WO2017153547A1 - Elektrolytische raffination von rohgold - Google Patents

Elektrolytische raffination von rohgold Download PDF

Info

Publication number
WO2017153547A1
WO2017153547A1 PCT/EP2017/055604 EP2017055604W WO2017153547A1 WO 2017153547 A1 WO2017153547 A1 WO 2017153547A1 EP 2017055604 W EP2017055604 W EP 2017055604W WO 2017153547 A1 WO2017153547 A1 WO 2017153547A1
Authority
WO
WIPO (PCT)
Prior art keywords
gold
region
anode
electrolyte solution
cathode
Prior art date
Application number
PCT/EP2017/055604
Other languages
German (de)
English (en)
French (fr)
Inventor
Thorsten Koras
Revin SHANGULA
Original Assignee
Thorsten Koras
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thorsten Koras filed Critical Thorsten Koras
Priority to EA201892012A priority Critical patent/EA036684B1/ru
Priority to EP17713591.0A priority patent/EP3426825B1/de
Priority to CN201780028624.6A priority patent/CN109312481B/zh
Priority to ES17713591T priority patent/ES2811380T3/es
Priority to PL17713591T priority patent/PL3426825T3/pl
Publication of WO2017153547A1 publication Critical patent/WO2017153547A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C1/00Electrolytic production, recovery or refining of metals by electrolysis of solutions
    • C25C1/20Electrolytic production, recovery or refining of metals by electrolysis of solutions of noble metals

Definitions

  • the invention relates to a process for the electrochemical refining of crude gold
  • crude gold Contaminated gold, hereinafter referred to as crude gold, is particularly important in the recycling of electro-technical and electronic Bayteie.
  • crude gold is a gold alloy, which consists of fine gold and admixtures of other metals. As admixtures often occur in particular copper and possibly also silver.
  • US Pat. No. 4,612,093 B describes a process for recovering fine gold from an electrolytically dissociable crude gold anode. This method is characterized by a first electrolyte region with the anode and by a second electrolyte region with a (carbon) cathode. Both regions are separated by a semipermeable membrane that is impermeable to gold ions from the first electrolyte region toward the cathode.
  • the electrolyte in the first electrolyte region comprises an aqueous solution with dissociated halogens and an initially oxygen-supplying additive.
  • US Pat. No. 5,009,755 B likewise describes a process for recovering fine gold from a crude gold anode to be dissolved by electrosolation. This procedure also makes use of that anode-side region is separated by a semipermeable membrane from the cathode-side region.
  • the aqueous electrolyte solution contains a) halogen ions, in particular dissociated ammonium chloride, which also serves to form soluble silver and copper compounds, and
  • the semipermeable membrane is impermeable to ions containing gold, insoluble components and abrasive oxide particles.
  • the extraction of fine gold from the gold-containing ions in the anode-side region is carried out by adding bisulfite salts.
  • FIG. 1 representation for the first process step - Anodic dissolution of the raw gold
  • FIG. 2 shows the second method step - cathodic deposition of simply refined fine gold
  • FIG. 3 shows the third method step - anodic dissolution of the simply refined fine gold
  • FIG. 4 shows the fourth process step - cathodic deposition of twice refined fine gold.
  • the electrolytic refining for the production of fine gold from contaminated with accompanying elements raw gold takes place in a tub 1/2 "which is divided by a permeable for particular ion membrane 3 in a first area 1 and a second region. 2
  • Each area comprises an electrode A1, K2 and an electrolyte solution E1, E2.
  • As starting elements are base metals such as copper, nickel, tin and zinc or their compounds, as noble metals are silver, palladium and platinum metals or their compounds to consider.
  • the anodic dissolution of the raw gold see Fig. 1, in the first region 1 acting as an anode electrode A1 made of raw gold or acting as an anode loaded with raw gold scrap anode basket or acting as an anode with raw gold scrap in Contact contact rod connected to the positive pole of a voltage source for a DC circuit.
  • This anode A1 is arranged in an aqueous electrolyte solution E1 containing dissociated hydrochloric acid and / or dissociated chloride salts.
  • the hydrochloric acid concentration of the electrolyte solution E1 is in the range between 5 and 15%.
  • With dissociation the decay of a molecule, e.g. called a salt in its ionic constituents.
  • Dissolution of common salt in an aqueous solution results in positively charged sodium ions and negatively charged chlorine ions.
  • an electrode K2 acting as a cathode is connected to the negative pole of the voltage quenules and arranged in a dissociated sulfuric acid and / or dissociated sulfate salts containing aqueous electrolyte solution E2.
  • the sulfuric acid concentration in the electrolyte solution E2 is about 10%
  • the membrane 3 separates both electrolyte solutions E1 and E2 from each other.
  • the raw gold anode is dissolved to form positively charged base metal containing cations and negatively charged gold containing anions (also called negatively charged gold complex anions).
  • the membrane 3 is only permeable to positively charged cations formed in the first region 1 in the direction of the negative cathode K2 arranged in the second region 2, at which point the metal contained in the cations, optionally copper, for example, precipitates.
  • anode basket of electrically conductive material loaded with raw gold scrap also comes into consideration.
  • the contact between the anode basket and the crude gold scrap must be ensured.
  • a Koniaktstab in contact with the raw gold scrap can be used as an anode.
  • the cathodic deposition of simply refined fine gold see FIG. 2, after dissolution of the raw gold in the first region 1 according to the first method step in the first region 1 in the electrolyte solution E1, a negative electrode connected to the negative pole of the voltage source. Dene acting as a cathode electrode K1 'arranged.
  • an electrode A2 which is connected to the positive pole of the current source and acts as the anode, is arranged in the electrolyte solution E2.
  • the precipitation of the gold from the originally negatively charged gold-containing anions takes place at the negative cathode K1 in the first area 1 as simply refined fine gold.
  • the simply refined gold has a higher degree of purity than the gold in the raw gold anode A1 or in the raw gold scrap .
  • the electrode K1 in the first region 1 which is coated with simply refined fine gold, is connected to the positive pole of the voltage source in the first region 1 and into the electrolyte solution containing hydrochloric acid E1 is arranged in the second area 2 an electrode K2 ', which is connected to the negative pole of the voltage source and acts as a cathode, is arranged in the electrolyte solution E2 containing sulfuric acid,
  • the simply refined fine gold adhered to the electrode AV is dissolved to form positively charged base metal-containing cations such as copper cations and negatively charged gold-containing anions.
  • the membrane 3 is only permeable to positively charged cations formed in the first region i in the direction of the negative cathode K2 'arranged in the second region 2, at which point the base metal contained in the cations precipitates.
  • the electrode K1 'acting as the cathode is connected to the negative pole of the voltage source and placed in the electrolyte solution E1 in the first region 1.
  • the electrode A2 'acting as the anode is connected to the positive pole of the voltage source and arranged in the electrolyte solution E.2.
  • the gold from the anions originally containing negatively charged gold in the first region 1 precipitates at the negative cathode K1 'as a double refined fine gold down.
  • the double-refined gold has a higher degree of purity than the simply refined gold.
  • the first to fourth process steps according to the invention may be followed by further process steps five and six.
  • the twice-refined fine gold deposited cathodically in the fifth and sixth method step would be dissolved anodically and cathodically deposited in the sixth method step in analogy to the fourth method step as triple-refined fine gold.
  • subsequent seventh and eighth process step analogous to the third and fourth or fifth and sixth process steps fourfold refined fine gold can be obtained, etc.
  • the method according to the invention is preferably a example of the company lon-power GmbH,
  • the inventive method is carried out at a temperature of about 55 degrees Celsius.
  • the gold dissolving process steps one and three are carried out at a voltage of 5 to 6 volts with a maximum current of 30 amps; the gold depositing process steps two and four at a voltage of 2 to 4 volts and a current of 8 to 20 amperes.
  • the addition of silver in the anodic raw gold reacts with the hydrochloric acid contained in the electrolyte E1: It forms poorly water-soluble silver chloride, which is reflected in particular as an undesirable solid coating on the raw gold anode or the raw gold scrap. This coating prevents or limits the contact of the electrolyte E1 with the raw gold anode or with the raw gold scrap and therefore hinders the electrolysis.
  • This brittle coating provides a better contact of the electrolyte El with the raw gold anode or with the raw gold scrap and therefore does not limit the electrolysis process as much as is the case with silver chloride.
  • the application of ultrasound to the raw gold anode A1 or of the raw gold scrap forms the formation of an undesirable solid coating of silver chloride on the raw gold anode or Can reduce crude gold scrap or inventively replace the only slightly adhering to the raw gold anode or the raw gold scrap brittle coating mechanically.
  • the electrode A1 made of raw gold or the Rohgotd scrap (in the anode basket or in contact with the contact rod) is subjected to ultrasound.
  • ultrasonic vibrator elements are available as Handeisware » mounted in a housing.
  • This housing is so coupled via a chamber with the outer wall of the tub 1/2, that the exiting from the housing ultrasonic vibrations as lossless pass the filled with water or Giycerin chamber and can impinge on the anode in the tub 1/2.
  • the wall of the chamber and the tub in the region of the ultrasonic vibrations passing through it consists of a material, preferably of polypropylene, which allows the ultrasound to pass through as lossless as possible.
  • the frequency of the ultrasonic transducer elements used lays at 40 KHz. They have no direct contact with the electrolyte. As a source of the ultrasonic oscillator elements may be mentioned;
  • resulting insoluble particles such as silver chloride or the detached from the anode of the anode particles of the brittle coating are filtered out.
  • This filtering can be done for example by means of a circulation pump.
  • filter cartridges No. NT 10 "(Article No.
  • three titanium electrodes are used as cathode K2 in method step one and cathode K2 'in the method step.
  • anode A1 in process step three as cathode K1 in process step two, as cathode K1 in process step four, as anode A2 in process step two, as anode A2 in process step four, and as anode in process step one, if it does not itself consist of crude gold, used are placed titanium electrodes.
  • the anode basket for receiving the raw gold scrap consists of a mesh-like mesh made of expanded titanium expanded metal.
PCT/EP2017/055604 2016-03-09 2017-03-09 Elektrolytische raffination von rohgold WO2017153547A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EA201892012A EA036684B1 (ru) 2016-03-09 2017-03-09 Электролитическое рафинирование чернового золота
EP17713591.0A EP3426825B1 (de) 2016-03-09 2017-03-09 Elektrolytische raffination von rohgold
CN201780028624.6A CN109312481B (zh) 2016-03-09 2017-03-09 粗金的电解提纯
ES17713591T ES2811380T3 (es) 2016-03-09 2017-03-09 Refinación electrolítica de oro bruto
PL17713591T PL3426825T3 (pl) 2016-03-09 2017-03-09 Elektrolityczna rafinacja surowego złota

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102016104237.4 2016-03-09
DE102016104237.4A DE102016104237A1 (de) 2016-03-09 2016-03-09 Elektrolytische Raffination von Rohgold

Publications (1)

Publication Number Publication Date
WO2017153547A1 true WO2017153547A1 (de) 2017-09-14

Family

ID=58413056

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2017/055604 WO2017153547A1 (de) 2016-03-09 2017-03-09 Elektrolytische raffination von rohgold

Country Status (8)

Country Link
EP (1) EP3426825B1 (zh)
CN (1) CN109312481B (zh)
DE (1) DE102016104237A1 (zh)
EA (1) EA036684B1 (zh)
ES (1) ES2811380T3 (zh)
PL (1) PL3426825T3 (zh)
PT (1) PT3426825T (zh)
WO (1) WO2017153547A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017216564A1 (de) * 2017-09-19 2019-03-21 Siemens Aktiengesellschaft CO2-freie elektrochemische Herstellung von Metallen und Legierungen davon

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6070196A (ja) * 1983-09-26 1985-04-20 Sumitomo Metal Mining Co Ltd 金電解精製法及びその装置
US4612093A (en) 1985-05-31 1986-09-16 Shor International Corporation Method and apparatus for purification of gold
US5009755A (en) 1990-01-22 1991-04-23 Shor Peter S Refining method
CN102978658A (zh) * 2011-09-07 2013-03-20 江西铜业股份有限公司 一种阴极金电解精炼工艺
CN102618885B (zh) * 2012-04-13 2014-08-27 陕西黄金集团西安秦金有限责任公司 一种适于高银合质金快速电解精炼的辅助试剂

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1132342B (de) * 1960-07-12 1962-06-28 Duisburger Kupferhuette Elektrolytisches Verfahren zur kontinuierlichen Herstellung von sehr reinem Indium
US4437889A (en) * 1981-08-06 1984-03-20 Palacios Mendoza Eliodoro Method of recovering silver from solid and liquid photographic waste
JPH0238536A (ja) * 1988-07-29 1990-02-07 Tanaka Kikinzoku Kogyo Kk イリジウム酸性溶液中の貴金属分離法
EP1288339B1 (en) * 2000-05-22 2010-08-18 Nippon Mining & Metals Co., Ltd. Method of producing a higher-purity metal
CN1208482C (zh) * 2003-04-11 2005-06-29 山东黄金集团有限公司焦家金矿 一种粗金提纯的方法
DE102006056017B4 (de) * 2006-11-23 2016-02-18 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zur Rückgewinnung von Edelmetallen
AU2007357547B2 (en) * 2007-08-06 2011-06-02 Gomez, Rodolfo Antonio M Improved electrochemical system for metal recovery
CN101705507A (zh) * 2009-11-27 2010-05-12 苏州天地环境科技有限公司 从含氰镀金废液中电解回收金的方法
CN103590071A (zh) * 2013-11-01 2014-02-19 白银有色集团股份有限公司 一种提高金电解精炼工艺中金析出品位的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6070196A (ja) * 1983-09-26 1985-04-20 Sumitomo Metal Mining Co Ltd 金電解精製法及びその装置
US4612093A (en) 1985-05-31 1986-09-16 Shor International Corporation Method and apparatus for purification of gold
US5009755A (en) 1990-01-22 1991-04-23 Shor Peter S Refining method
CN102978658A (zh) * 2011-09-07 2013-03-20 江西铜业股份有限公司 一种阴极金电解精炼工艺
CN102618885B (zh) * 2012-04-13 2014-08-27 陕西黄金集团西安秦金有限责任公司 一种适于高银合质金快速电解精炼的辅助试剂

Also Published As

Publication number Publication date
CN109312481A (zh) 2019-02-05
EP3426825B1 (de) 2020-05-06
DE102016104237A1 (de) 2017-09-14
EP3426825A1 (de) 2019-01-16
CN109312481B (zh) 2020-10-16
PL3426825T3 (pl) 2021-04-06
EA201892012A1 (ru) 2019-02-28
ES2811380T3 (es) 2021-03-11
EA036684B1 (ru) 2020-12-08
PT3426825T (pt) 2020-08-20

Similar Documents

Publication Publication Date Title
DE3108992A1 (de) Katalytisch wirksame elektrode, herstellungsverfahren und anwendung der elektrode
DE1671422B2 (de) Elektrode zur verwendung in elektrolytischen prozessen und verfahren zu deren herstellung
DE3049982A1 (en) Process and apparatus for producing metals at porous hydrophobic catalytic barriers
DE1796220B2 (de) Verfahren zur Herstellung einer Elektrode zur Verwendung bei elektrolytischen Verfahren
DE1280014B (de) Bad und Verfahren zum galvanischen UEberziehen von Metallen mit Platin, Palladium, Rhodium, Ruthenium oder Legierungen dieser Metalle untereinander und/oder mit Iridium
DE2940186A1 (de) Verfahren zur herstellung von nitriten
EP0158910B1 (de) Verfahren zur Rückgewinnung von Kupfer aus einer ammoniakalischen Kupfer-Ätzlösung und Rekonditionierung derselben
DE10025551C2 (de) Kathode für die elektrochemische Regenerierung von Permanganat-Ätzlösungen, Verfahren zu deren Herstellung sowie elektrochemische Regeneriervorrichtung
DE102007003554A1 (de) Verfahren zur Leistungsverbesserung von Nickelelektroden
DE2260771B2 (de) Verfahren zur herstellung von alkalihydroxid und chlor oder wasserstoff und chlor durch elektrolyse
DE1182211B (de) Verfahren zur elektrolytischen Abscheidung eines Bleidioxydueberzugs auf einer Graphitanode
DE2523117A1 (de) Verfahren und vorrichtung zur regeneration einer dekapierloesung
EP0124087A1 (de) Verfahren zur Anreicherung von Schwefelsäure
DE102006056017B4 (de) Verfahren zur Rückgewinnung von Edelmetallen
DE2115687C3 (de) Verfahren zur kontinuierlichen Auf bereitung von bei der galvanischen oder stromlosen Metallabscheidung anfallenden Waschwassern durch Elektrodialyse
DE2908592C3 (de) Verfahren zur Abtrennung und Gewinnung eines chalcophilen Elements aus einer wäßrigen Lösung
EP3426825B1 (de) Elektrolytische raffination von rohgold
DE3029364A1 (de) Verfahren zur herstellung von kathoden mit niedriger wasserstoffueberspannung und ihre verwendung
DE2011610C3 (de) Verfahren zur Gewinnung eines Metalls aus einer Spuren des Metallions enthaltenden Lösung mittels Elektrolyse
DE2607512C2 (de) Verfahren zur Herstellung eines Metallpulvers, Elektrolysezelle zur Durchführung des Verfahrens und Anwendung des Verfahrens
DE2924601A1 (de) Verfahren zum behandeln eines metallkoerpers
WO2022229175A1 (de) Vorrichtung und verfahren zum beschichten eines bauteils oder halbzeugs mit einer chromschicht
DE2818306A1 (de) Verfahren zur in-situ-reduktion von elektroden-ueberspannung und elektrolysezelle zur durchfuehrung des verfahrens
DE3036066A1 (de) Verfahren zur herstellung eines elektroden-membran-verbundsystems
DE2940741C2 (zh)

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 201892012

Country of ref document: EA

WWE Wipo information: entry into national phase

Ref document number: 2017713591

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017713591

Country of ref document: EP

Effective date: 20181009

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17713591

Country of ref document: EP

Kind code of ref document: A1