WO2017154515A1 - 帯電防止材料、その製造方法および帯電防止膜 - Google Patents

帯電防止材料、その製造方法および帯電防止膜 Download PDF

Info

Publication number
WO2017154515A1
WO2017154515A1 PCT/JP2017/005864 JP2017005864W WO2017154515A1 WO 2017154515 A1 WO2017154515 A1 WO 2017154515A1 JP 2017005864 W JP2017005864 W JP 2017005864W WO 2017154515 A1 WO2017154515 A1 WO 2017154515A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
alkoxysilane
antistatic
film
antistatic material
Prior art date
Application number
PCT/JP2017/005864
Other languages
English (en)
French (fr)
Inventor
慶 豊田
一摩 及川
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2017525125A priority Critical patent/JP6236643B1/ja
Priority to US16/076,012 priority patent/US10941250B2/en
Priority to KR1020187025542A priority patent/KR20180115275A/ko
Priority to CN201780015267.XA priority patent/CN108779382B/zh
Publication of WO2017154515A1 publication Critical patent/WO2017154515A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/16Anti-static materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • C09D183/06Polysiloxanes containing silicon bound to oxygen-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/14Polysiloxanes containing silicon bound to oxygen-containing groups
    • C08G77/18Polysiloxanes containing silicon bound to oxygen-containing groups to alkoxy or aryloxy groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/20Polysiloxanes containing silicon bound to unsaturated aliphatic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/0427Coating with only one layer of a composition containing a polymer binder
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/043Improving the adhesiveness of the coatings per se, e.g. forming primers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/044Forming conductive coatings; Forming coatings having anti-static properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/16Halogen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5415Silicon-containing compounds containing oxygen containing at least one Si—O bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/14Polysiloxanes containing silicon bound to oxygen-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2483/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • C08J2483/04Polysiloxanes
    • C08J2483/06Polysiloxanes containing silicon bound to oxygen-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/017Additives being an antistatic agent

Definitions

  • the present disclosure relates to a material capable of forming an antistatic film such as a film having an antistatic function, a manufacturing method thereof, and an antistatic film.
  • ⁇ ⁇ Static electricity generated by charging the insulator may occur in every situation, from daily life to social life and mass production of products.
  • the elements on the board may be destroyed by static electricity generated between the charged component carrying jig and the circuit board.
  • a polarizing film for LCD when the PVA film is passed through a roll, a discharge occurs at the moment when the charged PVA film is separated from the metal roll, which may cause defects such as pinhole formation. Become. Therefore, conventionally, for the purpose of preventing these problems, an antistatic material for preventing the generation of static electricity has been devised and put into practical use as an antistatic agent.
  • the antistatic function can be achieved by applying the product on the surface of a product or substrate and forming a film.
  • polymer materials such as synthetic resins
  • conductive materials and oxides of which fine particles of oxide are dispersed in a synthetic resin are known.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2010-083993 discloses an antistatic agent using a surfactant having an antistatic function.
  • Patent Document 2 Japanese Patent Laid-Open No. 2010-106096 discloses a nonionic acrylic copolymer, an antistatic agent, and a polyoxyalkylene phenyl ether in which the side chain of the phenyl group is substituted with a plurality of substituents containing an aromatic ring.
  • An antistatic laminated polyester film having a coating film composed of a composition containing a surfactant containing as a main component on a polyester film is disclosed.
  • Patent Document 3 Japanese Patent Laid-Open No. 2010-1604664 discloses an antistatic hard coat film containing an ionic conductive material, and as the ionic conductive material, a quaternary ammonium salt conductive monomer having an ionic conduction mechanism and And use in combination with a ⁇ -conjugated conductive polymer having an electron conduction mechanism.
  • Patent Document 4 Japanese Patent Laid-Open No. 2012-215819 discloses an ion conductive compound, a polyethylene oxide compound having one or more photopolymerizable groups, a compound having an unsaturated double bond, and photopolymerization.
  • An antistatic hard coat layer forming composition containing an initiator is disclosed.
  • Patent Document 5 Japanese Patent Laid-Open No. 2004-058662
  • a mixture layer of metal oxide and conductive ultrafine particles is formed on the surface of a film as a conductive material or oxide fine particles thereof.
  • an antistatic film having a surface resistivity of 10 13 ⁇ / ⁇ (ohms per square) or less is disclosed.
  • the surface resistivity of the antistatic film is preferably in the range of 10 5 ⁇ / ⁇ or more and less than 10 10 ⁇ / ⁇ .
  • this surface resistivity is less than 10 5 ⁇ / ⁇ , conductivity is generated, and therefore an unnecessary noise current may be generated.
  • the surface resistivity is 10 10 ⁇ / ⁇ or more, the insulating property of the film is increased, so that a desired antistatic function may not be obtained.
  • the antistatic films are largely dependent on conductivity and ionic conductivity, they are easily affected by humidity. Especially when the humidity is low, the surface resistivity is 10 10 ⁇ / ⁇ or more. In some cases, a sufficient antistatic function cannot be obtained.
  • a material capable of forming an antistatic film such as a film having an excellent antistatic function, particularly, an antistatic material whose surface resistivity is less affected by humidity. It is an object to provide a material capable of forming a film, a manufacturing method thereof, and an antistatic film.
  • an excellent antistatic function in particular, surface resistivity is less affected by humidity.
  • the inventors have found that an antistatic film can be formed, and have reached the present disclosure.
  • the present disclosure can provide the following antistatic material, method for producing the antistatic material, and antistatic film, but is not limited to the following.
  • An antistatic material according to the present disclosure includes a first alkoxysilane containing at least one alkoxy group and at least one polymerizable organic functional group, at least one alkoxy group, and containing a polymerizable organic functional group Not a mixture of a second alkoxysilane, a solvent, an acidic catalyst, and an ionic compound.
  • the manufacturing method of the antistatic material which concerns on this indication includes mixing a 1st alkoxysilane, a 2nd alkoxysilane, a catalyst, a solvent, and an ionic compound.
  • the antistatic film according to the present disclosure is composed of the antistatic material according to the present disclosure.
  • a material capable of forming an antistatic film such as a film having an excellent antistatic function, in particular, a material capable of forming an antistatic film whose surface resistivity is less affected by humidity, and A manufacturing method thereof can be provided.
  • the antistatic material of the present disclosure can provide an antistatic film that is less affected by humidity and that can stably prevent the solid surface from being charged.
  • FIG. 1 is a schematic view showing a method for producing an antistatic material.
  • FIG. 2 is a diagram showing a state after mixing the first or second alkoxysilane and lithium perchlorate.
  • FIG. 3 is a diagram showing the results of differential scanning calorimetry of a sample in which 3-glycidoxypropyltrimethoxysilane and lithium perchlorate are mixed.
  • FIG. 4 is a diagram showing the results of differential scanning calorimetry of a sample in which methyltrimethoxysilane and lithium perchlorate are mixed.
  • FIG. 1 is a schematic view showing a method for producing an antistatic material.
  • the antistatic material of the present disclosure includes “first alkoxysilane”, “second alkoxysilane”, “acidic catalyst”, “solvent”, and “ionic compound”. It can manufacture by mixing.
  • first alkoxysilane is an organic silane compound including at least one alkoxy group and at least one polymerizable organic functional group
  • second alkoxysilane An organosilane compound containing at least one alkoxy group and no polymerizable organic functional group.
  • the first and second alkoxysilanes can form an inorganic network based on a siloxane bond (Si—O bond) when the alkoxy group is mixed in the presence of an acidic catalyst.
  • An organic network can be formed by polymerizing the polymerizable organic functional group of one alkoxysilane in the presence of an ionic compound.
  • an antistatic material that can be formed from such first and second alkoxysilanes can be applied to a substrate and cured to exhibit an excellent antistatic function based on an organic-inorganic hybrid structure. It is possible to form an antistatic film, particularly an antistatic film that is less affected by humidity.
  • the sol solution containing the organic-inorganic hybrid structure that can be formed from the first and second alkoxysilanes is referred to as “antistatic material”, and the film that can be formed from such an antistatic material.
  • antistatic film Such a film is referred to as an “antistatic film”.
  • the antistatic film of the present disclosure is, for example, 1.0 ⁇ 10 5 ⁇ / ⁇ or more and less than 1.0 ⁇ 10 10 ⁇ / ⁇ , preferably 1.0 ⁇ 10 5 ⁇ / ⁇ , based on the organic-inorganic hybrid structure. It has a surface resistivity of less than 1.0 ⁇ 10 8 ⁇ / ⁇ and can stably suppress the generation of static electricity in response to changes in humidity.
  • the antistatic film of the present disclosure has a tensile elasticity of, for example, 30 MPa or more and less than 100 MPa, preferably 30 MPa or more and less than 50 MPa based on the organic-inorganic hybrid structure, and is excellent in flexibility.
  • the antistatic film of the present disclosure has a light transmittance (wavelength 550 nm) of, for example, 85% or more, preferably 90% or more based on the organic-inorganic hybrid structure, and is excellent in transparency.
  • first alkoxysilane is an organosilane compound containing at least one “alkoxy group” and at least one “polymerizable organic functional group”.
  • alkoxy group of the first alkoxysilane for example, a linear or branched alkoxy group having 1 to 5 carbon atoms (for example, methoxy group, ethoxy group, n-propoxy group, isopropoxy group, n-butoxy group) Group, isobutoxy group, 1-methylpropoxy group, tert-butoxy group, n-pentoxy group, isopentoxy group, 1-methylbutoxy group, 2-methylbutoxy group, tert-pentoxy group) and the like.
  • the first alkoxysilane has two or more “alkoxy groups”, they may be the same or different.
  • the alkoxy group of the first alkoxysilane has a siloxane bond between the first alkoxysilanes or the second alkoxysilane described in detail below in the presence of an acidic catalyst described in detail below.
  • An inorganic network based on the above can be formed. Accordingly, among alkoxy groups, a methoxy group and an ethoxy group are particularly preferable from the viewpoint that hydrolysis easily occurs and the reaction is easily controlled. In addition, when the number of carbon atoms of the alkoxy group exceeds 5, the molecules are difficult to approach each other due to the steric hindrance, which may hinder the polymerization of the “polymerizable organic functional group” described in detail below. .
  • polymerizable organic functional group of the first alkoxysilane for example, “polymerizable reaction site” including “cyclic ether bond”, “double bond”, “triple bond” and the like (hereinafter referred to as “polymerizable”). There is no particular limitation as long as it conforms to organic chemistry.
  • the total number of carbon atoms of the “polymerizable organic functional group” is, for example, 2 to 20, preferably 2 to 9, and more preferably 2 to 6.
  • the number of carbon atoms in the “polymerizable reaction site” is, for example, 2 to 10, preferably 2 to 6, and more preferably 2 to 3.
  • Examples of the polymerizable reactive site including a “cyclic ether bond” include a reactive group having 2 to 6 carbon atoms including an epoxy bond (for example, an epoxy group, a glycidoxy group, and an epoxycyclohexyl group). Of these, a glycidoxy group and an epoxycyclohexyl group are preferable. These reactive groups containing a cyclic ether bond can form a polyether structure by ring-opening polymerization or the like.
  • Examples of the polymerizable reactive site containing “double bond” include a reactive group having 2 to 8 carbon atoms containing a vinyl bond (eg, vinyl group, allyl group, styryl group, acrylate group, methyl methacrylate group). Can be mentioned. Of these, a vinyl group is preferable. These reactive groups containing a double bond can form a polyolefin structure by ionic polymerization or the like.
  • Examples of the polymerizable reactive site containing a “triple bond” include a reactive group having 2 to 4 carbon atoms containing an acetylene bond and a cyan bond (for example, an alkynyl group and a cyano group). Of these, an alkynyl group is preferable. These reactive groups containing a triple bond can form a polyolefin structure or the like by ionic polymerization or the like.
  • the above-mentioned polymerizable reactive site may be directly bonded to the silicon atom of the first alkoxysilane, or may be bonded to the silicon atom via an “organic linking group” (or linker).
  • the “organic linking group” is not particularly limited as long as it follows organic chemistry, and the number of carbon atoms thereof is, for example, 1 to 15, preferably 2 to 10, more preferably 3 to 6, for example, carbon atoms Examples thereof include hydrocarbon groups having 3 to 6 (for example, alkylene groups).
  • the “polymerizable organic functional group” possessed by the first alkoxysilane has the formula: AB— [wherein A represents the above-mentioned polymerizable reactive site, and B represents a single bond or the above Represents an organic linking group.
  • two or more polymerizable organic functional groups may be present, in which case they may be the same or different.
  • the silicon atom of the first alkoxysilane has “other organic group” in addition to the above “alkoxy group” and “polymerizable organic functional group” in accordance with organic chemistry and science of silicon atom. (However, in this case, the total count of “alkoxy group”, “polymerizable organic functional group”, and “other organic group” in the silicon atom of the first alkoxysilane is 4).
  • the “other organic group” that the first alkoxysilane may have is not particularly limited as long as it follows organic chemistry, and the number of carbon atoms thereof is, for example, 1 to 12, preferably 1 to 8. More preferably, it is 1 to 2 organic groups, and those which do not substantially participate in the formation of the siloxane bond of the “alkoxy group” and the polymerization of the “polymerizable organic functional group” are desirable.
  • Examples of “other organic groups” include hydrocarbon groups having 1 to 12 carbon atoms.
  • the hydrocarbon group may be linear, branched or cyclic, for example, an alkyl group having 1 to 8 carbon atoms (for example, a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group). , T-butyl group, pentyl group, hexyl group, heptyl group, octyl group) and the like.
  • the alkyl group a methyl group and an ethyl group having a low bulk are preferable from the viewpoint of steric hindrance. Further, when the alkyl group has 8 or less carbon atoms, the steric hindrance is reduced, and the polymerization tends to proceed easily.
  • first alkoxysilane is represented by the general formula (I): (R 1 O) a (R 2 O) b (R 3 O) c Si (X) d (Y) e (Z) f Can be represented.
  • R 1 O, R 2 O, and R 3 O each independently represent the above “alkoxy group”
  • X, Y and Z are each independently the above-mentioned “polymerizable organic functional group” (preferably the above formula: AB— [wherein A represents the above polymerizable reactive site. , B represents a single bond or a group represented by the above organic linking group] or the above-mentioned “other organic group”, but at least one of X, Y, and Z is the above “polymerization”.
  • the first alkoxysilane represented by the general formula (I) 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, vinyltrimethoxysilane, 2- (3,4-epoxycyclohexyl) It is preferable to use ethyltrimethoxysilane or the like.
  • the first alkoxysilane may be used as a mixture, for example, by combining two or more of the above alkoxysilanes.
  • the alkoxysilanes combined may be the same or different.
  • an antistatic film having excellent flexibility can be formed.
  • the “second alkoxysilane” is an organosilane compound that contains at least one alkoxy group and does not contain a polymerizable organic functional group.
  • “not containing a polymerizable organic functional group” means having no group containing a polymerizable reactive site based on organic chemistry, and in the narrow sense, the first alkoxysilane of the above-mentioned first alkoxysilane. It means not containing “polymerizable organic functional group”.
  • alkoxy group of the second alkoxysilane for example, a linear or branched alkoxy group having 1 to 5 carbon atoms (for example, methoxy group, ethoxy group, n-propoxy group, isopropoxy group, n-butoxy group) Group, isobutoxy group, 1-methylpropoxy group, tert-butoxy group, n-pentoxy group, isopentoxy group, 1-methylbutoxy group, 2-methylbutoxy group, tert-pentoxy group) and the like.
  • the second alkoxysilane has two or more “alkoxy groups”, they may be the same or different.
  • the alkoxy group of the second alkoxysilane is an inorganic substance based on a siloxane bond between the second alkoxysilanes or between the first alkoxysilanes in the presence of an acid or catalyst described in detail below.
  • a network of systems can be formed. Accordingly, among alkoxy groups, a methoxy group and an ethoxy group are particularly preferable from the viewpoint that hydrolysis easily occurs and the reaction is easily controlled.
  • the second alkoxysilane may have a “non-polymerizable group” in addition to the above alkoxy group.
  • non-polymerizable group that the second alkoxysilane may have is not particularly limited as long as it does not have polymerizability, and is in accordance with organic chemistry.
  • it is an organic group of 1 to 20, preferably 1 to 12, more preferably 1 to 6, and also for the formation of a siloxane bond of the above “alkoxy group” and the polymerization of the above “polymerizable organic functional group”. Those that are not substantially involved are desirable.
  • non-polymerizable group examples include a hydrocarbon group having 1 to 20 carbon atoms.
  • the hydrocarbon group may be linear, branched, or cyclic, for example, an alkyl group having 1 to 20 carbon atoms (for example, a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, and t-butyl group, pentyl group, hexyl group, cyclohexyl group, heptyl group, octyl group, decyl group) and aryl groups having 1 to 20 carbon atoms (for example, phenyl group).
  • the number of carbon atoms of the hydrocarbon group exceeds 20, the steric hindrance increases and the polymerization tends to be inhibited.
  • Such a “second alkoxysilane” is represented by the general formula (II): (R 4 O) g (R 5 O) h (R 6 O) i Si (P) j (Q) k (R) l Can be represented.
  • R 4 O, R 5 O, and R 6 O each independently represent the above “alkoxy group”
  • P, Q, and R each independently represent the above “non-polymerizable group”
  • g, h, i, j, k, and l are each independently an integer of 0, 1, 2, 3, or 4 (provided that j, k, and l are integers 4) Absent),
  • g + h + i is an integer of 1, 2, 3, 4;
  • j + k + l is an integer of 0, 1, 2, or 3
  • g + h + i + j + k + l is the integer 4.
  • methyltrimethoxysilane, dimethyldimethoxysilane, phenyltrimethoxysilane or the like as the second alkoxysilane represented by the general formula (II).
  • the second alkoxysilane may be used as a mixture by combining two or more of the above alkoxysilanes.
  • the alkoxysilanes combined may be the same or different.
  • g + h + i represented by the above general formula (II) is an integer 2
  • a linear portion can be introduced into the three-dimensional skeleton, and the flexibility is improved.
  • An excellent antistatic film can be formed.
  • a third alkoxysilane may be used together with the first and second alkoxysilanes as necessary.
  • the third alkoxysilane has at least one “alkoxy group” and at least one “organic group” defined below.
  • alkoxy group possessed by the third alkoxysilane is as defined in the alkoxy group possessed by the first or second alkoxysilane, and when having a plurality of alkoxy groups, they may be the same. , May be different.
  • the “organic group” of the third alkoxysilane is an amino group which may have a substituent, a mercapto group (thiol group) which may have a substituent, an —NH— bond, an ⁇ N— bond.
  • a linear, branched or cyclic hydrocarbon group having 1 to 20 carbon atoms for example, an alkyl group having 1 to 20 carbon atoms (for example, a methyl group, an ethyl group, a propyl group, an isopropyl group) Butyl group, t-butyl group, pentyl group, hexyl group, cyclohexyl group, heptyl group, octyl group, decyl group), aryl group having 1 to 20 carbon atoms (for example, phenyl group)).
  • the thiol group or amino group contained in the third alkoxysilane can promote the polymerization of the cyclic ether structure that can be contained in the first alkoxysilane, and thus the first alkoxysilane containing the cyclic ether structure. It is preferable to use in combination.
  • the third alkoxysilane may have not only the above “alkoxy group” and “organic group” but also a “non-polymerizable group” defined in the second alkoxysilane.
  • Such a third alkoxysilane is represented by the general formula (III): (R 7 O) m (R 8 O) n (R 9 O) o Si (S) p (T) q (U) r Can do.
  • R 7 O, R 8 O, and R 9 O each independently represent the above “alkoxy group”
  • S, T and U each independently represent the above “organic group” or the above “non-polymerizable group”, but at least one of S, T and U is the above “organic group”.
  • m, n, o, p, q, and r are each independently an integer of 0, 1, 2, 3, m + n + o is an integer of any one of 1, 2, and 3, p + q + r is an integer of 1, 2, or 3, m + n + o + p + q + r is an integer 4.
  • ⁇ Ionic compounds> in parallel with the polymerization (formation of a siloxane bond) between the alkoxy groups of the first alkoxysilane, the alkoxy groups of the second alkoxysilane, and the alkoxy groups of the first and second alkoxysilanes,
  • the polymerizable organic functional group of the first alkoxysilane can be polymerized by the ionic compound described in detail below.
  • the ionic compound is not particularly limited as long as it is a compound exhibiting ionicity or a compound capable of providing ions, and may be ions themselves.
  • examples of the ionic compound include those that are electron-donating and themselves are oxidants, and those that are electron-accepting and themselves are reductants.
  • electron donating substances include ammonium ions, phosphonium ions, sulfide ions, and the like.
  • electron-accepting substances include halogens and halides such as chlorine, bromine, iodine, iodine monochloride, iodine trichloride, iodine bromide, iodine fluoride; hydrogen fluoride, hydrogen chloride, nitric acid, sulfuric acid, perchlorine Protic acids such as acids; various organic acids such as fluorosulfonic acid, chlorosulfonic acid, trifluoromethanesulfonic acid; amino acids; chloride ion, bromide ion, iodide ion, perchlorate ion, hexafluorophosphoric acid as electrolyte anion Ions, AsF 6 ⁇ , SbF 6 ⁇ , tetrafluoroborate ions; perchlorates such as lithium perchlorate, sodium perchlorate, potassium perchlorate; and organic metals such as butyllithium.
  • halogens and halides such
  • perchlorates such as lithium perchlorate, sodium perchlorate, and potassium perchlorate can be suitably used from the viewpoint of high solubility in a sol solution described later and ease of use.
  • an acidic catalyst can be used to quickly accelerate hydrolysis and dehydration condensation of the alkoxy groups of the first and second alkoxysilanes, and is generally used as a catalyst for a generally known sol-gel reaction. Any known one can be used without limitation as long as it can act.
  • hydrochloric acid hydrochloric acid
  • hydrobromic acid hydroiodic acid
  • sulfuric acid sulfonic acid
  • nitric acid phosphoric acid
  • boric acid acetic acid
  • citric acid formic acid
  • tartaric acid there is no restriction
  • the solvent is not particularly limited, and a known solvent that can be used for the sol-gel reaction can be used.
  • a known solvent that can be used for the sol-gel reaction can be used.
  • water, methanol, ethanol, isopropanol, acetone and the like can be mentioned.
  • a polar solvent such as water.
  • the antistatic material includes a first alkoxysilane, a second alkoxysilane, an acidic catalyst, and an ionic compound. In a liquid phase containing a solvent, these are mixed, preferably by mixing with heating and stirring, whereby a part of each alkoxy group bonded to the first alkoxysilane and the second alkoxysilane is hydrolyzed.
  • a dehydration condensation to form a siloxane bond and further, a transparent sol solution in which at least a part, preferably all, of the polymerizable organic functional group of the first alkoxysilane is polymerized by an ionic compound.
  • a transparent sol solution in which at least a part, preferably all, of the polymerizable organic functional group of the first alkoxysilane is polymerized by an ionic compound.
  • the first alkoxysilane, the second alkoxysilane, the ionic compound, the acidic catalyst, and the solvent are mixed.
  • the molar ratio is such that the ratio of (first alkoxysilane) / (second alkoxysilane) is, for example, 0.2 to 10. If this ratio is less than 0.2, the surface resistivity of the final cured product may not be sufficiently reduced due to a decrease in the number of polymerizable organic functional groups of the first alkoxysilane.
  • the ratio is greater than 10 the influence of the polymerizable organic functional group on the entire polymer chain formed by polymerization is increased, and shrinkage or cracks due to curing may occur.
  • the addition amount of the acidic catalyst can be appropriately adjusted.
  • the addition amount is 0.1% or more of the total number of moles of alkoxy groups contained in the first alkoxysilane and the second alkoxysilane, It is effective to make it 10% or less.
  • the amount is less than 0.1%, the effect of promoting the reaction may not be obtained.
  • the amount is more than 10%, the reaction rate becomes too high, and the reaction control may be difficult.
  • the amount of catalyst added should be 0.5% or more and 1% or less of the total number of moles of alkoxy groups. Is preferred.
  • the addition amount of the ionic compound can be adjusted as appropriate, but can be 1% or more and 50% or less with respect to the number of moles of the polymerizable organic functional group. If the amount added is less than 1%, the surface resistivity may not be sufficiently low, and the antistatic function may not be sufficient. On the other hand, if it is more than 50%, the sol solution is not completely dissolved and an undissolved ionic compound is precipitated, and the antistatic function may become unstable.
  • a solvent is water
  • the same number of moles and 5 moles or less can be blended.
  • hydrolysis of the alkoxy group does not proceed rapidly, and the productivity may decrease.
  • water having a mole number more than 5 times is blended, the concentration of the blended first alkoxysilane and second alkoxysilane is decreased, and the reaction efficiency may be lowered. From the viewpoint of promptly promoting the reaction, it is preferable to add water having a mole number of 2 to 3 times the mole number of all alkoxy groups.
  • the first alkoxysilane, the second alkoxysilane, the solvent, the acidic catalyst, and the ionic compound are preferably mixed by stirring with heating
  • a sol solution can be prepared by forming a siloxane bond by hydrolysis and dehydration condensation and simultaneously polymerizing the polymerizable organic functional group of the first alkoxysilane with an ionic compound.
  • Stirring while heating can be performed by a known heating method or stirring method, and can be performed by a motor type stirring blade or a magnetic stirrer. Further, the heating may be performed by installing the container in a water bath or a mantle heater, or may be performed on a hot stirrer.
  • the heating temperature is preferably 60 ° C. or higher and 90 ° C.
  • the temperature is 60 ° C. or higher and 90 ° C. or lower, for example, when the solvent is water, water used for hydrolysis of the alkoxy group and water generated by dehydration condensation can be sufficiently volatilized.
  • the first alkoxysilane and the second alkoxysilane mixed using the above raw materials according to the above-mentioned standards and blending amounts are polymerized by hydrolysis and dehydration condensation of a part of each alkoxy group.
  • a siloxane bond is formed, and at the same time, at least part of the polymerizable organic functional group of the first alkoxysilane is polymerized to provide the antistatic material of the present disclosure as a sol solution.
  • the above-described sol solution that is, the antistatic material
  • the antistatic material can be coated on a solid surface mainly by coating the surface thereof. It is further polymerized by decomposition and dehydration condensation to cure by forming a further siloxane bond, and a transparent antistatic film can be easily formed.
  • an organic-inorganic hybrid structure in which the network of the siloxane skeleton, ie, the inorganic material portion, obtained by polymerization of the alkoxy group, and the network, ie, the organic material portion, obtained by polymerization of the polymerizable organic functional group are physically or chemically bonded.
  • Such an organic-inorganic hybrid structure has both durability and transparency due to the inorganic material portion, and adhesion and flexibility due to the organic material portion.
  • the organic material portion has a polymerizable organic functional group directly polymerized by the ionic compound, and an ionic species derived from the ionic compound can be incorporated into the skeleton.
  • the hopping conduction further reduces the surface resistivity. As a result, an excellent antistatic function can be exhibited.
  • the antistatic film of the preferred embodiment of the present disclosure also exhibits conductivity by hopping conduction, unlike the conventional ion conductive antistatic agent, it is not easily affected by humidity. Furthermore, since both the inorganic material portion and the organic material portion cannot have an absorption peak in the visible light wavelength region, high transparency can be exhibited. As a result, it is possible to obtain an excellent antistatic film that is excellent in transparency, flexibility, adhesion, and durability, and that is hardly affected by humidity.
  • Test Example 1 The test for demonstrating that the polymerizable organic functional group which the 1st alkoxysilane has can be polymerized by said ionic compound is shown as an example.
  • FIG. 2 is a view showing a state after the first or second alkoxysilane and lithium perchlorate are mixed.
  • 3-glycidoxypropyltrimethoxysilane is used as the first alkoxysilane
  • methyltrimethoxysilane is used as the second alkoxysilane
  • lithium perchlorate is used as the ionic compound.
  • Samples A, B, C, D, E, and F were prepared with the formulation shown, and the results of appearance observation after standing at room temperature for 120 hours are shown in the photographs (a), (b), (c), and (d) of FIG. ), (E), and (f), respectively.
  • Sample A is a reference sample containing only 3-glycidoxypropyltrimethoxysilane, which is the first alkoxysilane.
  • Samples B and C are samples obtained by mixing lithium perchlorate as an ionic compound with 3-glycidoxypropyltrimethoxysilane, which is the first alkoxysilane.
  • Sample D is a reference sample containing only methyltrimethoxysilane, which is the second alkoxysilane.
  • Samples E and F photos (e) and (f) are samples obtained by mixing lithium perchlorate as an ionic compound with methyltrimethoxysilane as the second alkoxysilane.
  • FIG. 3 is a diagram showing the results of differential scanning calorimetry of a sample obtained by mixing 3-glycidoxypropyltrimethoxysilane and lithium perchlorate.
  • FIG. 4 is a diagram showing the results of differential scanning calorimetry of a sample in which methyltrimethoxysilane and lithium perchlorate are mixed.
  • FIG. 3 and 4 show the results of differential scanning calorimetry measurement of samples A to F.
  • Example 1 Preparation of antistatic material (sol solution) A stirrer is placed in a 300 ml glass container and 100 ml of 3-glycidoxypropyltrimethoxysilane is used as the first alkoxysilane, and methyltrimethoxy is used as the second alkoxysilane. Silane 115ml, hydrochloric acid (concentration 1N) 1.3ml as an acidic catalyst, lithium perchlorate 10.04g as an ionic compound, water 150ml as a solvent, on a hot stirrer set at 70 ° C under open air conditions The mixture was stirred for 30 minutes to prepare a sol solution.
  • the prepared sol solution was applied to a glass substrate of 30 mm ⁇ 30 mm ⁇ 1 mm with a spin coater to a thickness of about 500 ⁇ m, allowed to stand for 24 hours, and cured to form a film.
  • Example 2 Preparation of antistatic material (sol solution) A stirrer is placed in a 300 ml glass container, 97.8 ml of 3-glycidoxypropylmethyldimethoxysilane as the first alkoxysilane, and methyl as the second alkoxysilane. 100 ml of trimethoxysilane, 1.3 ml of hydrochloric acid (concentration 1N) as an acidic catalyst, 5.02 g of sodium perchlorate as an ionic compound, and 150 ml of water as a solvent, a hot stirrer set at 70 ° C. in an open air condition Stir for 30 minutes above to prepare a sol solution.
  • hydrochloric acid concentration 1N
  • the prepared sol solution was dropped manually onto a PET film of 30 mm ⁇ 30 mm ⁇ 0.2 mm, spread uniformly with a thickness of about 500 ⁇ m, allowed to stand for 24 hours and cured to form a film.
  • Example 3 Preparation of antistatic material (sol solution) A stirrer is placed in a 300 ml glass container and 45 ml of 3-glycidoxypropyltrimethoxysilane and 3-glycidoxypropylmethyldimethoxysilane are used as the first alkoxysilane. 50ml, 110ml of methyltrimethoxysilane as the second alkoxysilane, 1.3ml of hydrochloric acid (concentration 1N) as the acidic catalyst, 10.04g of lithium perchlorate as the ionic compound, and 150ml of water as the solvent The mixture was stirred for 30 minutes on a hot stirrer set at 70 ° C. to prepare a sol solution.
  • concentration 1N hydrochloric acid
  • the prepared sol solution was dropped manually onto a PET film of 30 mm ⁇ 30 mm ⁇ 0.2 mm, spread uniformly with a thickness of about 500 ⁇ m, allowed to stand for 24 hours and cured to form a film.
  • Example 4 Preparation of antistatic material (sol solution) A stir bar is placed in a 300 ml glass container, 95 ml of 3-glycidoxypropyltrimethoxysilane is used as the first alkoxysilane, and methyltrimethoxy is used as the second alkoxysilane. 50 ml of silane and 50 ml of dimethyldimethoxysilane, 1.3 ml of hydrochloric acid (concentration 1N) as an acidic catalyst, 10.04 g of lithium perchlorate as an ionic compound, 120 ml of water as a solvent, and set to 70 ° C. in an open air condition The mixture was stirred for 30 minutes on the hot stirrer to prepare a sol solution.
  • concentration 1N hydrochloric acid
  • the prepared sol solution was applied to a glass substrate of 30 mm ⁇ 30 mm ⁇ 1 mm with a spin coater to a thickness of about 500 ⁇ m, allowed to stand for 24 hours, and cured to form a film.
  • Example 5 Preparation of antistatic material (sol solution)
  • a stirrer is placed in a 300 ml glass container, 95 ml of vinyltrimethoxysilane as the first alkoxysilane, 100 ml of methyltrimethoxysilane as the second alkoxysilane, acidic catalyst As hydrochloric acid (concentration 1N) 1.3 ml, ionic compound n-butyllithium 5.0 g, solvent 150 ml water, and stirred for 30 minutes on a hot stirrer set at 70 ° C. under open air conditions. A sol solution was prepared.
  • the prepared sol solution was applied to a glass substrate of 30 mm ⁇ 30 mm ⁇ 1 mm with a spin coater to a thickness of about 500 ⁇ m, allowed to stand for 24 hours, and cured to form a film.
  • Example 6 Preparation of antistatic material (sol solution) A stirrer is placed in a 300 ml glass container and 100 ml of 3-glycidoxypropyltrimethoxysilane is used as the first alkoxysilane, and methyltrimethoxy is used as the second alkoxysilane. Silane 115ml, hydrochloric acid (concentration 1N) 1.3ml as acidic catalyst, 7.0g sodium perchlorate as ionic compound, water 150ml as solvent, on a hot stirrer set at 70 ° C under open air condition The mixture was stirred for 30 minutes to prepare a sol solution.
  • hydrochloric acid concentration 1N
  • the prepared sol solution was applied to a glass substrate of 30 mm ⁇ 30 mm ⁇ 1 mm with a spin coater to a thickness of about 500 ⁇ m, allowed to stand for 24 hours, and cured to form a film.
  • Example 7 Preparation of antistatic material (sol solution) A stirrer is placed in a 300 ml glass container and 100 ml of 3-glycidoxypropyltrimethoxysilane is used as the first alkoxysilane, and methyltrimethoxy is used as the second alkoxysilane. Silane 115ml, hydrochloric acid (concentration 1N) 1.3ml as acidic catalyst, 7.0g potassium perchlorate as ionic compound, 150ml water as solvent, on a hot stirrer set at 70 ° C under open air condition The mixture was stirred for 30 minutes to prepare a sol solution.
  • hydrochloric acid concentration 1N
  • the prepared sol solution was applied to a glass substrate of 30 mm ⁇ 30 mm ⁇ 1 mm with a spin coater to a thickness of about 500 ⁇ m, allowed to stand for 24 hours, and cured to form a film.
  • Example 8 Preparation of antistatic material (sol solution) A stirrer is placed in a 300 ml glass container, and 90 ml of 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane and second alkoxy are used as the first alkoxysilane. 120 ml of methyltrimethoxysilane as a silane, 1.3 ml of hydrochloric acid (concentration 1N) as an acidic catalyst, 7.0 g of potassium perchlorate as an ionic compound, and 150 ml of water as a solvent were set at 70 ° C. in an open air condition. The mixture was stirred for 30 minutes on a hot stirrer to prepare a sol solution.
  • 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane and second alkoxy are used as the first alkoxysilane.
  • the prepared sol solution was applied to a glass substrate of 30 mm ⁇ 30 mm ⁇ 1 mm with a spin coater to a thickness of about 500 ⁇ m, allowed to stand for 24 hours, and cured to form a film.
  • the solution prepared above was applied to a glass substrate of 30 mm x 30 mm x 1 mm with a spin coater to a thickness of about 500 ⁇ m, and allowed to stand for 24 hours to be cured to form a film.
  • the solution prepared above was applied to a glass substrate of 30 mm x 30 mm x 1 mm with a spin coater to a thickness of about 500 ⁇ m, and allowed to stand for 24 hours to be cured to form a film.
  • a symbol “ ⁇ ” indicates that the above determination of the surface resistivity at each humidity is all “ ⁇ ”, and one or more“ ⁇ ”is included in the above determination. Things were indicated by the symbol “ ⁇ ”, and in the above judgment, “ ⁇ ” was absent, and all items consisting of “ ⁇ ” or “ ⁇ ” and “ ⁇ ” were indicated by the symbol “ ⁇ ”.
  • ⁇ 100 MPa Indicated by the symbol “ ⁇ ” as being inferior in flexibility.
  • the surface resistivity is less affected by humidity and even when the humidity is low (humidity 30%). It was found that an antistatic film having an excellent antistatic function (surface resistivity 1.0 ⁇ 10 5 ⁇ / ⁇ or more and less than 1.0 ⁇ 10 10 ⁇ / ⁇ ) can be obtained. From the results of Examples 1 to 8 according to the present disclosure, the antistatic material according to the present disclosure has excellent flexibility (tensile elastic modulus of 30 MPa or more and less than 100 MPa) and high transparency (light transmittance). It was found that an antistatic film having 85% or more was obtained.
  • the antistatic function is gradually lost due to the deterioration of the surfactant over time, and the antistatic function may not be sufficiently exhibited.
  • the antistatic material according to the present disclosure does not use a surfactant, it is possible to suppress the deterioration of the antistatic function caused by the deterioration of the surfactant over time.
  • oxide fine particles as the antistatic material, if the antistatic function is improved by increasing the concentration of the fine particles, light absorption and light scattering by the fine particles increase, and the The transmittance of light passing through the prevention material may be reduced, and the transparency may be impaired.
  • the antistatic material according to the present disclosure does not use oxide fine particles, it is possible to suppress a decrease in light reduction rate due to oxide fine particles.
  • Example 6 From the results of Examples 1 to 4, Example 6 and Example 7, it was found that the use of a first alkoxysilane containing a glycidoxy group is less susceptible to humidity (surface resistivity against humidity change). It was found that an antistatic material having a particularly high transparency (light transmittance of 90% or more) tends to be obtained.
  • Example 8 when the first alkoxysilane has an organic functional group having a cyclic ether structure, it is hardly influenced by humidity (change in surface resistivity with respect to change in humidity is small), It was found that an antistatic film having particularly high transparency (light transmittance of 90% or more) can be obtained.
  • Example 1 and Example 3 From the comparison between Example 1 and Example 3 and the comparison between Example 1 and Example 4, as shown in Example 3 and Example 4, by mixing the alkoxysilane having 2 or 3 alkoxy groups, Thus, it was found that the tensile modulus was further reduced (tensile modulus was 30 MPa or more and less than 50 MPa), and an antistatic film having particularly excellent flexibility was obtained.
  • Example 1 From the comparison between Example 1 and Comparative Example 1, in order to obtain an antistatic film that is hardly affected by humidity (small change in surface resistivity with respect to change in humidity), as shown in Example 1, the first alkoxy It has been found necessary to polymerize the polymerizable organic functional group of silane with an ionic compound.
  • Example 1 From the comparison between Example 1 and Comparative Example 2, as shown in Example 1, the ionic compound polymerizes the polymerizable organic functional group of the first alkoxysilane, so that the surface resistivity is low (surface resistivity 1 (Less than 0.0 ⁇ 10 10 ⁇ / ⁇ ), it was found that an antistatic film can be formed.
  • Example 2 From comparison between Example 2 and Comparative Example 3, as shown in Example 2, the ionic compound polymerizes the polymerizable organic functional group of the first alkoxysilane, so that the surface resistivity is low (surface resistivity 1 (Less than 0.0 ⁇ 10 10 ⁇ / ⁇ ), it was found that an antistatic film can be formed.
  • the antistatic material according to Example 1 and Example 2 has a structure in which the ionic compound polymerizes the polymerizable organic functional group of the first alkoxysilane, and the ionic substance is incorporated into the polymer chain. Anti-static function is less susceptible to humidity.
  • the antistatic material of the present disclosure can be widely used in various fields because a transparent antistatic film can be easily formed by simply applying it to a substrate such as a solid.
  • the antistatic film that can be formed from the antistatic material of the present disclosure can be stably and widely used in various fields because its surface resistivity is hardly affected by humidity.
  • a transparent and hard film having an excellent antistatic function can be formed. Therefore, it is also used as a coating material for forming an antifouling film or the like, for example. I can do it.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Silicon Polymers (AREA)
  • Paints Or Removers (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

少なくとも1つのアルコキシ基と少なくとも1つの重合可能な有機官能基とを含む第1のアルコキシシランと、少なくとも1つのアルコキシ基を含み、重合可能な有機官能基を含まない第2のアルコキシシランと、溶媒と、酸性の触媒と、イオン性化合物との混合物を含む帯電防止材料。

Description

帯電防止材料、その製造方法および帯電防止膜
 本開示は、帯電防止機能を有するフィルムなどの帯電防止膜を形成することができる材料、その製造方法および帯電防止膜に関する。
 絶縁体が帯電することにより発生する静電気は、日常生活から社会生活、製品の量産現場に至るまで、あらゆる場面で発生するおそれがある。例えば、回路基板の組立時において、帯電した部品搬送用ジグと回路基板との間で発生する静電気によって、基板上の素子が破壊される場合がある。他の例では、LCD用の偏光フィルムの製造時において、PVAフィルムをロールに通す際、帯電したPVAフィルムが金属製のロールから離れる瞬間に放電が起こり、ピンホールの形成などの不良の原因となる。そこで、従来から、これらの不具合を未然に防ぐことを目的として、静電気の発生を予防する帯電防止材料が、帯電防止剤として考案され、実用化されている。
 なかでも、製品や基材の表面に塗布し、被膜を形成することで帯電防止機能を発揮するものとしては、界面活性剤により疎水性表面を親水性にした上で、空気中の水分子を吸着させ易くするものや、イオン伝導物質を主に合成樹脂などの高分子材料に配合し、そのイオン伝導性によって、その表面に蓄積される電子を逃がすことで帯電を防止するものや、金属に代表される導電性物質やその酸化物の微粒子を合成樹脂に分散させたものなどが知られている。
 例えば、特許文献1(特開2010-083993号公報)には、帯電防止機能を有する界面活性剤を用いた帯電防止剤が開示されている。
 特許文献2(特開2010-106096号公報)には、ノニオン性アクリル系共重合体、帯電防止剤、芳香環を含む複数の置換基でフェニル基の側鎖が置換されたポリオキシアルキレンフェニルエーテルを主成分とする界面活性剤を含む組成物で構成される塗布膜をポリエステルフィルム上に有する帯電防止性積層ポリエステルフィルムが開示されている。
 また、特許文献3(特開2010-160464号公報)には、イオン伝導物質を含む帯電防止ハードコートフィルムが開示され、イオン伝導物質として、イオン伝導機構を有する4級アンモニウム塩系導電性モノマーと、電子伝導機構を有するπ共役系導電性高分子とを組み合わせて用いることが開示されている。
 さらに、特許文献4(特開2012-215819号公報)には、イオン伝導性化合物と、光重合可能な基を1つ以上有するポリエチレンオキシド化合物と、不飽和二重結合を有する化合物と、光重合開始剤を含有する帯電防止性ハードコート層形成用組成物が開示されている。
 あるいは、導電性物質やその酸化物の微粒子を使用するものとして、特許文献5(特開2004-058562号公報)には、フィルムの表面に金属酸化物と導電性超微粒子との混合物層を形成してなり、表面抵抗率が1013Ω/□(オーム・パー・スクエア)以下である帯電防止フィルムが開示されている。
特開2010-083993号公報 特開2010-106096号公報 特開2010-160464号公報 特開2012-215819号公報 特開2004-058562号公報
 帯電防止フィルムの表面抵抗率は、10Ω/□以上1010Ω/□未満の範囲内であることが良いとされている。この表面抵抗率が10Ω/□未満の場合には、導電性が生じることから、不要なノイズ電流が発生する恐れがある。また、表面抵抗率が1010Ω/□以上の場合には、フィルムの絶縁性が高くなるため、所望の帯電防止機能が得られない場合がある。
 また、帯電防止フィルムの多くは、導電性やイオン伝導性に大きく依存するものであることから、湿度の影響を受け易く、特に湿度が低い場合には、表面抵抗率が1010Ω/□以上になることがあり、十分な帯電防止機能が得られない場合があった。
 そこで、本開示では、上記の問題に鑑みて、優れた帯電防止機能を有するフィルムなどの帯電防止膜を形成することのできる材料、特に、表面抵抗率が湿度の影響を受けることが少ない帯電防止膜を形成することのできる材料、その製造方法、帯電防止膜の提供を課題とする。
 本発明者らによる鋭意研究の結果、以下にて詳しく説明する少なくとも2種類のアルコキシシランを混合して使用することにより、優れた帯電防止機能、特に表面抵抗率が湿度の影響を受けることが少ない帯電防止膜が形成できることを見出し、本開示に至った。
 本開示は、以下の帯電防止材料、帯電防止材料の製造方法、帯電防止膜を提供し得るが、以下に示すものに限定されるものではない。
 (帯電防止材料)
 本開示に係る帯電防止材料は、少なくとも1つのアルコキシ基と少なくとも1つの重合可能な有機官能基とを含む第1のアルコキシシランと、少なくとも1つのアルコキシ基を含み、重合可能な有機官能基を含まない第2のアルコキシシランと、溶媒と、酸性の触媒と、イオン性化合物との混合物を含む。
 (帯電防止材料の製造方法)
 また、本開示に係る帯電防止材料の製造方法は、第1のアルコキシシランと、第2のアルコキシシランと、触媒と、溶媒と、イオン性化合物とを、混合することを含む。
 (帯電防止膜)
 また、本開示に係る帯電防止膜は、本開示に係る帯電防止材料から構成される。
 本開示により、優れた帯電防止機能を有するフィルムなどの帯電防止膜を形成することのできる材料、特に、表面抵抗率が湿度の影響を受けることが少ない帯電防止膜を形成することのできる材料およびその製造方法を提供することができる。また、本開示の帯電防止材料により、湿度の影響が小さく、安定して固体表面の帯電を防止することができる帯電防止膜を提供することができる。
図1は、帯電防止材料の製造方法を示す概略図である。 図2は、第1または第2のアルコキシシランと、過塩素酸リチウムとを混合した後の様子を示す図である。 図3は、3-グリシドキシプロピルトリメトキシシランと、過塩素酸リチウムとを混合したサンプルの示差走査熱量測定の結果を示す図である。 図4は、メチルトリメトキシシランと、過塩素酸リチウムとを混合したサンプルの示差走査熱量測定の結果を示す図である。
 図1は、帯電防止材料の製造方法を示す概略図である。図1に示すように、本開示の帯電防止材料は、「第1のアルコキシシラン」と、「第2のアルコキシシラン」と、「酸性の触媒」と、「溶媒」と、「イオン性化合物」とを混合することにより製造することができる。
 以下にて詳しく説明する通り、「第1のアルコキシシラン」は、少なくとも1つのアルコキシ基と、少なくとも1つの重合可能な有機官能基とを含む有機シラン化合物であり、「第2のアルコキシシラン」は、少なくとも1つのアルコキシ基を含み、重合可能な有機官能基を含まない有機シラン化合物である。
 第1および第2のアルコキシシランは、ともに酸性の触媒の存在下で混合することにより、そのアルコキシ基がシロキサン結合(Si-O結合)に基づく無機系のネットワークを形成できるものであり、さらに第1のアルコキシシランの重合可能な有機官能基がイオン性化合物の存在下で重合することにより有機系のネットワークを形成することができる。
 本開示では、このような第1、第2のアルコキシシランから形成され得る帯電防止材料を基体に塗布して硬化させることによって、有機無機ハイブリッド構造に基づく優れた帯電防止機能を発揮することができる帯電防止膜、特に湿度による影響の少ない帯電防止膜を形成することができる。
 以下、本明細書中において、上述の第1、第2のアルコキシシランから形成され得る有機無機ハイブリッド構造を含むゾル溶液を「帯電防止材料」と称し、このような帯電防止材料から形成され得るフィルムなどの膜を「帯電防止膜」と称する。
 本開示の帯電防止膜は、有機無機ハイブリッド構造に基づいて、例えば、1.0×10Ω/□以上1.0×1010Ω/□未満、好ましくは1.0×10Ω/□以上1.0×10Ω/□未満の表面抵抗率を有し、湿度変化に対応して、安定して静電気の発生を抑制することができる。
 本開示の帯電防止膜は、有機無機ハイブリッド構造に基づいて、例えば30MPa以上100MPa未満、好ましくは30MPa以上50MPa未満の引張弾性率を有し、柔軟性に優れる。
 本開示の帯電防止膜は、有機無機ハイブリッド構造に基づいて、例えば85%以上、好ましくは90%以上の光(波長550nm)の透過率を有し、透明性に優れる。
 (1)帯電防止材料の原料
 以下、本開示で使用することのできる「第1のアルコキシシラン」、「第2のアルコキシシラン」、「酸性の触媒」、「溶媒」および「イオン性化合物」について、詳しく説明する。
 <第1のアルコキシシラン>
 「第1のアルコキシシラン」は、少なくとも1つの「アルコキシ基」と、少なくとも1つの「重合可能な有機官能基」とを含む有機シラン化合物である。
 第1のアルコキシシランの「アルコキシ基」として、例えば、炭素原子数が1~5の直鎖または分岐のアルコキシ基(例えば、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、イソブトキシ基、1-メチルプロポキシ基、tert-ブトキシ基、n-ペントキシ基、イソペントキシ基、1-メチルブトキシ基、2-メチルブトキシ基、tert-ペントキシ基)などが挙げられる。また、第1のアルコキシシランが2以上の「アルコキシ基」を有する場合、それらは、同一であっても、異なっていてもよい。
 第1のアルコキシシランのアルコキシ基は、以下にて詳細に説明する酸性の触媒の存在下において、第1のアルコキシシラン同士、あるいは以下にて詳細に説明する第2アルコキシシランとの間でシロキサン結合に基づく無機系のネットワークを形成することができる。従って、アルコキシ基のなかでも、その加水分解が容易に起こり、反応を制御し易いという観点から、メトキシ基およびエトキシ基が特に好ましい。また、アルコキシ基の炭素原子数が5を超えると、その立体障害のために分子が互いに接近しにくくなり、以下にて詳細に説明する「重合可能な有機官能基」の重合を妨げる恐れがある。
 第1のアルコキシシランの「重合可能な有機官能基」として、例えば、「環状エーテル結合」、「二重結合」、「三重結合」などを含む「重合可能な反応部位」(以下、「重合性反応部位)と称する場合もある)を含む有機官能基が挙げられ、有機化学に従うものであれば、特に制限はない。
 「重合可能な有機官能基」の総炭素原子数は、例えば2~20、好ましくは2~9、より好ましくは2~6である。
 「重合可能な反応部位」の炭素原子数は、例えば2~10、好ましくは2~6、より好ましくは2~3である。
 「環状エーテル結合」を含む重合可能な反応部位として、例えば、エポキシ結合を含む炭素原子数2~6の反応基(例えば、エポキシ基、グリシドキシ基、エポキシシクロヘキシル基)などが挙げられる。なかでも、グリシドキシ基、エポキシシクロヘキシル基が好ましい。これら環状エーテル結合を含む反応基は、その開環重合などによって、ポリエーテル構造を形成することができる。
 「二重結合」を含む重合可能な反応部位として、例えば、ビニル結合を含む炭素原子数2~8の反応基(例えば、ビニル基、アリル基、スチリル基、アクリレート基、メチルメタクリレート基)などが挙げられる。なかでも、ビニル基が好ましい。これら二重結合を含む反応基は、イオン重合などによって、ポリオレフィン構造を形成することができる。
 「三重結合」を含む重合可能な反応部位として、例えば、アセチレン結合、シアン結合を含む炭素原子数2~4の反応基(例えば、アルキニル基、シアノ基)などが挙げられる。なかでも、アルキニル基が好ましい。これら三重結合を含む反応基は、イオン重合などによって、ポリオレフィン構造などを形成することができる。
 上記の重合可能な反応部位は、第1のアルコキシシランのケイ素原子に直接結合するか、あるいは「有機連結基」(又はリンカー)を介してケイ素原子に結合していてもよい。
 「有機連結基」は、有機化学に従うものであれば、特に制限はなく、その炭素原子数は、例えば1~15、好ましくは2~10、より好ましくは3~6であり、例えば、炭素原子数が3~6の炭化水素基(例えば、アルキレン基)などが挙げられる。
 ここで、第1のアルコキシシランが有する「重合可能な有機官能基」は、式:A-B-[式中、Aは、上記の重合可能な反応部位を示し、Bは、単結合または上記の有機連結基を示す]で表すことができる。
 第1のアルコキシシランにおいて、2以上の重合可能な有機官能基が存在していてもよく、その場合、それらは、同一であっても、異なっていてもよい。
 さらに、第1のアルコキシシランのケイ素原子は、有機化学およびケイ素原子の科学に従って、上記の「アルコキシ基」および「重合可能な有機官能基」に加えて、「他の有機基」を有してもよい(ただし、その場合、第1のアルコキシシランのケイ素原子における「アルコキシ基」、「重合可能な有機官能基」、「他の有機基」の総合計数は、4である)。
 第1のアルコキシシランが有していてもよい「他の有機基」としては、有機化学に従うものであれば、特に制限はなく、その炭素原子数が、例えば1~12、好ましくは1~8、より好ましくは1~2の有機基であり、上記の「アルコキシ基」のシロキサン結合の形成や上記の「重合可能な有機官能基」の重合に実質的に関与しないものが望ましい。
 「他の有機基」として、例えば、炭素原子数が1~12の炭化水素基などが挙げられる。上記の炭化水素基は、直鎖、分岐、環状のいずれであってもよく、例えば、炭素原子数が1~8のアルキル基(例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、t-ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基)などが挙げられる。アルキル基として、立体障害の観点から、嵩の低いメチル基およびエチル基が好ましい。また、上記アルキル基の炭素原子数が8以下であると、その立体障害が小さくなり、重合が簡便に進行し得る傾向にある。
 このような「第1のアルコキシシラン」は、一般式(I):(RO)(RO)(RO)Si(X)(Y)(Z)で表すことができる。
 式中、
  RO、RO、ROは、それぞれ独立して、上記の「アルコキシ基」を示し、
  X、Y、Zは、それぞれ独立して、上記の「重合可能な有機官能基」(好ましくは、上記の式:A-B-[式中、Aは、上記の重合可能な反応部位を示し、Bは、単結合または上記の有機連結基を示す]で表される基)または上記の「他の有機基」を示すが、X、Y、Zのうち少なくとも1つは、上記の「重合可能な有機官能基」であって、第1のアルコキシシランにおいて、少なくとも1つの上記の「重合可能な有機官能基」が必ず存在し、
  a、b、c、d、e、fは、それぞれ独立して、0、1、2、3のいずれかの整数であり、
  a+b+cは、1、2、3のいずれかの整数であり、
  d+e+fは、1、2、3のいずれかの整数であり、
  a+b+c+d+e+fは、整数4である。
 一般式(I)で表される第1のアルコキシシランとして、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、ビニルトリメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシランなどを使用することが好ましい。
 また、第1のアルコキシシランは、例えば、上記のアルコキシシランを2以上で組み合わせて混合物として使用してもよい。その場合、組み合わされるアルコキシシランは、同一であっても、異なっていてもよい。また、その場合、例えば、上記の一般式(I)で表されるa+b+cが、2または3の整数であるものを使用すると、柔軟性に優れる帯電防止膜を形成することができる。
 <第2のアルコキシシラン>
 「第2のアルコキシシラン」は、少なくとも1つのアルコキシ基を含み、重合可能な有機官能基を含まない有機シラン化合物である。ここで、「重合可能な有機官能基を含まない」とは、有機化学に基づく重合可能な反応部位を含む基を有していないことを意味し、狭義には上記の第1のアルコキシシランの「重合可能な有機官能基」を含まないことを意味する。
 第2のアルコキシシランの「アルコキシ基」として、例えば、炭素原子数が1~5の直鎖または分岐のアルコキシ基(例えば、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、イソブトキシ基、1-メチルプロポキシ基、tert-ブトキシ基、n-ペントキシ基、イソペントキシ基、1-メチルブトキシ基、2-メチルブトキシ基、tert-ペントキシ基)などが挙げられる。また、第2のアルコキシシランが2以上の「アルコキシ基」を有する場合、それらは、同一であっても、異なっていてもよい。
 第2のアルコキシシランのアルコキシ基は、以下にて詳細に説明する酸性またの触媒の存在下において、第2のアルコキシシラン同士、あるいは上記の第1アルコキシシランとの間でのシロキサン結合に基づく無機系のネットワークを形成することができる。従って、アルコキシ基のなかでも、その加水分解が容易に起こり、反応を制御し易いという観点から、メトキシ基およびエトキシ基が特に好ましい。
 第2のアルコキシシランは、上記のアルコキシ基に加えて、「非重合性基」を有していてもよい。
 第2のアルコキシシランが有していてもよい「非重合性基」としては、重合性を有しないものであればよく、有機化学に従うものであれば、特に制限はなく、その炭素原子数が、例えば1~20、好ましくは1~12、より好ましくは1~6の有機基であり、上記の「アルコキシ基」のシロキサン結合の形成や上記の「重合可能な有機官能基」の重合にも実質的に関与しないものが望ましい。
 第2のアルコキシシランが有していてもよい「非重合性基」として、例えば、炭素原子数が1~20の炭化水素基などが挙げられる。この炭化水素基は、直鎖、分岐、環状のいずれであってもよく、例えば、炭素原子数が1~20のアルキル基(例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、t-ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、デシル基)、炭素原子数が1~20のアリール基(例えば、フェニル基)などが挙げられる。ここで、炭化水素基の炭素原子数が20を超えると、その立体障害が大きくなり、重合が阻害され得る傾向にある。
 このような「第2のアルコキシシラン」は、一般式(II):(RO)(RO)(RO)Si(P)(Q)(R)で表すことができる。
 式中、
  RO、RO、ROは、それぞれ独立して、上記の「アルコキシ基」を示し、
  P、Q、Rは、それぞれ独立して、上記の「非重合性基」を示し、
  g、h、i、j、k、lは、それぞれ独立して、0、1、2、3、4のいずれかの整数であり(ただし、j、k、lが、整数4である場合はない)、
  g+h+iは、1、2、3、4のいずれかの整数であり、
  j+k+lは、0、1、2、3のいずれかの整数であり、
  g+h+i+j+k+lは、整数4である。
 一般式(II)で表される第2のアルコキシシランとして、メチルトリメトキシシラン、ジメチルジメトキシシラン、フェニルトリメトキシシランなどを使用することが好ましい。
 また、第2のアルコキシシランは、上記のアルコキシシランを2以上組み合わせて混合物として使用してもよい。その場合、組み合わされるアルコキシシランは、同一であっても、異なっていてもよい。また、その場合、例えば、上記の一般式(II)で表されるg+h+iが、整数2であるものを使用すると、例えば、三次元骨格中に直鎖部分を導入することができ、柔軟性に優れる帯電防止膜を形成することができる。
 <第3のアルコキシシラン>
 本開示では、第1、第2のアルコキシシランとともに、必要に応じて、第3のアルコキシシランを使用してもよい。
 第3のアルコキシシランは、少なくとも1つの「アルコキシ基」と、少なくとも1つの以下に定義する「有機基」を有する。
 第3のアルコキシシランが有する「アルコキシ基」は、上記の第1または第2のアルコキシシランが有するアルコキシ基において定義される通りであり、複数のアルコキシ基を有する場合、それらは同一であっても、異なっていてもよい。
 第3のアルコキシシランが有する「有機基」は、置換基を有していてもよいアミノ基、置換基を有していてもよいメルカプト基(チオール基)、-NH-結合、=N-結合などを少なくとも1つ含む炭素原子数1~20の直鎖、分岐または環状の炭化水素基(例えば、炭素原子数が1~20のアルキル基(例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、t-ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、デシル基)、炭素原子数が1~20のアリール基(例えば、フェニル基))である。上記アミノ基、メルカプト基が有していてもよい置換基およびその数に特に制限はない。このような有機基として、メルカプトプロピル基、アミノエチル基、アミノプロピル基、N-2-(アミノエチル)-3-アミノプロピル基、N-(1,3-ジメチル-ブチリデン)プロピルアミノ基、N-フェニル-3-アミノプロピル基などが好ましい。例えば、第3のアルコキシシランに含まれるチオール基やアミノ基などは、第1のアルコキシシランに含まれ得る環状エーテル構造の重合を促進することができるため、環状エーテル構造を含む第1のアルコキシシランと組み合わせて使用することが好ましい。
 第3のアルコキシシランは、上記の「アルコキシ基」および「有機基」だけでなく、さらに第2のアルコキシシランにおいて定義する「非重合性基」を有していてもよい。
 このような第3のアルコキシシランは、一般式(III):(RO)(RO)(RO)Si(S)(T)(U)で表すことができる。
 式中、
  RO、RO、ROは、それぞれ独立して、上記の「アルコキシ基」を示し、
  S、T、Uは、それぞれ独立して、上記の「有機基」または上記の「非重合性基」を示すが、S、T、Uの少なくとも1つは上記の「有機基」であって、第3のアルコキシシランにおいて、少なくとも1つの上記の「有機基」が必ず存在し、
  m、n、o、p、q、rは、それぞれ独立して、0、1、2、3のいずれかの整数であり、
  m+n+oは、1、2、3のいずれかの整数であり、
  p+q+rは、1、2、3のいずれかの整数であり、
  m+n+o+p+q+rは、整数4である。
 一般式(III)で表される第3のアルコキシシランとして、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-トリエトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミン、N-フェニル-3-アミノプロピルトリメトキシシラン、3-メルカプトプロピルメチルジメトキシシラン、3-メルカプトプロピルトリメトキシシランなどを使用することが好ましい。
 <イオン性化合物>
 本開示では、第1のアルコキシシランのアルコキシ基同士、第2のアルコキシシランのアルコキシ基同士、第1、第2のアルコキシシランのアルコキシ基の間における重合(シロキサン結合の形成)と並行して、以下にて詳しく説明するイオン性化合物によって、第1のアルコキシシランの重合可能な有機官能基を重合させることができる。
 本開示において、イオン性化合物とは、イオン性を示す化合物や、イオンを提供することができる化合物であれば特に制限はなく、イオン自体であってもよい。イオン性化合物として、例えば、電子供与性であり自身は酸化体であるものや、電子受容性であり自身は還元体であるものなども含まれる。
 電子供与性のものとして、例えば、アンモニウムイオン、ホスホニウムイオン、硫化物イオンなどが挙げられる。
 電子受容性のものとして、例えば、塩素、臭素、ヨウ素、一塩化ヨウ素、三塩化ヨウ素、臭化ヨウ素、フッ化ヨウ素などのハロゲンおよびハロゲン化物;フッ化水素、塩化水素、硝酸、硫酸、過塩素酸などのプロトン酸;フルオロスルホン酸、塩化スルホン酸、トリフルオロメタンスルホン酸などの各種有機酸;アミノ酸;電解質アニオンとして、塩化物イオン、臭化物イオン、ヨウ化物イオン、過塩素酸イオン、ヘキサフルオロリン酸イオン、AsF6-、SbF6-、テトラフルオロホウ酸イオン;過塩素酸リチウム、過塩素酸ナトリウム、過塩素酸カリウムなどの過塩素酸塩;ブチルリチウムなどの有機金属などが挙げられる。
 特に後述するゾル溶液への溶解性が高く、使用しやすいという観点から、過塩素酸リチウム、過塩素酸ナトリウム、過塩素酸カリウムなどの過塩素酸塩を好適に使用することができる。
 <酸性の触媒>
 本開示において、酸性の触媒は、第1、第2のアルコキシシランのアルコキシ基の加水分解と脱水縮合を速やかに促進するために使用され得るものであり、一般的に知られるゾルゲル反応の触媒として作用し得るものであれば、公知のものを制限なく使用することができる。
 例えば、塩酸(塩化水素酸)、臭化水素酸、ヨウ化水素酸、硫酸、スルホン酸、硝酸、リン酸、ホウ酸、酢酸、クエン酸、ギ酸、酒石酸などが挙げられる。また、その使用量についても、特に制限はない。
 <溶媒>
 溶媒としては、特に制限されるものではなく、ゾルゲル反応に使用され得る公知の溶媒を使用することができる。例えば、水、メタノール、エタノール、イソプロパノール、アセトンなどが挙げられる。アルコキシシランのアルコキシ基の加水分解を行う目的から、水などの極性溶媒を使用することが好ましい。また、その使用量についても、特に制限はない。
 (2)ゾル溶液の調製および重合可能な有機官能基の重合
 本開示の好ましい実施の形態において、帯電性防止材料は、第1のアルコキシシラン、第2のアルコキシシラン、酸性の触媒、イオン性化合物、溶媒を含む液相中において、これらを混合し、好ましくは加熱および撹拌しながら混合することによって、第1のアルコキシシラン、第2のアルコキシシランに結合したそれぞれのアルコキシ基の一部が加水分解と脱水縮合とにより重合してシロキサン結合を形成し、さらにイオン性化合物により、第1のアルコキシシランの重合可能な有機官能基の少なくとも一部、望ましくは全てが重合した透明なゾル溶液である。このようなゾル溶液を、例えば固体などの基体に塗布すると、空気中の水分により残りのアルコキシ基が加水分解、脱水縮合することで硬化し、透明な帯電防止膜を形成することができる。
 <ゾル溶液の調製>
 ゾル溶液の調製の際には、上記の第1のアルコキシシラン、第2のアルコキシシラン、イオン性化合物、酸性の触媒、溶媒を混合する。モル比として、(第1のアルコキシシラン)/(第2のアルコキシシラン)の比の値が、例えば0.2~10となるように配合する。この比が、0.2より小さいと、第1のアルコキシシランの重合可能な有機官能基の数が少なくなることにより、最終的な硬化物の表面抵抗率が十分に小さくならない場合があり、この比が10より大きいと、重合可能な有機官能基が重合することにより形成される重合鎖の全体に対する影響が大きくなり、硬化による収縮やクラックが発生する場合がある。
 酸性の触媒の添加量は、適宜調節することができ、その添加量としては、例えば、第1のアルコキシシランおよび第2のアルコキシシランに含まれるアルコキシ基の総モル数の0.1%以上、10%以下とすることが効果的である。0.1%よりも少ない場合には、反応促進の効果が得られない場合があり、10%よりも多い場合には、反応速度が大きくなりすぎ、反応制御が難しくなる場合がある。より反応を制御し易く、安定してアルコキシ基の加水分解、脱水縮合を促進できるという観点から、触媒の添加量は、アルコキシ基の総モル数の0.5%以上、1%以下とすることが好ましい。
 イオン性化合物の添加量は、適宜調節することができるが、重合可能な有機官能基のモル数に対して、1%以上50%以下とすることができる。添加量が1%より少ないと、表面抵抗率が十分に低くならずに帯電防止機能が十分でなくなる場合がある。また、50%より多いと、ゾル溶液に完全に溶解せず、未溶解のイオン性化合物が沈殿し、帯電防止機能が不安定になる場合がある。
 溶媒の添加量に、特に制限はなく、溶媒が水である場合、少なくとも第1のアルコキシシランに含有されるアルコキシ基のモル数と第2のアルコキシシランに含有されるアルコキシ基のモル数の和の等倍量以上5倍以下のモル数を配合することができる。等倍量未満では、アルコキシ基の加水分解が速やかに進行せず、生産性が低下する場合がある。5倍より多くのモル数の水を配合すると、配合した第1のアルコキシシランと第2のアルコキシシランの濃度が小さくなり、反応効率が低下する場合がある。速やかに反応を促進するという観点から、全アルコキシ基のモル数の2倍以上、3倍以下のモル数の水を添加することが好ましい。
 上記で説明したような配合において、第1のアルコキシシラン、第2のアルコキシシラン、溶媒、酸性の触媒、イオン性化合物を、好ましくは加熱しながらの撹拌により混合し、この過程において、アルコキシ基の加水分解、脱水縮合によりシロキサン結合を形成し、それと並行して、イオン性化合物によって、第1のアルコキシシランの重合可能な有機官能基を重合させることでゾル溶液を調製することができる。加熱しながらの撹拌は、公知の加熱方法、撹拌方法を使用することができ、モーター式の撹拌羽やマグネティックスターラによって行うことができる。また、加熱は、容器をウォーターバスやマントルヒータに設置して行ってもよいし、ホットスターラ上に設置して行ってもよい。加熱温度としては、アルコキシ基の加水分解を進行させながら、最終的に不要となる水を十分に揮発させることを目的として、60℃以上90℃以下とすることが好ましい。温度を60℃以上90℃以下とすることによって、例えば、溶媒が水である場合、アルコキシ基の加水分解に使用した水や、脱水縮合により発生する水を十分に揮発させることができる。
 このようにして、上記の原材料を使用し、上記の手準および配合量に従って混合した第1のアルコキシシラン、第2のアルコキシシランは、それぞれのアルコキシ基の一部が加水分解、脱水縮合により重合してシロキサン結合を形成し、それとともに第1のアルコキシシランの重合可能な有機官能基の少なくとも一部が重合して、本開示の帯電防止材料をゾル溶液として提供することができる。
 (3)帯電防止材料の塗布
 上述のゾル溶液、すなわち帯電防止材料は、主に固体表面に塗布することにより、その表面を被覆することができ、未反応のアルコキシ基の空気中の水による加水分解、脱水縮合によって、さらに重合して、さらなるシロキサン結合を形成することで硬化し、透明な帯電防止膜を簡便に形成することができる。
 最終的には、アルコキシ基の重合によるシロキサン骨格のネットワークつまり無機材料部分と、重合可能な有機官能基の重合によるネットワークつまり有機材料部分とが物理的または化学的に結合した有機無機ハイブリッド構造を形成し、このような有機無機ハイブリッド構造は、無機材料部分に起因する耐久性や透明性と、有機材料部分に起因する密着性や柔軟性とを兼ね備えるものとなる。
 さらに、有機材料部分は、重合可能な有機官能基が上記のイオン性化合物により直接的に重合され、このイオン性化合物に由来するイオン種がその骨格に取り込まれ得ることから、このイオン種を介したホッピング伝導によって表面抵抗率がさらに低くなる。その結果として、優れた帯電防止機能を発揮することができる。
 また、このような本開示の好ましい実施形態の帯電防止膜は、ホッピング伝導による導電性をも示すため、従来のイオン伝導性の帯電防止剤とは異なり、湿度による影響を受けにくい。さらに無機材料部分、有機材料部分が共に可視光線の波長領域に吸収ピークを有し得ないことから、高い透明度を発揮することができる。結果として、透明性、柔軟性、密着性、耐久性に優れ、しかも湿度の影響を受けにくい優れた帯電防止膜を得ることができる。
 (試験例1)
 第1のアルコキシシランが有する重合可能な有機官能基が、上記のイオン性化合物によって重合され得ることを実証するための試験を例として示す。
 図2は、第1または第2のアルコキシシランと、過塩素酸リチウムとを混合した後の様子を示す図である。第1のアルコキシシランとして3-グリシドキシプロピルトリメトキシシランを使用し、第2のアルコキシシランとしてメチルトリメトキシシランを使用し、イオン性化合物として過塩素酸リチウムを使用し、以下の表1に示す配合でサンプルA、B、C、D、E、Fを調製し、常温で120時間放置した後の外観観察の結果を図2の写真(a)、(b)、(c)、(d)、(e)、(f)にそれぞれ示す。
 サンプルA(写真(a))は、第1のアルコキシシランである3-グリシドキシプロピルトリメトキシシランのみを含む参照サンプルでありる。サンプルB、C(写真(b)、(c))は、第1のアルコキシシランである3-グリシドキシプロピルトリメトキシシランにイオン性化合物として過塩素酸リチウムを混合したサンプルである。サンプルD(写真(d))は、第2のアルコキシシランであるメチルトリメトキシシランのみを含む参照サンプルである。サンプルE、F(写真(e)、(f))は、第2のアルコキシシランであるメチルトリメトキシシランにイオン性化合物として過塩素酸リチウムを混合したサンプルである。
Figure JPOXMLDOC01-appb-T000001
 図2からからわかるように、第1のアルコキシシランとして3-グリシドキシプロピルトリメトキシシランを使用して、過塩素酸リチウムを添加することによって変色が観られ(写真(b))、過塩素酸リチウムの添加量が多い場合には、変色の度合いがさらに大きくなる(写真(c))。一方、第2のアルコキシシランとしてメチルトリメトキシシランを使用した場合には、そのような変色は観られず、過塩素酸リチウムの添加量にも依存しない(写真(e)、(f))。これらの結果は、イオン性化合物の存在下で第1のアルコキシシランが重合していることを示す。
 図3は、3-グリシドキシプロピルトリメトキシシランと、過塩素酸リチウムとを混合したサンプルの示差走査熱量測定の結果を示す図である。図4は、メチルトリメトキシシランと、過塩素酸リチウムとを混合したサンプルの示差走査熱量測定の結果を示す図である。
 図3および図4において、サンプルA~Fの示差走査熱量分析測定の結果を示す。また、上記の表1において、示差走査熱量測定の結果として、発熱反応ピーク温度(℃)を示す。
 サンプルA、B、Cから、第1のアルコキシシランおよびイオン性化合物を使用した場合には、温度の上昇と共に発熱反応が観察され、イオン性化合物の添加量が増えるに従って反応ピーク温度は低下し、反応性が上昇していることがわかった(図3、表1)。
 対して、サンプルD、E、Fからは、このような発熱反応は観察されず、イオン性化合物の添加量にも依存しないことが分かった(図4、表1)。
 さらに、第1のアルコキシシランとイオン性化合物との混合では、イオン性化合物の添加量の増加とともに、液相の粘度が上昇することもわかった。
 以上のことから、第1のアルコキシシランは、イオン性化合物によって、重合していることがわかった。
 以下、実施例を挙げて本開示をより詳しく説明するが、本開示は、以下の実施例に記載されたものに限定されるものではない。
 (実施例1)
・帯電防止材料(ゾル溶液)の調製
 300mlのガラス製の容器に、撹拌子を入れ、第1のアルコキシシランとして、3-グリシドキシプロピルトリメトキシシラン100ml、第2のアルコキシシランとしてメチルトリメトキシシラン115ml、酸性触媒として塩酸(濃度1規定)1.3ml、イオン性化合物として過塩素酸リチウム10.04g、溶媒として水150mlを入れて、大気開放条件において、70℃に設定したホットスターラ上で30分間撹拌し、ゾル溶液を調製した。
・帯電防止膜の形成(ゾル溶液の塗布および硬化)
 調製したゾル溶液を30mm×30mm×1mmのガラス基板にスピンコータで厚み約500μmに塗布し、24時間放置し、硬化させて膜を形成した。
 (実施例2)
・帯電防止材料(ゾル溶液)の調製
 300mlのガラス製の容器に、撹拌子を入れ、第1のアルコキシシランとして、3-グリシドキシプロピルメチルジメトキシシラン97.8ml、第2のアルコキシシランとしてメチルトリメトキシシラン100ml、酸性触媒として塩酸(濃度1規定)1.3ml、イオン性化合物として過塩素酸ナトリウム5.02g、溶媒として水150mlを入れて、大気開放条件において、70℃に設定したホットスターラ上で30分間撹拌し、ゾル溶液を調製した。
・帯電防止膜の形成(ゾル溶液の塗布および硬化)
 調製したゾル溶液を30mm×30mm×0.2mmのPETフィルムに手作業で滴下し、厚み約500μmで均一に広げ、24時間放置し、硬化させて膜を形成した。
 (実施例3)
・帯電防止材料(ゾル溶液)の調製
 300mlのガラス製の容器に、撹拌子を入れ、第1のアルコキシシランとして、3-グリシドキシプロピルトリメトキシシラン45mlと3-グリシドキシプロピルメチルジメトキシシラン50ml、第2のアルコキシシランとしてメチルトリメトキシシラン110ml、酸性触媒として塩酸(濃度1規定)1.3ml、イオン性化合物として過塩素酸リチウム10.04g、溶媒として水150mlを入れて、大気開放条件において、70℃に設定したホットスターラ上で30分間撹拌し、ゾル溶液を調製した。
・帯電防止膜の形成(ゾル溶液の塗布および硬化)
 調製したゾル溶液を30mm×30mm×0.2mmのPETフィルムに手作業で滴下し、厚み約500μmで均一に広げ、24時間放置し、硬化させて膜を形成した。
 (実施例4)
・帯電防止材料(ゾル溶液)の調製
 300mlのガラス製の容器に、撹拌子を入れ、第1のアルコキシシランとして、3-グリシドキシプロピルトリメトキシシラン95ml、第2のアルコキシシランとしてメチルトリメトキシシラン50mlとジメチルジメトキシシラン50ml、酸性触媒として塩酸(濃度1規定)1.3ml、イオン性化合物として過塩素酸リチウム10.04g、溶媒として水120mlを入れて、大気開放条件において、70℃に設定したホットスターラ上で30分間撹拌し、ゾル溶液を調製した。
・帯電防止膜の形成(ゾル溶液の塗布および硬化)
 調製したゾル溶液を30mm×30mm×1mmのガラス基板にスピンコータで厚み約500μmに塗布し、24時間放置し、硬化させて膜を形成した。
 (実施例5)
・帯電防止材料(ゾル溶液)の調製
 300mlのガラス製の容器に、撹拌子を入れ、第1のアルコキシシランとして、ビニルトリメトキシシラン95ml、第2のアルコキシシランとしてメチルトリメトキシシラン100ml、酸性触媒として塩酸(濃度1規定)1.3ml、イオン性化合物としてn-ブチルリチウム5.0g、溶媒として水150mlを入れて、大気開放条件において、70℃に設定したホットスターラ上で30分間撹拌し、ゾル溶液を調製した。
・帯電防止膜の形成(ゾル溶液の塗布および硬化)
 調製したゾル溶液を30mm×30mm×1mmのガラス基板にスピンコータで厚み約500μmに塗布し、24時間放置し、硬化させて膜を形成した。
 (実施例6)
・帯電防止材料(ゾル溶液)の調製
 300mlのガラス製の容器に、撹拌子を入れ、第1のアルコキシシランとして、3-グリシドキシプロピルトリメトキシシラン100ml、第2のアルコキシシランとしてメチルトリメトキシシラン115ml、酸性触媒として塩酸(濃度1規定)1.3ml、イオン性化合物として過塩素酸ナトリウム7.0g、溶媒として水150mlを入れて、大気開放条件において、70℃に設定したホットスターラ上で30分間撹拌し、ゾル溶液を調製した。
・帯電防止膜の形成(ゾル溶液の塗布および硬化)
 調製したゾル溶液を30mm×30mm×1mmのガラス基板にスピンコータで厚み約500μmに塗布し、24時間放置し、硬化させて膜を形成した。
 (実施例7)
・帯電防止材料(ゾル溶液)の調製
 300mlのガラス製の容器に、撹拌子を入れ、第1のアルコキシシランとして、3-グリシドキシプロピルトリメトキシシラン100ml、第2のアルコキシシランとしてメチルトリメトキシシラン115ml、酸性触媒として塩酸(濃度1規定)1.3ml、イオン性化合物として過塩素酸カリウム7.0g、溶媒として水150mlを入れて、大気開放条件において、70℃に設定したホットスターラ上で30分間撹拌し、ゾル溶液を調製した。
・帯電防止膜の形成(ゾル溶液の塗布および硬化)
 調製したゾル溶液を30mm×30mm×1mmのガラス基板にスピンコータで厚み約500μmに塗布し、24時間放置し、硬化させて膜を形成した。
 (実施例8)
・帯電防止材料(ゾル溶液)の調製
 300mlのガラス製の容器に、撹拌子を入れ、第1のアルコキシシランとして、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン90ml、第2のアルコキシシランとしてメチルトリメトキシシラン120ml、酸性触媒として塩酸(濃度1規定)1.3ml、イオン性化合物として過塩素酸カリウム7.0g、溶媒として水150mlを入れて、大気開放条件において70℃に設定したホットスターラ上で30分間撹拌し、ゾル溶液を調製した。
・帯電防止膜の形成(ゾル溶液の塗布および硬化)
 調製したゾル溶液を30mm×30mm×1mmのガラス基板にスピンコータで厚み約500μmに塗布し、24時間放置し、硬化させて膜を形成した。
 (比較例1)
・帯電防止材料の調製
 300mlのガラス製の容器に、撹拌子を入れ、第1のアルコキシシランは配合せず、第2のアルコキシシランとしてフェニルトリメトキシシラン100ml、メチルトリメトキシシラン115ml、酸性触媒として塩酸(濃度1規定)1.3ml、イオン性化合物として過塩素酸リチウム10.04g、溶媒として水150mlを入れて、大気開放条件において、70℃に設定したホットスターラ上で30分間撹拌することにより溶液を調製した。
・膜の形成
 上記で調製した溶液を30mm×30mm×1mmのガラス基板にスピンコータで厚み約500μmに塗布し、24時間放置し、硬化させて膜を形成した。
 (比較例2)
・帯電防止材料の調製
 300mlのガラス製の容器に、撹拌子を入れ、第1のアルコキシシランとして、3-グリシドキシプロピルトリメトキシシラン100ml、第2のアルコキシシランとしてメチルトリメトキシシラン115ml、酸性触媒として塩酸(濃度1規定)1.3ml、イオン性化合物は配合せず、溶媒として水150mlを入れて、大気開放条件において、70℃に設定したホットスターラ上で30分間撹拌することにより溶液を調製した。
・膜の形成
 上記で調製した溶液を30mm×30mm×1mmのガラス基板にスピンコータで厚み約500μmに塗布し、24時間放置し、硬化させて膜を形成した。
 (比較例3)
・帯電防止材料の調製
 300mlのガラス製の容器に、撹拌子を入れ、第1のアルコキシシランとして、3-グリシドキシプロピルメチルジメトキシシラン97.8ml、第2のアルコキシシランとしてメチルトリメトキシシラン100ml、酸性触媒として塩酸(濃度1規定)1.3ml、イオン性化合物は配合せず、グリシドキシ基を硬化させる硬化促進剤としてトリフェニルホスフィン5.02g、溶媒として水150mlを入れて、大気開放条件において、70℃に設定したホットスターラ上で30分間撹拌することによりゾル溶液を調製した。
・膜の形成
 上記で調製したゾル溶液を30mm×30mm×1mmのガラス基板にスピンコータで厚み約500μmに塗布し、24時間放置し、硬化させて膜を形成した。
 実施例および比較例で得た硬化膜について、下記の測定を行い、結果を以下の表2に示す。
Figure JPOXMLDOC01-appb-T000002
 (表面抵抗率)
 実施例および比較例で得た硬化膜について、温度を一定に維持し、湿度を変化させて(30%、50%、70%)、その表面抵抗率を測定した。
 <各湿度における表面抵抗率の判定基準>
  1.0×10Ω/□以上1.0×10Ω/□未満:最も好適に帯電防止が可能であるとして、記号「◎」で示した。
  1.0×10Ω/□以上1.0×1010Ω/□未満:帯電防止が可能であるとして、記号「○」で示した。
  1.0×1010Ω/□以上:帯電防止が難しいとして、記号「△」で示した。
 また、表面抵抗率の総合判定として、各湿度における表面抵抗率の上記の判定がすべて「◎」であるものを記号「◎」で示し、上記の判定で1個以上の「△」が含まれるものを記号「△」で示し、上記の判定で「△」がなく全て「○」あるいは「◎」と「○」とからなるものを記号「○」で示した。
 (引張弾性率)
 上記の実施例および比較例で調製したゾル溶液または溶液を、手作業によるポリテトラフルオロエチレンの型内へのポッティングと硬化により、5mm×20mm×1mmの成型体を作製した。この成型体の引張弾性率を測定した。
 <引張弾性率の判定基準>
  30MPa以上50MPa未満:特に柔軟性に優れるとして、記号「◎」で示した。
  50MPa以上100MPa未満:柔軟性に優れるとして、記号「○」で示した。
  100MPa以上:柔軟性に劣るとして、記号「△」で示した。
 (光透過率)
 上記の実施例および比較例において、ガラスを被覆したものについては、ガラスをリファレンスとして、PETフィルムを被覆したものについては、PETフィルムをリファレンスとして、波長550nmの光の透過率を測定した。
 <光透過率の判定基準>
  90%以上:透明性が非常に高いとして、記号「◎」で示した。
  85%以上90%未満:透明性が高いとして、記号「○」で示した。
  85%未満:透明性が劣るとして、記号「△」で示した。
 (総合判定)
 実施例および比較例において、表面抵抗率の総合判定、引張弾性率の判定、光透過率の判定において、少なくとも1個の「△」の判定があるものを記号「C」で示し、上記の判定で「△」がなく「◎」が2個以上のものを記号「A」で示し、上記の判定で「△」がなく「◎」が1個以下のものを記号「B」で示した。
 表2に示す結果から、以下のことが分かる。
 本開示に係る実施例1~実施例8の結果から、本開示に係る帯電防止材料によれば、表面抵抗率が湿度の影響を受けることが少なく、湿度が低い場合(湿度30%)においても、優れた帯電防止機能(表面抵抗率1.0×10Ω/□以上1.0×1010Ω/□未満)を有する帯電防止膜が得られることがわかった。そして、本開示に係る実施例1~実施例8の結果から、本開示に係る帯電防止材料によれば、柔軟性に優れ(引張弾性率30MPa以上100MPa未満)、透明性の高い(光透過率85%以上)を有する帯電防止膜が得られることがわかった。
 ここで、帯電防止材料に界面活性剤を使用するものでは、界面活性剤の経時的な劣化によって、徐々にその帯電防止機能が失われ、十分に帯電防止機能を発揮できなくなる場合がある。しかし、本開示に係る帯電防止材料では、界面活性剤を使用することがないので、界面活性剤の経時的な劣化に起因する、帯電防止機能の劣化を抑えることが出来る。
 また、帯電防止材料に酸化物の微粒子を使用するものでは、微粒子の濃度を高くすることで帯電防止機能を向上させようとすると、当該微粒子による光の吸収や光の散乱が増加して、帯電防止材料を通過する光透過率が低下し、その透明性が損なわれる場合がある。しかし、本開示に係る帯電防止材料では、酸化物の微粒子を使用することがないので、酸化物の微粒子に起因する、光低下率の低下を抑えることが出来る。
 実施例1~実施例4、実施例6および実施例7の結果より、第1のアルコキシシランのうち、グリシドキシ基を含有するものを使用すると、湿度に影響されにくく(湿度の変化に対する表面抵抗率の変化が小さく)、特に透明性の高い(光透過率90%以上)帯電防止材料が得られる傾向にあることがわかった。
 また、実施例8の結果より、第1のアルコキシシランのうち、環状エーテル構造の有機官能基を有している場合、湿度に影響されにくく(湿度の変化に対する表面抵抗率の変化が小さく)、特に透明性が高い(光透過率90%以上)帯電防止膜が得られることがわかった。
 実施例1と実施例3との対比、実施例1と実施例4との対比から、実施例3および実施例4に示すようにアルコキシシランのアルコキシ基数が2、3のものを混合することによって、より引張弾性率が小さくなり(引張弾性率30MPa以上50MPa未満)、特に柔軟性に優れる帯電防止膜が得られることがわかった。
 実施例1と比較例1との対比から、湿度に影響されにくい(湿度の変化に対する表面抵抗率の変化が小さい)帯電防止膜を得るためには、実施例1に示すように第1のアルコキシシランの重合可能な有機官能基をイオン性化合物により重合させることが必要であることがわかった。
 実施例1と比較例2の対比から、実施例1に示すようにイオン性化合物が第1のアルコキシシランの重合可能な有機官能基を重合させることによって、表面抵抗率の低い(表面抵抗率1.0×1010Ω/□未満)帯電防止膜が形成できることがわかった。
 実施例2と比較例3の対比から、実施例2に示すようにイオン性化合物が第1のアルコキシシランの重合可能な有機官能基を重合させることによって、表面抵抗率の低い(表面抵抗率1.0×1010Ω/□未満)帯電防止膜が形成できることがわかった。
 ここで、帯電防止材料のうち、イオン伝導物質により導電性を付与して帯電防止機能を発揮するものは、湿度の影響を受け易いため、安定して帯電防止機能を発揮することができない場合がある。しかし、実施例1および実施例2に係る帯電防止材料は、イオン性化合物が第1のアルコキシシランの重合可能な有機官能基を重合させ、イオン性物質が重合鎖に取り込まれた構造となるため、帯電防止機能が、湿度の影響を受けにくい。
 本開示の帯電防止材料は、主に固体などの基体に塗布するだけで簡単に透明な帯電防止膜を形成することができることから、様々な分野において広く利用することができる。また、本開示の帯電防止材料から形成され得る帯電防止膜は、その表面抵抗率が湿度の影響を受けにくいため、安定して様々な分野において広く利用することができる。また、本開示に係る帯電防止材料によれば、優れた帯電防止機能を持つ透明で硬質の膜を形成することができるため、たとえば、防汚膜等を形成するためのコーティング材料としても使用することが出来る。

Claims (12)

  1.  少なくとも1つのアルコキシ基と少なくとも1つの重合可能な有機官能基とを含む第1のアルコキシシランと、
     少なくとも1つのアルコキシ基を含み、重合可能な有機官能基を含まない第2のアルコキシシランと、
     溶媒と、
     酸性の触媒と、
     イオン性化合物と
    の混合物を含む、帯電防止材料。
  2.  前記混合物において、前記第1のアルコキシシランの重合可能な有機官能基の少なくとも1つが前記イオン性化合物により重合している、請求項1に記載の帯電防止材料。
  3.  前記混合物において、前記第1のアルコキシシランのアルコシキ基の少なくとも1つがシロキサン結合により重合しており、前記第2のアルコシキシランのアルコシキ基の少なくとも1つがシロキサン結合により重合している、請求項1に記載の帯電防止材料。
  4.  前記第1のアルコキシシランの重合可能な有機官能基は、環状エーテル結合を含む、請求項1に記載の帯電防止材料。
  5.  前記第1のアルコキシシランの重合可能な有機官能基は、グリシドキシ基を含む、請求項1に記載の帯電防止材料。
  6.  前記第1のアルコキシシランの重合可能な有機官能基は、二重結合を含む、請求項1に記載の帯電防止材料。
  7.  前記第1のアルコキシシランの重合可能な有機官能基は、ビニル基を含む、請求項1に記載の帯電防止材料。
  8.  前記イオン性化合物は、過塩素酸塩である、請求項1に記載の帯電防止材料。
  9.  前記溶媒は、水である、請求項1に記載の帯電防止材料。
  10.  前記第1のアルコキシシランと、
     前記第2のアルコキシシランと、
     前記触媒と、
     前記溶媒と、
     前記イオン性化合物と
    を混合することを含む、請求項1に記載の帯電防止材料の製造方法。
  11.  加熱しながら混合する、請求項10に記載の帯電防止材料の製造方法。
  12.  請求項1に記載の帯電防止材料から構成される帯電防止膜。
PCT/JP2017/005864 2016-03-11 2017-02-17 帯電防止材料、その製造方法および帯電防止膜 WO2017154515A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017525125A JP6236643B1 (ja) 2016-03-11 2017-02-17 帯電防止材料、その製造方法および帯電防止膜
US16/076,012 US10941250B2 (en) 2016-03-11 2017-02-17 Antistatic material, method for producing same, and antistatic film
KR1020187025542A KR20180115275A (ko) 2016-03-11 2017-02-17 대전 방지 재료, 그의 제조 방법 및 대전 방지막
CN201780015267.XA CN108779382B (zh) 2016-03-11 2017-02-17 抗静电材料、其制造方法和抗静电膜

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-048771 2016-03-11
JP2016048771 2016-03-11

Publications (1)

Publication Number Publication Date
WO2017154515A1 true WO2017154515A1 (ja) 2017-09-14

Family

ID=59790362

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/005864 WO2017154515A1 (ja) 2016-03-11 2017-02-17 帯電防止材料、その製造方法および帯電防止膜

Country Status (5)

Country Link
US (1) US10941250B2 (ja)
JP (1) JP6236643B1 (ja)
KR (1) KR20180115275A (ja)
CN (1) CN108779382B (ja)
WO (1) WO2017154515A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102432454B1 (ko) * 2020-11-02 2022-08-16 윤준혁 대전 방지제 제조 장치 및 방법, 및 이에 의해 제조된 대전 방지제

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5912550A (ja) * 1982-07-13 1984-01-23 Nippon Sheet Glass Co Ltd 帯電防止性を有するブラウン管
JPS5915183A (ja) * 1982-07-13 1984-01-26 日本板硝子株式会社 帯電防止性を有するプラスチツク製透視窓
JPH06299090A (ja) * 1993-04-14 1994-10-25 Sekisui Chem Co Ltd プラスチックス用帯電防止被覆用組成物
JP2002128898A (ja) * 2000-10-26 2002-05-09 Fuji Kagaku Kk 無機高分子化合物の製造方法、無機高分子化合物、および無機高分子化合物膜

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4413403A1 (de) * 1994-04-18 1995-10-19 Inst Neue Mat Gemein Gmbh Elektrochrome Dünnschichtsysteme und deren Komponenten
JP2003201444A (ja) 2001-10-09 2003-07-18 Mitsubishi Chemicals Corp 活性エネルギー線硬化性の帯電防止性コーティング組成物
EP1302514B1 (en) 2001-10-09 2009-07-15 Mitsubishi Chemical Corporation Active energy ray-curable antistatic coating composition
JP3975855B2 (ja) 2002-07-31 2007-09-12 宇部興産株式会社 帯電防止性フィルムの製法
JP4217881B2 (ja) * 2003-04-28 2009-02-04 信越化学工業株式会社 機能性被膜の形成方法及び機能性被膜被覆物品
WO2005088352A1 (ja) * 2004-03-16 2005-09-22 Hoya Corporation プラスチックレンズの製造方法
US7641946B2 (en) 2005-08-08 2010-01-05 Nitto Denko Corporation Adhesive film and image display device
JP4925764B2 (ja) 2005-08-08 2012-05-09 日東電工株式会社 粘着フィルム
JP2007137713A (ja) * 2005-11-17 2007-06-07 Fujifilm Corp 表面防曇かつ防汚性強化ガラス及びその製造方法
CN101578343B (zh) * 2007-02-22 2012-09-05 株式会社德山 涂层组合物及光致变色光学品
US7981471B2 (en) * 2007-05-18 2011-07-19 Hoya Corporation Processes for producing thin films and optical members
JP5182532B2 (ja) * 2007-10-03 2013-04-17 日産化学工業株式会社 変性金属酸化物複合ゾル、コーティング組成物及び光学部材
US20100239872A1 (en) * 2007-10-03 2010-09-23 Nissan Chemical Industries, Ltd. Metal oxide composite sol, coating composition, and optical member
US20100074584A1 (en) * 2008-09-15 2010-03-25 Gigoptix, Inc. Electro-optic device and method for making low resistivity hybrid polymer clads for an electro-optic device
JP2010083993A (ja) 2008-09-30 2010-04-15 Toppan Forms Co Ltd 帯電防止剤及びこれを用いた成型品樹脂材料及びこれを用いたマスターバッチ、及びこれらを用いた成型品
JP5431708B2 (ja) 2008-10-29 2014-03-05 帝人デュポンフィルム株式会社 帯電防止性積層ポリエステルフィルム
DE102009022628A1 (de) 2008-12-05 2010-06-10 Evonik Goldschmidt Gmbh Verfahren zur Modifizierung von Oberflächen
JP2010160464A (ja) 2008-12-11 2010-07-22 Toppan Printing Co Ltd 帯電防止ハードコートフィルム及び帯電防止ハードコートフィルムを有する偏光板並びにディスプレイ
JP2010270191A (ja) * 2009-05-20 2010-12-02 Tokuyama Corp コーティング組成物および光学物品
US8697246B2 (en) 2010-09-28 2014-04-15 Fujifilm Corporation Antistatic hardcoat layer-forming composition, optical film, production method of optical film, polarizing plate and image display device
DE102011083960A1 (de) * 2011-10-04 2013-04-04 Carl Zeiss Vision International Gmbh Zusammensetzung für die Herstellung einer Beschichtung mit hoher Haft- und Kratzfestigkeit
WO2015152050A1 (ja) * 2014-04-01 2015-10-08 旭硝子株式会社 防曇剤組成物並びに防曇性物品及びその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5912550A (ja) * 1982-07-13 1984-01-23 Nippon Sheet Glass Co Ltd 帯電防止性を有するブラウン管
JPS5915183A (ja) * 1982-07-13 1984-01-26 日本板硝子株式会社 帯電防止性を有するプラスチツク製透視窓
JPH06299090A (ja) * 1993-04-14 1994-10-25 Sekisui Chem Co Ltd プラスチックス用帯電防止被覆用組成物
JP2002128898A (ja) * 2000-10-26 2002-05-09 Fuji Kagaku Kk 無機高分子化合物の製造方法、無機高分子化合物、および無機高分子化合物膜

Also Published As

Publication number Publication date
CN108779382B (zh) 2021-09-28
JPWO2017154515A1 (ja) 2018-03-15
US20190256661A1 (en) 2019-08-22
US10941250B2 (en) 2021-03-09
KR20180115275A (ko) 2018-10-22
CN108779382A (zh) 2018-11-09
JP6236643B1 (ja) 2017-11-29

Similar Documents

Publication Publication Date Title
KR101767328B1 (ko) 경화성 대전방지 오가노폴리실록산 조성물 및 대전방지 실리콘 피막
JP6369475B2 (ja) 封止用樹脂組成物及び封止用シート
WO2015068787A1 (ja) ハイドロタルサイトを含有する封止用樹脂組成物及び封止用シート
US9593241B2 (en) Resin composition for encapsulating optical element
CN105308092A (zh) 有机el显示元件用密封剂
US20090230360A1 (en) Latent Curing Agent
WO2010084938A1 (ja) 樹脂組成物
JP2015155541A (ja) シロキサンポリマー架橋硬化物
JP6236643B1 (ja) 帯電防止材料、その製造方法および帯電防止膜
WO2014069622A1 (ja) 熱硬化性シリコーンゴム組成物
KR101519559B1 (ko) 개질된 폴리실라잔계 중합체, 이 중합체를 포함하는 코팅 조성물, 이를 이용하여 얻을 수 있는 코팅 플라스틱 기판과 이의 제조 방법, 및 상기 개질된 폴리실라잔계 중합체의 제조 방법
JP6443293B2 (ja) 放射線硬化性シリコーン組成物及びそれを用いた帯電防止性剥離フィルムの製造方法
CN105659154B (zh) 液晶取向处理剂、液晶取向膜和液晶表示元件
KR101492251B1 (ko) 개질된 폴리실록산계 공중합체, 이 공중합체를 포함하는 코팅 조성물, 이를 이용하여 얻을 수 있는 코팅 플라스틱 기판과 이의 제조 방법, 및 상기 개질된 폴리실록산계 공중합체의 제조방법
JP2014201595A (ja) 導電性塗料およびそれを用いた被着体
KR20080043315A (ko) 폴리실란을 포함하는 uv 경화성 전기 전도성 필름
TWI576334B (zh) 伸烷氧基衍生物之製造方法及其應用
KR102491045B1 (ko) 대면적 대전체 폴리머 필름, 그의 제조방법 및 그를 이용한 마찰전기 발전소자
KR102270822B1 (ko) 전도성 고분자 용액 및 이의 경화 도막
JP2004139859A (ja) 固体電解質
JP5831399B2 (ja) ロール用付加硬化型ゴム組成物及びイオン導電性ゴムロール
JP5935749B2 (ja) ロール用付加硬化型ゴム組成物、イオン導電性ゴムロール及び電子写真式画像形成装置
JP5468712B1 (ja) 熱硬化性シリコーンゴム組成物
JP2020204763A (ja) 電解質組成物、電解質シート、エレクトロクロミック素子及びその製造方法
WO2022224699A1 (ja) 樹脂組成物、硬化物、電子部品、2成分キット及び硬化物の製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017525125

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20187025542

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17762858

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17762858

Country of ref document: EP

Kind code of ref document: A1