in terms of life and stability.
  • the content of the smoothing agent in the electrolytic solution is preferably 1 to 20 g / L, more preferably 3 to 10 g / L, at least in the cathode chamber.
  • the smoothing agent can be added, for example, in the storage tank 5 that circulates and supplies the electrolytic solution into the cathode chamber 13.
  • an antioxidant such as hydroquinone may be added to the electrolytic solution at about 1 to 10 g / L, more preferably 4 to 6 g / L.
  • an antioxidant it is possible to suppress the oxidation of tin ions dissolved in the electrolytic solution from +2 to +4, and to suppress precipitation and precipitation in the electrolytic solution. Can be prevented.
  • the liquid feed lines 4a to 4d are liquid feed lines for extracting the electrolytic solution in the electrolytic cell 1, purifying and purifying it, and returning the purified electrolytic solution to the electrolytic cell 1 again.
  • the electrolytic solution extracted from the electrolytic cell 1 is supplied to the clean solution tank 2 through the liquid feed line 4a.
  • lead in the extracted electrolytic solution is removed.
  • Lead removal methods include extraction of lead ions with an extractant, adsorption removal with ion exchange resins, precipitation of sparingly soluble sulfide salts by addition of sulfides, salts of alkaline earth metals such as strontium and barium, etc. It can be performed by coprecipitation by adding a coprecipitation agent.
  • the liquid purification tank 2 is provided with a stirring means (not shown), and a lead is removed from the electrolyte by adding a coprecipitation agent such as strontium carbonate while stirring. A precipitate of strontium sulfate (SrSO 4 ) is produced.
  • Alkaline earth metal salts such as barium carbonate can also be used as the coprecipitation agent.
  • the stirring time may be appropriately adjusted in consideration of the lead content, and may be, for example, 1 to 24 hours.
  • the addition amount of the coprecipitation agent is preferably 1 to 30 g / L, more preferably 3 to 20 g / L, still more preferably 3 to 10 g / L.
  • the electrolytic solution extracted from the liquid purification tank 2 is sent to the filtration device 3 such as a filter press through the liquid feeding line 4b and is separated into solid and liquid.
  • solid impurities such as oxide sludge containing tin oxide and noble metals (copper, lead, etc.) in the electrolytic solution are removed.
  • the deposit is produced
  • the lead contained in electrolyte solution is caught in strontium sulfate and removed.
  • the lead concentration in the electrolyte can be reduced to typically 0.2 mg / L or less, more typically 0.1 mg / L or less.
  • the filtrate obtained by the solid-liquid separation is circulated by being sent to the storage tank 5 via the liquid feed line 4c as a purified electrolyte and sent to the cathode chamber 13 of the electrolytic cell 1 via the liquid feed line 4d.
  • the composition of the electrolytic solution can be adjusted by further adding a smoothing agent and, if necessary, sulfuric acid and an antioxidant to the electrolytic solution.
  • the electrolyte supplied into the cathode chamber 13 has lead removed by the liquid purification tank 2 and solid impurities such as oxides removed by the filtering device 3, so that lead during electrodeposition of tin is deposited. Less entrainment of ions and oxides.
  • the liquid feed line 4 a is connected to the anode chamber 15 of the electrolytic cell 1, and it is preferable to extract the electrolyte solution (anolyte) in the anode chamber 15 containing lead dissolved from the raw material tin constituting the anode 12.
  • the electrolytic solution (anolite) in the anode chamber 15 is extracted, and the lead and oxide sludge in the electrolytic solution are removed from the electrolytic solution in the liquid purification tank 2, and the electrolytic solution after removing the lead and oxide sludge is removed.
  • the frequency of replenishing a new electrolyte solution is reduced, so that the electrolyte solution can be used effectively, Production efficiency of pure tin can be improved.
  • a smoothing agent is added to the electrolytic solution supplied into the cathode chamber 13, and the surface properties of electrodeposited tin deposited on the surface of the cathode 11, which has conventionally been acicular, can be further flattened. Therefore, plate-like electrodeposited tin can be obtained.
  • the amount of electrolytic solution entrained in the electrodeposited tin when pulling up the electrodeposited tin is reduced, and the replenishment of the electrolytic solution can be reduced.
  • tin concentration in the electrolytic solution is too high, it exceeds the saturation solubility, and tin ions are deposited. On the other hand, if it is too low, hydrogen generation from the cathode plate will increase and the precipitation of tin will be hindered, preferably about 1 to 100 g / L, more preferably 30 to 100 g / L.
  • the pH of the electrolytic solution is too high, tin ions precipitate as hydroxide due to hydrolysis, and the tin concentration decreases. On the other hand, if it is too low, the generation of hydrogen from the cathode plate increases and the precipitation of tin is hindered, so the pH is preferably 0 to 1.0, more preferably 0.3 to 0.8.
  • the temperature is preferably 10 to 40 ° C.
  • the cathode current density during electrolytic purification is preferably 1 to 5 A / dm 2 , more preferably 2 to 3 A / dm 2 . If the current density is too small, the productivity is low, and if the current density is too high, the electrolysis voltage becomes high. Therefore, the effect of the smoothing agent may be reduced and tin may be precipitated in a needle shape.
  • the plate-like primary purified electrodeposited tin deposited on the surface of the cathode is recovered by pulling it up from the electrolytic cell, and the recovered plate-like primary purified electrodeposited tin is sufficiently washed with pure water, It is preferable to dry. If the drying temperature is too low, it takes time, but if it is too high, excessive oxidation of tin due to heat may occur. Therefore, it is preferable to dry at 60 to 100 ° C, and to dry at 80 to 100 ° C. Is more preferable.
  • the method for producing high-purity tin according to the present invention uses, as an anode, primary purified electrodeposited tin obtained in step 1 or cast tin after the primary purified electrodeposited tin is heated and melted and cast.
  • Step 2 includes obtaining a needle-like secondary purified electrodeposited tin on the surface of the cathode by electrolytic purification in an electrolytic bath using an acidic tin chloride solution as a liquid.
  • Step 2 can be performed using, for example, the electrolytic purification apparatus shown in FIG.
  • the electrolytic purification apparatus includes an electrolytic cell 21, a filter 22 that extracts at least a part of the electrolytic solution in the electrolytic cell 21 and filters the electrolytic solution, and a feed line 24a that feeds the electrolytic solution.
  • the electrolytic purification apparatus includes an electrolytic cell 21, a filter 22 that extracts at least a part of the electrolytic solution in the electrolytic cell 21 and filters the electrolytic solution, and a feed line 24a that feeds the electrolytic solution.
  • the electrolytic purification apparatus includes an electrolytic cell 21, a filter 22 that extracts at least a part of the electrolytic solution in the electrolytic cell 21 and filters the electrolytic solution, and a feed line 24a that feeds the electrolytic solution.
  • the feed line 24a that feeds the electrolytic solution.
  • a cathode 25 and an anode 23 are arranged in the electrolytic cell 21.
  • An electrolytic solution 26 is disposed in the electrolytic cell 21.
  • an acidic tin chloride solution obtained by leaching the primary purified electrodeposited tin electrolytically purified in Step 1 with hydrochloric acid can be used.
  • the raw material tin used for the anode 23 it is preferable to use the electrodeposited tin that has been electrolytically purified in step 1 and then melted and cast in the atmosphere or vacuum.
  • a metal plate such as tin, aluminum, stainless steel, titanium, or a graphite plate can be used.
  • the electrolytic solution is extracted from the electrolytic cell and solid-liquid separated.
  • a method of filtering by passing through a filter is preferably used.
  • the preferred conditions for the filter to be used for filtration are acid-resistant base materials such as polyethylene, polypropylene, and fluororesin, large effective filtration area, easy replacement with cartridge type, and fine particle collection efficiency.
  • MF membrane microfiltration membrane having a pore size of 0.05 to 10 ⁇ m
  • a part of the smoothing agent may be taken into the casting when it is removed as a product, and the remaining components of the smoothing agent that can be brought in from Step 1 cannot be removed by solid-liquid separation alone. It is preferred to remove the components (mainly carbon and oxygen).
  • a method for removing the residual component of the smoothing agent is not limited, and a method of passing through an activated carbon filter can be mentioned.
  • hydrochloric acid bath electrolytic refining it is preferable not to add a smoothing agent in order to avoid mixing of particles due to entrainment of the smoothing agent into the electrodeposited metal. Therefore, the electrodeposited tin metal in the hydrochloric acid bath becomes needle-like.
  • the tin concentration in the electrolyte is too high, the specific gravity increases, the load on the liquid feed pump that circulates the electrolyte increases, and energy is wasted. In addition, there is a waste of work in progress.
  • the resistance of the electrolytic solution becomes high, hydrogen generation competing with tin electrolytic deposition increases, and tin precipitation is hindered, so about 10 to 150 g / L is preferable, and 30 to 100 g / L is preferable. More preferred.
  • the pH of the electrolytic solution is too high, tin ions precipitate as hydroxide due to hydrolysis, and the tin concentration decreases. On the other hand, if it is too low, the generation of hydrogen from the cathode plate increases and the precipitation of tin is hindered, so the pH is preferably 0.0 to 1.0, more preferably pH 0.01 to 0.8.
  • the cathode current density during electrolytic purification is preferably 1 to 10 A / dm 2 , more preferably 2 to 8 A / dm 2 . If the current density is too small, the productivity is low, and if the current density is too high, the electrolysis voltage increases, so that hydrogen generation increases, current efficiency decreases, and power is wasted.
  • acicular tin deposited on the surface of the cathode is withdrawn from the electrolytic bath and collected.
  • the collected acicular tin is thoroughly washed with pure water and then dried. If the drying temperature is too low, it takes time, but if it is too high, excessive oxidation of tin due to heat may occur. Therefore, it is preferable to dry at 60 to 100 ° C, and to dry at 80 to 100 ° C. Is more preferable.
  • the method for producing high-purity tin according to the present invention includes melt-casting the needle-like secondary purified electrodeposited tin obtained in Step 2 in a reducing gas atmosphere.
  • High-purity tin is produced by dissolving and casting dried needle-shaped electrodeposited tin at 500 to 1,000 ° C. in a reducing gas atmosphere such as hydrogen and carbon monoxide.
  • Acicular electrodeposited tin has a very large surface, and most of it is oxidized when heated in the atmosphere.
  • oxygen that causes particles is removed, so that the particle diameter and number of particles of high-purity tin obtained are reduced.
  • a production cost can be restrained low as a result and the productivity of high purity tin can be improved.
  • High purity tin The purity of high-purity tin (purified electrodeposited tin) obtained by the above-described method for producing high-purity tin according to an embodiment of the present invention is evaluated by glow discharge mass spectrometry (GDMS: Glow Discharge Mass Spectrometry). The oxygen concentration is evaluated by a non-dispersive infrared absorption method.
  • ppm the unit notation of “ppm” used in the present invention means “mass ppm”.
  • the purity of the high-purity tin of the present invention can be 5N or higher, typically 6N or higher, more typically 7N or higher.
  • the impurity element contained in this high-purity tin can be measured by using Li as a matrix and impurities as element symbols.
  • the high-purity tin of the present invention has an iron content concentration of 0.5 ppm or less, preferably 0.05 ppm or less, more preferably 0.005 ppm, as a result of mass spectrometry by the GDMS method. Less than.
  • the high-purity tin of the present invention has a copper content of 0.5 ppm or less, preferably 0.05 ppm or less, more preferably 0.005 ppm, as a result of mass spectrometry by the GDMS method. Less than.
  • the high-purity tin of the present invention has an antimony concentration of 1.0 ppm or less, preferably less than 0.5 ppm, as a result of mass spectrometry by the GDMS method.
  • the high-purity tin of the present invention has a lead content of 0.5 ppm by mass or less, preferably 0.1 ppm or less, more preferably 0, as a result of mass spectrometry by the GDMS method. It can be made less than 0.01 ppm.
  • the high-purity tin of the present invention has a sulfur content of 0.5 ppm or less, preferably 0.1 ppm or less, more preferably 0.01 ppm, as a result of mass spectrometry by the GDMS method. Less than.
  • the high-purity tin of the present invention has a concentration of oxygen of 10 ppm or less, preferably less than 5 ppm, as a result of mass analysis by a non-dispersive infrared absorption method.
  • the high-purity tin of the present invention is obtained by mass spectrometry using the GDMS method, and results in Li, Be, B, F, Na, Mg, Al, Si, P, S, Cl, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, As, Se, Br, Rb, Sr, Y, Zr, Nb, Mo, Ru, Rh, Pd, Ag, Cd, In, Sb, Te, I, Cs, Ba, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Hf, Ta, W, Re, Os, Ir, Pt, Au, Hg, Tl, Pb, Bi, Th, and U are all below the detection limit value.
  • “below detection limit” means that Sc and V are less than 0.001 ppm, Li, Be, B, Ti, Cr, Mn, Fe, Cu, Ga, As, Rb, Sr, Y, Zr, and Nb. , Rh, Pd, Ag, Ce, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Bi, Th, U is less than 0.005 ppm, Na, Mg, Al, Si, P, S, Cl, K, Ca, Co, Ni, Zn, Ge, Se, Mo, Ru, Eu, Hf, W, Re, Os, Ir, Pt, Pb is less than 0.01 ppm, Tl is less than 0.02 ppm, F, Br, Cd, I, Cs, Au, Hg is less than 0.05 ppm, Te, Ba, La, Pr is less than 0.1 ppm, Sb is less than 0.5 ppm, In is less than 1 ppm, and Ta is less
  • particles having a particle size of 0.5 ⁇ m or more can be 50,000 or less, preferably 40,000 or less in 1 g of tin. More preferably, it can be 30,000 or less, still more preferably 10,000 or less, for example, less than 5000 to 50,000.
  • the number of particles is defined to be synonymous with the number of insoluble residue particles (LPC).
  • the number of insoluble residue particles (LPC) is a parameter regarded as one of the evaluation methods of metal raw materials for electronic devices, and means the number of insoluble residue particles detected when a metal is acid-dissolved.
  • LPC insoluble residue particles
  • LPC wet laser measuring device
  • LPC Liquid Particle Counter
  • the method for measuring the number of insoluble residue particles is as follows: 5 g of a sample is collected in a clean room of class 100 (US 209E standard), and 200 mL of hydrochloric acid having a concentration of 6N is added over 1 hour. Thereafter, it is heated to 140 ° C. and held for 48 hours to completely dissolve. This is allowed to cool for 1 hour, and further diluted with pure water to 500 mL. 10 mL of this solution is taken, and the particles in the solution are measured with a submerged particle counter according to JIS B9925: 2010. For example, when the number of particles is 1000 / mL, a sample of 0.1 g is measured in 10 mL, so the number of particles is 100,000 / g.
  • Example 1 (Process 1) The electrolytic purification apparatus having the structure shown in FIG. 1 is used, and a dilute sulfuric acid solution having a pH of 0.6 is provided on the anode side of the electrolytic cell in which the anode and the cathode are partitioned by an anion exchange membrane (Celemyon AMV manufactured by Asahi Glass Co., Ltd.) An amount of sulfuric acid solution required to react with tin dissolved in was added. An anode cast from raw material tin and a cathode made of titanium are arranged in an electrolytic cell, respectively, and electrolytic leaching is performed at a cathode current density of 2 A / dm 2 and a liquid temperature of 30 ° C.
  • an anion exchange membrane Coelemyon AMV manufactured by Asahi Glass Co., Ltd.
  • tin concentration 98 g / L tin concentration 98 g / L
  • the analysis results of the raw material tin (raw material) are shown in FIGS. 3-1 and 3-2.
  • the quality of oxygen was measured by the non-dispersive infrared absorption method, and the quality of other elements was measured by the GDMS method.
  • the electrolytic purification 5 g / L of hydroquinone was added as an antioxidant to the anode side. After electrolytic leaching, all of the anode chamber electrolyte and the cathode chamber electrolyte were extracted.
  • the electrolyte in the anode chamber was placed in a cleansing tank for removing lead, and 5 g / L of strontium carbonate was added to the electrolyte and stirred for 16 hours.
  • the stirred electrolyte was filtered (filtering pressure 0.4 MPa). , Pressing pressure 0.7MPa, filter cloth material: made of polypropylene, filter cloth air permeability 100cm 3 / cm 2 / min), solid oxide separation and removal of oxide sludge and solid impurities together with lead in the electrolyte,
  • the electrolytic solution after removal was added to the cathode side.
  • the lead concentration after lead removal was less than 0.1 mg / L as measured by ICP emission spectroscopy.
  • Step 2 The primary purified electrodeposited tin obtained in step 1 was melted and cast by heating at 250 to 300 ° C. in the atmosphere to obtain cast tin. A portion of the cast tin was leached into 6N hydrochloric acid to obtain a tin chloride solution having a tin concentration of 60 g / L and a pH of 0.2.
  • a tin chloride solution having a tin concentration of 60 g / L and a pH of 0.2.
  • a filter with a collection efficiency of 99.9% was installed in the latter stage and filtered in two stages, and then circulated to the electrolytic cell. Electrolysis was performed for a predetermined time in a state where the circulation of the electrolytic solution was continued, and the cathode was pulled up from the electrolytic cell. The electrodeposited tin deposited on the cathode was peeled off, thoroughly washed with pure water until the washing water became neutral, and dried in a drier at 95 ° C. for 16 hours. Thus, acicular secondary purified electrodeposited tin was obtained.
  • Impurities were measured by the GDMS method using a part of the obtained high-purity tin. The measurement results are shown in FIG. As shown in FIG. 3-1 and FIG. 3-2, impurities were less than the lower limit of quantification in all elements. Similarly, when a part of the obtained high-purity tin was used to measure the oxygen quality by the non-dispersive infrared absorption method, it was less than the lower limit of quantification of 5 ppm.
  • the number of insoluble residual particles was measured with a liquid light scattering type automatic particle counter (KS-42B manufactured by Kyushu Lion Co., Ltd.) by the method described above using a part of the obtained high-purity tin. As a result, there were 5,170 particles having a particle size of 0.5 ⁇ m or more present in 1 g of tin. The refined tin had sufficiently low impurities and extremely few particles.
  • Examples 2 to 3 Except for changing the conditions described in Table 1 below, the same steps as in Example 1 were performed to obtain high-purity tin of Examples 2 and 3.
  • Impurities were measured by the GDMS method using a part of the obtained high-purity tin.
  • the measurement results are shown in FIGS. 3-1 and 3-2.
  • impurities were less than the lower limit of quantification in all elements.
  • oxygen quality was measured by the method described above using a part of the obtained high-purity tin
  • both Examples 2 and 3 were less than the lower limit of quantification of 5 ppm.
  • the number of insoluble residue particles was measured by the method described above using a portion of the obtained high-purity tin.
  • the number of particles having a particle diameter of 0.5 ⁇ m or more present in 1 g of tin was 9,060 in Example 2 and 13,800 in Example 3.
  • the high-purity tin had sufficiently low impurities and very few particles.
  • Example 1 The primary purified tin obtained in Example 1 was subjected to the same evaluation as that of the high purity tin in Example 1 without performing secondary purification. The results are shown in FIGS. 3-1 and 3-2. Trace amounts of iron, copper, and silver were detected as impurities, and oxygen was also detected. The number of particles was very large as compared with Examples 1 to 3.
  • Example 2 The secondary refined tin of hydrochloric acid bath electrolysis obtained in Example 1 was cast in the air without casting in a reducing atmosphere. Most of them were oxidized and only a small amount of metallic tin was obtained. The metal tin separated and recovered from the oxide was evaluated in the same manner as the high-purity tin of Example 1. The results are shown in FIGS. 3-1 and 3-2. As for impurities, trace amounts of phosphorus and chlorine were detected, and a large amount of oxygen was also detected. The number of particles was very large as compared with Examples 1 to 3.
  • Electrolysis tank 1 Purifying tank 3 Filtration apparatus 5 Storage tank 4a-4d Liquid feed line 11 Cathode 12 Anode 13 Cathode chamber 14 Diaphragm 15 Anode chamber 21 Electrolytic tank 22 Filter 23 Anode 24a-24b Liquid feed line 25 Cathode 26 Electrolyte

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrolytic Production Of Metals (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

純度が5N(99.999質量%)以上である高純度錫であって、粒径が0.5μm以上のパーティクルが1g中に50,000個以下である高純度錫によってパーティクルの抑制された高純度錫を提供する。

Description

高純度錫及びその製造方法
 本発明は、パーティクルが少ない高純度錫(Sn)及びそれを製造する方法に関する。
 市販で入手可能な高純度錫の製造方法は、スルファミン酸錫、硫酸錫、塩化錫などの酸性電解浴からの電解法が一般的である。
 例えば、特公昭62-1478号公報(特許文献1)には、低α線化を目的として、99.95重量%以上の錫をアノードとし、液組成はSn:30~150g/L、放射性同位元素をほとんど含有しないスルファミン酸30~200g/Lで、電解条件はカソード電流密度:0.5~2.0Amp/dm2、液温度:15~50℃で電解を行う方法が記載されている(特許文献1の請求項2)。
 特許第2754030号公報(特許文献2)には、低α線化を目的として、JIS K 8951に規定される試薬一級硫酸の規格に少なくとも適合する硫酸90~240g/LとJIS K 8180に規定される試薬一級塩酸の規格に少なくとも適合する塩酸10~50g/Lを含有する電解液中で、純度が99.97重量%以上である錫を陽極に用いて電解を行なうことを特徴とする錫の製造方法が記載されている(特許文献2の請求項1)。
 特許第3882608号公報(特許文献3)には、金属錫中の不純物の電解精製による鉛の除去方法が記載されている。具体的には、硫酸と珪フッ酸の混酸からなる電解液を用いた錫の電解精製において、錫電解液を電解槽から抜き出して沈澱槽に導き、沈澱槽において電解液に炭酸ストロンチウムを添加して35℃以下の液温下で液中の鉛を沈殿化し、次いでこの沈殿物を含む電解液を濾過器に導いて沈殿物を濾過分離し、沈殿物を除去した電解液を電解槽に戻して錫の電解精製を行うことを特徴とする高純度錫の電解精製方法が記載されている(特許文献3の請求項1)。
 特許第5296269号公報(特許文献4)には、原料となる錫を酸、たとえば硫酸で浸出させた後、この浸出液を電解液とし、該電解液に不純物の吸着材を懸濁させ、原料Snアノードを用いて電解精製を行う方法が記載されており、これにより純度が5N以上(但し、O、C、N、H、S、Pのガス成分を除く)の高純度錫が得られることが記載されている。具体的には、アノードとして3Nレベルの錫を用い硫酸浴や塩酸浴で電解温度10~80℃、電流密度0.1~50A/dm2の条件で電解精製する方法が記載されている。不純物の吸着は、電解液中に、酸化チタン、酸化アルミニウム、酸化錫等の酸化物、活性炭、カーボンを懸濁させて行うことが記載されている。
特公昭62-1478号公報 特許第2754030号公報 特許第3882608号公報 特許第5296269号公報
 先行技術で開示される製法によれば、高純度化した錫を得ることは可能である。しかしながら、先行技術に記載されるような高純度の錫であっても、極微細配線用はんだ材料として十分な特性を発揮しないことや、LSI等の超微細加工装置に、本発明による高純度金属を溶湯として使用する場合に、溶湯中に存在するパーティクルによって微細な流路に目詰まりを起こし、超微細加工工程に支障を来すことがわかった。
 本発明は上記事情に鑑みて創作されたものであり、その目的の一つは、パーティクルの抑制された高純度錫を提供することである。また、本発明の目的の別の一つは、パーティクルの抑制された高純度錫を製造する方法を提供するものである。
 本発明者はこの原因について検討したところ、酸素(O)、硫黄(S)といったガス成分元素と化合した酸化錫(SnO、SnO2)や硫化錫(SnS、SnS2)、更には二酸化ケイ素(SiO2)などの系外からの混入物がパーティクルの原因物質であることを見出し、本発明に到った。
 本発明者の検討結果によれば、パーティクルを効果的に抑制する上では、錫を高純度化する際に、硫酸浴で電解精製した後、更に塩酸浴で電解精製する2段精製を採用すること、1段目の硫酸浴電解精製では、陽陰極間を隔膜で仕切った電解槽中の、陽極側電解液を抜き出し、抜き出した電解液中の鉛や酸化物スラッジを除去した後に電解槽の陰極側へ循環させるとともに、電解液中に平滑剤を添加して電析錫を板状化することにより電析錫の表面積を低減すること、1段目の硫酸浴電解精製で得られた一次精製錫を電解槽より取り出し、溶解鋳造して陽極板とする。この時、平滑剤成分の炭素は蒸発除去される。次に、2段目の電解精製を行うために、1段目の電解槽とは異なる別の電解槽を用いて、塩酸浴電解精製を行い、電析錫中に平滑剤成分が巻き込まれることを防ぐ為、平滑剤は使用せず、電解槽中の電解液を抜き出し、抜き出した電解液中の粒子を除去した後に再び電解槽へ循環させ、更に2段目の塩酸浴で電解精製した二次精製錫を還元性ガス雰囲気下で溶解鋳造することで精製錫中に含まれるパーティクルの原因となる酸化物を還元して酸素を取り除く操作を行うことが効果的であることが分かった。
 本発明は、上記知見に基づいて完成したものであって、一側面において純度が5N(99.999質量%)以上である高純度錫であって、粒径が0.5μm以上のパーティクルが1g中に50,000個以下である高純度錫である。
 本発明に係る高純度錫の一実施形態においては、粒径が0.5μm以上のパーティクルが1g中に10,000個以下である。
 本発明に係る高純度錫の別の一実施形態においては、鉄、銅、鉛、及び硫黄の含有濃度がそれぞれ0.5質量ppm以下である。
 本発明に係る高純度錫の更に別の一実施形態においては、アンチモンの含有濃度が1質量ppm以下である。
 本発明に係る高純度錫の更に別の一実施形態においては、酸素の含有濃度が5質量ppm未満である。
 本発明は別の一側面において、電解液として硫酸酸性硫酸錫溶液を使用し、陽極と陰極との間に隔膜を配置することにより陽極室と陰極室に分けた電解槽中で、鉛含有量が20質量ppm以下、鉄含有量が5質量ppm以下、銅含有量が0.5質量ppm以下、アンチモン含有量が5質量ppm以下、且つ、銀、砒素、ビスマス、カドミウム、銅、鉄、インジウム、ニッケル、鉛、アンチモン及び亜鉛の合計含有量が30質量ppm以下である原料錫を陽極とし、少なくとも陰極室に電析錫の表面積を低減させるための平滑剤が添加された状態で電解精製することにより陰極の表面上に純度が高められた一次精製電析錫を得る工程1であって、陽極室側の前記硫酸錫溶液の少なくとも一部を抜き出して、抜き出した前記硫酸錫溶液中の鉛及び酸化物スラッジを除去し、鉛及び酸化物スラッジを除去した硫酸錫溶液を陰極室へ送ることを含む工程1と、
 前記一次精製電析錫、又は前記一次精製電析錫を加熱溶解及び鋳造した後の鋳造錫を陽極とし、電解液として塩酸酸性塩化錫溶液を使用する電解槽中で電解精製することにより陰極の表面上に針状の二次精製電析錫を得る工程2であって、前記塩化錫溶液の少なくとも一部を電解槽から抜き出し、前記塩化錫溶液中の粒子、及び、工程1から持ち込まれた平滑剤の残留成分を除去した後、粒子及び平滑剤の残留成分が除去された塩化錫溶液を再び電解槽へ戻すことを含む工程2と、
 前記針状の二次精製電析錫を還元性ガス雰囲気下で溶解鋳造することを含む工程3と、
を含む高純度錫の製造方法である。
 本発明に係る高純度錫の一実施形態においては、平滑剤が、1又は複数の水酸基が一つ若しくは複数のメチレン基、及び/又は、一つ若しくは複数のエチレンオキシド基を介して、或いは、直接アリール基に結合されている構造を有する化合物からなる非イオン性界面活性剤を含む。
 本発明に係る高純度錫の別の一実施形態においては、平滑剤が、ポリオキシエチレンアルキルフェニルエーテルを含む。
 本発明に係る高純度錫の更に別の一実施形態においては、前記工程1において、前記硫酸錫溶液中に、前記平滑剤とともに、さらに、酸化防止剤を添加する工程を含む。
 本発明による高純度錫は、溶湯として使用する場合に、酸素、硫黄、ケイ素が極めて低減されており、望まれないパーティクルの形成を抑制でき、微細な流路に目詰まりを起こすことがなく、超微細加工工程に支障を来すことを抑制できる。本発明によれば、硫酸浴で精製した後、更に塩酸浴で精製する2段精製をすることにより、硫酸浴による1段精製では除去が難しい硫黄を低減することができ、且つ、1段目の硫酸浴電解液中に平滑剤を添加することで電析錫の表面積を低減して表面酸化物の生成を抑制でき、更に2段目の塩酸浴電解液を濾過してパーティクルの原因となる物質を取り除き、更に塩酸浴で針状に析出する電析錫を還元雰囲気下で溶解鋳造することで、非金属介在物を極めて少なくできるようになった。具体的には、粒径が0.5μm以上のパーティクルが1g中に50,000個以下である高純度金属錫を得ることができる。
工程1を実施し、一次精製電析錫を製造するための電解精製装置の構成例を示す。 工程2を実施し、二次精製電析錫を製造するための電解精製装置の構成例を示す。 実施例及び比較例における精製錫の元素分析結果、及びパーティクル数測定結果を示す。 実施例及び比較例における精製錫の元素分析結果、及びパーティクル数測定結果を示す(図3-1の続き)。
(工程1)
 本発明に係る高純度錫の製造方法の実施形態について以下に説明する。本発明に係る高純度錫の製造方法は一実施形態において、電解液として硫酸酸性硫酸錫溶液を使用し、陽極と陰極との間に隔膜を配置することにより陽極室と陰極室に分けた電解槽中で、原料錫を陽極として電解精製することにより陰極の表面上に純度が高められた電析錫を得る工程1を含む。
 工程1は例えば図1に示す電解精製装置を用いて実施可能である。図1に示すように、電解精製装置は、電解槽1と、電解槽1中の電解液の少なくとも一部を抜き出して電解液を洗浄する浄液槽2と、浄液槽2に接続された濾過装置3と、浄化後の電解液を保管する貯槽5と、電解液を送液する送液ライン4a~4dを備える。
 電解槽1には、陰極11と陽極12が配置されている。電解槽1内は、隔膜14によって、陰極11が配置された陰極室13と陽極12が配置された陽極室15に仕切られている。隔膜14は陽極12から発生する不純物イオンが陰極11へ析出するのを抑制するため、陰極11と陽極12との間に配置されている。隔膜14としてはイオン交換膜が好適に用いられる。
 陽極12に使用する原料錫は、電析錫の鉛含有量をより低減させるために鉛含有量が20ppm以下であることが望ましく、好ましくは10ppm以下、更に好ましくは5ppm以下である。この原料錫は、鉄含有量が5ppm以下であることが望ましく、好ましくは1ppm以下であり、アンチモン含有量が5ppm以下であることが望ましく、好ましくは1ppm以下であり、銀、砒素、ビスマス、カドミウム、銅、鉄、インジウム、ニッケル、鉛、アンチモン及び亜鉛の合計含有量が30ppm以下であることが望ましく、好ましくは10ppm以下である。陰極11には、錫、アルミニウム、ステンレス、チタン等の金属板、又は黒鉛板を用いることができる。
 この原料錫は、純度が低すぎると精製工程に負担がかかることから、99.9質量%(3N)以上の純度であることが好ましく、99.995質量%(4N5)以上の純度であることがより好ましい。但し、過度に純度の高い原料錫を使用すると経済性が悪化するため、典型的な原料錫の純度は99.95~99.99質量%(3N5~4N)であり、より典型的な原料錫の純度は99.99~99.995質量%(4N~4N5)である。
 なお、原料錫中に含まれる不純物元素の測定方法は、後述する高純度錫と同様である。
 電解液には電析錫の表面性状を改善させるための平滑剤を添加することが好ましい。平滑剤としては、1又は複数の水酸基が一つ若しくは複数のメチレン基、及び/又は、一つ若しくは複数のエチレンオキシド基を介してアリール基に結合されている構造を有する化合物からなる非イオン性界面活性剤を用いることが好ましい。
 アリール基に直接又は間接的に結合した1又は複数の水酸基を有する化合物を平滑剤として使用することによって、この構造を有さない化合物に比べて電解中の平滑剤の分解が抑制されるため、平滑剤の効果を安定的に長期間得ることができる。平滑剤を加えた場合は、錫と鉛の電位差が小さくなるために、高純度な電析錫を得ることが困難となるが、本発明者は、陽極と陰極の間に隔膜を設ける事により、陽極から溶出した鉛がそのまま陰極に析出する事を防ぐことができることを見出した。更に、陽極室側の電解液中に蓄積した鉛イオンを除去し、鉛イオンを除去後の電解液を陰極室へ供給することにより、錫と鉛の電位差の問題を解決できるとともに、その後の溶解鋳造工程における鋳造収率が向上するとともに、高純度且つ表面性状の良好な電析錫が得られる。
 平滑剤としては、以下の化学式(1)~(4)で示される化合物が好適に使用できる:
Figure JPOXMLDOC01-appb-C000001
 
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
(式(1)~(4)において、m、nはそれぞれ0~12の整数、a、b、cはそれぞれ1~3の整数、kは4~24の整数、Rは水素、又は、置換若しくは非置換のアルキル基、置換若しくは非置換のアリール基、置換若しくは非置換のアラルキル基等の有機基(典型的には炭素数1~3)を示す)
 より好ましくは、平滑剤としては、α-ナフトール、β-ナフトール、α-ナフトールのEO(エチレンオキサイド)付加物、β-ナフトールのEO付加物及びポリオキシエチレンアルキルフェニルエーテルからなる群から選ばれる1種以上を用いることができる。中でも、βナフトール及びポリオキシエチレンノニルフェニルエーテルが好適に用いられる。一方、アリール基を有しない水酸基を有する鎖状化合物は、電解中に分解するために、寿命・安定性の面で本実施形態には適さない場合がある。
 電解液への平滑剤の含有量は少なくとも陰極室においては1~20g/Lが好ましく、3~10g/Lとすることがより好ましい。平滑剤の含有量が極度に低い場合には、電析錫の表面性状の改善効果を得ることが困難になる。また、平滑剤の含有量が過剰になると経済的に無駄なだけでなく、電析錫への有機物の巻き込みが増えて、酸素の増加を招く。平滑剤は、例えば陰極室13内へ電解液を循環供給する貯槽5で添加することができる。なお、平滑剤に加えて、電解液にヒドロキノン等の酸化防止剤を1~10g/L程度、より好ましくは4~6g/L加えてもよい。酸化防止剤を添加することによって、電解液中に溶解している錫イオンが+2価から+4価に酸化することを抑制し、電解液中に析出、沈殿することを抑制でき、電解精製の効率の低下を防止できる。
 図1を参照すると、送液ライン4a~4dは、電解槽1内の電解液を抜き出して、浄化精製し、精製後の電解液を再び電解槽1内へ戻すための送液ラインである。浄液槽2には、電解槽1から抜き出された電解液が送液ライン4aを通って供給される。浄液槽2においては、抜き出した電解液中の鉛が除去される。原料錫の鉛含有量が20ppm以下の陽極12を使用することで、鉛の溶出は少ないが、それでも長時間の電解精製により電解液中には鉛が蓄積することから、電解液から鉛を除去することが望ましい。鉛の除去方法としては、抽出剤を用いた鉛イオンの溶媒抽出、イオン交換樹脂などによる吸着除去、硫化物添加による難溶性硫化物塩析出、ストロンチウム及びバリウム等のアルカリ土類金属の塩等の共沈剤の添加による共沈などによって行うことができる。例えば、ストロンチウムを用いた共沈を行う場合には、浄液槽2には図示しない撹拌手段が設けられ、撹拌しながら炭酸ストロンチウムなどの共沈剤が添加されることにより、電解液から鉛を含む硫酸ストロンチウム(SrSO4)の沈殿物が生成される。共沈剤としては炭酸バリウム等のアルカリ土類金属塩を利用することもできる。攪拌時間は鉛の含有量を考慮して適宜調整すればよいが、例えば1~24時間とすることができる。共沈剤の添加量は、1~30g/Lが好ましく、より好ましくは3~20g/Lであり、更に好ましくは3~10g/Lとすることがより好ましい。
 浄液槽2から抜き出された電解液は、送液ライン4bを介してフィルタープレス等の濾過装置3に送られ、固液分離される。これにより、電解液中の酸化錫を含む酸化物スラッジ及び貴な金属(銅、鉛等)などの固形不純物が除去される。また、浄液槽2において炭酸ストロンチウムなどの共沈剤を用いて電解液中に沈殿物を生成させた場合には、電解液中に含まれる鉛が硫酸ストロンチウムに巻き込まれて除去される。固液分離によって、電解液中の鉛濃度は、典型的には0.2mg/L以下、より典型的には0.1mg/L以下に低減することが可能である。固液分離によって得られた濾液は、精製電解液として送液ライン4cを介して貯槽5へ送られ、送液ライン4dを介して電解槽1の陰極室13へ送られることで循環される。貯槽5では、電解液に平滑剤及び必要に応じて硫酸と酸化防止剤等を更に添加して電解液の組成を調整することができる。
 このように、陰極室13内に供給される電解液は、浄液槽2によって鉛が除去され、濾過装置3で酸化物等の固形不純物が除去されているため、電析錫析出時の鉛イオン及び酸化物の巻き込みが少なくなる。
 送液ライン4aは電解槽1の陽極室15に接続され、陽極12を構成する原料錫から溶け出した鉛を含有する陽極室15内の電解液(アノライト)を抜き取ることが好ましい。このように、陽極室15内の電解液(アノライト)を抜き取って、これを浄液槽2において電解液中の鉛及び酸化物スラッジを除去し、鉛及び酸化物スラッジを除去後の電解液を陰極室13側へ循環させて陰極室13内の電解液(カソライト)として再利用することにより、新たな電解液を補充する頻度が少なくなるため、電解液の有効利用を図ることができ、高純度錫の生産効率を向上させることができる。
 更に、陰極室13内に供給される電解液には平滑剤が添加されており、従来は針状であった陰極11の表面上に析出する電析錫の表面性状をより平坦化することができるため、板状の電析錫を得ることができる。その結果、従来の針状の電析錫を利用する場合に比べて、電析錫引上げ時の電析錫への電解液の巻き込みも少なくなり電解液の補充が少なくて済むとともに、その後溶解鋳造して金属錫を製造する際の鋳造収率も向上させることができ、さらには電解液の主成分である硫黄分の電析錫への混入も抑止でき、高純度錫の生産性の向上が図れる。
 電解液中の錫濃度は高すぎると飽和溶解度を超えて錫イオンが析出する。一方、低すぎると陰極板からの水素発生が多くなり錫の析出を妨げることから、1~100g/L程度が好ましく、30~100g/Lがより好ましい。
 電解液のpHは高すぎると加水分解で錫イオンが水酸化物として析出し、錫濃度が低下する。一方、低すぎると陰極板からの水素発生が多くなり錫の析出を妨げることから、pHは0~1.0が好ましく、0.3~0.8がより好ましい。
 電解液の液温は高すぎると設備への機械的負荷が増える。一方、低すぎるとエネルギーを無駄に消費することから、10~40℃とするのが好適である。
 電解精製時の陰極電流密度は、1~5A/dm2とするのが好ましく、より好ましくは2~3A/dm2である。電流密度が小さすぎると生産性が低く、電流密度が高すぎると電解電圧が高くなるため、平滑剤の効果が薄れて錫が針状に析出する場合がある。
 硫酸浴での電解精製後、陰極の表面に析出した板状一次精製電析錫を電解槽から引き上げて回収し、回収後の板状一次精製電析錫を十分に純水で洗浄した後、乾燥することが好ましい。乾燥温度は、低すぎると時間を要する一方で、高すぎると熱による錫の過剰な酸化が発生するおそれがあるため、60~100℃で乾燥することが好ましく、80~100℃で乾燥することがより好ましい。
(工程2)
 本発明に係る高純度錫の製造方法は一実施形態において、工程1により得られた一次精製電析錫、又は前記一次精製電析錫を加熱溶解及び鋳造した後の鋳造錫を陽極とし、電解液として塩酸酸性塩化錫溶液を使用する電解槽中で電解精製することにより陰極の表面上に針状の二次精製電析錫を得る工程2を含む。
 工程2は例えば図2に示す電解精製装置を用いて実施可能である。図2に示すように、電解精製装置は、電解槽21と、電解槽21中の電解液の少なくとも一部を抜き出して電解液を濾過するフィルター22と、電解液を送液する送液ライン24a~24bを備える。
 電解槽21には、陰極25と陽極23が配置されている。電解槽21内には電解液26が配置される。電解液26は、工程1で電解精製された一次精製電析錫を塩酸で浸出した塩酸酸性塩化錫溶液を用いることができる。
 陽極23に使用する原料錫は、工程1で電解精製された電析錫を洗浄した上で、大気又は真空中で溶解鋳造したものを用いることが好ましい。陰極25には、錫、アルミニウム、ステンレス、チタン等の金属板、又は黒鉛板を用いることができる。
 塩化錫溶液中の粒子が電析する錫に取り込まれることを防止するため、電解液は少なくともその一部を電解槽から抜き出して、固液分離しておくことが好ましい。固液分離の方法としては、フィルターを通過させることで濾過しておく方法が好ましく用いられる。濾過に使用するフィルターの好適な条件はポリエチレン、ポリプロピレン、フッ素樹脂等の耐酸性基材を使用すること、有効濾過面積が大きいこと、カートリッジタイプで交換が容易であること、微細粒子の捕集効率が高い(例えば、孔の大きさが0.05~10μmの精密濾過膜(MF膜))こと、通液抵抗が低いこと等が挙げられる。また、工程1で電解精製された一次精製電析錫を塩酸で浸出した塩酸酸性塩化錫溶液を用いる場合や、一次精製錫を300℃以上の温度で鋳造し、平滑剤成分(有機物)を酸化物として除去する際にその一部が鋳造物中に取り込まれる可能性があり、固液分離のみでは工程1から持ち込まれ得る平滑剤の残留成分を除去することはできないため、更に平滑剤の残留成分(主に炭素及び酸素)を除去することが好ましい。平滑剤の残留成分を除去する方法としては、限定的ではないが、活性炭フィルターを通過させる方法が挙げられる。また、予め塩酸及び硫酸などの酸で金属成分を抽出除去した高純度の粉末活性炭を電解槽に投入し、一定時間撹拌後、固液分離を行うことで平滑剤の残留成分を除去する方法も挙げられる。他には精密濾過なども有効と考えられる。固液分離プロセスと平滑剤の除去プロセスは別個のプロセスで行ってもよいし、同一プロセスで行ってもよい。
 塩酸浴電解精製では、電析メタルへの平滑剤巻き込みによる粒子の混入を避ける為、平滑剤は添加しないことが好ましい。その為、塩酸浴での電析錫メタルは針状となる。
 電解液中の錫濃度は高すぎると比重が大きくなり、電解液を循環する送液ポンプの負荷が増え、エネルギーを無駄に消費する。また、仕掛が増えて無駄である。一方、低すぎると電解液の抵抗が高くなって、錫電解析出と競合する水素発生が多くなり、錫の析出を妨げることから、10~150g/L程度が好ましく、30~100g/Lがより好ましい。
 電解液のpHは高すぎると加水分解で錫イオンが水酸化物として析出し、錫濃度が低下する。一方、低すぎると陰極板からの水素発生が多くなり錫の析出を妨げることから、pH0.0~1.0が好ましく、より好ましくはpH0.01~0.8である。
 電解精製時の液温は高すぎると設備への機械的負荷が増える一方、低すぎるとエネルギーを無駄に消費することから、10~40℃とするのが好適である。
 電解精製時の陰極電流密度は1~10A/dm2とするのが好ましく、より好ましくは2~8A/dm2である。電流密度が小さすぎると生産性が低く、電流密度が高すぎると電解電圧が高くなるため、水素発生が多くなり、電流効率が低下し、電力の無駄となる。
 塩酸浴での電解精製後、陰極の表面に析出した針状電析錫を電解槽から引き上げて回収し、回収後の針状電析錫を十分に純水で洗浄した後、乾燥する。乾燥温度は、低すぎると時間を要する一方で、高すぎると熱による錫の過剰な酸化が発生するおそれがあるため、60~100℃で乾燥することが好ましく、80~100℃で乾燥することがより好ましい。
(工程3)
 本発明に係る高純度錫の製造方法は一実施形態において、工程2で得られた針状の二次精製電析錫を還元性ガス雰囲気下で溶解鋳造することを含む。乾燥した針状電析錫を水素、一酸化炭素などの還元性ガス雰囲気下で500~1,000℃で溶解鋳造することにより高純度錫を製造する。針状の電析錫は表面が非常に大きい為、大気中で加熱すると大半が酸化してしまう。水素等の還元性雰囲気下で溶解鋳造することで、パーティクルの原因となる酸素が除去されることから、得られる高純度錫のパーティクルの粒径及び個数が低下する。また、針状電析錫の酸化を防ぎ歩留の低下を避けることができる為、結果として生産コストを低く抑えることができ、高純度錫の生産性が向上できる。
(高純度錫)
 本発明の一実施形態に係る上記高純度錫の製造方法によって得られた高純度錫(精製電析錫)の純度は、グロー放電質量分析法(GDMS:Glow Discharge Mass Spectrometry)によって評価する。また、酸素濃度は非分散型赤外線吸収法で評価する。尚、本発明で使用する「ppm」の単位表記は、「質量ppm(massppm)」を意味する。
 本発明の高純度錫の純度は一実施形態において、5N以上、典型的には6N以上、より典型的には7N以上とすることができる。この高純度錫中に含まれる不純物元素の測定は、錫をマトリックスとして不純物を元素記号で記すと、Li、Be、B、F、Na、Mg、Al、Si、P、S、Cl、K、Ca、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Ga、Ge、As、Se、Br、Rb、Sr、Y、Zr、Nb、Mo、Ru、Rh、Pd、Ag、Cd、In、Sb、Te、I、Cs、Ba、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Hf、Ta、W、Re、Os、Ir、Pt、Au、Hg、Tl、Pb、Bi、Th、Uを対象としてGDMS法で分析を行った結果を意味する。なお、原料錫と比較例1は全元素73成分をGDMS法で測定した結果を示す。
 本発明の高純度錫は一実施形態において、GDMS法による質量分析の結果、鉄の含有濃度が0.5ppm以下であり、好ましくは0.05ppm以下とすることができ、より好ましくは0.005ppm未満とすることができる。
 本発明の高純度錫は一実施形態において、GDMS法による質量分析の結果、銅の含有濃度が0.5ppm以下であり、好ましくは0.05ppm以下とすることができ、より好ましくは0.005ppm未満とすることができる。
 本発明の高純度錫は一実施形態において、GDMS法による質量分析の結果、アンチモンの含有濃度が1.0ppm以下であり、好ましくは0.5ppm未満とすることができる。
 本発明の高純度錫は一実施形態において、GDMS法による質量分析の結果、鉛の含有濃度が0.5質量ppm以下であり、好ましくは0.1ppm以下とすることができ、より好ましくは0.01ppm未満とすることがでる。
 本発明の高純度錫は一実施形態において、GDMS法による質量分析の結果、硫黄の含有濃度が0.5ppm以下であり、好ましくは0.1ppm以下とすることができ、より好ましくは0.01ppm未満とすることができる。
 本発明の高純度錫は一実施形態において、非分散型赤外線吸収法による質量分析の結果、酸素の含有濃度が10ppm以下であり、好ましくは5ppm未満とすることができる。
 本発明の高純度錫は一実施形態において、GDMS法による質量分析の結果、Li、Be、B、F、Na、Mg、Al、Si、P、S、Cl、K、Ca、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Ga、Ge、As、Se、Br、Rb、Sr、Y、Zr、Nb、Mo、Ru、Rh、Pd、Ag、Cd、In、Sb、Te、I、Cs、Ba、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Hf、Ta、W、Re、Os、Ir、Pt、Au、Hg、Tl、Pb、Bi、Th、Uはいずれも検出限界値未満である。
 本発明において「検出限界値未満」とは、Sc、Vが0.001ppm未満、Li、Be、B、Ti、Cr、Mn、Fe、Cu、Ga、As、Rb、Sr、Y、Zr、Nb、Rh、Pd、Ag、Ce、Nd、Sm、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Bi、Th、Uが0.005ppm未満、Na、Mg、Al、Si、P、S、Cl、K、Ca、Co、Ni、Zn、Ge、Se、Mo、Ru、Eu、Hf、W、Re、Os、Ir、Pt、Pbが0.01ppm未満、Tlが0.02ppm未満、F、Br、Cd、I、Cs、Au、Hgが0.05ppm未満、Te、Ba、La、Prが0.1ppm未満、Sbが0.5ppm未満、Inが1ppm未満、Taが5ppm未満であることを意味する。
 本発明に係る高純度錫の一実施形態においては、粒径が0.5μm以上のパーティクルを錫1g中に50,000個以下とすることができ、好ましくは40,000個以下とすることができ、より好ましくは30,000個以下とすることができ、更により好ましくは10,000個以下とすることができ、例えば5000未満~50,000個とすることができる。
 本発明において、このパーティクルの数は、不溶解性残渣粒子数(LPC)と同義であると定義する。不溶解性残渣粒子数(LPC)は、電子デバイス用金属原料評価法のひとつとして重要視されているパラメータであって、金属を酸溶解させた時に検出される不溶解性残渣粒子数を意味するものであり、該LPC値と電子材料の良否との間、特にスパッタリングターゲットを用いてスパッタリングした場合のパーティクルの発生をはじめとする、スパッタ成膜の不良率との間に、非常に良い相関性が認められているものである。
 なお、LPCの計測には湿式レーザ計測器(LPC;Liquid Particle Counter)を用いることから、不溶解性残渣粒子数を「LPC」という略称を用いている。
 不溶解性残渣粒子数(LPC)の測定方法を具体的に説明すると、クラス100(米国209E基準)のクリーンな室内で試料5gを採取し、濃度6Nの塩酸200mLを1時間かけて投入し、その後、140℃に加熱して48時間保持し、完全に溶解する。これを1時間放冷し、さらにこれを500mLになるように純水で希釈する。この溶液を10mLとり、前記溶液中のパーティクルを液中パーティクルカウンターでJIS B9925:2010に準拠して測定するものである。例えば、パーティクルの個数が1000個/mLの場合には、10mL中には0.1gのサンプルが測定されることになるので、パーティクルは100,000個/gとなる。
 以下に、実施例及び比較例をもって説明するが、これらは発明を理解し易いようにするためであり、本発明は実施例又は比較例によって限定されるものではない。
(実施例1)
 (工程1)
 図1に示す構成の電解精製装置を使用し、陽極と陰極とを陰イオン交換膜(旭硝子社製セレミオンAMV)により仕切った電解槽の陽極側にpH0.6の希硫酸溶液、陰極側に陽極で溶解する錫と反応するのに必要な量の硫酸溶液を入れた。原料錫から鋳造した陽極とチタン製の陰極を電解槽内にそれぞれ配置し、陰極電流密度2A/dm2、液温30℃で電解浸出して硫酸錫電解液(錫濃度98g/L)を作製した。
 ここで、原料錫(原料)の分析結果を図3-1及び図3-2に示す。分析は、酸素は非分散型赤外線吸収法、それ以外の元素は、GDMS法で品位を測定した。尚、電解精製にあたっては、陽極側に酸化防止剤としてヒドロキノンを5g/L添加した。
 電解浸出後、陽極室電解液及び陰極室電解液を共に全量抜き出した。陽極室電解液については鉛を除去する浄液槽へ入れ、そこへ炭酸ストロンチウムを電解液に対し5g/L添加して16時間攪拌し、攪拌後の電解液をフィルタープレス(濾過圧力0.4MPa、圧搾圧力0.7MPa、濾布材質:ポリプロピレン製、濾布通気度100cm3/cm2/min)により固液分離して、電解液中の鉛とともに酸化物スラッジ及び固形不純物を除去して、除去後の電解液を陰極側に投入した。鉛除去後の鉛濃度はICP発光分光分析法で測定した結果、0.1mg/L未満であった。
 更に、陰極側の電解液には、ポリオキシエチレン(10)ノニルフェニルエーテルを5g/L添加した。また、陽極側にはpH0.6の希硫酸溶液を新たに加えた。この状態で、陰極電流密度2A/dm2、pH0.6、液温30℃で、陰極側電解液の錫濃度が98g/Lから40g/Lになるまで電解析出をし、電解槽から陰極を引き上げた。陰極上に析出した電析錫を引き剥がして、純水で洗浄、乾燥し、一次精製電析錫を得た。
(工程2)
 工程1で得られた一次精製電析錫を大気中で250~300℃に加熱して溶解鋳造し、鋳造錫を得た。鋳造錫の一部を、濃度6N塩酸に浸出して、錫濃度60g/L、pH0.2の塩化錫溶液を得た。図2に示す構成の工程1とは別の電解精製装置を使用し、同じく鋳造錫の一部を陽極とし、チタン製の陰極とともに、電解槽内にそれぞれ配置し、電流密度4A/dm2、pH0.2、液温25℃で、この塩化錫溶液中で電解精製を行った。電解中は電解液(100L)の一部を1~10L/分の循環流量で抜き出し、ADVANTEC社製TCC-A1-S0COの活性炭フィルターを前段に、ADVANTEC社製TCPD-01A-SIFE(1μm粒子捕集効率99.9%)のフィルターを後段に設置して二段濾過した後、電解槽へ循環した。電解液の循環を継続した状態で所定の時間、電解を行い、電解槽から陰極を引き上げた。陰極上に析出した電析錫を引き剥がして、洗浄水が中性を示すまで純水で十分に洗浄を行い、95℃にした乾燥機内で16時間乾燥した。このようにして針状の二次精製電析錫を得た。
(工程3)
 2段精製を行った錫の電析物1,000gを還元炉内で、水素流量1L/分、温度800℃で4時間加熱溶解(水素熱処理)した後、鋳造して高純度錫を得た。
(評価)
 得られた高純度錫の一部を用いて、GDMS法で不純物を測定した。測定結果を図3に示す。図3-1及び図3-2に示されるように、すべての元素において不純物は定量下限未満であった。同様に、得られた高純度錫の一部を用いて、非分散型赤外線吸収法で酸素品位を測定した所、定量下限の5ppm未満であった。
 得られた高純度錫の一部を用いて先述した方法により、液体用光散乱式自動粒子計数器(九州リオン株式会社製KS-42B)で不溶解性残渣粒子数を測定した。その結果、錫1g中に存在する、粒径が0.5μm以上のパーティクルは5,170個であった。当該精製錫は不純物が十分に低く、且つパーティクルも極めて少ないものであった。
(実施例2~3)
 以下の表1に記載の条件を変更した以外は実施例1と同様の工程を行って、実施例2及び実施例3の高純度錫を得た。
Figure JPOXMLDOC01-appb-T000005
 得られた高純度錫の一部を用いて、GDMS法で不純物を測定した。測定結果を図3-1及び図3-2に示す。図3-1及び図3-2に示されるように、実施例2、3共に、すべての元素において不純物は定量下限未満であった。同様に、得られた高純度錫の一部を用いて先述した方法により、酸素品位を測定した所、実施例2、3共に、定量下限の5ppm未満であった。
 得られた高純度錫の一部を用いて先述した方法により、不溶解性残渣粒子数を測定した。その結果、錫1g中に存在する、粒径が0.5μm以上のパーティクルは、実施例2で9,060個、実施例3で13,800個であった。実施例2、3共に、当該高純度錫は不純物が十分に低く、且つパーティクルも極めて少ないものであった。
(比較例1)
 実施例1で得られた硫酸浴電解の一次精製錫を二次精製せずにそのまま、実施例1の高純度錫と同様の評価をした。結果を図3-1及び図3-2に示す。不純物として鉄、銅、銀が微量検出され、また、酸素も検出された。パーティクルは実施例1~3と比べると非常に多い値であった。
(比較例2)
 実施例1で得られた塩酸浴電解の二次精製錫を還元雰囲気鋳造せずに、大気鋳造を行った。その大半が酸化して金属錫はごく少量しか得られなかった。酸化物と分離回収した金属錫を、実施例1の高純度錫と同様の評価をした。結果を図3-1及び図3-2に示す。不純物はリンと塩素が微量検出され、また、酸素も多量に検出された。パーティクルはこれも実施例1~3と比べると非常に多い値であった。
1  電解槽
2  浄液槽
3  濾過装置
5  貯槽
4a~4d 送液ライン
11 陰極
12 陽極
13 陰極室
14 隔膜
15 陽極室
21 電解槽
22 フィルター
23 陽極
24a~24b 送液ライン
25 陰極
26 電解液

Claims (9)

  1.  純度が5N(99.999質量%)以上である高純度錫であって、粒径が0.5μm以上のパーティクルが1g中に50,000個以下である高純度錫。
  2.  粒径が0.5μm以上のパーティクルが1g中に10,000個以下である請求項1に記載の高純度錫。
  3.  鉄、銅、鉛、及び硫黄の含有濃度がそれぞれ0.5質量ppm以下である請求項1又は2に記載の高純度錫。
  4.  アンチモンの含有濃度が1質量ppm以下である請求項1~3の何れか一項に記載の高純度錫。
  5.  酸素の含有濃度が5質量ppm未満である請求項1~4の何れか一項に記載の高純度錫。
  6.  電解液として硫酸酸性硫酸錫溶液を使用し、陽極と陰極との間に隔膜を配置することにより陽極室と陰極室に分けた電解槽中で、鉛含有量が20質量ppm以下、鉄含有量が5質量ppm以下、銅含有量が0.5質量ppm以下、アンチモン含有量が5質量ppm以下、且つ、銀、砒素、ビスマス、カドミウム、銅、鉄、インジウム、ニッケル、鉛、アンチモン及び亜鉛の合計含有量が30質量ppm以下である原料錫を陽極とし、少なくとも陰極室に電析錫の表面積を低減させるための平滑剤が添加された状態で電解精製することにより陰極の表面上に純度が高められた一次精製電析錫を得る工程1であって、陽極室側の前記硫酸錫溶液の少なくとも一部を抜き出して、抜き出した前記硫酸錫溶液中の鉛及び酸化物スラッジを除去し、鉛及び酸化物スラッジを除去した硫酸錫溶液を陰極室へ送ることを含む工程1と、
     前記一次精製電析錫、又は前記一次精製電析錫を加熱溶解及び鋳造した後の鋳造錫を陽極とし、電解液として塩酸酸性塩化錫溶液を使用する電解槽中で電解精製することにより陰極の表面上に針状の二次精製電析錫を得る工程2であって、前記塩化錫溶液の少なくとも一部を電解槽から抜き出し、前記塩化錫溶液中の粒子、及び、工程1から持ち込まれた平滑剤の残留成分を除去した後、粒子及び平滑剤の残留成分が除去された塩化錫溶液を再び電解槽へ戻すことを含む工程2と、
     前記針状の二次精製電析錫を還元性ガス雰囲気下で溶解鋳造することを含む工程3と、
    を含む請求項1~5の何れか一項に記載の高純度錫の製造方法。
  7.  平滑剤が、1又は複数の水酸基が一つ若しくは複数のメチレン基、及び/又は、一つ若しくは複数のエチレンオキシド基を介して、或いは、直接アリール基に結合されている構造を有する化合物からなる非イオン性界面活性剤を含む請求項6に記載の高純度錫の製造方法。
  8.  平滑剤が、ポリオキシエチレンアルキルフェニルエーテルを含む請求項6又は7に記載の高純度錫の製造方法。
  9.  前記工程1において、前記硫酸錫溶液中に、前記平滑剤とともに、さらに、酸化防止剤を添加する工程を含む請求項6~8の何れか一項に記載の高純度錫の製造方法。
PCT/JP2017/008342 2016-03-09 2017-03-02 高純度錫及びその製造方法 WO2017154740A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2017531647A JP6457093B2 (ja) 2016-03-09 2017-03-02 高純度錫及びその製造方法
EP17763080.3A EP3428320B1 (en) 2016-03-09 2017-03-02 High-purity tin and method for producing same
US15/775,731 US11118276B2 (en) 2016-03-09 2017-03-02 High purity tin and method for producing same
CN201910893030.2A CN110565115B (zh) 2016-03-09 2017-03-02 高纯度锡
CN201780002499.1A CN107849716B (zh) 2016-03-09 2017-03-02 高纯度锡及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-046060 2016-03-09
JP2016046060 2016-03-09

Publications (1)

Publication Number Publication Date
WO2017154740A1 true WO2017154740A1 (ja) 2017-09-14

Family

ID=59789330

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/008342 WO2017154740A1 (ja) 2016-03-09 2017-03-02 高純度錫及びその製造方法

Country Status (6)

Country Link
US (1) US11118276B2 (ja)
EP (1) EP3428320B1 (ja)
JP (1) JP6457093B2 (ja)
CN (2) CN107849716B (ja)
TW (1) TWI628287B (ja)
WO (1) WO2017154740A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020023428A (ja) * 2018-07-30 2020-02-13 三菱マテリアル株式会社 低α線放出量の酸化第一錫及びその製造方法
KR20200128097A (ko) * 2018-03-28 2020-11-11 제이엑스금속주식회사 Co 애노드 및 Co 애노드를 사용한 전기 Co 도금 방법
CN112135932A (zh) * 2018-05-09 2020-12-25 应用材料公司 用于去除电镀系统内的污染物的系统及方法
CN112280993A (zh) * 2020-10-30 2021-01-29 大冶市金欣环保科技有限公司 一种从炼锡碱渣中采用水浸中和提取锡的装置及方法
EP3831778A4 (en) * 2018-07-30 2022-05-11 Mitsubishi Materials Corporation LOW-ALPHA EMISSION TIN OXIDE AND PROCESS FOR ITS PRODUCTION
JP7501834B1 (ja) 2023-10-04 2024-06-18 Jx金属株式会社 錫球製造用金属錫

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109594096B (zh) * 2018-11-29 2022-06-10 株洲冶炼集团股份有限公司 一种二氧化锡浆料的制备方法
CN111472021A (zh) * 2019-01-24 2020-07-31 升贸科技股份有限公司 电解液
EP3872200A4 (en) * 2019-03-04 2021-12-29 JX Nippon Mining & Metals Corporation Oxidation-resistant metallic tin
CN111118305B (zh) * 2020-01-17 2020-09-18 东莞永安科技有限公司 一种低α剂量锡或低α剂量锡合金及其制备方法
CN111519041A (zh) * 2020-06-23 2020-08-11 云南锡业股份有限公司锡业分公司 粗锡精炼捞渣装置和粗锡精炼除砷、铁、铜、锑的方法
WO2022243145A1 (en) * 2021-05-20 2022-11-24 Basf Se Sulfonate electroplating bath, process for refining metal by electrolytic depositing and process for controlling metal morphology in electrolytic refining
CN114635038A (zh) * 2022-02-18 2022-06-17 永兴长隆环保科技有限公司 一种从含锡废渣回收制备精锡的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2754030B2 (ja) * 1989-03-02 1998-05-20 三井金属鉱業株式会社 高純度錫の製造方法
JPH11343590A (ja) * 1998-05-29 1999-12-14 Mitsubishi Materials Corp 高純度錫の製造方法
JP2002047592A (ja) * 2000-05-22 2002-02-15 Nikko Materials Co Ltd 金属の高純度化方法
WO2007004394A1 (ja) * 2005-07-01 2007-01-11 Nippon Mining & Metals Co., Ltd. 高純度錫又は錫合金及び高純度錫の製造方法
WO2011114824A1 (ja) * 2010-03-16 2011-09-22 Jx日鉱日石金属株式会社 α線量が少ない錫又は錫合金及びその製造方法
JP2014025121A (ja) * 2012-07-27 2014-02-06 Jx Nippon Mining & Metals Corp 錫の電解採取方法及び錫の回収方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5964790A (ja) 1982-10-01 1984-04-12 Mitsubishi Metal Corp 放射性α粒子カウント数の低い錫およびその製造方法
KR100512644B1 (ko) * 2000-05-22 2005-09-07 가부시키 가이샤 닛코 마테리알즈 금속의 고 순도화 방법
US20050000821A1 (en) * 2001-11-16 2005-01-06 White Tamara L Anodes for electroplating operations, and methods of forming materials over semiconductor substrates
JP3882608B2 (ja) 2001-12-14 2007-02-21 三菱マテリアル株式会社 高純度錫の電解精製方法とその装置
US8030082B2 (en) * 2006-01-13 2011-10-04 Honeywell International Inc. Liquid-particle analysis of metal materials
WO2010089905A1 (ja) 2009-02-09 2010-08-12 日本ジョイント株式会社 電子部品用錫またははんだ合金の製造方法、製造装置、及びはんだ合金
FI124812B (fi) * 2010-01-29 2015-01-30 Outotec Oyj Menetelmä ja laitteisto metallipulverin valmistamiseksi
CN102565028A (zh) * 2010-12-31 2012-07-11 北京有色金属与稀土应用研究所 用等离子体原子发射光谱仪测定4~5n高纯锡中杂质的方法
US20130341196A1 (en) 2012-06-20 2013-12-26 Honeywell International Inc. Refining process for producing low alpha tin

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2754030B2 (ja) * 1989-03-02 1998-05-20 三井金属鉱業株式会社 高純度錫の製造方法
JPH11343590A (ja) * 1998-05-29 1999-12-14 Mitsubishi Materials Corp 高純度錫の製造方法
JP2002047592A (ja) * 2000-05-22 2002-02-15 Nikko Materials Co Ltd 金属の高純度化方法
WO2007004394A1 (ja) * 2005-07-01 2007-01-11 Nippon Mining & Metals Co., Ltd. 高純度錫又は錫合金及び高純度錫の製造方法
WO2011114824A1 (ja) * 2010-03-16 2011-09-22 Jx日鉱日石金属株式会社 α線量が少ない錫又は錫合金及びその製造方法
JP2014025121A (ja) * 2012-07-27 2014-02-06 Jx Nippon Mining & Metals Corp 錫の電解採取方法及び錫の回収方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3428320A4 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200128097A (ko) * 2018-03-28 2020-11-11 제이엑스금속주식회사 Co 애노드 및 Co 애노드를 사용한 전기 Co 도금 방법
KR102435667B1 (ko) * 2018-03-28 2022-08-25 제이엑스금속주식회사 Co 애노드 및 Co 애노드를 사용한 전기 Co 도금 방법
CN112135932A (zh) * 2018-05-09 2020-12-25 应用材料公司 用于去除电镀系统内的污染物的系统及方法
JP2020023428A (ja) * 2018-07-30 2020-02-13 三菱マテリアル株式会社 低α線放出量の酸化第一錫及びその製造方法
EP3831778A4 (en) * 2018-07-30 2022-05-11 Mitsubishi Materials Corporation LOW-ALPHA EMISSION TIN OXIDE AND PROCESS FOR ITS PRODUCTION
JP7314658B2 (ja) 2018-07-30 2023-07-26 三菱マテリアル株式会社 低α線放出量の酸化第一錫の製造方法
CN112280993A (zh) * 2020-10-30 2021-01-29 大冶市金欣环保科技有限公司 一种从炼锡碱渣中采用水浸中和提取锡的装置及方法
JP7501834B1 (ja) 2023-10-04 2024-06-18 Jx金属株式会社 錫球製造用金属錫

Also Published As

Publication number Publication date
JP6457093B2 (ja) 2019-01-23
US11118276B2 (en) 2021-09-14
TW201736604A (zh) 2017-10-16
CN107849716A (zh) 2018-03-27
CN107849716B (zh) 2020-04-10
CN110565115B (zh) 2022-04-05
CN110565115A (zh) 2019-12-13
EP3428320B1 (en) 2021-05-05
EP3428320A1 (en) 2019-01-16
US20190153607A1 (en) 2019-05-23
JPWO2017154740A1 (ja) 2018-03-15
TWI628287B (zh) 2018-07-01
EP3428320A4 (en) 2019-11-20

Similar Documents

Publication Publication Date Title
JP6457093B2 (ja) 高純度錫及びその製造方法
JP6448417B2 (ja) 高純度錫の製造方法、高純度錫の電解採取装置及び高純度錫
US11572632B2 (en) Method for manufacturing high purity tin, electrowinning apparatus for high purity tin and high purity tin
JP2001316735A (ja) 銅電解殿物の処理方法
JP2001316736A (ja) 銀の回収方法
JP2014501850A (ja) チオ硫酸塩溶液からの金および銀の電気的回収
JP2009035778A (ja) 錫の回収方法
JP6524973B2 (ja) 高純度In及びその製造方法
JP5200588B2 (ja) 高純度銀の製造方法
JP6471072B2 (ja) 低α線高純度亜鉛及び低α線高純度亜鉛の製造方法
JP5188768B2 (ja) 錫の回収方法
JP6475403B2 (ja) テルルの回収方法
JP2008106348A (ja) 亜鉛の分離回収方法
RU2779554C1 (ru) Способ получения аффинированного серебра из промпродуктов драгметального производства, содержащих серебро в форме хлорида
JP5996797B2 (ja) 高純度In及びその製造方法
JP2017119623A (ja) テルルの回収方法
US2225904A (en) Lead oxide and electrolytic process of forming the same
JP2023031170A (ja) 錫およびニッケルを含む混合物からの錫とニッケルとの分離方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017531647

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17763080

Country of ref document: EP

Kind code of ref document: A1