WO2022229175A1 - Vorrichtung und verfahren zum beschichten eines bauteils oder halbzeugs mit einer chromschicht - Google Patents

Vorrichtung und verfahren zum beschichten eines bauteils oder halbzeugs mit einer chromschicht Download PDF

Info

Publication number
WO2022229175A1
WO2022229175A1 PCT/EP2022/061036 EP2022061036W WO2022229175A1 WO 2022229175 A1 WO2022229175 A1 WO 2022229175A1 EP 2022061036 W EP2022061036 W EP 2022061036W WO 2022229175 A1 WO2022229175 A1 WO 2022229175A1
Authority
WO
WIPO (PCT)
Prior art keywords
chromium
cathode
cell
anode
deposition cell
Prior art date
Application number
PCT/EP2022/061036
Other languages
English (en)
French (fr)
Inventor
Andreas Bán
Original Assignee
Vdeh-Betriebsforschungsinstitut Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vdeh-Betriebsforschungsinstitut Gmbh filed Critical Vdeh-Betriebsforschungsinstitut Gmbh
Priority to CN202280030690.8A priority Critical patent/CN117396638A/zh
Priority to KR1020237039391A priority patent/KR20230173685A/ko
Priority to JP2023566412A priority patent/JP2024516407A/ja
Priority to EP22725776.3A priority patent/EP4330448A1/de
Publication of WO2022229175A1 publication Critical patent/WO2022229175A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D21/00Processes for servicing or operating cells for electrolytic coating
    • C25D21/16Regeneration of process solutions
    • C25D21/18Regeneration of process solutions of electrolytes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/08Supplying or removing reactants or electrolytes; Regeneration of electrolytes
    • C25B15/087Recycling of electrolyte to electrochemical cell
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • C25D17/002Cell separation, e.g. membranes, diaphragms
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • C25D17/02Tanks; Installations therefor
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • C25D17/02Tanks; Installations therefor
    • C25D17/04External supporting frames or structures
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • C25D17/10Electrodes, e.g. composition, counter electrode
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D21/00Processes for servicing or operating cells for electrolytic coating
    • C25D21/12Process control or regulation
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/04Electroplating: Baths therefor from solutions of chromium
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/04Electroplating: Baths therefor from solutions of chromium
    • C25D3/06Electroplating: Baths therefor from solutions of chromium from solutions of trivalent chromium
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/18Electroplating using modulated, pulsed or reversing current
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/56Electroplating: Baths therefor from solutions of alloys

Definitions

  • the invention relates to a device for coating a component or a semi-finished product with a chromium layer. Furthermore, the invention relates to a method for coating a component with a chromium layer. It is known from practice that decorative chromium layers and hard chromium layers are deposited on a component from electrolytic solutions containing chromium(VI). The chromic acid used is toxic and carcinogenic and has therefore been included in the lists of substances of very high concern (SVHC) of the EU Chemicals Regulation (REACH). For this reason, attempts have been made for many years to use the chromium(VI)-containing electrolyte solutions
  • a fundamental problem is that stable complexes between chromium(III) ions and six water molecules, the so-called hexaaquachrome(III) complexes, form in aqueous electrolyte solutions, which prevent the reduction of the
  • Chromium (III) ions Chromium (III) ions and thus kinetically inhibit the deposition of chromium. For this reason, complexing agents such as formates, oxalates or glycinates are usually added to the electrolyte solutions. Faster separation of the chromium from the chromium complexes that form is possible. In the reduction of the chromium(III) ion, the chromium(III) ion is first reduced to the chromium(II) ion and then the chromium(II) ion to the metallic chromium.
  • the kinetic inhibition of the chromium deposition is therefore caused in particular by the preceding reduction of the chromium(III) ion to the chromium(II) ion.
  • the invention was based on the object of creating a device and a method that allow a component to be provided with a chromium layer on an industrial scale without having to use electrolyte solutions with chromium(VI) compounds, at least to be able to reduce the use of chromium(VI)-containing solutions.
  • the basic idea of the invention is the reduction of the chromium(III) ion to the chromium(II) ion and the chromium(II) reduction to the metallic chromium in two different electrochemical cells whose electrolyte solutions are mutually exchanged via a circulation system , to execute.
  • the device according to the invention has an undivided deposition cell in which there is an anode and which is suitable for accommodating a cathodically connected component.
  • an anode instead of a single anode, a number of anodes and, in addition, smaller auxiliary anodes can also be arranged in the cell.
  • the deposition cell can be a dip tank. The use of a dip tank allows individual or multiple parts or even a larger number of parts to be immersed in drums or on racks.
  • the separation cell can also be a continuous cell in which the material is passed through a basin past one or more anodes arranged vertically, horizontally or radially.
  • the deposition cell can also be combined with a reservoir and a pump in order to circulate the electrolyte solution in order to ensure thorough mixing of the electrolyte solution, in particular between the component and the anode.
  • the deposition cell can also be a coating cell in which the electrolyte solution is guided between the anode and the surface of the component or semi-finished product without the component or semi-finished product and/or the anode being located in a basin.
  • the cell is also combined with a pump and a reservoir for the electrolyte solution.
  • the invention offers the advantage that conventional coating cells can be used to coat individual parts, but also mass-produced goods and semi-finished products. For the coating of mass-produced goods, preference is given to using rack and barrel processes.
  • Continuous systems are preferably used for semi-finished products such as wire, strip and tubes.
  • the invention can also be practiced with internal coating methods, e.g. B. for containers, pipes and bores.
  • the electrolytic solution is poured into the container or tube and an anode is inserted.
  • the deposition cell is an undivided cell.
  • An undivided separation cell is understood to mean a space in which a liquid is located, which space is not divided by a membrane into sub-cells which are only connected to one another via the membrane.
  • the deposition cell contains a liquid in which a substance containing chromium(II) is dissolved.
  • the liquid can also contain anions such as chloride, sulphate, hydrogen sulphate, fluoride, formate, oxalate, methanesulphonate, glycinate, citrate or acetate in addition to the dissolved chromium(II) ions.
  • the liquid can contain at least one solvent such as water, ethylene glycol, acetic acid, dimethyl sulfoxide, formamide, dimethylformamide or ethylene carbonate.
  • chromium(III) ions can also be present in the liquid, in particular if the chromium(II) ions are oxidized at the anode of the deposition cell.
  • the liquid can contain one or more acid buffers and/or one or more conductive salts such as sodium sulfate, sodium chloride, sodium methanesulfonate, potassium sulfate, potassium chloride, potassium sulfate, aluminum sulfate and boric acid or uncharged complexing agents such as ammonia, glycine, thiosulfate, diethanolamine, thiourea or urea and additives such as polyethylene glycol.
  • the device also has an electrolytic cell.
  • the electrolytic cell is separated by a membrane arranged in the electrolytic cell into a cathode compartment, in which a cathode is located, and an anode compartment, in which an anode is located.
  • the electrolytic cell can be designed as a basin.
  • the cathode and anode are designed and aligned geometrically in such a way that their distances from one another are the same everywhere and the membrane is arranged approximately in the middle.
  • the cathode, membrane and anode are designed to be plane-parallel to one another and small distances in the range from 2 mm to 5 cm chosen between cathode and membrane and anode and membrane. If small distances are selected, it is advantageous to design both the cathode and the anode space as flow cells.
  • the electrolyte solution can also be circulated in the anode chamber with the aid of a pump.
  • An electrolyte reservoir can also be present in the electrolyte circuit.
  • Several cells can also be combined to form a cell stack with separate inlets and outlets.
  • the membrane that separates the cathode space from the anode space is preferably an anion exchanger.
  • anion exchange membranes with a polymer structure based on polyetheretherketones, polysulfones, polyphenylene ethers, polybenzimidazoles, fluoropolymers or polystyrene copolymers can be used.
  • Trimethylammonium, pyridinium, sulfonium, phosphonium, guanidinium, imidazolium or piperidinium can be bonded to the polymer backbone as cationic functional groups.
  • the cathode located in the cathode space is preferably made of an electrically conductive material which is characterized by a high overvoltage for the cathodic decomposition of water.
  • Cathodes made of copper, lead, tin, titanium, lead-antimony alloys or carbon are particularly suitable. Solid as well as porous electrodes such as metal foams or carbon tiles can be used. Coatings of e.g. copper or carbon fleece are conceivable. For example, bismuth, indium, lead, bismuth-lead, silver-lead, gold-lead or copper-lead are suitable for this.
  • the anode located in the anode space is preferably a titanium anode coated with iridium mixed oxide.
  • other electrode materials such as platinized titanium, lead, lead-antimony, carbon or stainless steel can also be used.
  • the liquid that is placed in the anode compartment preferably contains the same solvent as the liquid of the cathode compartment and an acid whose anion is identical to an anion that is in the electrolyte solution of the cathode compartment.
  • the cathode compartment is connected to the deposition cell via a line and a pump arranged in the line, the pump being able to pump liquid from the cathode compartment into the deposition cell and/or liquid from the deposition cell into the cathode compartment.
  • a method that can be carried out with the device according to the invention is conceivable, in which the direction of flow through the line is changed.
  • the inventive method can be carried out in such a way that • in a first operating state, liquid is conveyed by means of the pump through the line from the cathode space into the deposition cell and
  • liquid is conveyed by means of the pump through the line from the deposition cell into the cathode space.
  • the method can consist of a series of the two operating states. However, other operating states can also be provided in which no liquid is conveyed through the line.
  • the line with the pump arranged in it is only used to convey the liquid in one direction.
  • Execution forms are conceivable in which liquid is conveyed by means of the pump through the line from the cathode compartment into the deposition cell.
  • the cathode compartment can be connected to the deposition cell via an additional return line, liquid flowing from the deposition cell into the cathode compartment via the return line.
  • Embodiments are conceivable in which liquid is conveyed by means of the pump through the line from the deposition cell into the cathode space.
  • the deposition cell may be connected to the cathode compartment via an additional return line, liquid flowing from the cathode compartment into the deposition cell via the return line.
  • the previously described exchange of the electrolyte solution can also take place between the reservoir and the cathode space of the membrane cell.
  • the line can also be a gutter.
  • the invention enables a high concentration of chromium (II) ions to be maintained in an undivided deposition cell.
  • the kinetically severely inhibited chromium deposition can be accelerated and the power required (amount of charge in ampere-hours per mass of deposited chromium in kilograms) for the chromium deposition in the deposition cell can be reduced. Since there is no need for a divided deposition cell, parts with complex shapes can also be coated in a chromium(II)-containing electrolyte solution, in particular using additional auxiliary anodes.
  • electrolyte solutions containing chloride can also be used in an undivided coating cell, since only the chromium (II) ion is oxidized to the chromium (III) ion at the anode of the deposition cell due to the lower oxidation potential of the chromium (II) ion and so the Oxidation of the chloride to the toxic chlorine is avoided. For the same reason, the oxidation of the chromium(III) ion to chromium(VI) is avoided.
  • pulsed current deposition of the chromium from the chromium(II)-containing electrolyte solution is made possible at high pulsed current densities. It is conceivable that even finely cracked chromium layers can be deposited with this process, which previously could only be produced from the toxic chromium(VI)-containing electrolyte solutions.
  • a chromium(III)-containing liquid is located in the cathode space.
  • the liquid containing chromium(III) contains chromium(III) ions.
  • the liquid in the cathode compartment can contain the same components as the liquid in the deposition cell, especially if the liquids are constantly changed.
  • the concentration of chromium(II) ions can be somewhat higher in the catholyte.
  • the pH (acid concentration) in the catholyte and in the separation cell can be different.
  • a reference electrode is provided in the cathode compartment.
  • This reference electrode can also be located outside the cathode compartment.
  • the electrolyte solution of the reference electrode can be connected to the electrolyte solution in the cathode compartment via a capillary, the so-called Haber-Luggin capillary.
  • the opening of the capillary in the cathode space is preferably positioned in the immediate vicinity of the cathode surface.
  • Suitable reference electrodes include silver-silver chloride electrodes, calomel electrodes, lead sulphate electrodes or mercury sulphate electrodes.
  • the device has a connecting piece which can be electrically connected to the component to be coated and with which a potential can be applied to the component.
  • the connector can be a clamp, for example.
  • the electrical contact can also be made via frames with holders for the components (frame process), via conductor electrodes in drums (drum process), via current rollers in a continuous process, via sliding contacts or other contact-making conductor electrodes.
  • the device has a (first) current or voltage source with a first pole and a second pole.
  • the anode of the deposition cell is electrically connected to the first pole of the first voltage source.
  • a connecting piece is provided which can be connected to the component to be coated and with which a potential can be applied to the component, the connecting piece being electrically connected to the second pole of the first voltage source.
  • the device has a second current or voltage source with a first pole and a second pole.
  • the anode of the anode compartment is electrically connected to the first pole of the second voltage source.
  • the cathode of the cathode compartment is electrically connected to the second pole of the second voltage source.
  • the inventive method for coating a component with a chromium layer provides that
  • the chromium(II) cations can oxidize to chromium(III) cations.
  • the electrolyte solution which is depleted in chromium(II) cations and enriched in chromium(III) cations in the coating cell can be pumped into the cathode space.
  • a constant flow of liquid can be used as well as an intermittent supply and removal of the electrolyte solution.
  • the flow of liquid or the amounts of liquid exchanged can be measured in such a way that the concentration of chromium(II) ions in the deposition cell is only slightly lower than in the cathode space of the electrolytic cell.
  • the cathode potential of the cathode can be measured against a reference electrode and adjusted.
  • the cathode potential can be set by controlling the cell voltage or current.
  • a cathode potential can be set which is small enough to reduce the chromium (III) ions to chromium (II) ions and large enough to avoid chromium deposition on the cathode of the electrolytic cell.
  • chromium(III) ions and chromium(II) ions are usually present in solutions as complex-bound chromium cations. Depending on the number of anions bound to the chromium cation and the number of charges, the charge on the complexes is positive, neutral or negative.
  • an anion exchange membrane can be used to prevent or minimize the transfer of chromium ions into the anode compartment. If the chromium complexes are predominantly present as negatively charged ions, the use of a cation exchange membrane can also be considered. If no starting salt containing chloride is used, a diaphragm electrolysis cell can also be used instead of a membrane electrolysis cell. The use of membrane electrolysis cells, which are divided into three chambers by an anion and cation exchange membrane, is also possible.
  • a three-chamber cell with a cathode compartment, anode compartment and a central compartment without an electrode is ideal if anions from the electrolyte solution in the cathode compartment must not reach the anode in the anode compartment, as they can be oxidized there to form toxic substances.
  • chlorides in the electrolyte solution in the cathode compartment are oxidized to form poisonous chlorine gas if they reach the anode in the anode compartment.
  • This can be avoided with a three-chamber cell, the center space of which is separated from the cathode space by an anion exchange membrane and the center space is separated from the anode space by a cation exchange membrane. In this way, the chlorides can pass through the anion exchange membrane into the center space, but their transfer into the anode space is almost completely avoided by using the cation exchange membrane.
  • the invention can also be applied to the electroplating of alloys containing chromium, e.g. B. in the galvanic zinc-chromium or chromium-iron deposition.
  • it is applicable to galvanic iron plating or plating of an alloy containing iron.
  • the process can also be used for the galvanic chromium and iron recovery or recovery of these metals from salt solutions.
  • the electrolyte solutions should contain appropriate metal salts in the solvent:
  • Iron alloys instead of substances containing chromium, at least one salt containing iron and salts from the alloy partners must be used
  • figure 1 shows a schematic representation of the device according to the invention.
  • the component 1 to be chromed is connected cathodically in an electrolytic solution containing chromium(II) ions with the aid of a power source 4 and an anode 2 in the deposition cell 3, so that chromium is deposited.
  • the chromium(II) and chromium(III) ions which are almost exclusively present as complex-bound chromium cations, are shown in the exemplary embodiment simply as Cr 2+ or Cr 3+ ions (cations).
  • the anions of the electrolyte solution in the deposition cell and in the cathode and anode compartment of the electrolytic cell were also not included.
  • the chromium salt is supplied to the electrolytic solution in the electrolytic cell 7 as chromium (II) or chromium (III) salt and the chromium (III) cation at the cathode 8 of the divided electrolytic cell 7 to chromium (II) cation according to the following equation 4) reduced: 4) 2cr 3+ +2e- ⁇ 2cr 2+
  • the electrolyte solution from the cathode compartment of the electrolytic cell 7 is transferred via a line by means of a pump 5 into the deposition cell 3 and from there returned to the cathode compartment of the electrolytic cell 7 via a return line 6 .
  • a pump 5 into the deposition cell 3
  • a return line 6 returns to the cathode compartment of the electrolytic cell 7 via a return line 6 .
  • the voltage Uz of the voltage source 12 must be regulated in such a way that the voltage difference UB between the cathode 8 and a reference electrode 11 corresponds to a target voltage which is suitable for converting the chromium(III) to the chromium(II ) but not to be reduced to metallic chromium.
  • the feasibility of such voltage regulation is evident from the fact that the standard potential of the response in Equation 1) is -0.913V and that of the response in Equation 3) is only -0.41V.
  • the membrane 10 in the electrolytic cell 7 can be a cation or anion exchange membrane, or a simple diaphragm is used. Depending on the choice of chromium salt, it may be appropriate to use a cation or anion exchange membrane. If, for example, chromium(III) sulfate is used as the starting material, it makes sense to use an anion exchange membrane, since the sulfate anions supplied with chromium(III) sulfate are removed from the electrolyte circuit by the anion exchange membrane, i.e. transferred to the anode compartment. In this way, the concentration of the electrolyte can be kept constant despite constant replenishment of the chromium sulphate.
  • chromium sulfate is used as the chromium salt for the process
  • sulfuric acid is expediently initially introduced into the anode compartment.
  • the sulfuric acid produced in the anode compartment can then be used to adjust the pH of the chromium-containing electrolyte solution.
  • complexing agents such as formate, glycinate or oxalate and other bath additives can be added to the coating electrolyte.
  • Pulsed current deposition of the chromium layer is also possible in the coating cell. For this purpose, instead of the DC power source 4, a pulsed power source or pulsed reverse power source must be used. Also chromium deposits with temporary or pulsed current reversal can be done with this

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Automation & Control Theory (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Inorganic Chemistry (AREA)
  • Electroplating And Plating Baths Therefor (AREA)
  • Electrolytic Production Of Metals (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

Die Erfindung betrifft eine Vorrichtung zum Beschichten eines Bauteils oder Halbzeugs mit einer Chromschicht mit einer ungeteilten Abscheidungszelle, in der sich eine Anode befindet und die dazu geeignet ist, ein kathodisch geschaltetes Bauteil aufzunehmen, wobei sich in der Abscheidungszelle eine Chrom(ll)-haltige Elektrolytlösung befindet, wobei die Vorrichtung eine Elektrolysezelle aufweist, die durch eine in der Elektrolysezelle angeordnete Membran in einen Kathodenraum, in dem sich eine Kathode befindet, und einen Anodenraum, in dem sich eine Anode befindet, getrennt wird, wobei der Kathodenraum mit der Abscheidungszelle über eine Leitung und eine in der Leitung angeordnete Pumpe verbunden ist, wobei die Pumpe Flüssigkeit vom Kathodenraum in die Abscheidungszelle und/oder Flüssigkeit von der Abscheidungszelle in den Kathodenraum pumpen kann.

Description

.Vorrichtung und Verfahren zum Beschichten eines Bauteils oder Halbzeugs mit einer
Chromschicht“
Die Erfindung betrifft eine Vorrichtung zum Beschichten eines Bauteils oder eines Halbzeugs mit einer Chromschicht. Ferner betrifft die Erfindung ein Verfahren zum Beschichten eines Bauteils mit einer Chromschicht. Aus der Praxis ist es bekannt, dass dekorative Chromschichten und Hartchrom schichten aus Chrom(VI)-haltigen Elektrolytlösungen auf ein Bauteil abgeschieden werden. Die dabei verwendete Chromsäure ist giftig und kanzerogen und wurde daher in die Listen der besonders besorgniserregenden Substanzen (SVHC, Substances of very high concern) der EU-Chemikalienverordnung (REACH) aufgenommen. Daher wird seit vielen Jahren versucht, die Chrom(VI)-haltigen Elektrolytlösungen durch
Chrom(lll)-haltige Elektrolytlösungen zu substituieren.
Ein grundsätzliches Problem besteht dabei darin, dass sich in wässrigen Elektrolyt lösungen stabile Komplexe zwischen Chrom(lll)-lonen und sechs Wassermolekülen, die sogenannten Hexaaquachrom(lll)komplexe, bilden, die die Reduktion des
Chrom(lll)-lons und damit die Abscheidung des Chroms kinetisch hemmen. Daher werden den Elektrolytlösungen meist Komplexbildner wie Formiate, Oxalate oder Glycinate zugesetzt. Aus den sich bildenden Chromkomplexen ist eine schnellere Abscheidung des Chroms möglich. Bei der Reduktion des Chrom(lll)-lons wird zunächst das Chrom(lll)-lon zum Chrom(ll)- lon und danach das Chrom(ll)-lon zum metallischen Chrom reduziert. Mit der Reduk tion des Chrom(lll)-lons zum Chrom(ll)-lon nimmt die Ladung des Chromkations und damit die Stabilität des Chromaquakomplexes, aber auch der meisten anderen Chrom komplexe ab. Die kinetische Hemmung der Chromabscheidung wird daher insbeson dere durch die vorgelagerte Reduktion des Chrom(lll)-lons zum Chrom(ll)-lon ver ursacht.
Vor diesem Hintergrund lag der Erfindung die Aufgabe zu Grunde, eine Vorrichtung und ein Verfahren zu schaffen, die es erlauben, im technischen Maßstab ein Bauteil mit einer Chromschicht zu versehen, ohne dabei Elektrolytlösungen mit Chrom(VI)- Verbindungen verwenden zu müssen, zumindest aber den Einsatz von Chrom(VI)- haltigen Lösungen reduzieren zu können.
Diese Aufgabe wird durch die Vorrichtung gemäß Anspruch 1 sowie durch das Ver fahren gemäß Anspruch 5 gelöst. Vorteilhafte Ausführungsformen sind in den Unter ansprüchen und der hier nachfolgenden Beschreibung angegeben.
Der Grundgedanke der Erfindung besteht darin, die Reduktion des Chrom(lll)-lons zum Chrom(ll)-lon und die Chrom(ll)-Reduktion zum metallischen Chrom in zwei unter schiedlichen elektrochemischen Zellen, deren Elektrolytlösungen über ein Kreis laufsystem gegenseitig ausgetauscht werden, auszuführen.
Die erfindungsgemäße Vorrichtung weist eine ungeteilte Abscheidungszelle auf, in der sich eine Anode befindet und die dazu geeignet ist, ein kathodisch geschaltetes Bauteil aufzunehmen. Anstelle einer einzelnen Anode können auch mehrere Anoden und zusätzlich kleinere Hilfsanoden in der Zelle angeordnet sein. Dadurch wird insbe sondere eine gute Gleichmäßigkeit der Beschichtung des Bauteils erreicht. Die Abscheidungszelle kann ein Tauchbecken sein. Der Einsatz eines Tauchbeckens erlaubt es, dass einzelne oder mehrere Teile oder auch eine größere Anzahl von Teilen in Trommeln oder auf Gestellen eingetaucht werden können. Die Abschei dungszelle kann aber auch eine Durchlaufzelle sein, in der das Gut an einer oder mehreren vertikal, horizontal oder radial angeordneten Anoden vorbei durch ein Becken geführt wird. Weiterhin kann die Abscheidungszelle auch mit einem Reservoir und einer Pumpe kombiniert werden, um die Elektrolytlösung im Kreis zu pumpen, um so für eine gute Durchmischung der Elektrolytlösung insbesondere zwischen Bauteil und Anode zu sorgen. Die Abscheidungszelle kann auch eine Beschichtungszelle sein, in der die Elektrolytlösung zwischen Anode und Bauteiloberfläche, bzw. Halbzeugober fläche geführt wird, ohne dass sich das Bauteil, bzw. das Halbzeug und/oder die Anode in einem Becken befinden. In diesem Fall wird die Zelle ebenfalls mit einer Pumpe und einem Reservoir für die Elektrolytlösung kombiniert. Die Erfindung bietet den Vorteil, dass zu Ihrer Umsetzung herkömmliche Beschich tungszellen für die Beschichtung von Einzelteilen, aber auch Massenwaren und Halb zeugen verwendet werden können. Für die Beschichtung von Massenware werden bevorzugt Gestell- und Trommelverfahren verwendet. Für Halbzeuge wie Draht, Band und Rohre werden vorzugsweise Durchlaufanlagen verwendet. Die Erfindung kann auch mit Innenbeschichtungsverfahren durchgeführt werden, z. B. für Behälter, Rohre und Bohrungen. Hier wird die Elektrolytlösung in den Behälter oder das Rohr eingefüllt und eine Anode eingeführt.
Die Abscheidungszelle ist eine ungeteilte Zelle. Unter einer ungeteilten Abscheidungs zelle wird eine Raum verstanden, in dem sich eine Flüssigkeit befindet, wobei der Raum nicht durch eine Membran in Unterzellen, die nur über die Membran miteinander verbunden sind, geteilt wird.
In der Abscheidungszelle befindet sich eine Flüssigkeit, in der eine Chrom(ll)-haltige Substanz gelöst ist. In Abhängigkeit von den eingesetzten Chromsalzen kann die Flüssigkeit neben den gelösten Chrom(ll)-lonen auch Anionen wie Chlorid, Sulfat, Hydrogensulfat, Fluorid, Formiat, Oxalat, Methansulfonat, Glycinat, Citrat oder Acetat enthalten. Des Weiteren kann die Flüssigkeit mindestens ein Lösungsmittel wie Wasser, Ethylenglykol, Essigsäure, Dimethylsulfoxid, Formamid, Dimethylformamid oder Ethylencarbonat enthalten. Zu einem gewissen Anteil, insbesondere bevorzugt während des Abscheidevorgangs, können sich in der Flüssigkeit auch Chrom(lll)-lonen befinden, insbesondere wenn die Chrom(ll)-lonen an der Anode der Abscheidungszelle oxidiert werden. Weiterhin kann die Flüssigkeit einen oder mehrere Säurepuffer und/oder einen oder mehrere Leitsalze wie Natriumsulfat, Natriumchlorid, Natrium- methansulfonat, Kaliumsulfat, Kaliumchlorid, Kaliumsulfat, Aluminiumsulfat und Borsäure oder ungeladene Komplexbildner wie Ammoniak, Glycin, Thiosulfat, Diethanolamin, Thioharnstoff oder Harnstoff und Additive wie Polyethylenglykol ent halten.
Erfindungsgemäß weist die Vorrichtung zusätzlich eine Elektrolysezelle auf. Die Elektrolysezelle wird durch eine in der Elektrolysezelle angeordneten Membran in einen Kathodenraum, in dem sich eine Kathode befindet, und einen Anodenraum, in dem sich eine Anode befindet, getrennt.
Die Elektrolysezelle kann als Becken ausgeführt sein. In einer bevorzugten Bauform werden Kathode und Anode geometrisch so ausgeführt und ausgerichtet, dass deren Abstände zueinander überall gleich sind und die Membran etwa mittig dazu angeordnet ist. In einer besonders bevorzugten Bauform werden Kathode, Membran und Anode planparallel zueinander ausgeführt und kleine Abstände im Bereich von 2 mm bis 5 cm zwischen Kathode und Membran und Anode und Membran gewählt. Werden kleine Abstände gewählt, ist es vorteilhaft sowohl den Kathoden- als auch den Anodenraum als Durchflusszellen auszuführen. In diesem Fall kann auch die Elektrolytlösung im Anodenraum mit Hilfe einer Pumpe im Kreis geführt werden. In dem Elektrolytkreislauf kann zusätzlich ein Elektrolytvorratsbehälter vorhanden sein. Es können auch mehrere Zellen zu einem Zellstapel mit separaten Zu- und Abläufen vereinigt werden.
Die Membran, die den Kathodenraum vom Anodenraum trennt, ist vorzugsweise ein Anionentauscher. Der Betrieb mit einem Kationentauscher oder Diaphragma ist jedoch auch möglich. Eingesetzt werden können beispielsweise Anionentauschermembranen mit einem Polymergerüst auf Basis von Polyetheretherketonen, Polysulfonen, Polyphenylenethern, Polybenzimidazolen, Fluorpolymeren oder Polystyrol- Copolymeren. Als kationische funktionelle Gruppen können Trimethylammonium, Pyridinium, Sulfonium, Phosphonium, Guanidinium, Imidazolium oder Piperidinium an das Polymergerüst gebunden sein.
Die in dem Kathodenraum befindliche Kathode ist vorzugsweise aus einem elektrisch leitfähigen Material gefertigt, das sich durch eine hohe Überspannung für die kathodische Wasserzersetzung auszeichnet. Besonders geeignet sind Kathoden aus Kupfer, Blei, Zinn, Titan, Blei-Antimon-Legierungen oder Kohlenstoff. Es können massive, aber auch poröse Elektroden wie Metallschäume oder Kohlenstofffliese ver wendet werden. Beschichtungen z.B. von Kupfer- oder Kohlenstoffvliese sind denkbar. Hierfür eignen sich beispielsweise Bismut, Indium, Blei, Bismut-Blei, Silber-Blei, Gold- Blei oder Kupfer-Blei.
Die in dem Anodenraum befindliche Anode ist vorzugsweise eine mit Iridium-Mischoxid beschichtete Titananode. Es können aber auch andere Elektrodenmaterialien wie platiniertes Titan, Blei, Blei-Antimon, Kohlenstoff oder rostfreier Edelstahl verwendet werden. Die Flüssigkeit, die im Anodenraum vorgelegt wird, enthält vorzugsweise das gleiche Lösungsmittel wie die Flüssigkeit des Kathodenraums und eine Säure, deren Anion identisch mit einem Anion ist, das sich in der Elektrolytlösung des Kathoden raums befindet.
Erfindungsgemäß ist der Kathodenraum mit der Abscheidungszelle über eine Leitung und eine in der Leitung angeordneten Pumpe verbunden, wobei die Pumpe Flüssigkeit vom Kathodenraum in die Abscheidungszelle und/oder Flüssigkeit von der Abscheidungszelle in den Kathodenraum pumpen kann. Erfindungsgemäß ist ein mit der erfindungsgemäßen Vorrichtung durchführbares Verfahren denkbar, bei dem die Flussrichtung durch die Leitung gewechselt wird. Das erfindungsgemäße Verfahren kann in der Weise durchgeführt werden, dass • in einem ersten Betriebszustand Flüssigkeit mittels der Pumpe durch die Leitung vom Kathodenraum in die Abscheidungszelle gefördert wird und
• in einem zweiten Betriebszustand Flüssigkeit mittels der Pumpe durch die Leitung von der Abscheidungszelle in den Kathodenraum gefördert wird.
Dabei kann das Verfahren aus einer Aneinanderreihung der beiden Betriebszustände bestehen. Es können aber auch weitere Betriebszustände vorgesehen sein, in denen keine Flüssigkeit durch die Leitung gefördert wird.
In einer anderen Ausführungsform wird die Leitung mit der in ihr angeordneten Pumpe nur dazu verwendet, die Flüssigkeit in eine Richtung zu fördern. Es sind Ausführungs formen denkbar, bei denen Flüssigkeit mittels der Pumpe durch die Leitung vom Kathodenraum in die Abscheidungszelle gefördert wird. In einer solchen Ausführungs form kann der Kathodenraum mit der Abscheidungszelle über eine zusätzliche Rück führleitung verbunden sein, wobei Flüssigkeit über die Rückführleitung von der Abscheidungszelle in den Kathodenraum fließt. Es sind Ausführungsformen denkbar, bei denen Flüssigkeit mittels der Pumpe durch die Leitung von der Abscheidungszelle in den Kathodenraum gefördert wird. In einer solchen Ausführungsform kann die Abscheidungszelle mit dem Kathodenraum über eine zusätzliche Rückführleitung ver bunden sein, wobei Flüssigkeit über die Rückführleitung von dem Kathodenraum in die Abscheidungszelle fließt.
Für Abscheidungszellen, die über Leitungen und einer Pumpe mit einem Reservoir verbunden sind, kann der zuvor beschriebene Austausch der Elektrolytlösung auch zwischen Reservoir und dem Kathodenraum der Membranzelle erfolgen.
Die Leitung kann auch eine Rinne sein.
Die Erfindung ermöglicht es, dass in einer ungeteilten Abscheidungszelle eine hohe Konzentration an Chrom(ll)-lonen aufrecht erhalten werden kann. Auf diese Weise kann die kinetisch stark gehemmte Chromabscheidung beschleunigt und der Strom bedarf (Ladungsmenge in Amperestunden pro Masse abgeschiedenes Chrom in Kilo gramm) für die Chromabscheidung in der Abscheidungszelle gesenkt werden. Da auf eine geteilte Abscheidungszelle verzichtet werden kann, können auch komplex geformte Teile, insbesondere unter Anwendung von zusätzlichen Hilfsanoden in einer Chrom(ll)-haltigen Elektrolytlösung beschichtet werden. Weiterhin können auch chloridhaltige Elektrolytlösungen in einer ungeteilten Beschichtungszelle verwendet werden, da an der Anode der Abscheidungszelle aufgrund des geringeren Oxidations potentials des Chrom(ll)-lons nur das Chrom(ll)-lon zum Chrom(lll)-lon oxidiert wird und so die Oxidation des Chlorids zum giftigen Chlor vermieden wird. Aus demselben Grund wird auch die Oxidation des Chrom(lll)-lons zum Chrom(VI) vermieden. Ein besonderer Vorteil ist auch, dass in der Abscheidungszelle eine Pulsstromabscheidung des Chroms aus der Chrom(ll)-haltigen Elektrolytlösung bei hohen Pulsstromdichten ermöglicht wird. Denkbar ist, dass mit diesem Verfahren sogar feinrissige Chrom schichten abgeschieden werden können, die bisher nur aus den giftigen Chrom(VI)- haltigen Elektrolytlösungen hergestellt werden können.
In einer bevorzugten Ausführungsform befindet sich in dem Kathodenraum eine Chrom(lll)-haltige Flüssigkeit. Die Chrom(lll)-haltige Flüssigkeit enthält Chrom(lll)- lonen. Die Flüssigkeit im Kathodenraum kann die gleichen Bestandteile wie die Flüssigkeit in der Abscheidungszelle enthalten, insbesondere wenn die Flüssigkeiten ständig ausgetauscht werden. Die Konzentration an Chrom(ll)-lonen kann im Katholyt etwas größer sein. Weiterhin kann der pH-Wert (Säurekonzentration) im Katholyt und in der Abscheidungszelle unterschiedlich sein.
In einer bevorzugten Ausführungsform ist in dem Kathodenraum eine Referenz elektrode vorgesehen. Diese Referenzelektrode kann sich auch außerhalb des Kathodenraums befinden. In diesem Fall kann man die Elektrolytlösung der Referenzelektrode über eine Kapillare, der sogenannten Haber-Luggin-Kapillare, mit der Elektrolytlösung im Kathodenraum verbinden. Die Öffnung der Kapillare im Katho denraum wird man bevorzugt in unmittelbarer Nähe der Kathodenoberfläche posi tionieren. Als Referenzelektroden eignen sich u.a. Silber-Silber-Chlorid-Elektroden, Kalomel-Elektroden, Bleisulfat-Elektroden oder Quecksilber-Sulfat-Elektroden.
In einer bevorzugten Ausführungsform weist die Vorrichtung ein Verbindungsstück auf, das mit dem zu beschichtenden Bauteil elektrisch verbunden werden kann und mit dem ein Potential an dem Bauteil angelegt werden kann. Das Verbindungsstück kann beispielsweise eine Klemme sein. Je nach Abscheidungsverfahren kann der elektrische Kontakt auch über Gestelle mit Aufnehmern für die Bauteile (Gestell verfahren), über Ableitungselektroden in Trommeln (Trommelverfahren), über Strom rollen in Durchlaufverfahren, über Schleifkontakte oder sonstige kontaktgebenden Ableitungselektroden erfolgen.
In einer bevorzugten Ausführungsform weist die Vorrichtung eine (erste) Strom- oder Spannungsquelle mit einem ersten Pol und einem zweiten Pol auf. In einer bevor zugten Ausführungsform ist die Anode der Abscheidungszelle elektrisch mit dem ersten Pol der ersten Spannungsquelle verbunden. In einer bevorzugten Aus führungsform ist eine Verbindungsstück vorgesehen, das mit dem zu beschichtenden Bauteil verbunden werden kann und mit dem ein Potential an dem Bauteil angelegt werden kann, wobei das Verbindungsstück elektrisch mit dem zweiten Pol der ersten Spannungsquelle verbunden ist. In einer bevorzugten Ausführungsform weist die Vorrichtung eine zweite Strom- oder Spannungsquelle mit einem ersten Pol und einem zweiten Pol auf. In einer bevor zugten Ausführungsform ist die Anode des Anodenraums elektrisch mit dem ersten Pol der zweiten Spannungsquelle verbunden. In einer bevorzugten Ausführungsform ist die Kathode des Kathodenraums elektrisch mit dem zweiten Pol der zweiten Spannungs quelle verbunden.
Das erfindungsgemäße Verfahren zum Beschichten eines Bauteils mit einer Chrom schicht sieht vor, dass
• das zu beschichtende Bauteil in die in der Abscheidungszelle der erfindungs gemäßen Vorrichtung befindliche Chrom(ll)-haltige Flüssigkeit getaucht wird,
• das zu beschichtende Bauteil kathodisch geschaltet wird und die Anode anodisch geschaltet wird,
• in der Abscheidungszelle aus der Flüssigkeit heraus an dem kathodisch geschalteten Bauteil eine Chromabscheidung erfolgt,
• die in der Abscheidungszelle befindliche Flüssigkeit über die Leitung in den Kathodenraum gepumpt oder die in dem Kathodenraum befindliche Flüssigkeit über die Leitung in die Abscheidungszelle gepumpt wird.
An der Anode der Abscheidungszelle können die Chrom(ll)-Kationen zu Chrom(lll)- Kationen oxidieren. Die in der Beschichtungszelle an Chrom(ll)-Kationen verarmte und an Chrom(lll)-Kationen angereicherte Elektrolytlösung kann in einer bevorzugten Aus führungsform in den Kathodenraum gepumpt werden. Es ist sowohl ein konstanter Flüssigkeitsstrom anwendbar als auch ein intervallweises Zu- bzw. Abführen der Elektrolytlösung. Den Flüssigkeitsstrom bzw. die ausgetauschten Flüssigkeitsmengen kann man in einer bevorzugten Ausführungsform so bemessen, dass die Konzentration an Chrom(ll)-lonen in der Abscheidungszelle nur geringfügig kleiner ist als im Katho denraum der Elektrolysezelle.
Für die Reduktion der Chrom(lll)-Kationen in der Elektrolysezelle kann das Kathoden potential der Kathode gegen eine Referenzelektrode gemessen und eingestellt werden. Die Einstellung des Kathodenpotentials kann durch Regelung der Zellspannung oder Stromstärke erfolgen. Dadurch kann ein Kathodenpotential eingestellt werden, das klein genug ist, um die Chrom(lll)-lonen zu Chrom(ll)-lonen zu reduzieren und groß genug, um eine Chromabscheidung auf der Kathode der Elektrolysezelle zu ver meiden.
Je nachdem, welches Chromsalz als Ausgangstoff verwendet wird, kann es zweckmäßig sein, eine Kationenaustausch- oder eine Anionenaustauschmembran zu verwenden. Dadurch kann man die Elektrolytkonzentration und den pH-Wert im Elektrolytkreislaufsystem leichter konstant halten oder die Oxidation zu giftigen Stoffen an der Anode vermeiden. Die Chrom(lll)-lonen und Chrom(ll)-lonen liegen in Lösungen in der Regel als komplexgebundene Chromkationen vor. In Abhängigkeit von der Anzahl der an das Chromkation gebundenen Anionen und der Ladungszahlen ist die Ladung der Komplexe positiv, neutral oder negativ. Liegen die Chrom(ll)- und Chrom(lll)-Komplexe vollständig oder überwiegend positiv geladen vor, bietet sich der Einsatz einer Anionenaustauschmembran an, um den Übertritt von Chromionen in den Anodenraum zu verhindern bzw. gering zu halten. Liegen die Chromkomplexe über wiegend als negativ geladene Ionen vor, kommt auch der Einsatz einer Kationenaus tauschermembran in Betracht. Sofern kein chloridhaltiges Ausgangssalz verwendet wird, kann auch eine Diaphragmaelektrolysezelle anstelle einer Membran elektrolysezelle eingesetzt werden. Auch der Einsatz von Membranelektrolysezellen, die durch eine Anionen- und Kationenaustauschmembran in drei Kammern geteilt wird, ist möglich. Eine Dreikammerzelle mit Kathodenraum, Anodenraum und einem Mittel raum ohne Elektrode bietet sich an, wenn Anionen der Elektrolytlösung des Kathoden raumes nicht an die Anode im Anodenraum gelangen dürfen, da sie dort zu giftigen Substanzen oxidiert werden können. So werden beispielsweise Chloride der Elektrolytlösung des Kathodenraumes, sofern sie zu der Anode im Anodenraum gelangen, zu giftigem Chlorgas oxidiert. Dies kann mit einer Dreikammerzelle, deren Mittelraum mit einer Anionenaustauschmembran vom Kathodenraum und der Mittel raum von Anodenraum mit einer Kationenaustauschmembran getrennt wird, vermieden werden. Auf diese Weise können die Chloride zwar durch die Anionenaustausch membran in den Mittelraum gelangen, aber deren Übertritt in Anodenraum wird durch den Einsatz der Kationenaustauschmembran fast vollständig vermieden.
Die Erfindung kann auch bei der galvanischen Beschichtung von Legierungen, die Chrom enthalten, angewendet werden, so z. B. bei der galvanischen Zink-Chrom- oder Chrom-Eisenabscheidung. Zusätzlich ist sie für die galvanische Eisenbeschichtung oder der Beschichtung einer Legierung, die Eisen enthält, einsetzbar. Auch für die galvanische Chrom- und Eisengewinnung bzw. -rückgewinnung dieser Metalle aus Salzlösungen kann das Verfahren angewendet werden. Dafür sollten die Elektrolytlösungen entsprechende Metallsalze im Lösungsmittel enthalten:
• für Zink-Chrom-Abscheidung: Zusätzlich mindestens ein zinkhaltiges Salz erforderlich für Chrom-Eisen-Abscheidung: Zusätzlich mindestens ein eisenhaltiges Salz • für Eisenabscheidung: Anstelle von chromhaltigen Substanzen muss mindestens ein eisenhaltiges Salz verwendet werden
• Eisenlegierungen: Anstelle von chromhaltigen Substanzen müssen mindestens ein eisenhaltiges Salz sowie Salze der Legierungspartner ver wendet werden
Nachfolgend wird die Erfindung anhand einer, lediglich ein Ausführungsbeispiel der Erfindung näher darstellenden Zeichnung erläutert. Darin zeigt
Fiq. 1 eine schematische Darstellung der erfindungsgemäßen Vorrichtung.
Das zu verchromende Bauteil 1 wird mit Hilfe einer Stromquelle 4 und einer Anode 2 in der Abscheidungszelle 3 in einer Elektrolytlösung, die Chrom(ll)-lonen enthält, kathodisch geschaltet, sodass eine Chromabscheidung stattfindet. Die Chrom(ll)- und Chrom(lll)-lonen, die fast ausschließlich als komplexgebundene Chromkationen vor liegen, werden im Ausführungsbeispiel vereinfacht lediglich als Cr2+ bzw. Cr3+-lonen (Kationen) dargestellt. Die Anionen der Elektrolytlösung in der Abscheidungszelle sowie im Kathoden- und Anodenraum der Elektrolysezelle wurden ebenfalls nicht mit eingezeichnet.
An dem zu verchromenden Bauteil 1 finden bevorzugt die Reduktion des Chrom(ll)- lons zum metallischen Chrom (Gleichung 1) sowie als Nebenreaktion (Gleichung 2) die Wasserreduktion unter Freisetzung von Wasserstoff statt:
Figure imgf000011_0001
An der Anode 2 der Abscheidungszelle 3 werden hauptsächlich Chrom(ll)-lonen, die leicht oxidierbar sind, zu Chrom(lll)-lonen oxidiert (Gleichung 3):
Figure imgf000011_0002
Das Chromsalz wird der Elektrolytlösung in der Elektrolysezelle 7 als Chrom(ll)- oder Chrom(lll)-salz zugeführt und die Chrom(lll)-Kationen an der Kathode 8 der geteilten Elektrolysezelle 7 zum Chrom(ll)-Kationen gemäß der folgenden Gleichung 4) reduziert: 4) 2 Cr3+ +2 e- ^ 2 Cr2+
Die Elektrolytlösung aus dem Kathodenraum der Elektrolysezelle 7 wird über eine Leitung mittels einer Pumpe 5 in die Abscheidungszelle 3 überführt und von dort über eine Rücklaufleitung 6 wieder in den Kathodenraum der Elektrolysezelle 7 zurückgeführt. Durch kontinuierliches oder wiederholtes Umpumpen, d. h. im Kreis laufführen der Elektrolytlösung, kann in der Abscheidungszelle 3 die für die Reaktionen 1) und 3) notwendige Konzentration an Chrom(ll)-Kationen aufrechterhalten werden. Damit an der Kathode 8 kein Chrom abgeschieden wird, muss die Spannung Uz der Spannungsquelle 12 so geregelt werden, dass die Spannungsdifferenz UB zwischen Kathode 8 und einer Referenzelektrode 11 einer Sollspannung entspricht, die geeignet ist, um das Chrom(lll) zum Chrom(ll) nicht jedoch bis zum metallischen Chrom zu reduzieren. Die Machbarkeit einer solchen Spannungsregelung ergibt sich aus der Tatsache, dass das Standartpotential der Reaktion in Gleichung 1) -0,913 V und das der Reaktion in Gleichung 3) nur -0,41 V beträgt.
Die Membran 10 in der Elektrolysezelle 7 kann eine Kationen- oder Anionenaus tauschmembran sein oder es wird ein einfaches Diaphragma verwendet. Je nach Aus wahl des Chromsalzes kann es zweckmäßig sein, eine Kationen- oder Anionaustauschmembran zu verwenden. Wird beispielsweise Chrom(lll)sulfat als Aus gangstoff verwendet, bietet es sich an, eine Anionenaustauschmembran zu ver wenden, da die mit Chrom(lll)sulfat zugeführten Sulfatanionen mittels der Anionenaus tauschmembran aus dem Elektrolytkreislauf entfernt, d.h in den Anodenraum überführt werden. Trotz ständigem Nachdosieren des Chromsulfats kann auf diese Weise die Elektrolytkonzentration konstant gehalten werden. Gleichzeitig werden die Chrom kationen durch die Anionenaustauschmembran fast vollständig zurückgehalten und eine Oxidation der Chromkationen zu giftigem Chrom(VI) an der Anode 9 vermieden. An der Anode 9 im Anodenraum der Elektrolysezelle 7 kann Wasser unter Freisetzung von Sauerstoff der Zunahme der Säurekonzentration entsprechend der folgenden Gleichung 5) oxidiert werden:
5) HaO ^ 14 Ö2 + 2 H+ + 2 e
Wird Chromsulfat als Chromsalz für das Verfahren verwendet, wird man im Anodenraum zweckmäßigerweise Schwefelsäure vorlegen. Dann kann die im Anodenraum erzeugte Schwefelsäure zur pH-Einstellung der chromhaltigen Elektrolytlösung verwendet werden. Zusätzlich zum Chromsalz können dem Beschichtungselektrolyten Komplexbildner wie Formiat, Glycinat oder Oxalat sowie weitere Badzusätze zugegeben werden. Auch eine Pulsstromabscheidung der Chromschicht ist in der Beschichtungszelle möglich. Dafür muss lediglich anstelle der Gleichstrom-Stromquelle 4 eine Pulsstromquelle oder Puls-Reverse-Stromquelle eingesetzt werden. Auch Chromabscheidungen mit zeitweiliger oder pulsartiger Stromumkehr können mit dieser
Vorrichtung vorgenommen werden.

Claims

Patentansprüche:
1. Vorrichtung zum Beschichten eines Bauteils (1) oder eines Halbzeugs mit einer Chromschicht mit einer ungeteilten Abscheidungszelle (3), in der sich eine Anode (2) befindet und die dazu geeignet ist, ein kathodisch geschaltetes Bauteil (1) oder Halbzeug aufzunehmen, wobei sich in der Abscheidungszelle eine Chrom(ll)-haltige Elektrolytlösung befindet, gekennzeichnet durch eine Elektrolysezelle (7), die durch eine in der Elektrolysezelle (7) angeordnete Membran (10) in einen Kathodenraum, in dem sich eine Kathode (8) befindet, und einen Anodenraum, in dem sich eine Anode (9) befindet, getrennt wird, wobei der Kathodenraum mit der Abscheidungszelle (3) über eine Leitung und eine in der Leitung angeordnete Pumpe (5) verbunden ist, wobei die Pumpe (5) Flüssigkeit vom Kathodenraum in die Abscheidungszelle (3) und/oder Flüssigkeit von der Abscheidungszelle (3) in den Kathodenraum pumpen kann.
2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass sich in dem Kathodenraum eine Chrom(lll)-haltige Flüssigkeit befindet.
3. Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass in dem Kathodenraum eine Referenzelektrode (11) vorgesehen ist oder diese über eine Elektrolytbrücke mit der Elektrolytlösung im Kathodenraum verbunden ist.
4. Vorrichtung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass der Kathodenraum mit der Abscheidungszelle (3) über eine zusätzliche Rück führleitung (6) verbunden ist.
5. Vorrichtung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass eine Stromquelle (4) in Form eines Gleichrichters oder einer Pulsstromquelle oder einer Puls-Reverse-Stromquelle vorgesehen ist.
6. Verfahren zum Beschichten eines Bauteils (1) oder eines Halbzeugs mit einer Chromschicht mit einer Vorrichtung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass
• das zu beschichtende Bauteil (1) oder Halbzeug in die in der Abscheidungs zelle (3) befindliche Chrom(ll)-haltige Elektrolytlösung getaucht wird,
• das zu beschichtende Bauteil (1) oder Halbzeug kathodisch geschaltet wird und die Anode (2) anodisch geschaltet wird,
• in der Abscheidungszelle (3) aus der Flüssigkeit heraus an dem kathodisch geschalteten Bauteil (1) oder Halbzeug eine Chromabscheidung erfolgt, • die in der Abscheidungszelle (3) befindliche Flüssigkeit über die Leitung in den Kathodenraum der Elektrolysezelle (7) gepumpt oder die in dem Kathodenraum befindliche Flüssigkeit über die Leitung in die Abscheidungszelle (3) gepumpt wird.
7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass in dem Kathoden raum unter Zuhilfenahme einer im Kathodenraum befindlichen Referenzelektrode (11) das Potential einer im Kathodenraum befindlichen Kathode eingestellt wird.
8. Verfahren nach Anspruch 6 oder 7, dadurch gekennzeichnet, dass an der Kathode (8) Chrom(lll)-lonen zu Chrom(ll)-lonen reduziert werden und so verbrauchte Chrom(ll)-lonen nachgeliefert werden.
9. Verfahren nach einem der Ansprüche 6 bis 8, dadurch gekennzeichnet, dass eine Beschichtung mit Gleichstrom oder eine Beschichtung mit Pulsstrom oder zeitweiligem oder pulsartigem Umkehrstrom vorgenommen wird.
PCT/EP2022/061036 2021-04-27 2022-04-26 Vorrichtung und verfahren zum beschichten eines bauteils oder halbzeugs mit einer chromschicht WO2022229175A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202280030690.8A CN117396638A (zh) 2021-04-27 2022-04-26 用铬层涂覆部件或半成品的装置和方法
KR1020237039391A KR20230173685A (ko) 2021-04-27 2022-04-26 구성요소 또는 반제품을 크롬층으로 코팅하는 코팅 디바이스 및 코팅 방법
JP2023566412A JP2024516407A (ja) 2021-04-27 2022-04-26 構成要素または半仕上製品をクロム層でコーティングするためのデバイスおよび方法
EP22725776.3A EP4330448A1 (de) 2021-04-27 2022-04-26 Vorrichtung und verfahren zum beschichten eines bauteils oder halbzeugs mit einer chromschicht

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102021002197.5 2021-04-27
DE102021002197.5A DE102021002197A1 (de) 2021-04-27 2021-04-27 Vorrichtung und Verfahren zum Beschichten eines Bauteils oder Halbzeugs mit einer Chromschicht

Publications (1)

Publication Number Publication Date
WO2022229175A1 true WO2022229175A1 (de) 2022-11-03

Family

ID=81850291

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2022/061036 WO2022229175A1 (de) 2021-04-27 2022-04-26 Vorrichtung und verfahren zum beschichten eines bauteils oder halbzeugs mit einer chromschicht

Country Status (6)

Country Link
EP (1) EP4330448A1 (de)
JP (1) JP2024516407A (de)
KR (1) KR20230173685A (de)
CN (1) CN117396638A (de)
DE (1) DE102021002197A1 (de)
WO (1) WO2022229175A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024041968A1 (de) * 2022-08-25 2024-02-29 Maschinenfabrik Kaspar Walter Gmbh & Co. Kg Verfahren zur steuerung der chromzufuhr in einem elektrolyseverfahren zur herstellung von chromschichten sowie eine elektrolysezelle hierfür

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1482747A (en) * 1973-10-10 1977-08-10 Bnf Metals Tech Centre Chromium plating baths
WO2012076228A2 (de) * 2010-12-09 2012-06-14 Robert Bosch Gmbh Vorrichtung und verfahren zur abscheidung chromhaltiger überzüge

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT510422B1 (de) 2010-11-04 2012-04-15 Univ Wien Tech Verfahren zur abscheidung von hartchrom aus cr(vi)- freien elektrolyten

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1482747A (en) * 1973-10-10 1977-08-10 Bnf Metals Tech Centre Chromium plating baths
WO2012076228A2 (de) * 2010-12-09 2012-06-14 Robert Bosch Gmbh Vorrichtung und verfahren zur abscheidung chromhaltiger überzüge

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024041968A1 (de) * 2022-08-25 2024-02-29 Maschinenfabrik Kaspar Walter Gmbh & Co. Kg Verfahren zur steuerung der chromzufuhr in einem elektrolyseverfahren zur herstellung von chromschichten sowie eine elektrolysezelle hierfür

Also Published As

Publication number Publication date
CN117396638A (zh) 2024-01-12
KR20230173685A (ko) 2023-12-27
EP4330448A1 (de) 2024-03-06
DE102021002197A1 (de) 2022-10-27
JP2024516407A (ja) 2024-04-15

Similar Documents

Publication Publication Date Title
DE4344387C2 (de) Verfahren zur elektrolytischen Abscheidung von Kupfer und Anordnung zur Durchführung des Verfahrens
EP0878561B1 (de) Verfahren und Vorrichtung zum Regenerieren von Verzinnungslösungen
DE1496886A1 (de) Verfahren und Vorrichtung zum Aufbereiten von Metallbehandlungsloesungen
EP0862665A1 (de) Verfahren zur elektrolytischen abscheidung von metallschichten
EP0158910B1 (de) Verfahren zur Rückgewinnung von Kupfer aus einer ammoniakalischen Kupfer-Ätzlösung und Rekonditionierung derselben
EP1264010B1 (de) Verfahren und vorrichtung zum regulieren der konzentration von metallionen in einer elektrolytflüssigkeit sowie anwendung des verfahrens und verwendung der vorrichtung
EP0638664A1 (de) Verfahren und Vorrichtung zur Regenerierung einer Metallionen und Schwefelsäure enthaltenden Lösung
EP4330448A1 (de) Vorrichtung und verfahren zum beschichten eines bauteils oder halbzeugs mit einer chromschicht
DE2523117A1 (de) Verfahren und vorrichtung zur regeneration einer dekapierloesung
WO2002072921A2 (de) Verfahren und vorrichtung zur rückgewinnung von metallen mit pulsierenden kathodischen strömen, auch in kombination mit anodischen koppelprozessen
AT510422B1 (de) Verfahren zur abscheidung von hartchrom aus cr(vi)- freien elektrolyten
DE102007010408A1 (de) Verfahren und Vorrichtung zur elektrochemischen Gewinnung von reinen Kupfersulfatlösungen aus verunreinigten Kupferlösungen
EP0801692A2 (de) Galvanikanlage
DE4218915A1 (de) Verfahren und Vorrichtung zur Regenerierung einer Metallionen und Schwefelsäure enthaltenden wäßrigen Lösung sowie Verwendung
EP1776489A1 (de) Vorrichtung und verfahren zur entfernung von fremdstoffen aus prozesslösungen
WO2000026440A2 (de) Kreislaufverfahren zum beizen von kupfer und kupferlegierungen
EP0115791A1 (de) Verfahren und Vorrichtung zur Regenerierung einer kupferhaltigen Ätzlösung
DE4315411C2 (de) Verfahren zur Regenerierung von verbrauchten Chromsäurelösungen
DE4229917C1 (en) Electrolytic bath for meter coating - has sec. anode contg. alkaline or ammonium soln. with acid added to electrolyte to compensate for pH rise
EP3426825A1 (de) Elektrolytische raffination von rohgold
DE19900715A1 (de) Verfahren und Zelle zur elektrochemischen Behandlung aluminiumhaltiger Lösungen
DE4345076C2 (de) Verfahren zur Konstanthaltung oder Reduzierung des Zinkgehaltes schwachsaurer, galvanischer Zinkbäder
DE4121965A1 (de) Verfahren und anordnung zur spuelwasserbehandlung fuer galvanische baeder
DE4118725A1 (de) Verfahren und vorrichtung zur vollstaendigen regeneration von aetzloesungen
DE19646945A1 (de) Verfahren und Vorrichtung zur Aufarbeitung oder Regenerierung von Ätzbädern

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22725776

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 202280030690.8

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2023566412

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20237039391

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237039391

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2022725776

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022725776

Country of ref document: EP

Effective date: 20231127