WO2005088352A1 - プラスチックレンズの製造方法 - Google Patents

プラスチックレンズの製造方法 Download PDF

Info

Publication number
WO2005088352A1
WO2005088352A1 PCT/JP2005/004079 JP2005004079W WO2005088352A1 WO 2005088352 A1 WO2005088352 A1 WO 2005088352A1 JP 2005004079 W JP2005004079 W JP 2005004079W WO 2005088352 A1 WO2005088352 A1 WO 2005088352A1
Authority
WO
WIPO (PCT)
Prior art keywords
sol
sno
zirconium
stannic
oxide
Prior art date
Application number
PCT/JP2005/004079
Other languages
English (en)
French (fr)
Inventor
Hiroshi Kojima
Yoshinari Koyama
Motoko Asada
Original Assignee
Hoya Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corporation filed Critical Hoya Corporation
Priority to EP05720351.5A priority Critical patent/EP1726975B1/en
Priority to JP2006510954A priority patent/JPWO2005088352A1/ja
Priority to US10/593,073 priority patent/US20070196567A1/en
Publication of WO2005088352A1 publication Critical patent/WO2005088352A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/0427Coating with only one layer of a composition containing a polymer binder
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/043Improving the adhesiveness of the coatings per se, e.g. forming primers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/044Forming conductive coatings; Forming coatings having anti-static properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/046Forming abrasion-resistant coatings; Forming surface-hardening coatings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2483/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals

Definitions

  • the present invention relates to a method for manufacturing a plastic lens. More specifically, the present invention relates to a method for preparing (A) an aqueous solution of an organic acid, preferably an aqueous solution of oxalic acid, comprising dispersing hydrogen peroxide and metallic tin in a HO ZSn molar ratio of 2-10, preferably 2 on a plastic substrate. — Keep the range of 4 and tin oxide
  • the present invention relates to a method for producing a plastic lens in which a colloidal particle of stannic stannic acid-zirconium and a coating composition containing (B) an organosilicon compound are applied to form a cured film.
  • the plastic lens of the present invention is particularly preferably used for spectacle lenses.
  • Plastic lenses having a cured film formed on various plastic substrates are already known! / Puru One example of which is a component of a hard coat agent applied to a plastic lens in order to improve its surface. A sol of a metal oxide having a high refractive index is used.
  • Patent Document 1 discloses that a colloidal particle of stannic oxide and a colloidal particle of zirconium oxide have a ratio of 0.02 to 1.0 as ZrO / SnO based on the weight of these oxides.
  • the composite colloidal particles of stannic oxide-zirconium oxide having a particle diameter of 450 nm and a structure bonded to the nucleus have a core of 0.1 / 100 WO / SnO weight ratio of 0.1-100,
  • Patent Document 1 discloses that a plastic lens having excellent aesthetics, weather resistance, abrasion resistance, moisture resistance, and the like has little change in the above physical properties even when a vapor deposited film is further formed thereon. Is described (see Patent Document 1, Claims).
  • Patent Document 1 JP-A-2000-281344
  • a steel wool test has been used as a method for evaluating the abrasion resistance of a functional film such as a cured film or a plastic lens provided with a strong cured film.
  • the steel wool test is not a numerical evaluation, and as a method of evaluation, there has recently been a movement to evaluate abrasion resistance by a Bayer test.
  • a plastic lens having a cured film using a hard coat agent containing a modified stannic stannic-zirconium zirconium zole described in JP-A-2000-281344 is evaluated by the Bayer test.
  • the present invention has been made to solve a problem such as the prevention of yellowing due to ultraviolet irradiation and the adhesion. To provide a method for producing a plastic lens provided with a cured film having a high refractive index and enhanced scratch resistance without impairing the physical properties of the plastic lens.
  • the inventors of the present invention have conducted intensive studies to achieve the above object, and as a result, the surface of a colloidal stannic oxide-zirconium oxide composite particle having a specific property as a nucleus has a specific property.
  • Modified stannic oxide-stannic oxide-zirconium composite colloid particles having a specific particle diameter covered with colloidal particles of a tungsten oxide-stannic oxide-silicon dioxide composite, and an organosilicon compound It has been found that the above-mentioned problem can be solved by applying a coating composition containing the following on a plastic substrate to form a cured film.
  • the present invention has been completed based on strong knowledge.
  • the modified colloidal particles of stannic oxide-zirconium zirconium composite are prepared by the following steps (a), (b), (c), (d), (e) and (f) a method for producing a plastic lens according to the above (1), which is produced by a step including a step;
  • An aqueous solution containing a ratio of 0.1-100 as a SiO / SnO weight ratio of 100 is prepared.
  • a step of producing a silicon oxide composite sol obtained by removing cations present in the aqueous solution Step (e): 100 parts by weight of the aqueous sol of the stannic oxide-zirconium zirconium complex obtained in the step (c) as a total of ZrO and SnO contained in the aqueous sol obtained in the step (d), 2—7n
  • Tungsten oxide / stannic oxide / silicon dioxide composite sol having 3222 is mixed at 0-100 ° C in a ratio of 2-100 parts by weight as a total of WO, SnO and SiO contained in the sol.
  • an oxidized zirconium oxynitride composite colloid which is surface-modified with colloidal particles of an oxidized tungsten oxidized silicon dioxide complex.
  • the particle sol has a colloidal color and its dry coating is approximately 1.
  • a plastic lens obtained by applying a hardened film on a plastic substrate using a strong colloid and a coating composition containing an organosilicon compound has excellent aesthetics, and is also resistant to water, moisture, and light. It also has good properties, antistatic properties, heat resistance, and abrasion resistance.
  • the sol of the modified stannic oxide-stannic oxide-zirconium composite colloidal particles obtained by the conventional method has a spindle-like shape in the sol, and it is difficult to stably exist at a high concentration.
  • the sol of the modified stannic oxide zirconium oxide composite colloid particles used in the present invention has a spherical particle shape and can be stably present even at a high concentration. It is.
  • the sol of the modified stannic oxide monoxide-palladium composite colloid particles used in the plastic lens of the present invention has a particle concentration of S47.4% by weight and a measuring cylinder of 100 cm 3 .
  • the viscosity was measured with a No. 1 rotor of a B-type viscometer at a rotation speed of 60 rpm, the viscosity was 5.5 cp (5.5 mPa's).
  • the sol of the modified stannic stannic oxide-zirconium zirconium composite colloidal particles of the present invention has a remarkably improved film hardness, particularly when formed into a coating film, as compared with the conventional sol. This is presumed to be due to the fact that, unlike the conventional spindle-shaped particle shape, it has a spherical particle shape, so that the packing property of the particles in the coating film has been improved.
  • This sol is stable at a pH of about 110 and can also provide sufficient stability to be supplied as an industrial product.
  • This sol has good miscibility with other negatively charged colloidal particles, such as silica sol, antimony pentoxide sol, iron-on or ionic, because the colloidal particles are negatively charged.
  • Aqueous solutions such as -on surfactants, polyvinyl alcohol, etc., aqueous solutions such as nonionic or nonionic fatty emulsions, water glass, aluminum phosphate, etc., hydrolyzate of ethyl silicate, ⁇ -gly It can be stably mixed with a dispersion such as a hydrolyzed solution of a silane coupling agent such as sildoxypropyltrimethoxysilane.
  • the refractive index, chemical resistance, water resistance, and moisture resistance of the plastic lens for glasses are increased.
  • light resistance, weather resistance, abrasion resistance, and the like can be improved.
  • a colloidal particle of stannic oxide and a colloidal particle of zirconium oxide obtained by the reaction of metal tin, an organic acid, and hydrogen peroxide on a plastic substrate, Based on the weight of these oxides, ZrO / SnO bound to a ratio of 0.02-1.0
  • the structure has a WO / SnO weight ratio of 0.1 to 100, and a surface having a WO / SnO weight ratio of 0.1 to 100, with nuclei of stannic oxide-zirconium zirconium composite having a particle diameter of 4 to 50 nm.
  • Particle size formed by coating with colloidal particles of silicon oxide complex 4.5—6 A method for producing a plastic lens in which a coating composition comprising Onm-modified dandelion stannic acid-zirconium zirconium composite colloidal particles and (B) an organosilicon compound is applied to form a cured film. is there.
  • the sol of the stannic stannic acid-zirconium zirconium composite colloid particles as core particles used in the production of the sol of the component (A), which is one component of the coating composition used in the present invention, is The above (a) step, (b) step and (c) step power can also be produced by a method.
  • the colloidal particles of stannic oxide used in the step (a) are prepared by mixing aqueous hydrogen peroxide and metallic tin in an organic acid aqueous solution at a HOZSn molar ratio of 2-4 and a tin oxide concentration of 40%.
  • the H 2 O 4 SnS molar ratio is 2 to 4 in the organic acid aqueous solution.
  • the total amount of hydrogen peroxide and metallic tin can be added all at once to the organic acid aqueous solution, but it is preferable to add them several times and add them alternately.
  • the order of addition of hydrogen peroxide and metal tin is not specified, but it is important that the molar ratio of H 2 O 2 ZSn be kept in the range of 2-4.
  • hydrogen peroxide and metal tin are added, and after the reaction is completed, the next step is to add hydrogen peroxide and metal tin.
  • the reaction time for one reaction is usually about 5 to 10 minutes depending on the amount of addition, and the next addition of aqueous hydrogen peroxide and tin metal is performed.
  • an oxalic acid aqueous solution or an organic acid aqueous solution containing oxalic acid as a main component is preferable, but the production can be particularly preferably performed by using only the oxalic acid aqueous solution.
  • the organic acid aqueous solution containing oxalic acid as a main component is an aqueous solution of an organic acid containing at least 80% by weight of oxalic acid in all organic acids, and the remainder can contain organic acids such as formic acid and acetic acid.
  • These organic acid aqueous solutions can be used preferably at a concentration of 1 to 30% by weight, more preferably at a concentration of 4 to 10% by weight.
  • the medium of the varnish varnish may be water, a hydrophilic organic solvent, or a mixture thereof, but preferably an aqueous sol in which the medium is water.
  • the pH of the sol is Normally, the value to be fixed is good.
  • the varnish varnish may contain optional components, for example, an alkaline substance, an acidic substance, an oxycarboxylic acid and the like for varnishing the sol.
  • the concentration of the stannic acid sol used is about 0.5 to 50% by weight as the stannic oxide, but the lower the concentration, the more preferable the concentration is 110 to 30% by weight. .
  • the oxidized stannic acid-zirconium zirconium composite sol is prepared by adding an oxil dimethyl salt to the oxidized stannic sol such that the weight ratio of ZrO / SnO becomes 0.02 to 1.0. , Usually 0—0 at 100 ° C
  • step (b) of mixing for about 5 to 3 hours and then the step (c) of heating the mixture at 60 to 200 ° C for 0.1 to 50 hours.
  • the oxyzirconium salt used includes zirconium oxyorganic acid such as zirconium oxychloride, zirconium oxynitrate, zirconium oxysulfate, and zirconium oxyacetate, and zirconium oxycarbonate. These oxyzirconium salts can be used as solids or aqueous solutions.
  • stannic oxide is an acidic sol.
  • Water-insoluble salts such as zirconyl oxycarbonate, can also be used if the stannic oxide is an acidic sol.
  • an alkali sol stabilized with an organic base such as amine for the acid varnish varnish sol.
  • the mixing with the oxyzirconium salt is usually performed at 0 to 100 ° C., preferably at room temperature to 60 ° C. About C! ⁇ . This mixing may be carried out by adding an oxidyl nicotine salt to the oxidized varnish under stirring, or by adding an oxidized varnish to the aqueous oxidized zirconium salt solution, but the latter is preferred. . This mixing needs to be performed sufficiently, and is preferably for about 0.5 to 3 hours.
  • WO used as a coating sol and contained in the oxidized tungsten stannic oxide-silicon dioxide composite sol obtained in step (d)
  • the particle size of SnO and SiO composite colloid particles can be observed with an electron microscope, and the particle size is 2 to 7 nm, preferably 2 to 5 nm.
  • a dispersion medium of the colloid particles of the sol any of water, a hydrophilic organic solvent, and a mixture thereof can be used. This sol is WO
  • This sol has a pH of about 19 and is a colorless, transparent or slightly colloidal liquid. It is stable for more than 3 months at room temperature and for more than 1 month even at 60 ° C. No sediment is formed in this sol.This sol does not thicken or cause gelling.
  • the silicon dioxide composite sol is, for example,
  • Step (d-1) Tungstate, stannate, and silicate are expressed as WO / SnO weight ratio of 0.1.
  • Step (d-2) a step of removing cations present in the aqueous solution obtained in step (d-1).
  • Examples of tungstates, stannates and silicates used in the step (d-1) include alkali metals, tungstates such as ammonium and amine, stannates and silicates. No. Preferred examples of these alkali metals, ammonium and amines include Li, Na, K, Rb, Cs, NH +, or ethylamine, triethylamine, isopropylamine.
  • Alkylamines such as propylamine, n-propylamine, isobutylamine, diisobutylamine and di (2-ethylhexyl) amine; aralkylamines such as benzylamine; alicyclic amines such as piperidine; monoethanolamine and triethanolamine.
  • alkanolamines such as min.
  • sodium stannate Na
  • a solution obtained by dissolving gungsteic acid, stannic acid, silicic acid or the like in an aqueous solution of an alkali metal hydroxide It is also possible to use a solution obtained by dissolving gungsteic acid, stannic acid, silicic acid or the like in an aqueous solution of an alkali metal hydroxide.
  • amine silicates obtained by adding an alkylamine such as ethylamine, triethylamine, isopropylamine, n-propylamine, isobutylamine, diisobutylamine, di (2-ethylhexyl) amine to active silicic acid as a silicate
  • a 4th grade ammonium silicate can also be used.
  • tungstate, stannate, and silicate are used as a method for preparing the aqueous solution in the step (d-1).
  • a method of preparing an aqueous solution by dissolving each powder in water a method of preparing an aqueous solution by mixing an aqueous solution of tungstate, an aqueous solution of stannate, and an aqueous solution of silicate, a method of preparing an aqueous solution of tungstate and stannate, and a method of preparing silicate.
  • the aqueous solution of tungstate used for the production of the sol in the step (d) has a WO of 0.1.
  • a concentration of 15% by weight is preferred, but higher concentrations can be used.
  • the aqueous solution of stannate used in the production of the sol in the step (d) has a SnO concentration of 0.1—
  • the concentration is preferably about 30% by weight, but higher concentrations can be used.
  • the aqueous solution of silicate used in the production of the sol in the step (d) has an SiO concentration of 0.1.
  • the preparation of the aqueous solution in the step (d-1) is preferably performed at room temperature and about 100 ° C, preferably at room temperature and about 60 ° C, with stirring.
  • the aqueous solution to be mixed has a WO / SnO weight ratio of 0.1-1
  • Step (d-2) is a step of removing cations present in the aqueous solution obtained in step (d-1).
  • the decation treatment can be carried out by contacting with a hydrogen-type ion exchanger or by salting out.
  • the hydrogen-type cation exchanger used here is a commonly used one, and for example, a commercially available hydrogen-type cation-exchange resin can be used.
  • the aqueous sol may be subjected to a usual concentration method, for example, an evaporation method, an ultra
  • concentration of sol can be increased by a filtration method or the like.
  • the ultrafiltration method is preferable.
  • the temperature of the sol is preferably kept at about 100 ° C or less, particularly preferably at 60 ° C or less.
  • a hydrophilic organic solvent sol called an organosol By replacing the water of the aqueous sol in step (d) with a hydrophilic organic solvent, a hydrophilic organic solvent sol called an organosol can be obtained.
  • the silicon sulfide, stannic oxide and diisocyanate silicon composite sol obtained in the step (d) are obtained by mixing stannic oxide, tungsten and silicon dioxide. It contains composite particles made of silicon oxide tungsten obtained by uniformly compounding (solid solution) at the atomic level. Therefore, the 3rd of the Sani-Dani tungsten sol, the Sani-Dani varnish sol, and the It cannot be obtained simply by mixing seed sols.
  • the silicon oxide sol is a solid solution
  • the silicon oxide particles form a solid solution.
  • the solvent substitution does not cause decomposition into tungsten oxide particles, stannic oxide particles and silicon dioxide particles.
  • Siridani tungsten Siridani stannic acid disulfide silicon composite sol is compared with the Siridani tungsten anilide stannic tin composite sol, when coated on the substrate to form a coating, Water resistance, moisture resistance, and weather resistance are improved.
  • the weight ratio of WO / SnO in the sol obtained in the step (d) is 0.1-100 as described above.
  • the sol When the weight ratio is less than 0.1, the sol is unstable, and when the weight ratio exceeds 100, the sol does not show stability.
  • the oxycarboxylic acid added when the above organosol is prepared from a high pH aqueous sol also contributes to the stabilization of the sol, but the amount added is less than 30% by weight based on the total of WO, SnO and SiO in the sol. Is preferred.
  • the amount is as large as 30% by weight or more, the water resistance of a dried coating film obtained by using such a sol is reduced.
  • the oxycarboxylic acids used include lactic acid, tartaric acid, citric acid, dalconic acid, malic acid, glycol and the like.
  • Alkali components include alkali metal hydroxides such as Li, Na, K, Rb, and Cs, NH +, or ethylamine, and
  • Alkylamines such as riethylamine, isopropylamine and n-propylamine; aralkylamines such as benzylamine; alicyclic amines such as piperidine; alkanolamines such as monoethanolamine and triethanolamine. These can be used as a mixture of two or more. Further, it can be used in combination with the above acidic component.
  • the pH of the sol changes according to the amount of the alkali metal, ammonia, amine, oxycarboxylic acid and the like in the sol. If the pH of the sol is less than 1, the sol is unstable, and if the pH exceeds 9, the colloidal particles of tandane oxide, stannic oxide, and silicon dioxide composite are easily dissolved in the liquid. When the total concentration of WO, SnO and SiO in the sol exceeds 0% by weight, the sol still
  • step (e) 100 parts by weight of the aqueous sol of the stannic oxide-zirconium complex obtained in the step (c) as a total of ZrO and SnO contained therein, and (d) 2— obtained in the process
  • a tungsten oxide / stannic oxide / silicon dioxide composite sol having a 3222 ratio is mixed at 0-100 ° C in a ratio of 2-100 parts by weight in total of WO, SnO and SiO contained therein.
  • the colloidal particles of the silicon dioxide sol and the colloid particles of the silicon sol of the stannic oxide-zirconium composite sol are combined. Then, by coating the surface with the colloidal particles of the above-described silicon oxide complex, the surface is formed with the colloidal particles as nuclei.
  • a stannic oxide zirconium oxide colloidal particle modified to have the properties of a tin-silicon dioxide composite can be produced, and the modified stannic oxide-idizirconia complex can be produced. It can be obtained as a sol in which body colloid particles are stably dispersed in a liquid medium.
  • the active silicic acid stabilized with amine is further added and stirred for 13 to 13 hours to obtain a sol in which the composite colloid particles of the step (e) are dispersed in a liquid medium.
  • the active silicic acid stabilized with an amine can be obtained by, for example, cation-exchanging sodium silicate and then adding an amine exemplified below.
  • amine examples include alkylamines such as ethylamine, triethylamine, isopropylamine, n-propylamine and diisobutylamine; aralkylamines such as benzylamine; alicyclic amines such as piperidine; monoethanolamine and triethanolamine. And preferably an alkylamine such as diisobutylamine.
  • Silicon Tungsten The sol of the Sanidan stannic acid-Zirconium composite zirconium composite colloid particles modified by the colloid particles of the Sanidan stannic acid diisilicon silicon complex is treated with this acid.
  • the stannic chloride-zirconium zirconium composite sol is used as the metal oxidizer (ZrO + SnO).
  • step (e) of mixing under stirring and then the step (f) of removing anions in the sol of the mixed sol.
  • the modified oxidized varnish varnish in the sol obtained by the mixing in the step (e) can be observed with an electron microscope. .5 It has a particle size of 60 nm.
  • the sol obtained by the above mixing has a pH of about 119, but Cl-- and NO-- derived from the oxyzirconium salt used for the modification
  • the colloidal particles are micro-aggregated and the transparency of Zonore is low.
  • an anion is removed, whereby a transparent and stable modified stannic stannic acid-irridating zirconium composite is obtained.
  • a sol of colloidal particles can be obtained.
  • the sol obtained by the above mixing is treated with a hydroxyl-type anion exchange resin at a temperature of usually 100 ° C or lower, preferably room temperature to about 60 ° C. It is obtained by As the hydroxyl group type anion exchange resin, a commercially available product can be used, but a strong base type such as Amberlite IRA-410 is preferable.
  • the treatment with the hydroxyl group type anion exchange resin in the step (f) be performed at a concentration of the metal oxide of the sol obtained by the mixing in the step (e) of 110% by weight.
  • the concentration can be increased to a maximum of about 50% by weight by a conventional method, It can be concentrated by an evaporation method, an ultrafiltration method or the like.
  • the sol may be concentrated and then the alkali metal, a hydroxide such as ammonium, the amine, oxycarboxylic acid or the like may be added to the sol.
  • the above metal oxides (ZrO + SnO) ZrO + SnO
  • the surface of the colloidal particles can be partially or entirely coated with a silane conjugate such as ethyl silicate, methyltrimethoxysilane, ⁇ -glycidoxypropyltrimethoxysilane, or a hydrolyzate thereof.
  • a silane conjugate such as ethyl silicate, methyltrimethoxysilane, ⁇ -glycidoxypropyltrimethoxysilane, or a hydrolyzate thereof.
  • the modified stannic acid stannic oxide-zirconium zirconium composite sol obtained by the mixing is an aqueous sol
  • the aqueous sol is replaced with a hydrophilic organic solvent to thereby prepare an organosol. Is obtained.
  • This substitution can be performed by a usual method such as a distillation method and an ultrafiltration method.
  • hydrophilic organic solvent examples include lower alcohols such as methyl alcohol, ethyl alcohol, and isopropyl alcohol; linear amides such as dimethylformamide, ⁇ , ⁇ , and 1-dimethylacetamide; cyclic compounds such as ⁇ -methyl-2-pyrrolidone Amides: Glycols such as ethinoreserosolve, propylene glycolone monomethinoleether, ethylene glycolone, and the like.
  • the replacement of the water with the hydrophilic organic solvent can be easily performed by a usual method, for example, a distillation replacement method, an ultrafiltration method, or the like.
  • the colloidal particles of the oxidized stannic acid-zirconium zirconium composite is negatively charged in the sol.
  • the stannic oxide-zirconium monoxide composite colloid particles are positively charged, and the colloid particles of the oxidized tungsten oxidized stannic oxide-dioxide silicon composite are negatively charged. Accordingly, the positively charged tungsten oxide and stannic oxide monoxide that are negatively charged around the colloidal particles of the stannic oxide-zirconium zirconium composite are positively charged by the mixing in the step (e).
  • Colloidal particles of the silicon composite are electrically attracted, and colloidal particles of the silicon complex are bonded to the surface of the positively charged colloidal particles by a chemical bond.
  • the surface of the positively-charged particles is covered with the colloid particles of the silicon complex of silicon oxide and stannic oxide, thereby being modified, and the surface thereof is modified. It is considered that the oxidized zirconium composite colloid particles were formed.
  • a colloidal particle of stannic oxide-zirconium oxide having a particle diameter of 450 nm as a core sol and a silicon oxide composite of stannic oxide and stannic oxide as a coating sol When mixing with the colloidal particles, 100 parts by weight of metal oxidized product (ZrO and SnO) of the nuclear sol
  • the total amount of the metal oxide (WO + SnO + SiO) of the coating sol is less than 2 parts by weight.
  • the amount of the colloidal particles of the silicon dioxide complex is too small, the colloidal particles of the complex are used to form the complex of the stannic oxide and the zirconium oxide. It is considered that the coating of the surface of the body colloid particles as the nucleus becomes insufficient, and the formed sol is likely to be unstable because aggregation of the formed colloid particles easily occurs. Therefore, the amount of the tungsten oxide stannic oxide-silicon dioxide composite colloid particles to be mixed may be smaller than the amount covering the entire surface of the stannic oxide-silicon oxide zirconium composite colloid particles!
  • the resulting sol is To a stable mixed sol of a sol of tungsten alloy and a sol of the resulting colloidal particles of the modified stannic oxide-zirconium complex zirconium complex. Not just.
  • the colloid of the silicon oxide complex used is used.
  • the amount of the particles is based on 100 parts by weight of the metal oxide (ZrO + SnO) of the nuclear sol.
  • the total amount of metal oxide (WO + SnO + SiO) in the coating sol should be 100 parts by weight or less.
  • the preferred aqueous sol of the modified dandelion stannic acid-zirconium zirconium complex used in the present invention has a pH of about 3 to 11, and when the pH is lower than 3, such a sol tends to be unstable. . Further, when the pH exceeds 11, a modified Sanigata tungsten / Sanidium stannic oxide / silicon complex covering the modified colloidal particles of the stannic oxide / zirconium zirconium composite is obtained. Easy to dissolve in liquid ⁇ . The total of the above metal oxides (ZrO + SnO 2) and (WO + SnO + SiO 2) in the sol of the modified stannic oxide-stannic oxide-zirconium composite colloid particles
  • Such sols are also prone to instability when the 2 2 3 2 2 concentration exceeds 60% by weight.
  • the preferred concentration for industrial products is around 10-50% by weight.
  • Tungsten oxide-stannic oxide-silicon dioxide composite colloidal particles hydrolyze at high temperatures Because of the susceptibility to dissolution, the temperature is preferably 100 ° C. or less for mixing in step (e), anion exchange in step (f), and concentration, pH adjustment, and solvent replacement after step (f).
  • an organosilicon compound is used as the component (B).
  • the organic silicon compound for example, a compound represented by the general formula (I)
  • R 1 is a monovalent hydrocarbon group having or not having a functional group having 120 carbon atoms
  • R 2 is an alkyl group having 18 carbon atoms, an aryl group having 6 to 10 carbon atoms, 7-10 ⁇ La alkyl group or Ashiru group with carbon number 2 10, n represents 0, 1 or 2 indicates, if R 1 is plural, R 1 may be the same with or different from each other And a plurality of OR 2 may be the same or different.
  • R 3 and R 4 are the same or different, each having 1 to 4 carbon atoms or an alkyl group having 2 to 4 carbon atoms, and R 5 and R 6 are each the same or different, each having 1 or more monovalent carbon atoms.
  • Y is a divalent carbon hydrocarbon group with carbon number 2-20
  • a and b each represent 0 or 1
  • more oR 3 are each May be the same or different
  • a plurality of OR 4 may be the same or different.
  • the monovalent hydrocarbon group having 120 carbon atoms represented by R 1 includes a linear, branched, or cyclic alkyl group having 120 carbon atoms.
  • the C1-C20 alkyl group is preferably a C1-C10 alkyl group such as methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl and sec-.
  • C 2-20 alkenyl group examples include a C 2-10 alkenyl group, such as a butyl group, an aryl group, a butyr group, a hexenyl group, and an otatur group.
  • the aryl group having 6 to 20 carbon atoms is preferably an aryl group having 6 to 10 carbon atoms, such as a phenyl group, a tolyl group, a xylyl group and a naphthyl group.
  • the aralkyl group having 7 to 20 carbon atoms is preferably an aralkyl group having 7 to 10 carbon atoms, such as a benzyl group, a phenethyl group, a phenylpropyl group, and a naphthylmethyl group.
  • Functional groups may be introduced into these hydrocarbon groups.
  • the functional groups include a halogen atom, a glycidoxy group, an epoxy group, an amino group, a mercapto group, a cyano group,
  • Ataliloyloxy group and the like As the hydrocarbon group having such a functional group, an alkyl group having 1 to 10 carbon atoms having the functional group is preferable.
  • an alkyl group having 1 to 10 carbon atoms having the functional group is preferable.
  • the alkyl group having 18 carbon atoms in R 2 may be linear, branched, or cyclic! /, And may be, for example, a methyl group, an ethyl group, or ⁇ .
  • the aryl group include phenyl group, Examples include a tolyl group and the like, and examples of the aralkyl group include a benzyl group and a phenethyl group.
  • Examples of the acyl group include an acetyl group.
  • n 0, 1 or 2
  • the plurality of R 1 may be identical to each other
  • they may be different
  • a plurality of OR 2 may be the same or different.
  • Examples of the compound represented by the general formula (I) include methyl silicate, ethyl silicate, n-propyl silicate, isopropyl silicate, n-butyl silicate, sec-butyl silicate, tert butyl silicate, and tetraacetoxy silane.
  • Methyltrimethoxysilane methyltripropoxysilane, methyltriacetoxysilane, methyltributoxysilane, methyltripropoxysilane, methyltriamixoxysilane, methyltrifunoxysilane, methyltribenzyloxysilane, methyltriphenethylo Xysilane, glycidoxymethyltrimethoxysilane, glycidoxymethinoletriethoxysilane, ⁇ -glycidoxetinoretrimethoxysilane, ⁇ -glycidoxyshethyltriethoxysilane, j8-glycidoxyshethyltri Ethoxysilane, ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -glycidoxypropyltriethoxysilane, j8-glycidoxypropyltrimethoxysilane, j8-glycidoxypropyltri
  • an alkyl group having 14 to 14 carbon atoms among R 3 and R 4 examples include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group and tert-butyl group.
  • Examples of the acetyl group having 2 to 4 carbon atoms include acetyl group. Preferred are mentioned.
  • R 3 and R 4 may be the same or different.
  • Examples of the monovalent hydrocarbon group having 115 carbon atoms represented by R 5 and R 6 include an alkyl group having 115 carbon atoms and an alkyl group having 2 to 5 carbon atoms.
  • alkyl group which may be linear or branched include methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, tert Examples thereof include a butyl group and a pentyl group, and examples of the alkenyl group include a vinyl group, an aryl group and a butyr group.
  • Examples of the hydrocarbon group having these hydrocarbons to hydrogen radical Yogu be introduced functional groups functional groups and functional groups, and those exemplified in the explanation of R 1 in the general formula (I) The same can be mentioned.
  • R 5 and R 6 may be the same or different.
  • the divalent hydrocarbon group having 2 to 20 carbon atoms represented by Y an alkylene group and an alkylidene group having 2 to 10 carbon atoms are preferable, such as a methylene group, an ethylene group, a propylene group, a butylene group, and an ethylidene group. And a propylidene group.
  • a and b each represent 0 or 1; a plurality of ORs 3 are the same or different; V, and a plurality of ORs 4 are the same or different; / ,.
  • Examples of the compound represented by the general formula (II) include methylene bis (methyldimethoxysilane), ethylenebis (ethyldimethoxysilane), and propylenebis (ethylethylethoxysilane)
  • the organosilicon compound of the component (B) may be any one of the compounds represented by the general formulas (1) and (II) and the hydrolyzate thereof. Species may be selected and used, or two or more may be selected and used in combination.
  • the hydrolyzate is prepared by adding an organic silicon compound represented by the general formula (1) or (II) to a basic aqueous solution such as an aqueous solution of sodium hydroxide or ammonium, an aqueous solution of acetic acid or an aqueous solution of citric acid. It can be prepared by adding an acidic aqueous solution of
  • the content ratio of the modified colloidal stannic oxide hydridzirconium composite particles of component (A) and the organosilicon compound of component (B) is as follows. From the viewpoint of obtaining a refractive index and good transparency, it is preferable that the component (A) be contained in a proportion of 1 to 500 parts by weight as a solid content per 100 parts by weight of the component (B). It is more preferable to include them in a proportion of 50 to 200 parts by weight.
  • the plastic substrate used in the present invention is not particularly limited.
  • the material for the plastic substrate include a methyl methacrylate homopolymer, a copolymer containing methyl methacrylate and one or more other monomers as a monomer component, diethylene glycol bisaryl carbonate homopolymer, and diethylene glycol.
  • Copolymers containing bisaryl carbonate and one or more other monomers as monomer components copolymers containing iodine, copolymers containing halogen, polycarbonate, polystyrene, polyvinyl chloride, unsaturated polyester, polyethylene terephthalate
  • plastic substrates such as polyurethane and polythiourethane. Considering the aesthetics (ie, no interference fringes due to the refractive index difference between the coating film and the lens substrate), a plastic lens with a refractive index of 1.55-1.62 is particularly suitable.
  • the coating composition used in the present invention may include, if desired, a hardening agent for accelerating the reaction, and a fine-grained metal oxidizing agent for adjusting the refractive indices of various base lenses.
  • various organic solvents and surfactants can be contained for the purpose of improving the wettability at the time of coating and improving the smoothness of the cured film.
  • an ultraviolet absorber, an antioxidant, a light stabilizer and the like can be added as long as they do not affect the physical properties of the cured film.
  • stiffening agent examples include amines such as arylamine and ethylamine, and various acids and bases including Lewis acids and Lewis bases, for example, organic carboxylic acids, chromic acid, hypochlorous acid, boric acid, and the like. Salts or metal salts having perchloric acid, bromic acid, selenous acid, thiosulfuric acid, orthocyanic acid, thiocyanic acid, nitrous acid, aluminate, carbonic acid, etc., and metal alkoxides having aluminum, zirconium, titanium, or these metals Chelate toy daggers and the like.
  • a particularly preferred curing agent is acetyl acetonate metal salt from the viewpoint of scratch resistance.
  • acetyl acetonate metal salt used as the component (C) M ⁇ CH COCHCOCH) nl (OR 6 ) n2 (where M 1 is ⁇ ( ⁇ ), Ti (IV), Co (II), Fe (II), Cr (III)
  • R 6 is a 1 one 8 carbon atoms
  • the hydrocarbon group, nl + n2, is a number corresponding to the valency of M 1 and is 2, 3 or 4, and n2 is 0, 1 or 2. )).
  • Examples of R 6 include those having 118 carbon atoms among the 110-carbon hydrocarbon groups exemplified in the general formula (I).
  • Examples of the particulate metal oxide include hitherto known ones such as aluminum oxide, titanium oxide, antimony oxide, zirconium oxide, silicon oxide, cerium oxide, iron oxide and the like. Fine particles.
  • Curing of the coating composition is usually carried out by drying with hot air or irradiation with active energy rays.
  • the curing condition is preferably carried out in hot air at 70 to 200 ° C., particularly preferably 90 to 200 ° C. 150 ° C is desirable.
  • Active energy rays include far-infrared rays, which can reduce damage due to heat.
  • a method for forming a cured film on a substrate using the coating composition of the present invention there is a method of applying the above-mentioned coating composition to a substrate.
  • a coating method a commonly used method such as a dipping method, a spin coating method, or a spray method can be applied.
  • the substrate is subjected to a chemical treatment with an acid, an alkali, and various organic solvents, a physical treatment with plasma and ultraviolet light, a detergent treatment with various detergents, a sand blast treatment, Furthermore, by performing a primer treatment using various resins, the adhesion between the base material and the cured film can be improved.
  • the inorganic oxide or organic compound is formed on the cured film by a physical vapor deposition method such as a vacuum deposition method or a sputtering method.
  • a physical vapor deposition method such as a vacuum deposition method or a sputtering method.
  • An anti-reflection film can be applied.
  • the plastic lens of the present invention can be used not only for spectacle lenses but also for camera lenses.
  • the physical properties of the plastic lens having a cured film obtained in each example were measured by the following methods. After the obtained plastic lens was allowed to stand at room temperature for one day, the following (a)-(1) was evaluated.
  • the optical member having the cured film was visually judged under a fluorescent lamp.
  • the criteria are as follows.
  • a 100-mesh cross cut was made on the cured film at 1.5 mm intervals, and an adhesive tape (trade name: Cellotape-a product of Tiban Co., Ltd.) was strongly attached to the cross-cut, and the adhesive tape was rapidly peeled off. The presence or absence of subsequent peeling of the cured film was examined.
  • the criteria are as follows.
  • Oxalic acid ((COOH)-2H 0) 37.5kg is dissolved in pure water 220kg and this is put into a 500L container
  • the mixture was heated to 70 ° C. with stirring, and 150 kg of 35% hydrogen peroxide and 75 kg of metal tin (trade name: AT-SN, No200N, manufactured by Yamaishi Metal Co., Ltd.) were added.
  • metal tin trade name: AT-SN, No200N, manufactured by Yamaishi Metal Co., Ltd.
  • the hydrogen peroxide solution and the addition of metal tin were alternated. First, 10 kg of 35% hydrogen peroxide and then 5 kg of metal tin were added. This operation was repeated after the reaction was completed (5-10 minutes). The time required for the soup was 2.5 hours. After the addition was completed, the mixture was further heated at 90 ° C for 1 hour to terminate the reaction.
  • the molar ratio of aqueous hydrogen peroxide to metallic tin is H O ZSn 2.4
  • the obtained tin oxide sol had very good transparency.
  • the yield of the tin oxide sol has a specific gravity at 352kg 1. 312, pHl. 49, viscosity 44 MPa 's, at 26.1 weight 0/0 of SnO
  • the obtained sol was observed with an electron microscope, it was found to be spherical particles having a good dispersibility of 10 to 15 nm. This sol showed a tendency to slightly increase in viscosity when left at room temperature. When left at room temperature for 6 months, no gelling was observed and the sol was stable.
  • the mixed solution prepared in the step (b) was subjected to a heat treatment at 90 ° C. for 5 hours under stirring to obtain 27.6 kg of a stannic oxide-zirconium oxide composite sol. This sol is 3.37 times as SnO
  • the particle size was 2.5 nm. 3450 g were obtained.
  • step (e) 11.Og of diisobutylamine was added to 15650 g of the mixture obtained in step (e), and the mixture was passed at room temperature through a column filled with a hydroxyl-type anion exchange resin (described above: Amberlite IRA-410).
  • a hydroxyl-type anion exchange resin described above: Amberlite IRA-410.
  • This sol was 3.3% by weight of all metal oxides, ⁇ .64, and exhibited a colloidal color but good transparency.
  • the aqueous sol (dilute solution) of the modified stannic oxide-zirconium zirconium complex obtained in the step (f) was filtered at room temperature using a filtration device of an ultrafiltration membrane having a molecular weight cut off of 100,000. The resulting solution was concentrated to obtain 264 lg of a high-density modified aqueous stannic-stannic acid-zirconium zirconium composite aqueous sol. This sol is stable with a total metal oxide (ZrO + SnO + WO + SiO) concentration of 24.6% by weight.
  • the concentration is 40.5% by weight, the water content is 0.59% by weight, and the particle size by electron microscopy is 1015 nm.
  • the concentrated product was placed in a 100 cm 3 measuring cylinder, and the viscosity measured at a rotation speed of 60 rpm using a No. 1 rotor of a B-type viscometer was 6.5 mPa's.
  • This sol had a colloidal color and was highly transparent. After standing at room temperature for 3 months, no abnormalities such as sedimentation, cloudiness and thickening were observed, and the sol was stable.
  • the refractive index of the dried product of this sol was 1.85.
  • Production Example 2 the same steps as (a), (b), and (c) of Production Example 1 were performed, and then the following steps were performed.
  • sodium stannate NaSnO -HO (55 wt 0/0 containing as SnO) dissolved 55. 6 g
  • Example 2 2520 g (containing 150 g as WO + SnO + SiO) of the silicon oxide sol prepared in the step (d) was stirred at room temperature under stirring.
  • the solution was composed of colloidal particles (ZrO + SnO) of stannic acid-zirconium-zirconium complex
  • the 3 2 2 ratio is (WO + SnO + SiO) / (ZrO + SnO) weight ratio 0.20, all metal oxides 4.1
  • step (e) 11.Og of diisobutylamine was added to 14720 g of the mixture obtained in step (e), and the mixture was passed at room temperature through a column filled with a hydroxyl-type anion exchange resin (described above: Amberlite IRA-410).
  • a hydroxyl-type anion exchange resin described above: Amberlite IRA-410.
  • 18480 g of an aqueous sol (dilute solution) of the modified stannic stannic-acidic zirconia complex was obtained by heating and aging at 80-90 ° C. for 1 hr. This sol was 3.2% by weight of all metal oxides, ⁇ .23, and exhibited a colloidal color but good transparency.
  • the aqueous sol (dilution) of the modified stannic stannic acid-zirconium zirconium complex obtained in the step (f) was filtered at room temperature using a filtration device of an ultrafiltration membrane having a molecular weight cut off of 100,000.
  • the resulting solution was concentrated to obtain 3458 g of a high-concentration modified aqueous stannic acid-zirconium zirconium composite aqueous sol.
  • This sol was stable at 14.8% by weight of all metal oxides (ZrO + SnO + WO + SiO).
  • the resulting mixed solution was made of stannic acid-zirconium zirconium composite colloid particles (ZrO + S
  • the oxide was 3.9% by weight, and showed a tendency of cloudiness due to micro-aggregation of colloid particles.
  • the aqueous sol (dilution) of the modified stannic stannic acid-zirconium zirconium complex obtained in the step (f) is filtered at room temperature using a filtration device of an ultrafiltration membrane having a molecular weight cut off of 100,000.
  • the resulting solution was concentrated to obtain 2352 g of a high-concentration modified aqueous stannic acid-zirconium zirconium composite aqueous sol.
  • the total metal oxide (ZrO + SnO + WO + SiO) concentration of this sol is 22.0% by weight and stable.
  • This sol had a colloidal color and was highly transparent. After standing at room temperature for 3 months, no abnormalities such as sedimentation, cloudiness and thickening were observed, and the sol was stable.
  • the dried product of this sol had a refractive index of 1.85.
  • the mixture was heated to 70 ° C. with stirring, and 150 kg of 35% hydrogen peroxide and 75 kg of metal tin (AT-SN, No. 200N) were added.
  • the hydrogen peroxide solution and the addition of metal tin were alternated. First, 10 kg of 35% hydrogen peroxide and then 5 kg of metal tin were added. This operation was repeated after the reaction was completed (5-10 minutes). The time required for the soup was 2.5 hours. After the addition, 1 Okg of 35% hydrogen peroxide was further added, and the mixture was heated at 90 ° C. for 1 hour to terminate the reaction.
  • the molar ratio of the aqueous hydrogen peroxide to the metal tin was H 2 O / Sn2.60.
  • the obtained tin oxide sol had very good transparency.
  • the yield of the tin oxide sol is 15.0 wt 0 / specific gravity 1. 156, pHl. 56, SnO at 622Kg. Met.
  • step (a) Contains 5 kg. ), Add 330 kg of pure water and 3.2 kg of 35% hydrochloric acid, and then stir at room temperature at room temperature 2597 kg of the alkaline stannic acid stannic aqueous sol obtained in step (a).
  • the mixture has a colloidal color with a ZrO ZSnO weight ratio of 0.15 It was a good zonole with good transparency.
  • the mixed solution prepared in the step (b) was heated at 95 ° C. for 5 hours with stirring to obtain 2958 kg of a stannic oxide / zirconium oxide composite sol. This sol is 3.03 times as SnO
  • sodium tungstate Na WO ⁇ 2 ⁇ 0 (contains 69.8% by weight as WO)
  • the obtained mixed solution was made up of colloidal particles (ZrO + SnO) of stannic stannic acid-zirconium zirconium composite and
  • step (e) 2.3 kg of diisobutylamine was added to 3798 kg of the mixed solution obtained in step (e), and the mixture was passed at room temperature through a column filled with a hydroxyl-type anion exchange resin (described above: Amberlite IRA-410). Next, stannic oxide zirconium monoxide modified by heat aging at 90 ° C for lhr A composite aqueous sol (dilute liquid) was obtained. This sol had a pH of 9.59, had a colloidal color, but had good transparency.
  • a hydroxyl-type anion exchange resin described above: Amberlite IRA-410
  • the modified aqueous sol of stannic oxide-zirconium zirconium complex (dilute solution) obtained in the step (f) is subjected to filtration using an ultrafiltration membrane filtration device having a molecular weight cut off of 100,000 using a filtration device.
  • the mixture was concentrated at 50 ° C. to obtain 365 kg of a high-concentration modified aqueous sol-stannic-animal zirconium composite aqueous sol.
  • the total metal oxide (ZrO + SnO + WO + SiO) concentration of this sol was 33.5% by weight,
  • This sol has a specific gravity of 1.285, pH 6.40 (equivalent weight mixture with water), viscosity of 1.3 mPa's, total metal oxide (ZrO + SnO + WO + SiO2) of 42.8% by weight, and moisture of 0.
  • the particle diameter was 34% by weight, and the particle diameter determined by electron microscopy was 10 to 15 nm.
  • This methanol sol is used as a total metal oxide (ZrO + SnO + WO + SiO) concentration of 47
  • the concentrate concentrated to 8% by weight was placed in a 100 cm 3 measuring cylinder, and the viscosity measured at a rotation speed of 60 rpm using a No. 1 rotor of a B-type viscometer was 5.5 mPa's.
  • This sol had a colloidal color, was highly transparent, and was stable at room temperature with no abnormalities such as sedimentation, cloudiness and thickening observed.
  • the refractive index of the dried product of this sol was 1.85.
  • the mixture was heated to 70 ° C. with stirring, and 150 kg of 35% hydrogen peroxide and 75 kg of metal tin (AT-SN, No. 200N) were added.
  • the hydrogen peroxide solution and the addition of metal tin were alternated. First, 10 kg of 35% hydrogen peroxide and then 5 kg of metal tin were added. Wait for the reaction to finish (5-10 minutes) Was repeated. The time required for the soup was 2.5 hours. After the addition, 1 Okg of 35% hydrogen peroxide was further added, and the mixture was heated at 90 ° C. for 1 hour to terminate the reaction. The monole ratio HO ZSn between the hydrogen peroxide solution and the metallic tin was 2.60.
  • the obtained tin oxide sol had very good transparency.
  • the yield of this tin oxide sol was 626 kg, the specific gravity was 1.154, the pH was 56, and the SnO concentration was 14.9%.
  • step (a) Contains 8 kg. ), Add 300 kg of pure water and 3.3 kg of 35% hydrochloric acid, and then stir at room temperature at room temperature 2529 kg of the alkaline stannic acid stannic aqueous sol obtained in step (a).
  • the mixture has a colloidal color with a ZrO / SnO weight ratio of 0.15
  • the mixed solution prepared in the step (b) was subjected to a heat treatment at 95 ° C. for 5 hours with stirring to obtain 3,471 kg of a stannic oxide-zirconium oxide composite sol.
  • This sol is 2.62 times as SnO
  • sodium tungstate Na WO ⁇ 2 ⁇ 0 (contains 69.8% by weight as WO)
  • the obtained mixed solution was made up of colloidal particles (ZrO + SnO) of stannic stannic acid-zirconium zirconium composite and
  • step (e) 2.3 kg of diisobutylamine was added to 4650 kg of the mixture obtained in step (e), and the mixture was passed at room temperature through a column filled with a hydroxyl-type anion exchange resin (described above: Amberlite IRA-410).
  • a hydroxyl-type anion exchange resin described above: Amberlite IRA-410.
  • the modified stannic oxide zirconium monoxide composite aqueous sol was obtained by heat aging at 90 ° C for lhr. This sol had a pH of 9.10 and showed a colloidal color but good transparency.
  • the aqueous sol (dilution solution) of the modified stannic stannic oxide / zirconium zirconium complex obtained in the step (f) is subjected to filtration using an ultrafiltration membrane filtration apparatus having a molecular weight cutoff of 100,000 using a filtration device.
  • the solution was concentrated at 50 ° C. to obtain 358 kg of a high-concentration modified stannic stannic acid-zirconium zirconium composite aqueous sol.
  • This sol is stable at 31.9% by weight of all metal oxides (ZrO + SnO + WO + SiO).
  • the above high-concentration modified aqueous stannic-stannic acid-zirconium zirconium complex aqueous sol was stirred at 358 kg with stirring at room temperature at room temperature for 1 lkg of tartaric acid, 1.7 kg of diisobutylamine, an antifoaming agent (supra: One drop of SN deformer 483) was added and the mixture was stirred for 1 hour.
  • This sol is placed in a reaction vessel equipped with Under normal pressure, water was distilled off while adding 5010 liters of methanol to obtain 220 kg of a modified stannic stannic acid-irridating zirconium complex methanol sol in which the water of the aqueous sol was replaced with methanol.
  • This sol has a specific gravity of 1.280, pH 6.59 (equiweight mixture with water), viscosity 2.lmPa's, total metal oxide (ZrO + SnO + WO + SiO) 42.8% by weight, water
  • the particle size was 0.43% by weight, and the particle diameter was 10 to 15 nm as observed by an electron microscope.
  • This methanol sol is used as a total metal oxide (ZrO + SnO + WO + SiO) concentration of 46
  • the concentrate concentrated to 8% by weight was placed in a 100 cm 3 measuring cylinder, and the viscosity measured at a rotation speed of 60 rpm using a No. 1 rotor of a B-type viscometer was 6.3 mPa's.
  • This sol had a colloidal color, was highly transparent, and was stable at room temperature with no abnormalities such as sedimentation, cloudiness and thickening observed.
  • the refractive index of the dried product of this sol was 1.85.
  • the mixture was heated to 70 ° C. with stirring, and 150 kg of 35% hydrogen peroxide and 75 kg of metal tin (AT-SN, No. 200N) were added.
  • the hydrogen peroxide solution and the addition of metal tin were alternated. First, 10 kg of 35% hydrogen peroxide and then 5 kg of metal tin were added. This operation was repeated after the reaction was completed (5-10 minutes). After the addition of the entire amount, 10 kg of a 35% hydrogen peroxide solution was further added. The time required for the soup was 2.5 hours, and after the addition was completed, the mixture was further heated at 95 ° C for 1 hour to terminate the reaction. The molar ratio H 2 O ZSn between the aqueous hydrogen peroxide and tin metal was 2.61.
  • the obtained tin oxide sol had very good transparency.
  • the yield of this tin oxide sol was 630 kg and the specific gravity was 1.154, the pH was 51, and the SnO concentration was 14.7 weight / 0 . Met.
  • the obtained sol was observed with an electron microscope, it was found to be spherical particles having a good dispersibility of 10 to 15 nm. This sol showed a tendency to slightly increase in viscosity when left at room temperature. When left at room temperature for 6 months, no gelling was observed and the sol was stable.
  • the mixture has a colloidal color with a ZrO / SnO weight ratio of 0.15
  • the sol had good transparency.
  • the mixed solution prepared in the step (b) is subjected to a heat treatment at 90 ° C. for 5 hours with stirring, and after cooling and extraction, 3224 kg of oxidized stannic tin-oxidized zirconium composite sol (including the amount of water pressed) Got. 2.78 wt sol of SnO This 0/0, 0.41 weight as ZrO 0/0, SnO + 3 as ZrO.
  • the WO / SnO weight ratio was 1.0, and the SiO / SnO weight ratio was 2.0. ) 1520 g were obtained.
  • the resulting mixed solution is composed of stannic acid-zirconium zirconium composite colloidal particles (ZrO + SnO) and tangible tungsten-
  • step (e) 5.Og of diisobutylamine was added to 18106 g of the mixture obtained in step (e), and the mixture was passed at room temperature through a column filled with a hydroxyl-type anion exchange resin (described above: Amberlite IRA-410). Then, the resulting mixture was heated and aged at 80-90 ° C. for 1 hr to obtain 24050 g of an aqueous sol (dilute solution) of a modified stannic-stannic-acidic zirconium-zinc complex. This sol had a total metal oxide content of 2.4% by weight and a pH of 9.25 and exhibited a colloidal color but good transparency.
  • aqueous sol dilute solution
  • This sol had a total metal oxide content of 2.4% by weight and a pH of 9.25 and exhibited a colloidal color but good transparency.
  • the aqueous sol (dilution) of the modified stannic stannic acid-zirconium zirconium complex obtained in the step (f) was filtered at room temperature by a filtration apparatus using an ultrafiltration membrane having a molecular weight cut off of 100,000.
  • the resulting solution was concentrated to obtain a high-concentration modified aqueous soldani stannic acid-zirconium zirconium composite aqueous sol 2010 g.
  • This sol is stable with a total metal oxide (ZrO + SnO + WO + SiO) concentration of 28.2% by weight.
  • the aqueous sol was obtained by distilling water while adding 28 liters of methanol little by little under normal pressure in a reaction flask equipped with a stirrer in a reaction flask equipped with a stirrer. 1310 g of a modified stannic oxide-zirconium oxide composite methanol sol in which water was replaced with methanol was obtained.
  • This sol has a specific gravity of 1.264, pH 8.3 (equiweight mixture with water), viscosity 2.7 mPa's, all metal oxides (ZrO + SnO + WO
  • This sol had a colloidal color and was highly transparent. After standing at room temperature for 3 months, no abnormalities such as sedimentation, cloudiness and thickening were observed, and the sol was stable.
  • the dried product of this sol had a refractive index of 1.85.
  • the sol is stable, the force transparency very Kogu specific gravity that had colloidal color 1. 029, pH 9. 8 0, viscosity 1. 4 mPa, s, SnO content 2.95 wt 0/0, isopropyl Amin content 0.036 weight
  • Oxy salt prepared by dissolving zirconium (ZrOCl ⁇ 8 ⁇ ⁇ ) as a reagent in water
  • Step (b) (Preparation of soldani stannic acid-zirconium zirconium composite sol)
  • the mixed solution prepared in the step (a) was subjected to a heat treatment at 90 ° C. for 5 hours with stirring to obtain 13834 g of a stannic oxide / zirconium oxide composite sol.
  • This sol is 2.96 times as SnO %, 0.44% by weight as ZrO, 3.40% by weight as SnO + ZrO, pHl. 45, granules
  • Step (c) (Preparation of silicon oxide sol, tungsten oxide and stannic oxide silicon complex sol)
  • Dissolve g. This is then passed through a column of a hydrogen-type cation exchange resin to obtain an acidic oxidized tungsten, stannic acid, stannic oxide, silicon oxide complex sol (PH2.1, WO
  • the 2 23 ⁇ weight ratio was 1.0, the SiO / SnO weight ratio was 1.33, and the particle size was 2.5 nm. ) 315
  • step (d) To 1474.6 g of the mixed solution obtained in step (d), 9.5 g of diisobutylamine was added, and then a column filled with a hydroxyl-type anion exchange resin (described above: Amberlite IRA-410) was added to the column at room temperature. Then, the mixture was heated and aged at 80 ° C. for 1 hour to obtain 16288 g of an aqueous sol (dilute solution) of a modified stannic oxide-zirconium oxide-dum complex. The sol had a total metal oxide content of 2.90% by weight and a pH of 10.43, and exhibited a colloidal color but good transparency.
  • a aqueous sol dilute solution
  • the sol had a total metal oxide content of 2.90% by weight and a pH of 10.43, and exhibited a colloidal color but good transparency.
  • the aqueous sol (dilute solution) of the modified stannic stannic acid-zirconium zirconium complex obtained in the step (e) is concentrated at room temperature by a filtration device using an ultrafiltration membrane having a molecular weight cut-off of 50,000. , High concentration of denaturing acid 2182 g of a stannic oxide zirconium monoxide composite aqueous sol was obtained. This sol was stable at pH 8.71 and 18.3% by weight of all metal oxides (ZrO + SnO + WO + SiO2).
  • This sol has a specific gravity of 1.124, a pH of 7.45 (mixed with water by weight), a viscosity of 2.3 mPa's, a total metal oxide (ZrO + SnO + WO + SiO) of 32.7% by weight, and a water content of 0.47.
  • This sol had a colloidal color and was highly transparent, showing no formation of sediment, turbidity, thickening, etc., and was stable even after standing at room temperature for 3 months.
  • the dried product of this sol had a refractive index of 1.76.
  • the modified stannic oxide-zirconium-zinc oxidized tungsten oxidized silicon complex methanol sol which is the component (A) prepared in Production Example 5 and 45 parts by weight of the component (B)
  • a certain 15 parts by weight of ⁇ -glycidoxypropyltrimethoxysilane and 3 parts by weight of tetraethoxysilane were mixed and stirred for 1 hour. Thereafter, 4.5 parts by weight of hydrochloric acid having a concentration of 0.001 mol ZL was added thereto, followed by stirring for 50 hours.
  • PGM propylene glycol monomethyl ether
  • DAA diacetone alcohol
  • AL-II aluminum-dimethyltrisacetyl acetonate
  • a lens substrate [made by HOYA CORPORATION, trade name: Ias (refractive index: 1.60)] is immersed in a 10% by weight aqueous sodium hydroxide solution at 60 ° C for 300 seconds, and then the ultrasonic ions are applied at 28 kHz. Washing was performed for 300 seconds using exchanged water. Finally, a series of steps of drying under a 70 ° C atmosphere was used as a pretreatment for the base material. The pretreated lens substrate eye was immersed in the coating composition for 30 seconds by a dive method, and the substrate pulled up by 30 cmZ was formed into a cured film at 120 ° C. for 60 minutes. Table 1 shows the evaluation results.
  • a plastic lens base material having been subjected to curing film deposition apparatus heated Caro to 85 ° C while evacuating, 2.
  • the deposition material by an electron beam heating method Vapor deposition is performed to form an SiO layer with a thickness of 0.6 ⁇ .
  • Table 1 shows the evaluation results.
  • Example 1 in place of the modified stannic oxide-dichlorooxide-dimethyl-anisulfur-tungsten-silicon-silicon complex methanol sol as the component (II) produced in Production Example 5, the methanol sol was produced in Production Example 1.
  • a coating composition was prepared in the same manner as in Example 1, except that the prepared (II) component, ie, the modified oxidized stannic stannic acid oxidized zirconium oxidized tungsten oxidized silicon complex methanol sol was used. Similarly, a cured film and an antireflection film were formed on the lens substrate eye. Table 1 shows the evaluation results.
  • Example 1 in place of the modified stannic oxide-dialkyl oxide-dimethyl oxalate-tungstate silicon amide-silicon complex methanol sol, which is the component (II) produced in Production Example 5, the methanol sol was produced in Production Example 2.
  • a coating composition was prepared in the same manner as in Example 1, except that the prepared (II) component, ie, the modified oxidized stannic stannic acid oxidized zirconium oxidized tungsten oxidized silicon complex methanol sol was used. Similarly, a cured film and an antireflection film were formed on the lens substrate eye. Table 1 shows the evaluation results.
  • Example 1 in place of the modified stannic oxide-dichloromethane-dimethyl oxalic acid tungsten silicon oxidized silicon complex methanol sol as the component (II) produced in Production Example 5, the methanol sol was produced in Production Example 3.
  • a coating composition was prepared in the same manner as in Example 1, except that the prepared component (A), ie, the modified oxidized stannic stannic acid oxidized zirconium oxidized tungsten oxidized silicon complex methanol sol was used. Similarly, a cured film and an antireflection film were formed on the lens substrate eye. Table 1 shows the evaluation results.
  • Example 1 in place of the modified stannic oxide-dichloromethane-dimethyl-tungstate-tungstate-silicon-oxide silicon complex methanol sol which is the component (A) prepared in Preparation Example 5, the preparation was carried out in Preparation Example 4 A coating composition was prepared in the same manner as in Example 1, except that the prepared component (A), ie, the modified oxidized stannic stannic acid oxidized zirconium oxidized tungsten oxidized silicon complex methanol sol was used. Similarly, a cured film and an antireflection film were formed on the lens substrate eye. Table 1 shows the evaluation results.
  • a coating composition was prepared in the same manner as in Example 1 except that ⁇ -glycidoxypropinoletrimethoxysilane was used in place of ⁇ -glycidoxypropinoletrimethoxysilane.
  • a cured film and an antireflection film were formed on the lens substrate eye. Table 1 shows the evaluation results.
  • Example 1 a coating composition was prepared in the same manner as in Example 1 except that ⁇ -methacryloxypropyltrimethoxysilane was used instead of ⁇ -glycidoxypropinoletrimethoxysilane, and a lens was formed in the same manner as in Example 1. A cured film and an anti-reflection film were formed on the substrate eye. Table 1 shows the evaluation results.
  • a coating composition was prepared in the same manner as in Example 1 except that tetramethoxysilane was used instead of tetraethoxysilane in Example 1, and a cured film and an antireflection film were similarly formed on the lens substrate eye in the same manner. Formed. Table 1 shows the evaluation results.
  • a coating composition was prepared in the same manner as in Example 1, except that propylene glycol monomethyl ether (PGM) was replaced with isopronovinyl ( ⁇ ). Thus, a cured film and an antireflection film were formed on the lens substrate eye. Table 1 shows the evaluation results.
  • Example 1 a coating composition was prepared in the same manner as in Example 1 except that 1-butanol was used in place of propylene glycol monomethyl ether (PGM). An anti-reflection film was formed. Table 1 shows the evaluation results.
  • Example 1 in place of the modified stannic oxide-dichlorooxide-dimethyl-tumoxide-tungsten-silicon-dishilicon complex methanol sol which is the component (A) produced in Production Example 6, the methanol sol was produced in Production Example 4.
  • a coating composition was prepared in the same manner as in Example 1, except that the prepared component (A), ie, the modified oxidized stannic stannic acid oxidized zirconium oxidized tungsten oxidized silicon complex methanol sol was used. Similarly, a cured film and an antireflection film were formed on the lens substrate eye. Table 1 shows the evaluation results.
  • Example 1 shows the evaluation results.
  • Comparative Example 1 15 parts by weight of ⁇ - (3,4-epoxycyclohexyl) ethyltrimethoxysilane was used instead of 15 parts by weight of ⁇ -glycidoxypropyltrimethoxysilane. Except for the above, the same procedure was performed as in Comparative Example 1. Table 1 shows the evaluation results.
  • the plastic lens obtained by the production method of the present invention is obtained by coating a plastic substrate with modified colloidal particles of modified stannic acid-stannic acid-idizirconium complex having specific properties and an organosilicon compound. It has a cured film made of a material, and has excellent aesthetics and good water resistance, moisture resistance, light resistance, antistatic properties, heat resistance, abrasion resistance and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)

Description

明 細 書
プラスチックレンズの製造方法
技術分野
[0001] 本発明は、プラスチックレンズの製造方法に関する。さらに詳しくは、本発明は、プ ラスチック基板上に、(A)有機酸水溶液、好ましくはシユウ酸水溶液中で過酸ィ匕水素 水と金属スズを H O ZSnモル比が 2— 10、好ましくは 2— 4の範囲を保ち、酸化スズ
2 2
濃度が 40重量%以下になるように反応させることにより生成した粒子径カ 一 50nm の酸ィ匕第二スズのコロイド粒子を用い作製した酸ィ匕第二スズー酸ィ匕ジルコニウム複合 体コロイドの表面を、 2— 7nmの酸ィ匕タングステン 酸ィ匕第二スズ一二酸ィ匕珪素複合 体のコロイド粒子で被覆することによって形成された、粒子径 4. 5— 60nmの変性さ れた酸ィ匕第二スズー酸ィ匕ジルコニウムのコロイド粒子と、 (B)有機珪素化合物を含有 したコーティング組成物を塗工して硬化膜を施すプラスチックレンズの製造方法に関 する。
本発明のプラスチックレンズは、眼鏡用レンズに特に好ましく用いられる。 背景技術
[0002] 既に種々のプラスチック基板上に硬化膜を施したプラスチックレンズが知られて!/ヽる その一例として、プラスチックレンズの表面を改良するために、この表面に適用され るハードコート剤の成分として、高い屈折率を有する金属酸ィ匕物のゾルが用いられて いる。
例えば、特許文献 1には、酸ィ匕第二スズのコロイド粒子と酸ィ匕ジルコニウムのコロイ ド粒子とがこれらの酸化物の重量に基づいて ZrO /SnOとして 0. 02—1. 0の比率
2 2
に結合した構造と 4一 50nmの粒子径を有する酸ィ匕第二スズー酸ィ匕ジルコニウムの複 合体コロイド粒子を核としてその表面力 0. 1一 100の WO /SnO重量比と、 0. 1
3 2
一 100の SiO /SnO重量比と、 2— 7nmの粒子径を有する酸化タングステン一酸化
2 2
第二スズ一二酸ィ匕珪素複合体のコロイド粒子で被覆されることによって形成された粒 子径 4. 5— 60nmの変性された酸ィ匕第二スズー酸ィ匕ジルコニウム複合体コロイド粒子 と、有機珪素化合物カゝらなるコーティング組成物を用いて硬化膜を施したプラスチック レンズが開示されている。カゝかるプラスチックレンズは、優れた審美性、耐候性、耐擦 傷性及び耐湿性などを有すると共に、さらにその上に蒸着膜を施しても、前記物性の 変化がほとんどないと特許文献 1には記載されている(特許文献 1、特許請求の範囲 を参照)。
[0003] 特許文献 1:特開 2000-281344号公報
発明の開示
[0004] 従来、硬化膜などの機能膜、また、力かる硬化膜を施したプラスチックレンズの耐擦 傷性を評価する方法として、スチールウールテストが用いられてきた。しかし、スチー ルウールテストは、数値で評価するものでないため、評価方法として、近年 Bayerテス トで耐擦傷性を評価する動きが広がって 、る。
前記特開 2000-281344号公報に記載の変性酸ィ匕第二スズ-酸ィ匕ジルコニウムゾ ルを含有するハードコート剤を用いてなる硬化膜を有するプラスチックレンズは、前記 Bayerテストで評価した場合にぉ ヽて、さらなる耐擦傷性を向上させることが望まれる 本発明は、カゝかる課題を解決するためになされたもので、その目的は、紫外線照射 による黄変の防止性や密着性などの諸物性を損なわずに、耐擦傷性を高めた、高い 屈折率を有する硬化膜を施したプラスチックレンズの製造方法を提供することにある
[0005] 本発明者らは前記目的を達成するため鋭意検討した結果、特定の性状を有する酸 化第二スズー酸ィ匕ジルコニウム複合体コロイド粒子を核として、その表面が特定の性 状を有する酸化タングステン -酸化第二スズ -二酸化珪素複合体のコロイド粒子で被 覆されてなる、特定の粒子径を有する変性された酸ィ匕第二スズー酸ィ匕ジルコニウム複 合体コロイド粒子と、有機珪素化合物とを含むコーティング組成物を、プラスチック基 板上に塗工して硬化膜を施すことにより、前記課題を解決し得ることを見出した。本 発明は力かる知見に基づいて完成したものである。
すなわち、本発明は
(1)プラスチック基板上に、(A)金属スズと有機酸と過酸化水素との反応により得られ た酸化第二スズのコロイド粒子と、酸化ジルコニウムのコロイド粒子と力 これらの酸 化物の重量に基づいて ZrO /SnOとして 0. 02-1. 0の比率に結合した構造と 4
2 2
一 50nmの粒子径を有する酸ィ匕第二スズー酸ィ匕ジルコニウム複合体コロイド粒子を核 として、その表面が 0. 1— 100の WO /SnO重量比と、 0. 1
3 2 一 100の SiO /SnO
2 2 重量比と、 2— 7nmの粒子径を有する酸ィ匕タングステン 酸ィ匕第二スズ一二酸ィ匕珪素 複合体のコロイド粒子で被覆されることによって形成された粒子径 4. 5— 60nmの変 性された酸ィ匕第二スズー酸ィ匕ジルコニウム複合体コロイド粒子と、 (B)有機珪素化合 物とを含むコーティング組成物を塗工して硬化膜を施すプラスチックレンズの製造方 法、
(2)前記有機酸が、シユウ酸又はシユウ酸を主成分として含む有機酸である上記(1) に記載のプラスチックレンズの製造方法、
(3)前記変性された酸ィ匕第二スズ-酸ィ匕ジルコニウム複合体コロイド粒子が、下記 (a )工程、(b)工程、(c)工程、(d)工程、(e)工程及び (f)工程を含む工程によって製 造される上記(1)に記載のプラスチックレンズの製造方法、
(a)工程:有機酸水溶液中において、過酸化水素水と金属スズを H O ZSnモル比
2 2
が 2— 4の範囲を保ち、酸化スズ濃度が 40重量%以下になるように反応させ、粒子径 力 一 50nmの酸化第二スズのコロイド粒子を生成させる工程、
(b)工程: (a)工程で得た 4一 50nmの粒子径を有する酸ィ匕第二スズのコロイド粒子 をその酸ィ匕物 SnOとして 0. 5— 50重量%の濃度に含有する酸ィ匕第二スズ水性ゾル
2
と、 ZrOとして 0. 5 50重量%濃度のォキシジルコニウム塩の水溶液とを、これらに
2
基づく ZrO /SnOとして 0. 02-1. 0の重量比に混合する工程、
2 2
(c)工程:(b)工程によって得られた混合液を 60— 200°Cで、 0. 1— 50時間加熱処 理することにより、 4一 50nmの粒子径を有する酸ィ匕第二スズー酸ィ匕ジルコニウム複合 体水性ゾルを生成させる工程、
(d)工程:タングステン酸塩、スズ酸塩及び珪酸塩を WO /SnO重量比として 0. 1
3 2
一 100、 SiO /SnO重量比として 0. 1— 100の比率に含有する水溶液を調製し、
2 2
その水溶液中に存在する陽イオンを除去して得られる酸ィ匕タングステン 酸ィ匕第ニス ズ -二酸化珪素複合体ゾルを生成させる工程、 (e)工程: (c)工程で得られた酸ィ匕第二スズー酸ィ匕ジルコニウム複合体水性ゾルを、 それに含まれる ZrOと SnOの合計として 100重量部と、(d)工程で得られた 2— 7n
2 2
mの粒子径と 0. 1 100の WO /SnO重量比と 0. 1 100の SiO /SnO重量比
3 2 2 2 を有する酸化タングステン一酸化第二スズ一二酸化珪素複合体ゾルを、これに含まれ る WOと SnOと SiOの合計として 2— 100重量部の比率に 0— 100°Cで混合するこ
3 2 2
とにより、変性された酸ィ匕第二スズー酸ィ匕ジルコニウム複合体水性ゾルを生成させる 工程、及び
(f)工程: (e)工程で得られた変性された酸ィ匕第二スズー酸ィ匕ジルコニウム複合体水 性ゾルを陰イオン交換体と接触させることにより、当該ゾル中に存在する陰イオンを 除去する工程
(4)有機酸水溶液が、シユウ酸水溶液又はシユウ酸を主成分として含む有機酸水溶 液である上記(3)に記載のプラスチックレンズの製造方法である。
本発明で使用するコーティング組成物の一成分である、酸ィ匕タングステン 酸ィ匕第 ニスズ一二酸ィ匕珪素複合体のコロイド粒子によって表面変性された酸ィ匕第ニスズー酸 化ジルコニウム複合体コロイド粒子のゾルはコロイド色を呈し、その乾燥塗膜は約 1.
8以上の高い屈折率を示す。そして力かるコロイドと、有機珪素化合物を含有するコ 一ティング組成物を用いて、プラスチック基材上に硬化膜を施してなるプラスチックレ ンズは、審美性に優れるとともに、耐水性、耐湿性、耐光性、帯電防止性、耐熱性、 耐摩耗性等も良好である。
従来の方法で得られた変性された酸ィ匕第二スズー酸ィ匕ジルコニウム複合体コロイド 粒子のゾルは、ゾル中の粒子の形状が紡錘状であり、高濃度で安定に存在すること が困難であつたのに対して、本発明で使用する変性された酸化第二スズ一酸化ジル コニゥム複合体コロイド粒子のゾルは球状の粒子形状を有し、高濃度でも安定に存 在することが可能である。
例えば、従来の方法で得られた変性された酸ィ匕第二スズー酸ィ匕ジルコニウム複合 体コロイド粒子のゾルは、粒子濃度力 S47. 0重量0 /0において、 100cm3のメスシリンダ 一に B型粘度計の No . 1のローターにて 60rpmの回転速度で粘度を測定した場合 に、 15c. p. (15mPa' s)である。 一方、本発明のプラスチックレンズで使用される、変性された酸化第二スズ一酸化ジ ルコ -ゥム複合体コロイド粒子のゾルは、粒子濃度力 S47. 4重量%において、 100c m3のメスシリンダー中で B型粘度計の No . 1のローターで 60rpmの回転速度で粘度 を測定した場合に、 5. 5c. p. (5. 5mPa' s)である。
また、本発明の変性された酸ィ匕第二スズー酸ィ匕ジルコニウム複合体コロイド粒子の ゾルは特に塗膜とした場合の膜硬度が従来のものに比べ格段に向上して 、る。これ は従来の紡錘状の粒子形状とは異なり、球状の粒子形状を有しているため、塗膜中 での粒子のパッキング性が向上したためと推測される。
このゾルは、 pHほぼ 1一 10において安定であり、工業製品として供給されるに充分 な安定性も与えることができる。
このゾルは、そのコロイド粒子が負に帯電しているから、他の負帯電のコロイド粒子 力 なるゾルなどとの混和性が良好であり、例えばシリカゾル、五酸化アンチモンゾル 、ァ-オン性又はノ-オン性の界面活性剤、ポリビュルアルコール等の水溶液、 Ύ二 オン性又はノ-オン性の榭脂ェマルジヨン、水ガラス、りん酸アルミニウム等の水溶液 、ェチルシリケイトの加水分解液、 γ—グリシドキシプロピルトリメトキシシラン等のシラ ンカップリング剤の加水分解液などの如き分散体と安定に混合し得る。
このような性質を有するゾルと有機珪素化合物を含むコーティング組成物を用いて 、プラスチックレンズ上に硬化膜を形成させた場合、メガネ用プラスチックレンズの屈 折率、耐薬品性、耐水性、耐湿性、耐光性、耐候性、耐摩耗性等を向上させることが 可能となる。
発明を実施するための最良の形態
本発明は、プラスチック基板上に、(Α)金属スズと有機酸と過酸化水素との反応に より得られた酸ィ匕第二スズのコロイド粒子と、酸ィ匕ジルコニウムのコロイド粒子とが、こ れらの酸化物の重量に基づいて ZrO /SnOとして 0. 02-1. 0の比率に結合した
2 2
構造と 4一 50nmの粒子径を有する酸ィ匕第二スズー酸ィ匕ジルコニウム複合体コロイド 粒子を核として、その表面が 0. 1— 100の WO /SnO重量比と、 0. 1一 100の SiO
3 2
/SnO重量比と、 2— 7nmの粒子径を有する酸ィ匕タングステン 酸ィ匕第二スズ一二
2 2
酸ィ匕珪素複合体のコロイド粒子で被覆されることによって形成された粒子径 4. 5— 6 Onmの変性された酸ィ匕第二スズー酸ィ匕ジルコニウム複合体コロイド粒子と、 (B)有機 珪素化合物とを含むコーティング組成物を塗工して、硬化膜を施すプラスチックレン ズの製造方法である。
[0008] 本発明で使用するコーティング組成物の一成分である、(A)成分のゾルの製造に 用いられる核粒子としての酸ィ匕第二スズー酸ィ匕ジルコニウム複合体コロイド粒子のゾ ルは、上記 (a)工程と (b)工程及び (c)工程力もなる方法で製造する事ができる。
(a)工程に用いられる酸ィ匕第二スズのコロイド粒子は、有機酸水溶液中で過酸化水 素水と金属スズを H O ZSnモル比が 2— 4の範囲を保ち、酸化スズ濃度が 40重量
2 2
%以下になるように反応させ生成させることにより、粒子径カ 一 50nmの酸ィ匕第ニス ズのコロイド粒子として得ることができる。
この際、有機酸水溶液中に、過酸化水素水と金属スズを H O ZSnモル比が 2— 4
2 2
の範囲に保ちながら添加するものである。過酸ィ匕水素水と金属スズはそれらの全量 を一度に有機酸水溶液中に添加することもできるが、数回に分け、交互に添加する 方法が好ましい。過酸ィ匕水素水と金属スズの添加順序に定めはないが、 H 2 O 2 ZSn モル比が 2— 4の範囲に保たれていることが肝要である。通常は、過酸化水素水と金 属スズを添カ卩して、その反応が終了するのを待って次の過酸ィ匕水素水と金属スズの 添加に移る。 1回の反応時間は添加量にもよる力 通常 5— 10分程度であり、次の過 酸化水素水と金属スズの添加を行う。
[0009] (a)工程に用いられる有機酸と過酸ィ匕水素と金属スズの重量割合は、通常、有機 酸:過酸化水素:金属スズ =0. 21-0. 53 :0. 57-1. 15 : 1. 0である。
有機酸水溶液としては、シユウ酸水溶液又はシユウ酸を主成分として含む有機酸水 溶液が好ましいが、シユウ酸水溶液のみを用いることで特に好ましく製造することがで きる。シユウ酸を主成分として含む有機酸水溶液とは、全有機酸中で 80重量%以上 のシユウ酸を含む有機酸の水溶液であり、残部はギ酸、酢酸等の有機酸を含有する ことができる。これらの有機酸水溶液は、好ましくは濃度 1一 30重量%、さらに好まし くは 4一 10重量%の範囲で使用することができる。
[0010] 酸ィ匕第ニスズゾルの媒体は、水、親水性有機溶媒及びこれらの混合物の!/、ずれで もよいが、媒体が水である水性ゾルが好ましい。また、ゾルの pHとしては、ゾルを安 定ならしめる値がよぐ通常、 0. 2— 11程度がよい。本発明の目的が達成される限り 、酸ィ匕第ニスズゾルには、任意の成分、例えば、ゾルの安定ィ匕のためのアルカリ性物 質、酸性物質、ォキシカルボン酸等が含まれていてもよい。用いられる酸ィ匕第二スズ ゾルの濃度としては、酸ィ匕第二スズとして 0. 5— 50重量%程度であるが、この濃度は 低い方がよぐ好ましくは 1一 30重量%である。
[0011] 酸ィ匕第二スズー酸ィ匕ジルコニウム複合体ゾルは、上記酸ィ匕第二スズゾルにォキシジ ルコ-ゥム塩を ZrO /SnO重量比が 0. 02-1. 0になるように、通常 0— 100°Cで 0
2 2
. 5— 3時間程度混合する(b)工程、次いでこれを 60— 200°C、 0. 1— 50時間加熱 処理する(c)工程により得ることができる。
用いるォキシジルコニウム塩としては、ォキシ塩化ジルコニウム、ォキシ硝酸ジルコ ユウム、ォキシ硫酸ジルコニウム、ォキシ酢酸ジルコニウムなどのォキシ有機酸ジルコ ユウム、ォキシ炭酸ジルコニウム等がある。これらのォキシジルコニウム塩は固体又は 水溶液として用いることができる力 ZrOとして 0. 5— 50重量%程度の水溶液として
2
用いるのが好ましい。ォキシ炭酸ジルコニルのように、水に不溶の塩も混合される酸 化第二スズが酸性ゾルの場合は使用することが可能である。
酸ィ匕第ニスズゾルは特にァミンなどの有機塩基で安定ィ匕されたアルカリ性のゾルを 用いるのが好ましぐォキシジルコニウム塩との混合は、通常 0— 100°C、好ましくは 室温一 60°C程度がよ!ヽ。そしてこの混合は撹拌下で酸ィ匕第ニスズゾルにォキシジル コ -ゥム塩をカ卩えても、ォキシジルコ -ゥム塩水溶液に酸ィ匕第ニスズゾルをカ卩えても よいが、後者の方が好ましい。この混合は充分行われる必要があり、 0. 5— 3時間程 度が好ましい。
[0012] 本発明にお 、て、被覆ゾルとして用いられ、 (d)工程で得られる酸ィ匕タングステン 酸化第二スズ -二酸化珪素複合体ゾルに含まれる WO
3、 SnO及び SiO複合体コロ 2 2 イド粒子は、電子顕微鏡によって粒子径を観測することができ、その粒子径は 2— 7n m、好ましくは 2— 5nmである。このゾルのコロイド粒子の分散媒としては、水、親水性 有機溶媒及びこれらの混合物のいずれも可能である。このゾルは、 WO
3、 SnO及び 2
SiOを WO /SnO重量比として 0. 1 100、 SiO /SnO重量比として 0. 1 10
2 3 2 2 2
0の比率に含有する。このゾルに含まれる WO、 SnO及び SiOの合計の濃度は、通 常 40重量%以下、実用上好ましくは 2重量%以上、好ましくは 5— 30重量%である。 このゾルは、 1一 9程度の pHを示し、無色透明乃至僅かにコロイド色を有する液であ る。そして、室温では 3ヶ月以上、 60°Cでも 1ヶ月以上安定であり、このゾル中に沈降 物が生成することがなぐまた、このゾルが増粘したり、ゲルィ匕を起すようなことはない
[0013] (d)工程で得られる酸ィ匕タングステン (WO )、酸化第二スズ (SnO )及び二酸化珪
3 2
素(SiO )の複合体コロイド粒子を含有する安定な酸ィ匕タングステン 酸ィ匕第二スズー
2
二酸化珪素複合体ゾルは、例えば
(d-1)工程:タングステン酸塩、スズ酸塩及び珪酸塩を WO /SnO重量比として 0.
3 2
1一 100、 SiO /SnO重量比として 0. 1— 100の比率に含有した水溶液を調製す
2 2
る工程、及び
(d-2)工程: (d-1)工程で得られた水溶液中に存在する陽イオンを除去する工程、 を施すことにより製造することができる。
[0014] (d-1)工程で用いられるタングステン酸塩、スズ酸塩および珪酸塩の例としては、 アルカリ金属、アンモ-ゥム、ァミン等のタングステン酸塩、スズ酸塩および珪酸塩等 が挙げられる。これらアルカリ金属、アンモ-ゥム及びァミンの好ましい例としては、 Li 、 Na、 K、 Rb、 Cs、 NH +、あるいはェチルァミン、トリエチルァミン、イソプロピルアミ
4
ン、 n プロピルァミン、イソブチルァミン、ジイソブチルァミン、ジ(2—ェチルへキシル )ァミン等のアルキルアミン;ベンジルァミン等のァラルキルァミン;ピぺリジン等の脂 環式ァミン;モノエタノールァミン、トリエタノールァミン等のアルカノールァミンなどが 挙げられる。特に、タングステン酸ナトリウム(Na WO · 2Η 0)、スズ酸ナトリウム(Na
2 4 2
SnO · 3Η O)及び珪酸ナトリウム (水ガラス)が好ましい。また、酸化タングステン、タ
2 3 2
ングステン酸、スズ酸、珪酸等をアルカリ金属水酸ィ匕物の水溶液に溶解したものも使 用することが出来る。また珪酸塩として活性珪酸にェチルァミン、トリェチルァミン、ィ ソプロピルァミン、 n プロピルァミン、イソブチルァミン、ジイソブチルァミン、ジ(2—ェ チルへキシル)ァミン等のアルキルアミンを添カ卩して得られるアミンシリケートや第 4級 アンモニゥムシリケートも使用する事ができる。
[0015] (d-1)工程の水溶液の調製方法としては、タングステン酸塩、スズ酸塩、珪酸塩の 各粉末を水に溶解させ水溶液を調製する方法や、タングステン酸塩水溶液、スズ酸 塩水溶液、及び珪酸塩水溶液を混合して水溶液を調製する方法や、タングステン酸 塩とスズ酸塩の粉末及び珪酸塩の水溶液を水に添加して水溶液を調製する方法等 が挙げられる。
(d)工程のゾルの製造に用いられるタングステン酸塩の水溶液は、 WOとして 0. 1
3 一 15重量%濃度のものが好ましいが、これ以上の濃度でも使用可能である。
(d)工程のゾルの製造に用いられるスズ酸塩の水溶液としては、 SnO濃度 0. 1—
2
30重量%程度が好ましいが、これ以上の濃度でも使用可能である。
また、(d)工程のゾルの製造に用いられる珪酸塩の水溶液としては、 SiO濃度 0. 1
2 一 30重量%程度が好ましいが、これ以上の濃度でも使用可能である。
(d-1)工程での水溶液の調製は攪拌下に、室温一 100°C程度、好ましくは、室温 一 60°C位で行うのがよい。混合すべき水溶液は、 WO /SnO重量比として 0. 1-1
3 2
00、 SiO /SnO重量比として 0. 1— 100になるように用いられる。
2 2
[0016] (d-2)工程は (d— 1)工程で得られた水溶液中に存在する陽イオンを除去する工程 である。脱陽イオン処理の方法としては水素型イオン交換体と接触させる方法や塩 析により行うことができる。ここで用いられる水素型陽イオン交換体としては、通常用 いられるものであり、例えば市販品の水素型陽イオン交換榭脂を用いることが出来る
[0017] (d-1)工程及び (d— 2)工程を経て得られた水性ゾルは、濃度が低 ヽときには所望 に応じ、この水性ゾルを通常の濃縮方法、例えば、蒸発法、限外濾過法等により、ゾ ルの濃度を高めることができる。特に、限外濾過法は好ましい。この濃縮においても、 ゾルの温度は約 100°C以下、特に 60°C以下に保つことが好ましい。
(d)工程の水性ゾルの水を親水性有機溶媒で置換することによりオルガノゾルと呼 ばれる親水性有機溶媒ゾルが得られる。
[0018] (d)工程で得られた酸ィ匕タングステン 酸ィ匕第二スズ一二酸ィ匕珪素複合体ゾルは、 酸ィ匕第二スズと酸ィ匕タングステンと二酸ィ匕珪素が原子レベルで均一に複合(固溶)し て得られた酸ィ匕タングステン 酸ィ匕第二スズ一二酸ィ匕珪素カゝらなる複合体粒子を含 有する。従って、酸ィ匕タングステンゾル、酸ィ匕第ニスズゾル及び二酸ィ匕珪素ゾルの 3 種のゾルを単に混合して得られるものではない。
酸ィ匕タングステン 酸ィ匕第二スズ一二酸ィ匕珪素複合体ゾルは、酸ィ匕タングステン 酸ィ匕第二スズ一二酸ィ匕珪素複合体粒子が固溶体を形成している為に、溶媒置換に よっても酸ィ匕タングステン粒子、酸化第二スズ粒子及び二酸化珪素粒子に分解する 事はない。
酸ィ匕タングステン 酸ィ匕第二スズ一二酸ィ匕珪素複合体ゾルは、酸ィ匕タングステン 酸ィ匕第二スズ複合体ゾルに比べ、基材に被覆して被膜を形成した際に、耐水性、耐 湿性、及び耐候性が向上する。
(d)工程で得られたゾル中の WO /SnO重量比は、上述のように 0. 1— 100であ
3 2
る。該重量比が 0. 1未満では、ゾルが不安定であり、また、この重量比が 100を越え ると、やはりゾルは安定性を示さない。高い pHの水性ゾルから上記オルガノゾルをつ くる際に加えられるォキシカルボン酸も、ゾルの安定化に貢献するが、その添加量は ゾル中の WO、 SnO及び SiOの合計に対し 30重量%未満であることが好ましい。
3 2 2
該添加量が 30重量 %以上と多 、と、このようなゾルを用いて得られる乾燥塗膜の耐水 性が低下する原因となる。用いられるォキシカルボン酸の例としては、乳酸、酒石酸、 クェン酸、ダルコン酸、リンゴ酸、グリコール等が挙げられる。また、アルカリ成分として は、 Li、 Na、 K、 Rb、 Cs等のアルカリ金属水酸化物、 NH +、あるいはェチルァミン、ト
4
リエチルァミン、イソプロピルァミン、 n プロピルアミン等のアルキルァミン;ベンジル ァミン等のァラルキルァミン;ピぺリジン等の脂環式ァミン;モノエタノールァミン、トリエ タノールァミン等のアルカノールァミン等が挙げられる。これらは 2種以上を混合して 含有することができる。また、上記の酸性成分と併用することもできる。ゾル中のアル カリ金属、アンモ-ゥム、ァミン、ォキシカルボン酸等の量に対応して、そのゾルの pH が変わる。ゾルの pHが 1未満ではゾルは不安定であり、 pHが 9を越えると、酸化タン ダステン、酸化第二スズおよび二酸化珪素複合体コロイド粒子が液中で溶解し易 ヽ 。ゾル中の WO、 SnO及び SiOの合計濃度力 0重量%を超えると、ゾルはやはり
3 2 2
安定性に乏しい。この濃度が薄すぎると非実用的であり、工業製品として好ましい濃 度は 5— 30重量%である。
濃縮法として限外濾過法を用いると、ゾル中に共存しているポリア-オン、極微小 粒子等が水と一緒に限外據過膜を通過するので、ゾルの不安定ィ匕の原因であるこれ らポリア-オン、極微小粒子等をゾルから除去することができる。
[0020] (e)工程は、(c)工程で得られた酸ィ匕第二スズー酸ィ匕ジルコニウム複合体水性ゾル を、それに含まれる ZrOと SnOの合計として 100重量部と、(d)工程で得られた 2—
2 2
7nmの粒子径と 0. 1 100の WO /SnO重量比と 0. 1 100の SiO /SnO重量
3 2 2 2 比を有する酸化タングステン一酸化第二スズ一二酸化珪素複合体ゾルを、これに含ま れる WOと SnOと SiOの合計として 2— 100重量部の比率に 0— 100°Cで混合する
3 2 2
工程である。
(e)工程により、酸ィ匕タングステン 酸ィ匕第二スズ一二酸ィ匕珪素複合体ゾルのコロイ ド粒子を酸ィ匕第二スズー酸ィ匕ジルコニウム複合体ゾルのコロイド粒子表面に結合させ て、当該表面を上記酸ィ匕タングステン 酸ィ匕第二スズ一二酸ィ匕珪素複合体のコロイド 粒子で被覆することにより、そのコロイド粒子を核としてその表面が酸ィ匕タングステン -酸化第二スズ -二酸化珪素複合体の性質を有するように変性された酸化第二スズ 酸ィ匕ジルコニウム複合体コロイド粒子を生成させることができ、そしてこの変性され た酸ィヒ第二スズー酸ィヒジルコニウム複合体コロイド粒子が液媒体に安定に分散した ゾルとして得ることができる。
(e)工程では、 (d)工程で調製した酸ィ匕タングステン 酸ィ匕第二スズ一二酸ィ匕珪素 複合体ゾルと、 (c)工程で調製した酸ィ匕第二スズー酸ィ匕ジルコニウム複合体水性ゾル を混合した後、更にァミンで安定ィ匕した活性珪酸を添加して 1一 3時間攪拌すること により、(e)工程の複合体コロイド粒子が液媒体に分散したゾルとすることもできる。ァ ミンで安定ィ匕した活性珪酸は、例えば珪酸ソ一ダを陽イオン交換した後に、以下に 例示されるァミンを添加して得られる。そのアミンは例えば、ェチルァミン、トリェチル ァミン、イソプロピルァミン、 n プロピルァミン、ジイソブチルァミン等のアルキルアミン ;ベンジルァミン等のァラルキルァミン;ピぺリジン等の脂環式ァミン;モノエタノールァ ミン、トリエタノールァミン等のアルカノールァミンが例示され、好ましくはジイソブチル ァミン等のアルキルァミンが例示される。
[0021] 酸ィ匕タングステン 酸ィ匕第二スズ一二酸ィ匕珪素複合体のコロイド粒子によって変性 されたこれらの酸ィ匕第二スズー酸ィ匕ジルコニウム複合体コロイド粒子のゾルは、この酸 化第二スズー酸ィ匕ジルコニウム複合体ゾルをその金属酸ィ匕物(ZrO +SnO )として 1
2 2
00重量部と、上記酸化タングステン一酸化第二スズ一二酸化珪素複合体ゾルをこの ゾルの WO、 SnO及び SiOの合計として 2— 100重量部の比率に、好ましくは強撹
3 2 2
拌下に混合する(e)工程、次いでこの混合ゾルカゝらゾル中の陰イオンを除去する (f) 工程により得られる。
[0022] 上記 (e)工程の混合によって得られたゾル中の変性された酸ィ匕第ニスズー酸ィ匕ジ ルコ -ゥム複合体コロイド粒子は、電子顕微鏡によって観察することができ、ほぼ 4. 5 一 60nmの粒子径を有する。上記混合によって得られたゾルは pHほぼ 1一 9を有し ているが、改質のために用いたォキシジルコニウム塩に由来する Cl—、 NO―
2、 CH C 3 oo—などのァ-オンを多く含有して 、るために、コロイド粒子はミクロ凝集を起こして おり、ゾノレの透明'性が低くなつている。
上記混合によって得られたゾル中のァ-オンを (f)工程にて陰イオンを除去するこ とにより、透明性の良い、安定な変性された酸ィ匕第二スズー酸ィ匕ジルコニウム複合体 コロイド粒子のゾルを得ることができる。
[0023] (f)工程の陰イオン除去は上記混合によって得られたゾルを水酸基型陰イオン交 換榭脂で、通常 100°C以下、好ましくは室温一 60°C位の温度で処理することにより 得られる。水酸基型陰イオン交換榭脂は市販品を用いることができるが、アンバーラ イト IRA-410のような強塩基型のものが好ましい。
(f)工程の水酸基型陰イオン交換榭脂による処理は (e)工程での混合によって得ら れたゾルの金属酸ィ匕物濃度が 1一 10重量%で行うのが特に好ましい。
[0024] (a)一 (f)工程により得られた変性された酸ィ匕第二スズー酸ィ匕ジルコニウム複合体ゾ ルの濃度を更に高めたいときには、最大約 50重量%まで常法、例えば蒸発法、限外 濾過法等により濃縮することができる。またこのゾルの pHを調整したい時には、濃縮 後に、前記アルカリ金属、アンモ-ゥム等の水酸ィ匕物、前記ァミン、ォキシカルボン酸 等をゾルにカ卩えることによって行うことができる。特に、上記金属酸化物(ZrO +SnO
2
)と (WO +SnO +SiO )の合計濃度が 10— 50重量%であるゾルは実用的に好ま
2 3 2 2
しい。
(f)工程より得られた変性された酸ィ匕第二スズー酸ィ匕ジルコニウム複合体ゾル中の コロイド粒子は、ェチルシリケート、メチルトリメトキシシラン、 γ—グリシドキシプロピル トリメトキシシラン等のシランィ匕合物又はその加水分解物で、部分的に又は全面的に 表面を被覆する事ができる。
[0025] 上記混合によって得られた変性された酸ィ匕第二スズー酸ィ匕ジルコニウム複合体ゾル が水性ゾルであるときは、この水性ゾルの水媒体を親水性有機溶媒で置換すること によりオルガノゾルが得られる。この置換は、蒸留法、限外濾過法等通常の方法によ り行うことができる。この親水性有機溶媒の例としてはメチルアルコール、ェチルアル コール、イソプロピルアルコール等の低級アルコール;ジメチルホルムアミド、 Ν, Ν,一 ジメチルァセトアミド等の直鎖アミド類; Ν—メチルー 2—ピロリドン等の環状アミド類;ェ チノレセロソルブ、プロピレングリコーノレモノメチノレエーテル、エチレングリコーノレ等の グリコール類等が挙げられる。
上記水と親水性有機溶媒との置換は、通常の方法、例えば、蒸留置換法、限外濾 過法等によって容易に行うことができる。
[0026] 本発明による酸ィ匕タングステン 酸ィ匕第二スズ一二酸ィ匕珪素複合体のコロイド粒子 によって表面が被覆され変性された酸ィ匕第二スズー酸ィ匕ジルコニウム複合体コロイド 粒子はゾル中で負に帯電して ヽる。上記酸化第二スズ一酸化ジルコニウム複合体コ ロイド粒子は陽に帯電しており、酸ィ匕タングステン 酸ィ匕第二スズ一二酸ィ匕珪素複合 体のコロイド粒子は負に帯電している。従って、(e)工程での混合によりこの陽に帯電 して 、る酸ィ匕第二スズー酸ィ匕ジルコニウム複合体コロイド粒子の周りに負に帯電して いる酸化タングステン一酸化第二スズ一二酸化珪素複合体のコロイド粒子が電気的に 引き寄せられ、そして陽帯電のコロイド粒子表面上に化学結合によって酸ィ匕タンダス テン 酸ィ匕第二スズ一二酸ィ匕珪素複合体のコロイド粒子が結合し、この陽帯電の粒子 を核としてその表面を酸ィ匕タングステン 酸ィ匕第二スズ一二酸ィ匕珪素複合体のコロイ ド粒子が覆ってしまうことによって、変性された酸ィ匕第二スズー酸ィ匕ジルコニウム複合 体コロイド粒子が生成したものと考えられる。
[0027] 但し、核ゾルとしての粒子径 4一 50nmの酸化第二スズ一酸化ジルコニウム複合体 コロイド粒子と、被覆ゾルとしての酸ィ匕タングステン 酸ィ匕第二スズ一二酸ィ匕珪素複合 体コロイド粒子とを混合するときに、核ゾルの金属酸ィ匕物(ZrOと SnO ) 100重量部 に対し、被覆ゾルの金属酸化物 (WO +SnO +SiO )の合計量が 2重量部より少な
3 2 2
いと、安定なゾルが得られにくい。このことは、酸ィ匕タングステン 酸ィ匕第二スズ一二酸 化珪素複合体のコロイド粒子の量が不足するときには、この複合体のコロイド粒子に よる酸ィ匕第二スズー酸ィ匕ジルコニウム複合体コロイド粒子を核とするその表面の被覆 が不充分となり、生成コロイド粒子の凝集が起こり易ぐ生成ゾルを不安定ならしめる ものと考えられる。従って、混合すべき酸化タングステン一酸化第二スズ一二酸化珪素 複合体コロイド粒子の量は、酸ィ匕第二スズー酸ィ匕ジルコニウム複合体コロイド粒子の 全表面を覆う量より少なくてもよ!、が、安定な変性された酸化第二スズ-酸化ジルコ -ゥム複合体コロイド粒子のゾルを生成せしめるに必要な最小量以上の量である。こ の表面被覆に用いられる量を越える量の酸ィ匕タングステン 酸ィ匕第二スズ一二酸ィ匕 珪素複合体コロイド粒子が上記混合に用いられたときには、得られたゾルは、酸ィ匕タ ングステン 酸ィ匕第二スズ一二酸ィ匕珪素複合体コロイド粒子のゾルと、生じた変性さ れた酸ィ匕第二スズー酸ィ匕ジルコニウム複合体コロイド粒子のゾルの安定な混合ゾル に過ぎない。
好ましくは、酸ィ匕第二スズー酸ィ匕ジルコニウム複合体コロイド粒子をその表面被覆に よって変性するには、用いられる酸ィ匕タングステン 酸ィ匕第二スズ一二酸ィ匕珪素複合 体のコロイド粒子の量は、核ゾルの金属酸化物(ZrO +SnO ) 100重量部に対し、
2 2
被覆ゾル中の金属酸化物 (WO +SnO +SiO )の合計として 100重量部以下がよ
3 2 2
い。
本発明で用いられる変性された酸ィ匕第二スズー酸ィ匕ジルコニウム複合体の好ま ヽ 水性ゾルは、 pH3— 11程度を有し、 pHが 3より低いとそのようなゾルは不安定となり 易い。また、この pHが 11を越えると、変性された酸ィ匕第二スズー酸ィ匕ジルコニウム複 合体コロイド粒子を覆っている酸ィ匕タングステン 酸ィ匕第二スズ一二酸ィ匕珪素複合体 が液中に溶解し易 ヽ。更に変性された酸ィ匕第二スズー酸ィ匕ジルコニウム複合体コロイ ド粒子のゾル中の上記金属酸化物(ZrO +SnO )と(WO +SnO +SiO )の合計
2 2 3 2 2 濃度が 60重量%を越えるときにも、このようなゾルは不安定となり易い。工業製品とし て好ましい濃度は 10— 50重量%程度である。
酸化タングステン -酸化第二スズ -二酸化珪素複合体コロイド粒子は高温で加水分 解を受け易いことから、(e)工程の混合、(f)工程の陰イオン交換および (f)工程後の 濃縮、 pH調整、溶媒置換等の際には 100°C以下が好ましい。
[0029] 本発明で使用するコーティング組成物においては、(B)成分として有機珪素化合 物が用いられる。この有機珪素化合物としては、例えば一般式 (I)
R nSi (OR2)
4-n
(式中、 R1は官能基を有する若しくは有しない一価の炭素数 1一 20の炭化水素基、 R2は炭素数 1一 8のアルキル基、炭素数 6— 10のァリール基、炭素数 7— 10のァラ ルキル基または炭素数 2— 10のァシル基、 nは 0、 1または 2を示し、 R1が複数ある場 合、複数の R1はたがいに同一でも異なっていてもよいし、複数の OR2はたがいに同 一でも異なっていてもよい。)で表される化合物、一般式 (II)
[化 1]
Figure imgf000016_0001
(式中、 R3および R4は、それぞれ同一または異なる炭素数 1一 4のアルキル基または 炭素数 2— 4のァシル基、 R5および R6は、それぞれ同一または異なる一価の炭素数 1 一 5の官能基を有する若しくは有しない炭化水素基、 Yは炭素数 2— 20の二価の炭 化水素基、 aおよび bは、それぞれ 0または 1を示し、複数の OR3は、たがいに同一で も異なっていてもよいし、複数の OR4はたがいに同一でも異なっていてもよい。)で表 される化合物およびそれらの加水分解物の中から選ばれる少なくとも 1種が挙げられ る。
[0030] 前記一般式 (I)にお 、て、 R1で示される炭素数 1一 20の一価の炭化水素基として は、炭素数 1一 20の直鎖状、分岐状、環状のアルキル基、炭素数 2— 20の直鎖状、 分岐状、環状のアルケニル基、炭素数 6— 20のァリール基、炭素数 7— 20のァラル キル基を挙げることができる。ここで、炭素数 1一 20のアルキル基としては、炭素数 1 一 10のものが好ましぐ例えばメチル基、ェチル基、 n—プロピル基、イソプロピル基、 n -ブチル基、イソブチル基、 sec -ブチル基、 tert -ブチル基、ペンチル基、へキシル 基、ォクチル基、シクロペンチル基、シクロへキシル基などが挙げられる。また、炭素 数 2— 20のァルケ-ル基としては、炭素数 2— 10のァルケ-ル基が好ましぐ例えば ビュル基、ァリル基、ブテュル基、へキセニル基、オタテュル基などが挙げられる。炭 素数 6— 20のァリール基としては、炭素数 6— 10のものが好ましぐ例えばフエ-ル 基、トリル基、キシリル基、ナフチル基などが挙げられる。炭素数 7— 20のァラルキル 基としては、炭素数 7— 10のものが好ましぐ例えばべンジル基、フエネチル基、フエ -ルプロピル基、ナフチルメチル基などが挙げられる。
[0031] これらの炭化水素基には官能基が導入されていてもよぐ該官能基としては、例え ばハロゲン原子、グリシドキシ基、エポキシ基、アミノ基、メルカプト基、シァノ基、(メタ
)アタリロイルォキシ基などが挙げられる。これらの官能基を有する炭化水素基として は、該官能基を有する炭素数 1一 10のアルキル基が好ましぐ例えば γ クロ口プロ ピル基、 3, 3, 3—トリクロ口プロピル基、クロロメチル基、グリシドキシメチル基、 ひーグ リシドキシェチル基、 j8—グリシドキシェチル基、 α—グリシドキシプロピル基、 β—ダリ シドキシプロピル基、 γ—グリシドキシプロピル基、 α—グリシドキシブチル基、 β—ダリ シドキシブチル基、 γ—グリシドキシブチル基、 δ—グリシドキシブチル基、(3, 4—ェ ポキシシクロへキシル)メチル基、 j8 (3, 4—エポキシシクロへキシル)ェチル基、 γ — (3, 4—エポキシシクロへキシル)プロピル基、 δ— (3, 4—エポキシシクロへキシル) ブチル基、 Ν— ( β—アミノエチル) Ί—ァミノプロピル基、 γ—ァミノプロピル基、 γ - メルカプトプロピル基、 j8—シァノエチル基、 γ—メタクリロイルォキシプロピル基、 γ— アタリロイルォキシプロピル基などが挙げられる。
[0032] 一方、 R2のうちの炭素数 1一 8のアルキル基は直鎖状、分岐状、環状の!/、ずれであ つてもよく、その例としては、メチル基、ェチル基、 η プロピル基、イソプロピル基、 η— ブチル基、イソブチル基、 sec ブチル基、 tert ブチル基、ペンチル基、へキシル基 、シクロペンチル基、シクロへキシル基などが挙げられ、ァリール基としては、例えば フエニル基、トリル基などが挙げられ、ァラルキル基としては、例えばべンジル基、フエ ネチル基などが挙げられる。また、ァシル基としては、例えばァセチル基などが挙げ られる。
nは 0、 1または 2であり、 R1が複数ある場合、複数の R1はたがいに同一であってもよ いし、異なっていてもよぐまた、複数の OR2はたがいに同一であってもよいし、異なつ ていてもよい。
前記一般式 (I)で表される化合物の例としては、メチルシリケート、ェチルシリケート 、 n—プロピルシリケート、イソプロピルシリケート、 n—ブチルシリケート、 sec—ブチルシ リケート、 tert ブチルシリケート、テトラァセトキシシラン、メチルトリメトキシシラン、メ チルトリプロポキシシラン、メチルトリァセトキシシラン、メチルトリブトキシシラン、メチル トリプロボキシシラン、メチルトリアミ口キシシラン、メチルトリフノキシシラン、メチルトリ ベンジルォキシシラン、メチルトリフエネチルォキシシラン、グリシドキシメチルトリメトキ シシラン、グリシドキシメチノレトリエトキシシラン、 α—グリシドキシェチノレトリメトキシシラ ン、 α—グリシドキシェチルトリエトキシシラン、 j8—グリシドキシェチルトリエトキシシラ ン、 α—グリシドキシプロピルトリメトキシシラン、 α—グリシドキシプロピルトリエトキシシ ラン、 j8 -グリシドキシプロピルトリメトキシシラン、 j8 -グリシドキシプロピルトリエトキシ シラン、 γ グリシドキシプロピルトリメトキシシラン、 γ—グリシドキシプロピルトリェトキ シシラン、 γ—グリシドキシプロピノレトリプロボキシシラン、 γ—グリシドキシプロピルトリ フエノキシシラン、 α—グリシドキシブチルトリメトキシシラン、 α—グリシドキシブチルトリ エトキシシラン、 j8—グリシドキシブチルトリメトキシシラン、 j8—グリシドキシブチルトリ エトキシシラン、 γ—グリシドキシブチルトリメトキシシラン、 γ—グリシドキシブチルトリ エトキシシラン、 δ—グリシドキシブチルトリメトキシシラン、 δーグリシドキシブチルトリ エトキシシラン、 (3, 4—エポキシシクロへキシル)メチルトリメトキシシラン、 (3, 4—ェポ キシシクロへキシル)メチルトリエトキシシラン、 j3—(3, 4 エポキシシクロへキシル)ェ チルトリメトキシシラン、 j8 (3, 4—エポキシシクロへキシル)ェチルトリエトキシシラン 、 j3 -(3, 4—エポキシシクロへキシル)ェチルトリプロポキシシラン、 J3—(3, 4ーェポキ シシクロへキシル)ェチルトリブトキシシラン、 j3—(3, 4 エポキシシクロへキシル)ェ チルトリフエノキシシラン、 γ— (3, 4—エポキシシクロへキシル)プロピルトリメトキシシ ラン、 γ—(3, 4—エポキシシクロへキシル)プロピルトリエトキシシラン、 δ— (3, 4—ェ ポキシシクロへキシノレ)ブチノレトリメトキシシラン、 δ—(3, 4—エポキシシクロへキシノレ) ブチルトリエトキシシラン、グリシドキシメチノレメチノレジメトキシシラン、グリシドキシメチ ルメチルジェトキシシラン、 α—グリシドキシェチルメチルジメトキシシラン、 α—グリシ ドキシェチルメチルジェトキシシラン、 βーグリシドキシェチルメチルジメトキシシラン、 キシシラン、 α—グリシドキシプロピルメチルジェトキシシラン、 j8—グリシドキシプロピ ルメチルジメトキシシラン、 α—グリシドキシプロピルメチルジェトキシシラン、 γ—グリシ ン、 γ—グリシドキシプロピルメチルジプロポキシシラン、 γ—グリシドキシプロピルメト キシシラン、 γ—グリシドキシプロピルメチルジフエノキシシラン、 γ—グリシドキシプロ ピルェチルジメトキシシラン、 Ύーグリシドキシプロピルェチルジェトキシシラン、 Ύーグ リシドキシプロピルビニルジメトキシシラン、 γ—グリシドキシプロピルビニルジェトキシ シラン、 γ—グリシドキシプロピルフエ二ルジメトキシシラン、 γ—グリシドキシプロピルフ ェニルジェトキシシラン、ェチルトリメトキシシラン、ェチルトリエトキシシラン、ビニルト リメトキシシラン、ビニルトリァセトキシシラン、ビニルトリエトキシシラン、フエニルトリメト キシシラン、フエニルトリエトキシシラン、フエニルトリァセトキシシラン、 Ύ クロ口プロピ ルトリメトキシシラン、 γ クロ口プロピルトリァセトキシラン、 3, 3, 3—トリフロロプロピル トリメトキシシラン、 γ—メタクリロイルォキシプロピルトリメトキシシラン、 γ メルカプトプ 口ピルトリメトキシシラン、 γ メルカプトプロピルトリエトキシシラン、 13ーシァノエチルト リエトキシシラン、クロロメチルトリメトキシシラン、クロロメチルトリエトキシシラン、 Ν-( β—アミノエチル)― γ—ァミノプロピルトリメトキシシラン、 Ν— ( β—アミノエチル)— Ύ― ァミノプロピルメチルジメトキシシラン、 γ—ァミノプロピルメチルジメトキシシラン、 Ν-( β -アミノエチル)—γ ァミノプロピルメチルジメトキシシラン、 Ν-( β -アミノエチル) —γ—ァミノプロピルメチルジェトキシシラン、ジメチルジメトキシシラン、フエニルメチル ジメトキシシラン、ジメチノレジェトキシシラン、フエニノレメチノレジェトキシシラン、 γ クロ 口プロピルメチルジメトキシシラン、 γ クロ口プロピルメチルジェトキシシラン、ジメチ タクリロイルォキシプロピルメチルジェトキシシラン、 Ί メルカプトプロピルメチルジメ トキシシラン、 γ メルカプトプロピルメチルジェトキシシラン、メチルビ二ルジメトキシ シラン、メチルビ-ルジェトキシシランなどが挙げられる。
一方、前記一般式(II)において、 R3および R4のうちの炭素数 1一 4のアルキル基と しては、メチル基、ェチル基、 n プロピル基、イソプロピル基、 n ブチル基、イソプチ ル基、 sec ブチル基、 tert ブチル基が挙げられ、炭素数 2— 4のァシル基としては 、ァセチル基が好ましく挙げられる。この R3および R4はたがいに同一であってもよいし 、異なっていてもよい。また、 R5および R6で示される一価の炭素数 1一 5の炭化水素 基としては、炭素数 1一 5のアルキル基および炭素数 2— 5のァルケ-ル基が挙げら れる。これらは直鎖状、分岐状のいずれであってもよぐアルキル基の例としては、メ チル基、ェチル基、 n -プロピル基、イソプロピル基、 n -ブチル基、 sec -ブチル基、 te rt ブチル基、ペンチル基などが挙げられ、アルケニル基としては、例えばビニル基、 ァリル基、ブテュル基などが挙げられる。
[0035] これらの炭化水素基には官能基が導入されていてもよぐ該官能基および官能基 を有する炭化水素基としては、前記一般式 (I)の R1の説明で例示したものと同じもの を挙げることができる。この R5および R6はたがいに同一であってもよいし、異なってい てもよい。 Yで示される炭素数 2— 20の二価の炭化水素基としては、炭素数 2— 10の アルキレン基およびアルキリデン基が好ましぐ例えばメチレン基、エチレン基、プロ ピレン基、ブチレン基、ェチリデン基、プロピリデン基などが挙げられる。
aおよび bは、それぞれ 0または 1を示し、複数の OR3は、たがいに同一でも異なって V、てもよ 、し、複数の OR4はたがいに同一でも異なって!/、てもよ!/、。
[0036] 前記一般式 (II)で表される化合物の例としては、メチレンビス (メチルジメトキシシラ ン)、エチレンビス(ェチルジメトキシシラン)、プロピレンビス(ェチルジェトキシシラン)
、ブチレンビス (メチルジェトキシシラン)などが挙げられる。
[0037] 本発明で使用するコーティング組成物においては、(B)成分の有機珪素化合物と して、一般式 (1)、(II)で表される化合物およびその加水分解物の中から適宜 1種選 択して用いてもよいし、 2種以上を選択し、組み合わせて用いてもよい。また、加水分 解物は、一般式 (1)、(II)で表される有機珪素化合物に、水酸ィ匕ナトリウムやアンモ- ァの水溶液などの塩基性水溶液、酢酸水溶液やクェン酸水溶液などの酸性水溶液 を添加し、携枠すること〖こより調製することができる。
[0038] 本発明で使用するコーティング組成物における前記 (A)成分の変性酸化第二スズ 酸ィヒジルコニウム複合体コロイド粒子と (B)成分の有機珪素化合物の含有割合に ついては、屈折率及び良好な透明性を得る観点から (B)成分 100重量部当たり、 (A )成分を、固形分として 1一 500重量部の割合で含有するのが好ましぐ 20— 250重 量部の割合で含有するのがより好ましぐ 50— 200重量部の割合で含有するのが特 に好ましい。
[0039] 本発明で使用されるプラスチック基板は、特に限定されない。このプラスチック基板 の材料としては、例えばメチルメタタリレート単独重合体、メチルメタタリレートと 1種以 上の他のモノマーとをモノマー成分とする共重合体、ジエチレングリコールビスァリル カーボネート単独重合体、ジエチレングリコールビスァリルカーボネートと 1種以上の 他のモノマーとをモノマー成分とする共重合体、ィォゥ含有共重合体、ハロゲン含有 共重合体、ポリカーボネート、ポリスチレン、ポリ塩化ビニル、不飽和ポリエステル、ポ リエチレンテレフタレート、ポリウレタン、ポリチォウレタンなどのプラスチック基材を挙 げることができる。審美性 (すなわち、コーティング膜とレンズ基材との屈折率差による 干渉縞の発生がない)ことを考慮すると特に、屈折率が 1. 55-1. 62であるプラスチ ックレンズが適している。
[0040] 本発明で使用するコーティング組成物には、所望により、反応を促進するために硬 ィ匕剤を、種々の基材となるレンズとの屈折率をあわせるために微粒子金属酸ィ匕物を、 また塗布時における濡れ性を向上させ、硬化膜の平滑性を向上させる目的で各種の 有機溶剤や界面活性剤を含有させることもできる。さらに、紫外線吸収剤、酸化防止 剤、光安定剤等も硬化膜の物性に影響を与えない限り添加することも可能である。
[0041] 前記硬ィ匕剤の例としては、ァリルァミン、ェチルァミンなどのアミン類、またルイス酸 やルイス塩基を含む各種酸や塩基、例えば有機カルボン酸、クロム酸、次亜塩素酸 、ホウ酸、過塩素酸、臭素酸、亜セレン酸、チォ硫酸、オルトケィ酸、チォシアン酸、 亜硝酸、アルミン酸、炭酸などを有する塩または金属塩、さらにアルミニウム、ジルコ ユウム、チタニウムを有する金属アルコキシドまたはこれらの金属キレートイ匕合物など が挙げられる。特に好ましい硬化剤は耐擦傷性の観点から、ァセチルァセトネート金 属塩である。 (C)成分として用いられるァセチルァセトネート金属塩としては、 M^CH COCHCOCH )nl (OR6) n2 (式中、 M1は Ζη(Π)、 Ti(IV)、 Co(II)、 Fe(II)、 Cr(III)
3 3 、
Μη(Π)、 V(III)、 V(IV)、 Ca(II)、 Co(III)、 Cu(II)、 Mg(II)、 Ni(II)、 R6は炭素数 1一 8の 炭化水素基、 nl +n2は M1の価数に相当する数字で 2, 3または 4であり、 n2は 0, 1または 2である。)で表わされる金属錯体ィ匕合物が挙げられる。 R6としては、前記一 般式 (I)において例示した炭素数 1一 10の炭化水素基のうち炭素数 1一 8のものを挙 げることができる。
[0042] また、前記微粒子状金属酸化物としては、従来公知のもの、例えば酸ィ匕アルミニゥ ム、酸化チタン、酸化アンチモン、酸ィ匕ジルコニウム、酸化珪素、酸ィ匕セリウム、酸ィ匕 鉄などの微粒子が挙げられる。
[0043] コーティング組成物の硬化は、通常熱風乾燥または活性エネルギー線照射によつ て行われ、硬化条件としては、 70— 200°Cの熱風中にて行うのがよぐ特に好ましく は 90— 150°Cが望ましい。なお活性エネルギー線としては遠赤外線などがあり、熱 による損傷を低く抑えることができる。
[0044] 本発明のコーティング組成物を用い、その硬化被膜を基材上に形成する方法とし ては、上述したコーティング組成物を基材に塗布する方法が挙げられる。塗布手段と してはデイツビング法、スピンコーティング法、スプレー法など通常行われる方法が適 用できるが、面精度の面力 デイツビング法、スピンコーティング法が特に望ましい。 さらに上述したコーティング組成物を基材に塗布する前に、基材に酸、アルカリ、各 種有機溶剤による化学的処理、プラズマ、紫外線などによる物理的処理、各種洗剤 を用いる洗剤処理、サンドブラスト処理、更には各種榭脂を用いたプライマー処理を 施すことによって、基材と硬化膜との密着性などを向上させることができる。
また、コーティング組成物を基材に塗布して、硬化膜を形成した後、硬化膜の上に 真空蒸着法やスパッタリングなどの物理気相蒸着法等にて、無機酸化物、有機化合 物を原料とした反射防止膜を施すことができる。
[0045] 本発明のプラスチックレンズは、眼鏡レンズの他、カメラ用レンズなどに用いることが できる。
実施例
[0046] 次に、本発明を実施例により、さらに詳細に説明するが、本発明は、これらの例によ つてなんら限定されるものではない。なお、各例で得られた硬化膜を有するプラスチ ックレンズは、以下に示す方法により、諸物性を測定した。 得られたプラスチックレンズを、室温で 1日間放置した後、以下の (ィ)一(二)の評価 を行った。
(ィ)干渉縞の評価
蛍光灯下で硬化膜を有する光学部材を目視で判断した。判断基準は以下のとおり である。
◎ 干渉縞が見えない
〇 干渉縞がほとんど見えない
△ 少し見える
X かなり見える
(口)密着性評価
硬化膜に 1. 5mm間隔で 100目クロスカットし、このクロスカットした所に粘着テープ (商品名:セロテープ -チバン (株)製品)を強く貼り付けた後、粘着テープを急速に剥 力 Sした後の硬化膜の剥離の有無を調べた。判断基準は以下のとおりである。
◎ 剥離なし
〇 剥離数 1一 10目
△ 剥離数 11一 50目
X 剥離数 51— 100目
(ハ)透明性評価
暗室内、蛍光灯下で硬化膜に曇りがあるかどうかを目視で調べた。判断基準は以 下のとおりである。
◎ 曇りがみえない
〇 曇りがほとんどみえない
△ 少し見える
X かなり見える
(二) Bayer値測定
摩耗試験機 BTE™ Abrasion Tester (米 COLTS社製)及び、ヘイズ値測定装置( 村上色彩技術研究所)を使用し、基準レンズとのヘイズ値変化の差により Bayer値を 測定した。 (サンプル数、測定方法)
(1)基準レンズ (CR39基材) 3枚、サンプルレンズ 3枚を用意。
(2)摩耗テスト前ヘイズ (haze)値の測定。
(3) BTE™ Abrasion Testerにて、摩耗'性テスト。
(砂による表面摩耗 600往復)
(4)摩耗テスト後ヘイズ値の測定。
(5) Bayer値算出 (3枚分の平均値とする)
(Bayer値 =基準レンズの透過率変化 Zサンプルレンズの透過率変化)
[変性された酸化第二スズ一酸化ジルコニウム複合体コロイド粒子の製造] 製造例 1
(a)工程
しゅう酸((COOH) - 2H 0) 37. 5kgを純水 220kgに溶解し、これを 500Lの容器
2 2
にとり、攪拌下 70°Cまで加温し、 35%過酸ィ匕水素水 150kgと金属スズ(山石金属社 製商品名: AT— SN、 No200N) 75kgを添加した。
過酸ィ匕水素水と金属スズの添カ卩は交代に行った。初めに 35%過酸ィ匕水素水 10kg を次いで金属スズ 5kgを添加した。反応が終了するのを待って(5— 10分)この操作 を繰り返した。添カ卩に要した時間は 2. 5時間で、添加終了後、更に 90°Cで 1時間加 熱し、反応を終了させた。過酸化水素水と金属スズのモル比は H O ZSnとして 2. 4
2 2
8であった。
得られた酸化スズゾルは非常に透明性が良好であった。この酸化スズゾルの収量 は、 352kgで比重 1. 312、 pHl. 49、粘度 44mPa' s、 SnOとして 26. 1重量0 /0
2
めつに。
得られたゾルを電子顕微鏡で観察したところ、 10— 15nmの球状の分散性の良い 粒子であった。このゾルは放置によりやや増粘傾向を示した力 室温 6ヶ月放置では ゲルィ匕は認められず安定であった。
得られたゾル 230kgを純水〖こて SnOとして 5重量0 /0に希釈し、イソプロピルアミン
2
を 3kg添カ卩し、陰イオン交換榭脂(Rohm&Haas社製、商品名:アンバーライト IR A— 41 0)を充填したカラムに通液、ついで 90°Cで lhr加熱熟成、さらに陰イオン交換榭脂( 前出:アンバーライト IRA— 410)を充填したカラムに通液し、アルカリ性の酸化スズゾ ル 143 lkgを得た。
得られたゾル 400kgを 140°Cで 5hr加熱処理した。
[0049] (b)工程
ォキシ塩化ジルコニウム水溶液(ZrO濃度は 18. 4重量%) 870g (ZrOとして 160
2 2 g含有する。)に純水 lkgを添加し、ついで撹拌下に、室温で、(a)工程で得られたァ ルカリ性の酸化第二スズ水性ゾル 25. 7kg (SnOとして 1068g)を添カ卩した。混合液
2
は ZrO /SnO重量比 0. 15でコロイド色を有する透明性の良好なゾルであった。
2 2
[0050] (c)工程
(b)工程で調製した混合液を撹拌下に、 90°Cで 5時間加熱処理を行い、酸化第二 スズ一酸化ジルコニウム複合体ゾル 27. 6kgを得た。このゾルは SnOとして 3. 37重
2
0 /0、 ZrOとして 0. 50重量0 /0、 SnO +ZrOとして 3. 87重量%でコロイド色を有す
2 2 2
るが、透明'性は良好であった。
[0051] (d)工程
3号挂そう(SiOとして 29. 0重量0 /0含有する。) 207gを水 2650gに溶解し、つ!/、で
2
タングステン酸ナトリウム Na WO - 2H O (WOとして 74重量%含有する) 60. 8gお
2 4 2 3
よびスズ酸ナトリウム NaSnO -H O (SnOとして 55重量%含有する) 81. 8gを溶解
3 2 2
した。次いでこれを水素型陽イオン交換榭脂 (Rohm&Haas社製、商品名:アンバーラ イト IR— 120B)のカラムに通すことにより酸性の酸ィ匕タングステン 酸ィ匕第二スズ一二 酸化珪素複合体ゾル(PH2. 1、 WOとして 1. 3重量%、 SnOとして 1. 3重量%、 Si
3 2
Oとして 1. 7重量%を含有し、 WO /SnO重量比 1. 0、 SiO /SnO重量比 1. 33
2 3 2 2 2
、粒子径 2. 5nmであった。 ) 3450gを得た。
[0052] (e)工程
(d)工程で調製した酸ィ匕タングステン 酸ィ匕第二スズ一二酸ィ匕珪素複合体ゾル 345 0g (WO +SnO +SiOとして 150gを含有する。)に撹拌下に、室温で(c)工程で調
3 2 2
製した酸化第二スズ一酸化ジルコニウム複合体ゾル 12200g (ZrO +SnOとして 50
2 2
Og含有する。)を 20分で添加し、 30分間撹拌を続行した。得られた混合液は酸化第 ニスズ一酸化ジルコニウム複合体コロイド粒子(ZrO + SnO )と酸化タングステン 酸 化第二スズ一二酸化珪素複合体コロイド粒子(WO +SnO +SiO )の比は(WO +
3 2 2 3
SnO +SiO ) / (ZrO +SnO )重量比 0. 30、全金属酸化物 4. 2重量%であり、コ
2 2 2 2
ロイド粒子のミクロ凝集による白濁傾向を示した。
[0053] (f)工程
(e)工程で得た混合液 15650gにジイソプチルァミンを 11. Og添加し、水酸基型陰 イオン交換榭脂 (前出:アンバーライト IRA— 410)を充填したカラムに室温で通液、次 いで 80— 90°Cで lhr加熱熟成することにより変性された酸ィ匕第二スズー酸ィ匕ジルコ -ゥム複合体水性ゾル (希薄液) 19680gを得た。このゾルは全金属酸ィ匕物 3. 3重量 %、 ρΗΙΟ. 64で、コロイド色は呈するが透明性は良好であった。
[0054] (f)工程で得られた変性された酸ィ匕第二スズー酸ィ匕ジルコニウム複合体水性ゾル ( 希薄液)を、分画分子量 10万の限外濾過膜の濾過装置により室温で濃縮し、高濃度 の変性された酸ィ匕第二スズー酸ィ匕ジルコニウム複合体水性ゾル 264 lgを得た。この ゾルは全金属酸化物(ZrO +SnO +WO +SiO )濃度 24. 6重量%で、安定であ
2 2 3 2
つた o
上記高濃度の変性された酸ィ匕第二スズー酸ィ匕ジルコニウム複合体水性ゾル 2641g に撹拌下に、室温で酒石酸 6. 5g、ジイソプチルァミン 9. 8g、消泡剤(サンノプコ社 製、商品名: SNディフォーマー 483) 1滴を加え、 1時間撹拌した。このゾルを攪拌機 付き反応フラスコで常圧下、メタノール 24リットルを少しずつ加えながら水を留去する ことにより、水性ゾルの水をメタノールで置換した変性された酸ィ匕第二スズー酸ィ匕ジル コ -ゥム複合体メタノールゾル 1620gを得た。このゾルは比重 1. 244、 pH6. 78 (水 との等重量混合物)、粘度 1. 3mPa' s、全金属酸化物(ZrO +SnO +WO +SiO
2 2 3 2
)濃度は 40. 5重量%、水分 0. 59重量%、電子顕微鏡観察による粒子径は 10 15 nmであつ 7こ。
このゾルを全金属酸化物(ZrO +SnO +WO +SiO )濃度として、 47重量%まで
2 2 3 2
濃縮したものを、 100cm3のメスシリンダーに入れ、 B型粘度計の No. 1ローターを用 い 60rpmの回転数で測定した粘度は、 6. 5mPa' sであった。
このゾルはコロイド色を呈し、透明性が高ぐ室温で 3ヶ月放置後も沈降物の生成、 白濁、増粘などの異常は認められず安定であった。またこのゾルの乾燥物の屈折率 は 1. 85であった。
[0055] 製造例 2
製造例 2は、製造例 1の(a)工程、(b)工程、(c)工程と同様の工程を行い、その後 に、以下の工程を行った。
(d)工程
3号珪そう(SiOとして 29. 0重量%含有する。) 138gを水 1766gに溶解し、ついで
2
タングステン酸ナトリウム Na WO - 2H O (WOとして 74重量%含有する) 40. 5gお
2 4 2 3
よびスズ酸ナトリウム NaSnO -H O (SnOとして 55重量0 /0含有する) 55. 6gを溶解
3 2 2
した。次 、でこれを水素型陽イオン交換榭脂 (前出:アンバーライト IR— 120B)のカラ ムに通すことにより酸性の酸ィ匕タングステン 酸ィ匕第二スズ一二酸ィ匕珪素複合体ゾル (pH2. 0、 WOとして 1. 2重量0 /0、 SnOとして 1. 2重量0 /0、 SiOとして 1. 6重量0 /0
3 2 2
を含有し、 WO /SnO重量比 1. 0、 SiO /SnO重量比 1. 33、粒子径 2. 5nmで
3 2 2 2
あった。 ) 2520gを得た。
[0056] (e)工程
(d)工程で調製した酸ィ匕タングステン 酸ィ匕第二スズ一二酸ィ匕珪素複合体ゾル 252 0g (WO +SnO +SiOとして 150gを含有する。)に撹拌下に、室温で実施例 1の(
3 2 2
c)工程で調製した酸ィ匕第二スズー酸ィ匕ジルコニウム複合体ゾル 12200g (ZrO + Sn
2
Oとして 500g含有する。)を 20分で添加し、 30分間撹拌を続行した。得られた混合
2
液は酸ィ匕第二スズー酸ィ匕ジルコニウム複合体コロイド粒子 (ZrO + SnO )と酸ィ匕タン
2 2 ダステン一酸化第二スズ一二酸化珪素複合体コロイド粒子 (WO +SnO +SiO )の
3 2 2 比は(WO +SnO +SiO ) / (ZrO +SnO )重量比 0. 20、全金属酸化物 4. 1重
3 2 2 2 2
量%であり、コロイド粒子のミクロ凝集による白濁傾向を示した。
[0057] (f)工程
(e)工程で得た混合液 14720gにジイソプチルァミンを 11. Og添加し、水酸基型陰 イオン交換榭脂 (前出:アンバーライト IRA— 410)を充填したカラムに室温で通液、次 いで 80— 90°Cで lhr加熱熟成することにより変性された酸ィ匕第二スズー酸ィ匕ジルコ -ゥム複合体水性ゾル (希薄液) 18480gを得た。このゾルは全金属酸ィ匕物 3. 2重量 %、 ρΗΙΟ. 23で、コロイド色は呈するが透明性は良好であった。 [0058] (f)工程で得られた変性された酸ィ匕第二スズー酸ィ匕ジルコニウム複合体水性ゾル ( 希薄液)を、分画分子量 10万の限外濾過膜の濾過装置により室温で濃縮し、高濃度 の変性された酸ィ匕第二スズー酸ィ匕ジルコニウム複合体水性ゾル 3458gを得た。この ゾルは全金属酸化物(ZrO +SnO +WO +SiO ) 14. 8重量%で、安定であった
2 2 3 2 上記高濃度の変性された酸ィ匕第二スズー酸ィ匕ジルコニウム複合体水性ゾル 3243g に撹拌下に、室温で酒石酸 4. 8g、ジイソプチルァミン 7. 2g、消泡剤(前出: SNディ フォーマー 483) 1滴を加え、 1時間撹拌した。このゾルを攪拌機付き反応フラスコで 常圧下、メタノール 26リットルを少しずつ加えながら水を留去することにより、水性ゾ ルの水をメタノールで置換した変性された酸ィ匕第二スズー酸ィ匕ジルコニウム複合体メ タノールゾル 1240gを得た。このゾルは比重 1. 235、 pH6. 95 (水との等重量混合 物)、粘度 1. 5mPa' s、全金属酸化物(ZrO +SnO +WO +SiO )濃度は 40. 2
2 2 3 2
重量%、水分 0. 90重量%、電子顕微鏡観察による粒子径は 10— 15nmであった。 このゾルはコロイド色を呈し、透明性が高ぐ室温で 3ヶ月放置後も沈降物の生成、 白濁、増粘などの異常は認められず安定であった。またこのゾルの乾燥物の屈折率 は 1. 85であった。
[0059] 製造例 3
製造例 3は、製造例 1の(a)工程、(b)工程、(c)工程と同様の工程を行い、その後 に、以下の工程を行った。
(d)工程
3号挂そう(SiOとして 29. 0重量0 /0含有する。) 101. 6gを水 1825gに溶解し、つ
2
いでタングステン酸ナトリウム Na WO · 2Η 0 (WOとして 74重量%含有する) 32. 3
2 4 2 3
gおよびスズ酸ナトリウム NaSnO -H O (SnOとして 55重量0 /0含有する) 40. 8gを溶
3 2 2
解した。次 、でこれを水素型陽イオン交換榭脂 (前出:アンバーライト IR— 120B)の力 ラムに通すことにより酸性の酸ィ匕タングステン 酸ィ匕第二スズ一二酸ィ匕珪素複合体ゾ ノレ(pH2. 1、 WOとして 0. 9重量%、 SnOとして 0. 9重量%、 SiOとして 1. 1重量
3 2 2
%を含有し、 WO /SnO重量比 1. 0、 SiO /SnO重量比 1. 33、粒子径 2. 5nm
3 2 2 2
であった。 ) 2640gを得た。 [0060] (e)工程
(d)工程で調製した酸ィ匕タングステン 酸ィ匕第二スズ一二酸ィ匕珪素複合体ゾル 264 0g (WO +SnO +SiOとして 75gを含有する。)に撹拌下に、室温で (c)工程で調
3 2 2
製した酸化第二スズ一酸化ジルコニウム複合体ゾル 12200g (ZrO +SnOとして 50
2 2
Og含有する。)を 20分で添加し、 30分間撹拌を続行した。
得られた混合液は酸ィ匕第二スズ-酸ィ匕ジルコニウム複合体コロイド粒子 (ZrO +S
2 ηθ )と酸ィ匕タングステン-酸ィ匕第ニスズ-ニ酸ィ匕珪素複合体コロイド粒子 (WO +S
2 3 ηθ +SiO )の比は(WO +SnO +SiO ) / (ZrO +SnO )重量比 0· 14、全金属
2 2 3 2 2 2 2
酸化物 3. 9重量%であり、コロイド粒子のミクロ凝集による白濁傾向を示した。
[0061] (f)工程
(e)工程で得た混合液 14840gにジイソプチルァミンを 11. Og添加し、水酸基型陰 イオン交換榭脂 (前出:アンバーライト IRA— 410)を充填したカラムに室温で通液、次 いで 80— 90°Cで lhr加熱熟成することにより変性された酸ィ匕第二スズー酸ィ匕ジルコ -ゥム複合体水性ゾル (希薄液) 19360gを得た。このゾルは全金属酸ィ匕物 3. 0重量 %、 ρΗΙΟ. 50で、コロイド色は呈するが透明性は良好であった。
[0062] (f)工程で得られた変性された酸ィ匕第二スズー酸ィ匕ジルコニウム複合体水性ゾル ( 希薄液)を、分画分子量 10万の限外濾過膜の濾過装置により室温で濃縮し、高濃度 の変性された酸ィ匕第二スズー酸ィ匕ジルコニウム複合体水性ゾル 2352gを得た。この ゾルの全金属酸化物(ZrO +SnO +WO +SiO )濃度は 22. 0重量%で、安定で
2 2 3 2
めつに。
上記高濃度の変性された酸ィ匕第二スズー酸ィ匕ジルコニウム複合体水性ゾル 2272g に撹拌下に、室温で酒石酸 5. 0g、ジイソプチルァミン 7. 5g、消泡剤(前出: SNディ フォーマー 483) 1滴を加え、 1時間撹拌した。このゾルを攪拌機付き反応フラスコで 常圧下、メタノール 22リットルを少しずつ加えながら水を留去することにより、水性ゾ ルの水をメタノールで置換した変性された酸ィ匕第二スズー酸ィ匕ジルコニウム複合体メ タノールゾル 1190gを得た。このゾルは比重 1. 232、 pH6. 92 (水との等重量混合 物)、粘度 1. 3mPa' s、全金属酸化物(ZrO +SnO +WO +SiO )は 40. 3重量
2 2 3 2
%、水分 0. 43重量%、電子顕微鏡観察による粒子径は 10— 15nmであった。 このゾルはコロイド色を呈し、透明性が高ぐ室温で 3ヶ月放置後も沈降物の生成、 白濁、増粘などの異常は認められず安定であった。またこのゾルの乾燥物の屈折率 は 1. 85であった
[0063] 製造例 4
(a)工程
しゅう酸((COOH) - 2H 0) 37. 5kgを純水 363kgに溶解し、これを 500Lの容器
2 2
にとり、攪拌下 70°Cまで加温し、 35%過酸ィ匕水素水 150kgと金属スズ (前出: AT-S N、 No200N) 75kgを添加した。
過酸ィ匕水素水と金属スズの添カ卩は交代に行った。初めに 35%過酸ィ匕水素水 10kg を次いで金属スズ 5kgを添加した。反応が終了するのを待って(5— 10分)この操作 を繰り返した。添カ卩に要した時間は 2. 5時間で、添加終了後、 35%過酸化水素水 1 Okgを更に添加し、 90°Cで 1時間加熱、反応を終了させた。過酸化水素水と金属ス ズのモル比は H O /Sn2. 60であった。
2 2
得られた酸化スズゾルは非常に透明性が良好であった。この酸化スズゾルの収量 は、 622kgで比重 1. 156、 pHl. 56、 SnOとして 15. 0重量0 /。であった。
2
得られたゾルを電子顕微鏡で観察したところ、 10— 15nmの球状の分散性の良い 粒子であった。このゾルは放置によりやや増粘傾向を示した力 ゲル化は認められず 女疋 ζ·、あった。
得られたゾル 622kgを純水にて SnOとして 5重量%に希釈し、イソプロピルアミン
2
を 4. 7kg添加し、陰イオン交換榭脂 (前出:アンバーライト IRA— 410)を充填したカラ ムに通液、ついで 95°Cで lhr加熱熟成、さらに陰イオン交換榭脂(前出:アンバーラ イト IRA— 410)を充填したカラムに通液し、アルカリ性の酸化スズゾル 2194kgを得た 。ついで、得られたゾルを 140°Cで 5hr加熱処理した。
[0064] (b)工程
ォキシ塩化ジルコニウム水溶液 (ZrO濃度は 17. 68重量0 /0) 76. lkg (ZrOとして
2 2
13. 5kg含有する。)に純水 330kgおよび 35%塩酸 3. 2kgを添加し、ついで撹拌下 に、室温で、(a)工程で得られたアルカリ性の酸ィ匕第二スズ水性ゾル 2597kg (SnO
2 として 89. 7kg)を添カ卩した。混合液は ZrO ZSnO重量比 0· 15でコロイド色を有す る透明'性の良好なゾノレであった。
[0065] (c)工程
(b)工程で調製した混合液を撹拌下に、 95°Cで 5時間加熱処理を行い、酸化第二 スズ一酸化ジルコニウム複合体ゾル 2958kgを得た。このゾルは SnOとして 3. 03重
2
0 /0、 ZrOとして 0. 46重量0 /0、 SnO +ZrOとして 3. 49重量%でコロイド色を有す
2 2 2
るが、透明'性は良好であった。
[0066] (d)工程
3号珪そう(SiOとして 29. 3重量%含有する。) 38. 9kgを純水 830kgに溶解し、
2
ついでタングステン酸ナトリウム Na WO · 2Η 0 (WOとして 69. 8重量%含有する)
2 4 2 3
12. 2kgおよびスズ酸ナトリウム NaSnO -H O (SnOとして 55. 7重量0 /0含有する)
3 2 2
15. 3kgを溶解した。次いでこれを水素型陽イオン交換榭脂 (前出: IR— 120B)の力 ラムに通すことにより酸性の酸ィ匕タングステン 酸ィ匕第二スズ一二酸ィ匕珪素複合体ゾ ノレ(pH2. 2、 WOとして 0. 7重量0 /0、 SnOとして 0. 7重量0 /0、 SiOとして 0. 9重量
3 2 2
%を含有し、 WO /SnO重量比 1. 0、 SiO /SnO重量比 1. 33であった。) 1201
3 2 2 2
kgを得た。
[0067] (e)工程
(d)工程で調製した酸ィ匕タングステン 酸ィ匕第二スズ一二酸ィ匕珪素複合体ゾル 117 9kg (WO +SnO +SiOとして 28. 4kgを含有する。)に撹拌下に、室温で(c)工程
3 2 2
で調製した酸化第二スズ一酸化ジルコニウム複合体ゾル 2958kg (ZrO +SnOとし
2 2 て 103. 2kg含有する。)を 60分で添加し、 10分間撹拌を続行した。得られた混合液 は酸ィ匕第二スズー酸ィ匕ジルコニウム複合体コロイド粒子 (ZrO + SnO )と酸ィ匕タンダ
2 2
ステン一酸化第二スズ一二酸化珪素複合体コロイド粒子 (WO +SnO +SiO )の比
3 2 2 は(WO +SnO +SiO ) / (ZrO +SnO )重量比 0. 25、全金属酸化物は 3. 46重
3 2 2 2 2
量%であり、コロイド粒子のミクロ凝集による白濁傾向を示した。
[0068] (f)工程
(e)工程で得た混合液 3798kgにジイソプチルァミンを 2. 3kg添加し、水酸基型陰 イオン交換榭脂 (前出:アンバーライト IRA— 410)を充填したカラムに室温で通液、次 いで 90°Cで lhr加熱熟成することにより変性された酸化第二スズ一酸化ジルコニウム 複合体水性ゾル (希薄液)を得た。このゾルは、 pH9. 59で、コロイド色は呈するが透 明'性は良好であった。
[0069] (f)工程で得られた変性された酸ィ匕第二スズー酸ィ匕ジルコニウム複合体水性ゾル ( 希薄液)を、分画分子量 10万の限外濾過膜の濾過装置により 40— 50°Cで濃縮し、 高濃度の変性された酸ィ匕第二スズー酸ィ匕ジルコニウム複合体水性ゾル 365kgを得た 。このゾルの全金属酸化物(ZrO +SnO +WO +SiO )濃度は 33. 5重量%で、
2 2 3 2
女疋 ζ·、あった。
上記高濃度の変性された酸ィ匕第二スズー酸ィ匕ジルコニウム複合体水性ゾル 350kg に撹拌下に、室温で酒石酸 1. lkg、ジイソプチルァミン 1. 7kg、消泡剤(前出: SN ディフォーマー 483) 1滴を加え、 1時間撹拌した。このゾルを攪拌機付き反応容器で 常圧下、メタノール 4203kgを添カ卩しながら水を留去することにより、水性ゾルの水を メタノールで置換した変性された酸ィ匕第二スズー酸ィ匕ジルコニウム複合体メタノール ゾル 218kgを得た。このゾルは比重 1. 285、 pH6. 40 (水との等重量混合物)、粘度 1. 3mPa' s、全金属酸化物(ZrO +SnO +WO +SiO )は 42. 8重量%、水分 0.
2 2 3 2
34重量%、電子顕微鏡観察による粒子径は 10— 15nmであった。
このメタノールゾルを全金属酸化物(ZrO +SnO +WO +SiO )濃度として、 47
2 2 3 2
. 8重量%まで濃縮したものを、 100cm3のメスシリンダーに入れ、 B型粘度計の No. 1ローターを用い 60rpmの回転数で測定した粘度は、 5. 5mPa' sであった。
このゾルはコロイド色を呈し、透明性が高ぐ室温で沈降物の生成、白濁、増粘など の異常は認められず安定であった。またこのゾルの乾燥物の屈折率は 1. 85であつ た。
[0070] 製造例 5
(a)工程
しゅう酸((COOH) - 2H 0) 37. 5kgを純水 363kgに溶解し、これを 500Lの容器
2 2
にとり、攪拌下 70°Cまで加温し、 35%過酸ィ匕水素水 150kgと金属スズ (前出: AT-S N、 No200N) 75kgを添加した。
過酸ィ匕水素水と金属スズの添カ卩は交代に行った。初めに 35%過酸ィ匕水素水 10kg を次いで金属スズ 5kgを添加した。反応が終了するのを待って(5— 10分)この操作 を繰り返した。添カ卩に要した時間は 2. 5時間で、添加終了後、 35%過酸化水素水 1 Okgを更に添加し、 90°Cで 1時間加熱、反応を終了させた。過酸化水素水と金属ス ズのモノレ比 H O ZSnは 2. 60であった。
2 2
得られた酸化スズゾルは非常に透明性が良好であった。この酸化スズゾルの収量 は、 626kgで比重 1. 154、 pHl. 56、 SnO濃度は 14. 9%であった。
2
得られたゾルを電子顕微鏡で観察したところ、 10— 15nmの球状の分散性の良い 粒子であった。このゾルは放置によりやや増粘傾向を示した力 ゲル化は認められず 女疋 ζ·、あった。
得られたゾル 626kgを純水〖こて SnOとして 5重量0 /0に希釈し、イソプロピルアミン
2
を 4. 66kg添加し、陰イオン交換榭脂(前出:アンバーライト IRA— 410)を充填した力 ラムに通液、ついで 95°Cで lhr加熱熟成、さらに陰イオン交換榭脂(前出:アンバー ライト IRA-410)を充填したカラムに通液し、アルカリ性の酸化スズゾル 2535kgを得 た。ついで、得られたゾルを 140°Cで 5hr加熱処理した。
[0071] (b)工程
ォキシ塩化ジルコニウム水溶液 (ZrO濃度は 17. 68重量0 /0) 78. 2kg (ZrOとして
2 2
13. 8kg含有する。)に純水 300kgおよび 35%塩酸 3. 3kgを添加し、ついで撹拌下 に、室温で、(a)工程で得られたアルカリ性の酸ィ匕第二スズ水性ゾル 2529kg (SnO
2 として 91. 0kg)を添カ卩した。混合液は ZrO /SnO重量比 0. 15でコロイド色を有す
2 2
る透明'性の良好なゾノレであった。
[0072] (c)工程
(b)工程で調製した混合液を撹拌下に、 95°Cで 5時間加熱処理を行い、酸化第二 スズ一酸化ジルコニウム複合体ゾル 3471kgを得た。このゾルは SnOとして 2. 62重
2
0 /0、 ZrOとして 0. 40重量0 /0、 SnO +ZrOとして 3. 01重量%でコロイド色を有す
2 2 2
るが、透明'性は良好であった。
[0073] (d)工程
3号珪そう(SiOとして 29. 3重量%含有する。 ) 49. 8kgを純水 898kgに溶解し、
2
ついでタングステン酸ナトリウム Na WO · 2Η 0 (WOとして 69. 8重量%含有する)
2 4 2 3
10. 5kgおよびスズ酸ナトリウム NaSnO -H O (SnOとして 55. 7重量0 /0含有する) 13. 1kgを溶解した。次いでこれを水素型陽イオン交換榭脂 (前出: IR— 120B)の力 ラムに通すことにより酸性の酸ィ匕タングステン 酸ィ匕第二スズ一二酸ィ匕珪素複合体ゾ ノレ(pH2. 0、 WOとして 0. 6重量0 /0、 SnOとして 0. 6重量0 /0、 SiOとして 1. 2重量
3 2 2
%を含有し、 WO /SnO重量比 1. 0、 SiO /SnO重量比 2. 0であった。 ) 1179k
3 2 2 2
gを得た。
[0074] (e)工程
(d)工程で調製した酸ィ匕タングステン 酸ィ匕第二スズ一二酸ィ匕珪素複合体ゾル 117 9kg (WO +SnO +SiOとして 29. 2kgを含有する。)に撹拌下に、室温で(c)工程
3 2 2
で調製した酸ィ匕第二スズ-酸ィ匕ジルコニウム複合体ゾル 3471kg (ZrO +SnOとし
2 2 て 104. 8kg含有する。)を 60分で添加し、 10分間撹拌を続行した。得られた混合液 は酸ィ匕第二スズー酸ィ匕ジルコニウム複合体コロイド粒子 (ZrO + SnO )と酸ィ匕タンダ
2 2
ステン一酸化第二スズ一二酸化珪素複合体コロイド粒子 (WO +SnO +SiO )の比
3 2 2 は(WO +SnO +SiO ) / (ZrO +SnO )重量比 0. 25、全金属酸化物は 2. 9重
3 2 2 2 2
量%であり、コロイド粒子のミクロ凝集による白濁傾向を示した。
[0075] (f)工程
(e)工程で得た混合液 4650kgにジイソプチルァミンを 2. 3kg添加し、水酸基型陰 イオン交換榭脂 (前出:アンバーライト IRA— 410)を充填したカラムに室温で通液、次 いで 90°Cで lhr加熱熟成することにより変性された酸化第二スズ一酸化ジルコニウム 複合体水性ゾル (希薄液)を得た。このゾルは、 pH9. 10で、コロイド色は呈するが透 明'性は良好であった。
[0076] (f)工程で得られた変性された酸ィ匕第二スズー酸ィ匕ジルコニウム複合体水性ゾル ( 希薄液)を、分画分子量 10万の限外濾過膜の濾過装置により 40— 50°Cで濃縮し、 高濃度の変性された酸ィ匕第二スズー酸ィ匕ジルコニウム複合体水性ゾル 358kgを得た 。このゾルは全金属酸化物(ZrO +SnO +WO +SiO ) 31. 9重量%で、安定であ
2 2 3 2
つた o
上記高濃度の変性された酸ィ匕第二スズー酸ィ匕ジルコニウム複合体水性ゾル 358kg に撹拌下に、室温で酒石酸 1. lkg、ジイソプチルァミン 1. 7kg、消泡剤(前出: SN ディフォーマー 483) 1滴を加え、 1時間撹拌した。このゾルを攪拌機付き反応容器で 常圧下、メタノール 5010リットルを添カ卩しながら水を留去することにより、水性ゾルの 水をメタノールで置換した変性された酸ィ匕第二スズー酸ィ匕ジルコニウム複合体メタノ 一ルゾル 220kgを得た。このゾルは比重 1. 280、 pH6. 59 (水との等重量混合物)、 粘度 2. lmPa' s、全金属酸化物(ZrO +SnO +WO +SiO )は 42. 8重量%、水
2 2 3 2
分 0. 43重量%、電子顕微鏡観察による粒子径は 10— 15nmであった。
このメタノールゾルを全金属酸化物(ZrO +SnO +WO +SiO )濃度として、 46
2 2 3 2
. 8重量%まで濃縮したものを、 100cm3のメスシリンダーに入れ、 B型粘度計の No. 1ローターを用い 60rpmの回転数で測定した粘度は、 6. 3mPa' sであった。
このゾルはコロイド色を呈し、透明性が高ぐ室温で沈降物の生成、白濁、増粘など の異常は認められず安定であった。またこのゾルの乾燥物の屈折率は 1. 85であつ た。
製造例 6
(a)工程
しゅう酸((COOH) - 2H 0) 37. 5kgを純水 383kgに溶解し、これを 500Lの容器
2 2
にとり、攪拌下 70°Cまで加温し、 35%過酸ィ匕水素水 150kgと金属スズ (前出: AT-S N、 No200N) 75kgを添加した。
過酸ィ匕水素水と金属スズの添カ卩は交代に行った。初めに 35%過酸ィ匕水素水 10kg を次いで金属スズ 5kgを添加した。反応が終了するのを待って(5— 10分)この操作 を繰り返した。全量添加後、更に 35%過酸ィ匕水素水 10kgを追加した。添カ卩に要した 時間は 2. 5時間で、添加終了後、更に 95°Cで 1時間加熱し、反応を終了させた。過 酸化水素水と金属スズのモル比 H O ZSnは 2. 61であった。
2 2
得られた酸化スズゾルは非常に透明性が良好であった。この酸化スズゾルの収量 は、 630kgで比重 1. 154、 pHl. 51、 SnO濃度は 14. 7重量0 /。であった。
2
得られたゾルを電子顕微鏡で観察したところ、 10— 15nmの球状の分散性の良い 粒子であった。このゾルは放置によりやや増粘傾向を示した力 室温 6ヶ月放置では ゲルィ匕は認められず安定であった。
得られたゾノレ 629kgに 35%過酸ィ匕水素水 23 lkg、純水 52kgを添カロし、 SnOとし
2 て 10重量%、仕込み時のしゅう酸に対して、 H O / (COOH) モル比 8. 0になるよ うに希釈し、 95°Cに加温、 5時間熟成を行った。この操作により含有するしゆう酸を過 酸ィ匕水素との反応により炭酸ガスと水に分解させた。得られた酸ィ匕第二スズスラリー を約 40°Cまで冷却後、イソプロピルアミンを 2. 7kg添加、解膠した後、白金系触媒( ズードケミー触媒 (株)製 N - 220)を約 15L充填した触媒塔に通液、循環し、過剰 な過酸化水素の分解処理を行った。通液速度は約 30LZminで 5時間、循環を行つ た。更に、陰イオン交換榭脂 (前出:アンバーライト IRA— 410)を充填したカラムに通 液し、アルカリ性の酸化スズゾル 1545kgを得た。ついで、得られたゾル全量にイソプ 口ピルアミン 1. 8kgを追カ卩添カ卩した後、 140°Cで 5hr加熱処理した。
[0078] (b)工程
純粋 1238kgにォキシ塩ィ匕ジルコニウム水溶液 (ZrO濃度は 17. 68重量0 /0)を 76
2
kg (ZrOとして 13. 4kg含有する。)、 35%塩酸 3. 2kgを添カ卩し、ついで撹拌下に、
2
室温で、(a)工程で得られたアルカリ性の酸ィ匕第二スズ水性ゾル 1538kg (SnOとし
2 て 102. 9kg)を添カ卩した。混合液は ZrO /SnO重量比 0. 15でコロイド色を有する
2 2
透明性の良好なゾルであった。
[0079] (c)工程
(b)工程で調製した混合液を撹拌下に、 90°Cで 5時間加熱処理を行い、冷却抜出 後、酸ィ匕第二スズー酸ィ匕ジルコニウム複合体ゾル 3224kg (水押し分含む)を得た。こ のゾルは SnOとして 2. 78重量0 /0、 ZrOとして 0. 41重量0 /0、 SnO +ZrOとして 3.
2 2 2 2
19重量%でコロイド色を有する力 透明性は良好であった。
[0080] (d)工程
3号挂そう(SiOとして 29. 0重量0 /0含有する。) 59. 5gを純水 1083gに溶解し、つ
2
いでタングステン酸ナトリウム Na WO · 2Η 0 (WOとして 70重量%含有する) 12. 6
2 4 2 3
gおよびスズ酸ナトリウム NaSnO -H O (SnOとして 55重量%含有する) 16. 2gを溶
3 2 2
解した。次いでこれを水素型陽イオン交換榭脂 (前出: IR— 120B)のカラムに通すこ とにより酸性の酸ィ匕タングステン 酸ィ匕第二スズ一二酸ィ匕珪素複合体ゾル (pH2. 3、 WOとして 0. 6重量0 /0、 SnOとして 0. 6重量0 /0、 SiOとして 1. 2重量%を含有し、
3 2 2
WO /SnO重量比 1. 0、 SiO /SnO重量比 2. 0であった。 ) 1520gを得た。
3 2 2 2
また、別途、 3号珪そう (SiOとして 29. 0重量%含有する。) 112gを純水 540gに 溶解し、これを水素型陽イオン交換榭脂 (前出: IR— 120B)のカラムに通すことにより 活性珪酸を得て、これにジイソブチルァミンを 6. 9g添加、ジイソブチルァミンで安定 化した活性珪酸 930gを得た。
[0081] (e)工程
(d)工程で調製した酸ィ匕タングステン 酸ィ匕第二スズ一二酸ィ匕珪素複合体ゾル 152 0g (WO +SnO +SiOとして 35. lgを含有する。)に撹拌下に、室温で(c)工程で
3 2 2
調製した酸化第二スズ一酸化ジルコニウム複合体ゾル 15656g (ZrO +SnOとして 5
2 2
Olg含有する。)を 20分で添加し、 30分間撹拌を続行した。更に、ジイソブチルアミ ンで安定ィ匕した活性珪酸を添加、更に攪拌を lhr続行した。得られた混合液は酸ィ匕 第二スズ-酸ィ匕ジルコニウム複合体コロイド粒子 (ZrO +SnO )と酸ィ匕タングステン-
2 2
酸化第二スズ一二酸化珪素複合体コロイド粒子 (WO +SnO +SiO )の比は (WO
3 2 2 3
+ SnO +SiO ) / (ZrO +SnO )重量比 0. 135、全金属酸化物は 3. 1重量%で
2 2 2 2
あり、コロイド粒子のミクロ凝集による白濁傾向を示した。
[0082] (f)工程
(e)工程で得た混合液 18106gにジイソプチルァミンを 5. Og添加し、水酸基型陰ィ オン交換榭脂 (前出:アンバーライト IRA— 410)を充填したカラムに室温で通液、次 いで 80— 90°Cで lhr加熱熟成することにより変性された酸ィ匕第二スズー酸ィ匕ジルコ -ゥム複合体水性ゾル (希薄液) 24050gを得た。このゾルは、全金属酸化物 2. 4重 量%、 pH9. 25で、コロイド色は呈するが透明性は良好であった。
[0083] (f)工程で得られた変性された酸ィ匕第二スズー酸ィ匕ジルコニウム複合体水性ゾル ( 希薄液)を、分画分子量 10万の限外濾過膜の濾過装置により室温で濃縮し、高濃度 の変性された酸ィ匕第二スズー酸ィ匕ジルコニウム複合体水性ゾル 2010gを得た。この ゾルは全金属酸化物(ZrO +SnO +WO +SiO )濃度 28. 2重量%で、安定であ
2 2 3 2
つた o
上記高濃度の変性された酸ィ匕第二スズー酸ィ匕ジルコニウム複合体水性ゾル 2010g を撹拌機付き反応フラスコで常圧下、メタノール 28リットルを少しずつ加えながら水を 留去することにより、水性ゾルの水をメタノールで置換した変性された酸ィ匕第二スズー 酸化ジルコニウム複合体メタノールゾル 1310gを得た。このゾルは比重 1. 264、 pH 8. 3 (水との等重量混合物)、粘度 2. 7mPa' s、全金属酸化物(ZrO +SnO +WO
2 2
+ SiO )は 42. 5重量%、水分 1. 0重量%、電子顕微鏡観察による粒子径は 10—
3 2
15nmで fcつた。
このゾルはコロイド色を呈し、透明性が高ぐ室温で 3ヶ月放置後も沈降物の生成、 白濁、増粘などの異常は認められず安定であった。またこのゾルの乾燥物の屈折率 は 1. 85であった。
[0084] 比較製造例 1
変性酸ィ匕第二スズー酸ィ匕ジルコニウム複合体ゾルの製造
<酸化第ニスズゾルの調製 >金属スズ粉末と塩酸水溶液と過酸化水素水溶液との 反応により得られた比重 1. 420、 pHO. 40、撹拌直後の粘度 32mPa' s、 SnO含量
2
33. 0重量%、 HC1含量 2. 56重量%、電子顕微鏡による紡錘状コロイド粒子径 10η m以下、 BET法による粒子の比表面積 120m2/g、この比表面積からの換算粒子径 7. 2nm、米国コールター社製 N4装置による動的光散乱法粒子径 107nm、淡黄色 透明の酸化第二スズ水性ゾル 1200gを水 10800gに分散させた後、これにイソプロ ピルアミン 4. 8gを加え、次いで、この液を水酸基型陰イオン交換榭脂充填のカラム に通すことにより、アルカリ性の酸化第二スズ水性ゾル 13440gを得た。このゾルは、 安定であり、コロイド色を呈している力 透明性が非常に高ぐ比重 1. 029、 pH9. 8 0、粘度 1. 4mPa,s、 SnO含量 2. 95重量0 /0、イソプロピルァミン含量 0. 036重量
2
%であった。
[0085] (a)工程
試薬のォキシ塩ィ匕ジルコニウム (ZrOCl · 8Η Ο)を水に溶解して調製したォキシ塩
2 2
ィ匕ジルコニウム水溶液(ZrOとして 2. 0重量%) 3043g (ZrOとして 60. 87g含有す
2 2
る。)に撹拌下に、室温で、上記調製したアルカリ性の酸ィ匕第二スズ水性ゾル 10791 g (SnOとして 409. 5g)を添加し、二時間撹拌を続行した。混合液は ZrO /SnO
2 2 2 重量比 0. 15、ρΗ1. 50でコロイド色を有する透明性の良好なゾルであった。
[0086] (b)工程 (酸ィ匕第二スズー酸ィ匕ジルコニウム複合体ゾルの作製)
(a)工程で調製した混合液を撹拌下に、 90°Cで 5時間加熱処理を行い、酸化第二 スズ一酸化ジルコニウム複合体ゾル 13834gを得た。このゾルは SnOとして 2. 96重 量%、 ZrOとして 0. 44重量%、 SnO +ZrOとして 3. 40重量%、 pHl. 45で、粒
2 2 2
子径 9. Onm、コロイド色を有する力 透明性は良好であった。
[0087] (c)工程 (酸ィ匕タングステン 酸ィ匕第二スズ一二酸ィ匕珪素複合体ゾルの作製)
3号珪そう(SiOとして 29. 0重量%含有する。) 113gを水 2353. 7gに溶解し、次
2
いでタングステン酸ナトリウム Na WO · 2Η 0 (WOとして 71重量%含有する。) 33·
2 4 2 3
3gおよびスズ酸ナトリウム NaSnO ·Η 0 (SnOとして 55重量%含有する。 ) 42. 45
3 2 2
gを溶解する。次いでこれを水素型陽イオン交換樹脂のカラムに通すことにより酸性 の酸ィ匕タングステン 酸ィ匕第二スズ一二酸ィ匕珪素複合体ゾル (PH2. 1、 WOとして 0
3
. 75重量%、 SnOとして 0. 75重量%、 SiOとして 1. 00重量%を含有し、 WO /S
2 2 3 ηθ重量比 1. 0、 SiO /SnO重量比 1· 33であり、粒子径 2. 5nmであった。) 315
2 2 2
0gを得た。
[0088] (d)工程
(c)工程で調製した酸ィ匕タングステン 酸ィ匕第二スズ一二酸ィ匕珪素複合体ゾル 315 0g (WO +SnO +SiOとして 78. 83gを含有する。)に撹拌下に、室温で (b)工程
3 2 2
で調製した酸化第二スズ一酸化ジルコニウム複合体ゾル 11592. 6g (ZrO +SnOと
2 2 して 394. lg含有する。)を 20分で添加し、 30分間撹拌を続行した。得られた混合液 は酸ィ匕第二スズ一酸ィ匕ジルコニウム複合体コロイド (ZrO + SnO )と酸ィ匕タンダステ
2 2
ン一酸化第二スズ一二酸化珪素複合体コロイド (WO +SnO + SiO )の比は (WO
3 2 2 3
+ SnO +SiO ) / (ZrO +SnO )重量比 0. 20、 pH2. 26、全金属酸化物 3. 2重
2 2 2 2
量%であり、コロイド粒子のミクロ凝集による白濁傾向を示した。
[0089] (e)工程 (変性酸ィ匕第二スズ-酸ィ匕ジルコニウム複合体ゾルの作製)
(d)工程で得た混合液 14742. 6gにジイソブチルァミンを 9. 5g添カロし、次いで水 酸基型陰イオン交換榭脂 (前出:アンバーライト IRA— 410)を充填したカラムに室温 で通液、次 ヽで 80°Cで 1時間加熱熟成することにより変性酸化第二スズ -酸化ジル コ -ゥム複合体水性ゾル (希薄液) 16288gを得た。このゾルは全金属酸化物 2. 90 重量%、 pH10. 43で、コロイド色は呈するが透明性は良好であった。
[0090] (e)工程で得られた変性酸ィ匕第二スズー酸ィ匕ジルコニウム複合体水性ゾル (希薄液) を、分画分子量 5万の限外濾過膜の濾過装置により室温で濃縮し、高濃度の変性酸 化第二スズ一酸化ジルコニウム複合体水性ゾル 2182gを得た。このゾルは pH8. 71 、全金属酸化物(ZrO +SnO +WO +SiO ) 18. 3重量%で、安定であった。
2 2 3 2
上記高濃度の変性酸ィ匕第二スズー酸ィ匕ジルコニウム複合体水性ゾル 2182gに撹 拌下に、室温で酒石酸 4. 0g、ジイソブチルァミン 6. 0g、消泡剤(前出: SNディフォ 一マー 483) 1滴を加え、 1時間撹拌した。このゾルを攪拌機付き反応フラスコで常圧 下、メタノール 20リットルを少しずつ加えながら水を留去することにより、水性ゾルの 水をメタノールで置換した変性酸ィ匕第二スズー酸ィ匕ジルコニウム複合体メタノールゾ ル 1171gを得た。このゾルは比重 1. 124、 pH7. 45 (水との等重量混合物)、粘度 2 . 3mPa' s、全金属酸化物(ZrO +SnO +WO +SiO ) 32. 7重量%、水分 0. 47
2 2 3 2
重量%、電子顕微鏡観察による粒子径は 10— 15nmであった。このゾルはコロイド色 を呈し、透明性が高ぐ室温で 3ヶ月放置後も沈降物の生成、白濁、増粘などの異常 は認められず安定であった。またこのゾルの乾燥物の屈折率は 1. 76であった。
[0091] 実施例 1
[コーティング組成物の製造]
5°C雰囲気下、製造例 5で作製した (A)成分である変性酸化第二スズ -酸化ジルコ -ゥム 酸ィ匕タングステン 酸ィ匕珪素複合体メタノールゾル 45重量部と (B)成分であ る γ—グリシドキシプロピルトリメトキシシラン 15重量部及びテトラエトキシシラン 3重量 部とを混合し、 1時間攪拌した。その後、 0.001モル ZL濃度の塩酸 4. 5重量部を添 加し、 50時間攪拌した。その後、溶媒としてプロピレングリコールモノメチルエーテル (PGM) 25重量部、ダイアセトンアルコール(DAA) 9重量部及び(C)成分であるァ ルミ-ゥムトリスァセチルァセトネート (AL— ΑΑ) 1. 8重量部、過塩素酸アルミニウム 0 . 05重量部を順次添加し、 150時間攪拌した。得られた溶液を 0.5 mのフィルター でろ過したものをコーティング組成物とした。
[0092] [硬化膜の形成]
レンズ基材〔HOYA株式会社製,商品名:アイァス (屈折率 1.60)〕を 60°C、 10重 量%水酸ィ匕ナトリウム水溶液中に 300秒間浸漬し、その後、超音波 28kHz印加の下 イオン交換水を用いて 300秒間洗浄した。最後に、 70°C雰囲気下、乾燥させる一連 の工程を基材前処理とした。 前処理を施したレンズ基材アイァスを、デイツビング法にてコーティング組成物に 30 秒間浸漬し、 30cmZ分にて引き上げた基材を、 120°C、 60分間の条件にて硬化膜 を形成した。評価結果を表 1に示す。
[0093] [反射防止膜の形成]
硬化膜を施したプラスチックレンズ基材を蒸着装置に入れ、排気しながら 85°Cにカロ 熱し、 2. 7mPa (2 X 10— 5torr)まで排気した後、電子ビーム加熱法にて蒸着原料を 蒸着させて、 SiO力 なる膜厚 0. 6 λの下地層、この下地層の上に Ta 0、 ZrO、 Y
2 2 5 2 2
0力らなる混合層(nd= 2. 05、 η λ =0. 075 λ )と SiO層(nd= 1. 46、 η λ =0. 0
3 2
56 λ )からなる第一屈折層、 Ta 0、 ZrO、 Υ 0力 なる混合層(nd= 2. 05、 η λ =
2 5 2 2 3
0. 075 λ )と SiO層力らなる第 2低屈折率層(nd= l . 46、η λ =0. 25 λ )を形成し
2
て反射防止膜を施した。評価結果を表 1に示す。
[0094] 実施例 2
実施例 1にお 、て、製造例 5で作製した (Α)成分である変性酸化第二スズ-酸化ジ ルコ-ゥムー酸ィ匕タングステン 酸ィ匕珪素複合体メタノールゾルの代わりに製造例 1で 作製した (Α)成分である変性酸ィ匕第二スズー酸ィ匕ジルコニウム 酸ィ匕タングステン 酸ィ匕珪素複合体メタノールゾルを用いた以外は、実施例 1と同様にしてコーティング 組成物を調製し、同様にしてレンズ基材アイァスに硬化膜及び反射防止膜を形成し た。評価結果を表 1に示す。
[0095] 実施例 3
実施例 1にお 、て、製造例 5で作製した (Α)成分である変性酸化第二スズ-酸化ジ ルコ-ゥムー酸ィ匕タングステン 酸ィ匕珪素複合体メタノールゾルの代わりに製造例 2で 作製した (Α)成分である変性酸ィ匕第二スズー酸ィ匕ジルコニウム 酸ィ匕タングステン 酸ィ匕珪素複合体メタノールゾルを用いた以外は、実施例 1と同様にしてコーティング 組成物を調製し、同様にしてレンズ基材アイァスに硬化膜及び反射防止膜を形成し た。評価結果を表 1に示す。
[0096] 実施例 4
実施例 1にお 、て、製造例 5で作製した (Α)成分である変性酸化第二スズ-酸化ジ ルコ-ゥムー酸ィ匕タングステン 酸ィ匕珪素複合体メタノールゾルの代わりに製造例 3で 作製した (A)成分である変性酸ィ匕第二スズー酸ィ匕ジルコニウム 酸ィ匕タングステン 酸ィ匕珪素複合体メタノールゾルを用いた以外は、実施例 1と同様にしてコーティング 組成物を調製し、同様にしてレンズ基材アイァスに硬化膜及び反射防止膜を形成し た。評価結果を表 1に示す。
[0097] 実施例 5
実施例 1にお 、て、製造例 5で作製した (A)成分である変性酸化第二スズ-酸化ジ ルコ-ゥムー酸ィ匕タングステン 酸ィ匕珪素複合体メタノールゾルの代わりに製造例 4で 作製した (A)成分である変性酸ィ匕第二スズー酸ィ匕ジルコニウム 酸ィ匕タングステン 酸ィ匕珪素複合体メタノールゾルを用いた以外は、実施例 1と同様にしてコーティング 組成物を調製し、同様にしてレンズ基材アイァスに硬化膜及び反射防止膜を形成し た。評価結果を表 1に示す。
[0098] 実施例 6
実施例 1にお 、て γ—グリシドキシプロピノレトリメトキシシランの代わりに γ—グリシド キシプロピルトリエトキシシランを用いた以外は、実施例 1と同様にしてコーティング組 成物を調製し、同様にしてレンズ基材アイァスに硬化膜及び反射防止膜を形成した 。評価結果を表 1に示す。
[0099] 実施例 7
実施例 1にお 、て γ—グリシドキシプロピノレトリメトキシシランの代わりに γ—メタクリロ キシプロピルトリメトキシシランを用い、実施例 1と同様にしてコーティング組成物を調 製し、同様にしてレンズ基材アイァスに硬化膜及び反射防止膜を形成した。評価結 果を表 1に示す。
[0100] 実施例 8
実施例 1にお ヽてテトラエトキシシランの代わりにテトラメトキシシランを用い、実施 例 1と同様にしてコ一ティング組成物を調製し、同様にしてレンズ基材アイァスに硬化 膜及び反射防止膜を形成した。評価結果を表 1に示す。
[0101] 実施例 9
実施例 1にお 、てプロピレングリコールモノメチルエーテル(PGM)の代わりにイソプ ロノ V—ル (ΙΡΑ)を用い、実施例 1と同様にしてコーティング組成物を調製し、同様に してレンズ基材アイァスに硬化膜及び反射防止膜を形成した。評価結果を表 1に示 す。
[0102] 実施例 10
実施例 1にお 、てプロピレングリコールモノメチルエーテル(PGM)の代わりに 1ーブ タノールを用い、実施例 1と同様にしてコーティング組成物を調製し、同様にしてレン ズ基材アイァスに硬化膜及び反射防止膜を形成した。評価結果を表 1に示す。
[0103] 実施例 11
実施例 1にお 、て、製造例 6で作製した (A)成分である変性酸化第二スズ-酸化ジ ルコ-ゥムー酸ィ匕タングステン 酸ィ匕珪素複合体メタノールゾルの代わりに製造例 4で 作製した (A)成分である変性酸ィ匕第二スズー酸ィ匕ジルコニウム 酸ィ匕タングステン 酸ィ匕珪素複合体メタノールゾルを用いた以外は、実施例 1と同様にしてコーティング 組成物を調製し、同様にしてレンズ基材アイァスに硬化膜及び反射防止膜を形成し た。評価結果を表 1に示す。
[0104] 比較例 1
コーティング剤の調製回転子を備えた反応器に、 y -グリシドキシプロピルトリメトキ シシラン 15重量部と、比較製造例 1で得られた変性酸ィ匕第二スズー酸ィ匕ジルコニウム 複合体メタノールゾル 49重量部を仕込み、 4°Cで 3時間攪拌したのち、 0. 001規定 の塩酸 3. 5重量部を徐々に反応器中に滴下し、 4°Cで 48時間攪拌した。次に、これ にプロピレングリコールモノメチルエーテル 30重量部およびシリコーン系界面活性剤 0. 04重量部を添加混合し、 4°Cで 3時間攪拌したのちアルミニウムァセチルァセトネ ート 0. 60重量部および過塩素酸アルミニウム (アルドリッチ社製) 0. 05重量部を添 加混合した。 4°Cで 3日間攪拌したのち、 4°Cで 2日間静置することにより、コーティン グ剤を調製した。該コーティング剤を用いて、実施例 1と同様にしてレンズ基材アイァ スに硬化膜を形成した。さらに、実施例 1と同様の反射防止膜を形成し、評価を行つ た。評価結果を表 1に示す。
[0105] 比較例 2
比較例 1にお 、て、 γ—グリシドキシプロピルトリメトキシシラン 15重量部の代わりに 、 β—(3, 4—エポキシシクロへキシル)ェチルトリメトキシシラン 15重量部を用いた以 外は、比較例 1と同様に実施した。評価結果を表 1に示す。
[0106] [表 1]
表 1
Figure imgf000044_0001
産業上の利用可能性
[0107] 本発明の製造方法で得られたプラスチックレンズは、プラスチック基材上に、特定の 性状を有する変性酸ィヒ第二スズー酸ィヒジルコニウム複合体コロイド粒子と有機珪素 化合物を含むコーティング組成物を用いて硬化膜を設けたものであって、審美性に 優れるとともに、良好な耐水性、耐湿性、耐光性、帯電防止性、耐熱性、耐摩耗性な どを有している。

Claims

請求の範囲
[1] プラスチック基板上に、
(A)金属スズと有機酸と過酸化水素との反応により得られた酸化第二スズのコロイド 粒子と、酸化ジルコニウムのコロイド粒子と力 これらの酸化物の重量に基づいて Zr O /SnOとして 0. 02-1. 0の比率に結合した構造と 4一 50nmの粒子径を有する
2 2
酸ィ匕第二スズー酸ィ匕ジルコニウム複合体コロイド粒子を核として、その表面が 0. 1-1 00の WO /SnO重量比と、 0. 1一 100の SiO /SnO重量比と、 2— 7nmの粒子
3 2 2 2
径を有する酸ィヒタングステン 酸ィヒ第二スズ一二酸ィヒ珪素複合体のコロイド粒子で被 覆されることによって形成された粒子径 4. 5— 60nmの変性された酸ィ匕第ニスズー酸 化ジルコニウム複合体コロイド粒子と、
(B)有機珪素化合物と、
を含むコーティング組成物を塗工して硬化膜を施すプラスチックレンズの製造方法。
[2] 前記有機酸が、シユウ酸又はシユウ酸を主成分として含む有機酸である請求項 1に 記載のプラスチックレンズの製造方法。
[3] 前記変性された酸ィ匕第二スズ-酸ィ匕ジルコニウム複合体コロイド粒子が、下記 (a)ェ 程、(b)工程、(c)工程、(d)工程、(e)工程及び (f)工程を含む工程によって製造さ れる請求項 1記載のプラスチックレンズの製造方法。
(a)工程:有機酸水溶液中において、過酸化水素水と金属スズを H O ZSnモル比
2 2
力 — 4の範囲を保ち、酸化スズ濃度が 40重量%以下になるように反応させ、粒子径 力 一 50nmの酸化第二スズのコロイド粒子を生成させる工程、
(b)工程: (a)工程で得た 4一 50nmの粒子径を有する酸ィ匕第二スズのコロイド粒子 をその酸ィ匕物 SnOとして 0. 5— 50重量%の濃度に含有する酸ィ匕第二スズ水性ゾル
2
と、 ZrOとして 0. 5 50重量%濃度のォキシジルコニウム塩の水溶液とを、これらに
2
基づく ZrO /SnOとして 0. 02-1. 0の重量比に混合する工程、
2 2
(c)工程:(b)工程によって得られた混合液を 60— 200°Cで、 0. 1— 50時間加熱処 理することにより、 4一 50nmの粒子径を有する酸ィ匕第二スズー酸ィ匕ジルコニウム複合 体水性ゾルを生成させる工程、
(d)工程:タングステン酸塩、スズ酸塩及び珪酸塩を WO /SnO重量比として 0. 1 一 100、 SiO /SnO重量比として 0. 1— 100の比率に含有する水溶液を調製し、
2 2
その水溶液中に存在する陽イオンを除去して得られる酸ィ匕タングステン 酸ィ匕第ニス ズ -二酸化珪素複合体ゾルを生成させる工程、
(e)工程: (c)工程で得られた酸ィ匕第二スズー酸ィ匕ジルコニウム複合体水性ゾルを、 それに含まれる ZrOと SnOの合計として 100重量部と、(d)工程で得られた 2— 7n
2 2
mの粒子径と 0. 1 100の WO /SnO重量比と 0. 1 100の SiO /SnO重量比
3 2 2 2 を有する酸化タングステン一酸化第二スズ一二酸化珪素複合体ゾルを、これに含まれ る WOと SnOと SiOの合計として 2— 100重量部の比率に 0— 100°Cで混合するこ
3 2 2
とにより、変性された酸ィ匕第二スズー酸ィ匕ジルコニウム複合体水性ゾルを生成させる 工程、及び
(f)工程: (e)工程で得られた変性された酸ィ匕第二スズー酸ィ匕ジルコニウム複合体水 性ゾルを陰イオン交換体と接触させることにより、当該ゾル中に存在する陰イオンを 除去する工程
[4] 前記有機酸水溶液が、シユウ酸水溶液又はシユウ酸を主成分として含む有機酸水溶 液である請求項 3に記載のプラスチックレンズの製造方法。
[5] (B)成分の有機珪素化合物が、一般式 (I)
R nSi (OR2)
4-n
(式中、 R1は官能基を有する若しくは有しない一価の炭素数 1一 20の炭化水素基、 R2は炭素数 1一 8のアルキル基、炭素数 6— 10のァリール基、炭素数 7— 10のァラ ルキル基または炭素数 2— 10のァシル基、 nは 0、 1または 2を示し、 R1が複数ある場 合、複数の R1はたがいに同一でも異なっていてもよいし、複数の OR2はたがいに同 一でも異なっていてもよい。)で表される化合物、一般式 (II)
[化 1]
Figure imgf000046_0001
(式中、 R3および R4は、それぞれ同一または異なる炭素数 1一 4のアルキル基または 炭素数 2— 4のァシル基、 R5および R6は、それぞれ同一または異なる一価の炭素数 1 一 5の官能基を有する若しくは有しない炭化水素基、 Yは炭素数 2— 20の二価の炭 化水素基、 aおよび bは、それぞれ 0または 1を示し、複数の OR3は、たがいに同一で も異なっていてもよいし、複数の OR4はたがいに同一でも異なっていてもよい。)で表 される化合物およびそれらの加水分解物の中から選ばれる少なくとも 1種である請求 項 1一 4のいずれか 1項に記載のプラスチックレンズの製造方法。
[6] 前記コーティング組成物が、(B)成分の有機珪素化合物 100重量部当たり、(A)成 分のコロイド粒子を固形分として 1一 500重量部の割合で含有する請求項 1一 5のい ずれ力 1項に記載のプラスチックレンズの製造方法。
[7] コーティング組成物力 (C)ァセチルァセトネート金属塩を含有する請求項 1一 6のい ずれ力 1項に記載のプラスチックレンズの製造方法。
[8] 前記硬化膜上に、さらに蒸着膜を施す請求項 1一 7ののいずれか 1項に記載のプラス チックレンズの製造方法。
PCT/JP2005/004079 2004-03-16 2005-03-09 プラスチックレンズの製造方法 WO2005088352A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP05720351.5A EP1726975B1 (en) 2004-03-16 2005-03-09 Method for producing plastic lens
JP2006510954A JPWO2005088352A1 (ja) 2004-03-16 2005-03-09 プラスチックレンズの製造方法
US10/593,073 US20070196567A1 (en) 2004-03-16 2005-03-09 Method for producing plastic lens

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004074651 2004-03-16
JP2004-074651 2004-03-16

Publications (1)

Publication Number Publication Date
WO2005088352A1 true WO2005088352A1 (ja) 2005-09-22

Family

ID=34975722

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/004079 WO2005088352A1 (ja) 2004-03-16 2005-03-09 プラスチックレンズの製造方法

Country Status (4)

Country Link
US (1) US20070196567A1 (ja)
EP (1) EP1726975B1 (ja)
JP (1) JPWO2005088352A1 (ja)
WO (1) WO2005088352A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016212389A (ja) * 2015-05-04 2016-12-15 明基材料股▲ふん▼有限公司 コンタクトレンズ着色用重合性組成物
WO2023080233A1 (ja) 2021-11-05 2023-05-11 ホヤ レンズ タイランド リミテッド 眼鏡レンズおよび眼鏡

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8241417B2 (en) * 2008-11-21 2012-08-14 Cheng Uei Precision Industry Co., Ltd. Nanocomposite coating and the method of coating thereof
GB0916329D0 (en) * 2009-09-17 2009-10-28 Tioxide Europe Ltd Stable nano titania sols and a process for their production
US9770688B2 (en) * 2015-10-22 2017-09-26 King Fahd University Of Petroleum And Minerals Si—Y nanocomposite membrane and methods of making and use thereof
JP6236643B1 (ja) * 2016-03-11 2017-11-29 パナソニックIpマネジメント株式会社 帯電防止材料、その製造方法および帯電防止膜

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6427635A (en) * 1987-07-22 1989-01-30 Nissan Chemical Ind Ltd Preparation of tin oxide sol
JP2000063754A (ja) * 1998-08-20 2000-02-29 Nissan Chem Ind Ltd コーティング組成物及び光学部材
JP2000281973A (ja) * 1999-03-30 2000-10-10 Hoya Corp コーティング組成物

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4017418A (en) * 1975-08-18 1977-04-12 Chemetron Corporation Process for making colloidal sols of antimony pentoxide in polar organic solvents
JP3346585B2 (ja) * 1991-07-11 2002-11-18 セイコーエプソン株式会社 眼鏡用プラスチックレンズの製造システム
US5585186A (en) * 1994-12-12 1996-12-17 Minnesota Mining And Manufacturing Company Coating composition having anti-reflective, and anti-fogging properties
JP4247585B2 (ja) * 1999-03-30 2009-04-02 日産化学工業株式会社 変性された酸化第二スズ−酸化ジルコニウム複合ゾル及びその製造法
JP3712561B2 (ja) * 1999-03-30 2005-11-02 Hoya株式会社 硬化被膜を有する光学部材
EP1077236B1 (en) * 1999-08-16 2004-05-26 Nissan Chemical Industries Ltd. Modified metal oxide sol, coating composition and optical element
JP3526439B2 (ja) * 2000-09-29 2004-05-17 Hoya株式会社 眼鏡レンズ用コーティング組成物の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6427635A (en) * 1987-07-22 1989-01-30 Nissan Chemical Ind Ltd Preparation of tin oxide sol
JP2000063754A (ja) * 1998-08-20 2000-02-29 Nissan Chem Ind Ltd コーティング組成物及び光学部材
JP2000281973A (ja) * 1999-03-30 2000-10-10 Hoya Corp コーティング組成物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1726975A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016212389A (ja) * 2015-05-04 2016-12-15 明基材料股▲ふん▼有限公司 コンタクトレンズ着色用重合性組成物
WO2023080233A1 (ja) 2021-11-05 2023-05-11 ホヤ レンズ タイランド リミテッド 眼鏡レンズおよび眼鏡

Also Published As

Publication number Publication date
EP1726975A1 (en) 2006-11-29
JPWO2005088352A1 (ja) 2008-01-31
EP1726975A4 (en) 2009-04-29
EP1726975B1 (en) 2017-12-13
US20070196567A1 (en) 2007-08-23

Similar Documents

Publication Publication Date Title
TWI428282B (zh) 金屬氧化物複合溶膠,塗佈組成物及光學構件
JP5168469B2 (ja) 酸化ジルコニウム−酸化スズ複合体ゾル、コーティング組成物及び光学部材
TWI433816B (zh) 改性金屬氧化物複合溶膠,塗覆組成物及光學構件
WO2005093465A1 (ja) 反射防止膜を有する光学部材
JPH10306258A (ja) コーティング組成物及び光学部材
JP2001123115A (ja) コーティング組成物及び光学部材
EP3101075B1 (en) Coating composition and optical member
JP4288432B2 (ja) コーティング組成物及び光学部材
WO2005088352A1 (ja) プラスチックレンズの製造方法
JP3712561B2 (ja) 硬化被膜を有する光学部材
EP1568659B1 (en) Modified stannic oxide sol, stannic oxide-zirconium oxide composite sol, coating composition and optical member
JP2012031353A (ja) コーティング組成物及び光学部材
JPH09125003A (ja) コーティング組成物及び光学部材
JP4510489B2 (ja) コーティング組成物の製造方法
JP4996152B2 (ja) プラスチックレンズの製造方法
JP4129600B2 (ja) コーティング組成物及び光学部材
JP4287534B2 (ja) コーティング組成物
JP5209857B2 (ja) コーティング組成物の製造方法
JP4088720B2 (ja) コーティング組成物及び光学部材
WO2023282102A1 (ja) コーティング用組成物
JP3398939B2 (ja) 硬化被膜を有する光学部材及びその製造方法
JPH09118870A (ja) コーティング組成物及び光学部材

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2006510954

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2005720351

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10593073

Country of ref document: US

Ref document number: 2007196567

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWP Wipo information: published in national office

Ref document number: 2005720351

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10593073

Country of ref document: US