WO2017142312A1 - 소자검사장치 및 그에 사용되는 소자가압툴 - Google Patents

소자검사장치 및 그에 사용되는 소자가압툴 Download PDF

Info

Publication number
WO2017142312A1
WO2017142312A1 PCT/KR2017/001661 KR2017001661W WO2017142312A1 WO 2017142312 A1 WO2017142312 A1 WO 2017142312A1 KR 2017001661 W KR2017001661 W KR 2017001661W WO 2017142312 A1 WO2017142312 A1 WO 2017142312A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
test
heat exchange
temperature
loading
Prior art date
Application number
PCT/KR2017/001661
Other languages
English (en)
French (fr)
Inventor
유홍준
이용식
Original Assignee
(주)제이티
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)제이티 filed Critical (주)제이티
Publication of WO2017142312A1 publication Critical patent/WO2017142312A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/13Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the heat-exchanging means at the junction

Definitions

  • the present invention relates to an element inspection apparatus, and more particularly, to an element inspection apparatus for inspecting electrical characteristics of an element and an element pressing tool used therein.
  • semiconductor devices (hereinafter referred to as “devices”) are subjected to various tests such as electrical properties, heat or pressure reliability test by the semiconductor device inspection device after the packaging process.
  • the inspection of the device is carried out in the room temperature test or the high temperature environment according to the type of the device such as the memory device or the non-memory device such as the CPU (Central Processing Unit) and the GPU (Graphic Processing Unit) There are various tests, such as the heating test being performed.
  • the type of the device such as the memory device or the non-memory device such as the CPU (Central Processing Unit) and the GPU (Graphic Processing Unit)
  • CPU Central Processing Unit
  • GPU Graphic Processing Unit
  • the LSI is being inspected whether it works smoothly in harsh environments, that is, high temperature environment and low temperature environment.
  • test temperature conditions also need to be precisely set.
  • Patent Document 1 KR10-1169406 B
  • Patent Document 2 KR10-2012-0004068 A
  • Patent Document 3 KR10-1177746 B
  • Patent Document 4 KR10-1216359 B
  • Patent Document 5 KR10-2013-0099781 A
  • Patent Document 6 10-1417773 B
  • An object of the present invention is to provide an element inspection apparatus and an element pressing tool used therein, which can recognize the problems and necessity of the prior art and can create an accurate test temperature condition.
  • the loading unit 100 is loaded with a plurality of elements (1);
  • An unloading unit 500 classifying the device 1 in which the test is completed in the test unit 300 according to a test result;
  • At least one element pressing unit (830, 840) to sequentially move the unloading position for transmitting the (), the element pressing tools (831, 841), the pickup head for picking up the element (1) by vacuum pressure 832, 842;
  • the device 1 picked up by the pickup heads 832 and 842 is pressed by the test socket 310, the device 1 is brought into surface contact with the upper surface of the device 1 to close the device 1 to the test socket 310.
  • the second heat exchange unit 712 is coupled to the second heat exchange unit 712 of the thermoelectric module unit 710 according to a temperature control condition of the pressure blocks 833 and 843 through the first heat exchange unit 711.
  • An auxiliary temperature control unit 720 for heating or cooling the; It includes a second temperature sensing unit 732 for measuring the temperature of the second heat exchange unit 712 in order to control the heating or cooling of the second heat exchange unit 712 by the auxiliary temperature control unit 720.
  • a device inspection apparatus is disclosed.
  • the support parts 832 and 842 may include a tool moving part for sequentially moving the loading position, the pressing position, and the unloading position.
  • the pick-up heads 832 and 842 are characterized by at least one of movement and deformation when the element 1 picked up by the pick-up heads 832 and 842 is pressed in the test socket 310. It may be the same as the pressing surface which is in surface contact with the upper surface of the pressing block (833, 843).
  • the pickup heads 832 and 842 protrude from the bottom of the pressing blocks 833 and 843 when the element 1 is picked up, and the pressing blocks 833 and 843 are the element 1 when the element 1 is pressed. At least a portion of the pressing blocks 833 and 843 may be elastically deformed so as to be inwardly contacted with the upper surface of the pressing block 833 and 843.
  • the pressing blocks 833 and 843 protrude downward to correspond to the edges of the rectangular element 1, and guide parts 834 and 744 are inclined such that the inner side faces the edge of the element 1. Can be.
  • the auxiliary temperature control unit 720 includes a heat sink 721 coupled to the second heat exchange unit 712; A gas injection unit 781 receiving heat exchange gas from a heat exchange gas supply device 723 and injecting the heat exchange gas into the heat sink 721; According to the temperature of the second heat exchanger 712 measured by the second temperature sensor 732 to control the heating or cooling of the second heat exchanger 712 by the auxiliary temperature controller 720. It may include a flow control unit 724 for controlling the flow rate of the heat exchange gas by the gas injection unit 781.
  • the second temperature sensing unit 732 may be installed in contact with the second heat exchanger 712.
  • the device inspection apparatus transfers the device 1 transferred from the loading buffer unit 200 toward the test unit 300 and transfers the device 1 transferred from the test unit 300 to the unloading buffer unit ( It may further include a shuttle unit (610, 620) for conveying toward 400.
  • the device inspection apparatus may include a first shuttle part 610 and a second shuttle part 620 disposed on both sides of the test socket 310 with the test socket 310 of the test part 300 interposed therebetween; While moving between the first shuttle unit 610 and the test unit 300, the element 1 is picked up from the first shuttle unit 610 and pressed into the test socket 310 and the test socket 310.
  • the first device pressing unit 830 and the second shuttle unit 620 and the test unit 300 is transferred to the first shuttle unit 610 and the test element 300 is delivered to the first shuttle unit 610 is pressed
  • the second shuttle picks up the device 1 from the shuttle unit 620 and presses it to the test socket 310, and delivers the pressurized device to the second shuttle unit 620 by pressing the test socket 310.
  • the device pressing unit 840 may be included.
  • the loading unit 100 is loaded with one or more trays 2 on which a plurality of elements 1 are loaded, and from the tray 2 of the loading unit 100 through the loading transfer tool 810.
  • a loading buffer unit 200 is temporarily installed to receive the loads, and the test unit 300 receives the elements 3 from the loading buffer unit 200 to perform a test and the test unit 300.
  • the unloading buffer unit 400 is installed at a position opposite to the loading buffer unit 200 to receive the devices 1 that have been tested by the test unit 300, and the unloading unit is installed. According to a test result of the test unit 300, the 500 may classify and load the devices 1 mounted in the unloading buffer unit 400 through the unloading transfer tool 820.
  • the device inspection apparatus and the device pressurization tool used therein are coupled to a press block for pressurizing an element on a test socket to heat the element to a test temperature by heating or cooling the press block through a first heat exchanger.
  • FIG. 1 is a plan view schematically showing a device inspection apparatus according to an embodiment of the present invention.
  • FIG. 2 is a plan view schematically illustrating an example of a plate member of a loading buffer unit and an unloading buffer unit in the device inspection apparatus of FIG. 1.
  • FIG. 3 is a cross-sectional view schematically showing the first shuttle unit and the second shuttle unit in the device inspection apparatus of FIG.
  • FIG. 4A and 4B are schematic views showing a process in which a pair of element pressing tools alternately move to a pressing position in the device inspection apparatus of FIG. 1, respectively.
  • FIG. 5A and 5B are cross-sectional views showing the structure of the element pressing tool of FIG. 1, respectively, and FIG. 5A is an element pickup state, and FIG. 5B is an element pressing state.
  • FIG. 6 is a block diagram showing temperature control of the element pressing portion of FIG. 5A.
  • the loading unit 100 is loaded with a plurality of devices (1);
  • According to the test result of the test unit 300 may include an unloading unit 500 for classifying and loading the elements (1).
  • the device 1 to be tested may be a memory semiconductor or a non-memory device such as a central processing unit (CPU), a graphics processing unit (GPU), and a system large scale integration (LSI).
  • the device 1 may be a non-memory device, in particular, a device in which ball-shaped connection terminals are formed on the bottom.
  • the method of transferring the elements 1 between the loading unit 100, the test unit 300, and the unloading unit 500 may be performed by various methods.
  • the loading unit 100 and the unloading unit 500 are configurations in which one or more trays 2 on which the plurality of elements 1 are loaded are stacked, and various configurations are possible according to design.
  • the loading unit 100 and the unloading unit 500 may be provided with a tray loading unit (not shown) in which a plurality of trays 2 may be loaded.
  • a plurality of trays 2 are appropriately arranged so that the elements 1 can be picked up and transported continuously.
  • the tray 2 in which the elements 1 are empty may be replaced with the tray 2 in which the elements 1 are filled.
  • a batch of trays 2 can be loaded into the tray loading section automatically or manually.
  • the empty tray 2 after the elements 1 are drawn out in the loading unit 100 may be transferred to the unloading unit 500 by a tray transfer unit (not shown).
  • the tray 2 is a tray inverting portion (not shown) so that the element 1 which is not drawn out from the tray 2 can be removed before the empty tray 2 is transferred to the unloading portion 500. Can be rotated (inverted) at.
  • the unloading unit 500 may be configured similarly to the loading unit 100.
  • a plurality of empty trays 2 may be appropriately arranged according to the classification level so that the devices 1 may be classified and loaded in succession according to the test result. .
  • the tray 2 filled with the tested devices 1 may be replaced with the empty tray 2.
  • a tray buffer unit (not shown) to which the empty tray 2 is temporarily loaded is added so that the empty tray 2 may be temporarily loaded.
  • a plurality of receiving grooves 2a may be formed in the tray 2 so that the plurality of elements 1 may be loaded.
  • the plurality of receiving grooves 2a may be formed in the tray 2 in a matrix such as 8 ⁇ 16.
  • a loading buffer 200 may be installed in which the elements 1 transferred from the tray 2 are temporarily loaded.
  • the devices 1, which have been tested by the test unit 300 are temporarily placed between the test unit 300 and the unloading unit 500 so that the speed at which the device 1 is transferred may increase. It may be provided with an unloading buffer 400 to be loaded.
  • the unloading buffer unit 400 may be installed at a position opposite to the loading buffer unit 200 with respect to the test unit 300.
  • the device 1 to be tested may be transferred from the loading unit 100 and temporarily loaded in the loading buffer unit 200 and then transferred to the test unit 300. 1) may be transferred from the test unit 300 and temporarily loaded in the unloading buffer unit 400 and then transferred to the unloading unit 500.
  • the loading buffer unit 200 and the unloading buffer unit 500 are loaded with a relatively large number of elements 1 compared to the tray 2 on which a relatively small number of elements 1 are loaded. Can be.
  • the loading buffer unit 200 and the unloading buffer unit 400 may include a plurality of loading grooves 211 on an upper surface thereof so that the plurality of elements 1 may be loaded.
  • 411 may include a plate-shaped plate member 210, 410 is formed.
  • the plate members 210 and 410 of the loading buffer unit 200 and the unloading buffer unit 400 may be configured to be substantially identical to each other. However, when it is necessary to heat (preheat) the device 1 in order to test the device 1, a heating means such as a heater may be added to the plate member 210 of the loading buffer part 200.
  • the loading grooves 211 and 411 of the plate members 210 and 410 of the loading buffer unit 200 and the unloading buffer unit 400 may be adapted to a gap between the test sockets 310 of the test unit 300. It may be arranged, or may be arranged in accordance with the interval of the receiving grooves (2a) of the tray (2).
  • the space between the receiving grooves 2a of the tray 2 and the loading grooves 211 and 411 of the plate members 210 and 410 of the loading buffer 200 and the unloading buffer 400 may be provided.
  • the same, and the spacing of the test sockets 310 of the test unit 300 may be formed n times, for example, twice the spacing of the receiving grooves 2a of the tray 2.
  • the plate members 210 and 410 are elements for temporarily replacing the elements 1 and replacing the elements 1 with the test unit 300.
  • the plate members 210 and 410 are installed in a fixed state or movable in the device inspection apparatus. Various configurations are possible.
  • the test unit 300 is for testing the device 1 transferred from the loading buffer unit 200, and various configurations are possible according to the type of test.
  • the test unit 300 is provided with a plurality of test sockets 310 in which the device 1 is pressed.
  • the plurality of test sockets 310 are provided with terminals corresponding to terminals of the device 1 and connected to the test board, and under the test temperature through the process of pressing the device 1 to the terminals. Inspection of the operation of the device 1 can be performed.
  • test sockets 310 may be arranged in various matrices such as 8 ⁇ 2 and 8 ⁇ 4.
  • the test socket 310 is a configuration for connection between the device 1 and the terminal for the test of the device 1, various configurations are possible.
  • the test socket 310 may be installed to be replaced according to the type of device, the type of test.
  • test unit 300 may be an independent configuration in which the test socket 310 and the rest of the configuration is modular, it may be implemented as a PCB board with the test socket 310 is installed as a simple configuration.
  • test socket 310 is characterized by each test to significantly reduce the configuration cost of the relatively expensive test unit 300. can do.
  • test unit 300 various tests may be performed. More preferably, the test unit 300 may be configured to test the device 1 under a test temperature such as high temperature, low temperature.
  • a chamber member including a test socket 310 may be installed around the chamber to minimize a change in temperature.
  • device exchange between the test unit 300 and the loading buffer unit 200 or between the test unit 300 and the unloading buffer unit 400 is transferred from the loading buffer unit 200 rather than directly made It can be made by the shuttle unit 610, 620 to transfer (1) toward the test unit 300 and to transfer the device 1 transferred from the test unit 300 toward the unloading buffer unit 400.
  • the shuttle units 610 and 620 may be configured for device exchange between the test unit 300 and the loading buffer unit 200 or for element exchange between the test unit 300 and the unloading buffer unit 400. This is possible.
  • the shuttle parts 610 and 620 may include a first device delivery position and a test part 300 for receiving the device 1 from the loading part 100.
  • the first shuttle part 610 and the loading part 100 which are moved between an element exchange position for exchanging the element 1 and a second element transfer position for transferring the element 1 to the unloading part 500.
  • the second shuttle unit 620 may be moved between the device transfer positions.
  • the first element transfer position, the element exchange position and the second element transfer position may be variously arranged according to the configuration of the device, it may be arranged sequentially in a straight line.
  • the first shuttle 610 and the second shuttle 620 may be disposed on both sides of the test socket 310 with the test socket 310 of the test unit 300 interposed therebetween.
  • the first shuttle part 610 and the second shuttle part 620 are horizontally arranged along the guide rails 611 and 621 which are installed to face each other with respect to the test part 300, and the guide rails 611 and 621. While moving to, the first device delivery position for receiving the device from the loading buffer unit 200, the device replacement position with the test unit 300, the second device delivery position for delivering the device to the unloading buffer 400 Are alternately moved, and one or more shuttle plates 612 and 622 on which the elements 1 are loaded, and the shuttle plates 612 and 622 are detachably coupled and installed to move along the guide rails 611 and 621. It may include fixing parts (613, 623).
  • the guide rails 611 and 621 may be configured to guide the movement of the shuttle plates 612 and 622.
  • an element 1 is used for the element exchange between the test unit 300 and the loading buffer unit 200 or the element exchange between the test unit 300 and the unloading buffer unit 400.
  • At least one device seating groove is formed.
  • the plate fixing parts 613 and 623 are provided for the convenience of replacement of the shuttle plates 612 and 622, and various configurations are possible, and a heater for heating the device 1 may be provided.
  • the shuttle plates 612 and 622 are detachably installed on the plate fixing parts 613 and 623, the type of the device 1 to be inspected, in particular, when the size of the device 1 is changed, the device 1 is seated.
  • the shuttle plates 612 and 622 may be replaced.
  • the plate fixing parts 613 and 623 may include plate detachable parts 614 and 624 to detachably fix the shuttle plates 612 and 622 to the plate fixing parts 613 and 623.
  • the plate detachable parts 614 and 624 may be configured in various ways as a structure for detaching the shuttle plates 612 and 622 from the plate fixing parts 613 and 623, and the shuttle plates 612 and 622 are made by simple manual operation. It may be configured to enable the removal of.
  • one or more loading and transporting tools for picking up the device 1 from the loading unit 100 and transferring them to the shuttle units 610 and 620 while being moved between the loading unit 100 and the shuttle units 610 and 620. 810 and 814 may be installed.
  • the single loading transfer tool 810, 814 moves between the loading unit 100 and the shuttle units 610, 620 and picks up the element 1 from the loading unit 100 so as to transfer the shuttle unit 610.
  • 620 may be configured to deliver.
  • the loading transfer tools 810 and 814 pick up the device 1 from the loading unit 100 and transmit the picked-up element 1 to the loading buffer unit 200. It may include a first loading transfer tool 810, and a second loading transfer tool 814 to pick up the device (1) from the loading buffer unit 200 to transfer to the shuttle (610, 620).
  • one or more unloading transfers which are moved between the shuttle parts 610 and 620 and the unloading part 500, pick up the device 1 from the shuttle parts 610 and 620 and transfer the element 1 to the unloading part 500.
  • Tools 820 and 824 can be installed.
  • the one unloading transfer tool 820, 824 moves between the shuttle parts 610, 620 and the unloading part 500, and picks up the element 1 from the shuttle parts 610, 620. It may be configured to deliver to the unloading unit 500.
  • the unloading transfer tools 820 and 824 pick up the device 1 from the unloading buffer unit 400 to unload the unit 500.
  • the loading transfer tools 810 and 814 and the unloading transfer tools 820 and 824 may be configured identically or similarly to each other.
  • Each of the loading transfer tools 810 and 814 and the unloading transfer tools 820 and 824 has a configuration for transferring the element 1, and includes a plurality of pickers for picking up the element 1 and a vertical direction (Z direction). And a driving device for driving the movement of the plurality of pickers in the horizontal direction (XY direction) and the like.
  • the picker is a component for picking up the element 1 and transferring it to a predetermined position, which can be configured in various ways, and a pneumatic cylinder that delivers pneumatic pressure to an adsorption pad and an adsorption pad forming a vacuum pressure on the upper surface of the element 1. It can be configured as.
  • the pickers may include a gap between the receiving grooves 2a of the tray 2 of the loading unit 100 and the unloading unit 500, and the plate member 210 of the loading buffer unit 200 and the unloading buffer unit 400.
  • the horizontal and vertical spacings may be adjusted, but the horizontal and horizontal so as to enable the transfer of a greater number of semiconductor devices 10.
  • the vertical spacing can be fixed.
  • the driving device for moving the plurality of pickers may be configured in various ways according to the driving aspect of the pickers, and may include a moving device for moving the pickers up and down and a left and right moving device for moving in the left and right directions. .
  • the moving device may be configured to move all the pickers up and down at once, or may be individually connected to each picker so that each picker moves up and down independently.
  • the left and right moving apparatuses can be configured in various ways according to the movement mode of the pickers, and can be configured to allow a single direction movement in the X direction or the Y direction, or the X-Y direction movement.
  • test socket 310 Device pressurizing units 830 and 840 may be installed to transfer the pressurized and completed devices to the shuttle units 610 and 620.
  • the device pressing units 830 and 840 are configured to transfer the device 1 between the test unit 300 and the first shuttle unit 610 and between the test unit 300 and the second shuttle unit 620.
  • various configurations are possible according to the transfer mode of the element 1.
  • the device pressing units 830 and 840 may move between the first shuttle unit 610 and the test unit 300, and the element 1 may be moved from the first shuttle unit 610.
  • the second shuttle unit 620 picks up the element 1 and presses it to the test socket 310 and presses the test socket 310 to complete the test.
  • the second device pressing unit 840 may be transferred to the shuttle unit 620.
  • the pair of device pressing units 830 and 840 may be moved in cooperation with each other for convenience of device replacement.
  • the element pressing units 830 and 840 include one or more element pressing tools 831 and 841 for picking up the element 1 by vacuum pressure, thereby directly or indirectly loading the element 1 from the loading unit 100.
  • a variety of configurations in addition to the embodiment of Figures 4a and 4b are possible.
  • the device pressing unit 830, 840 may include one or more device pressing tools 831, 841; Support parts 832 and 842 to which the element pressing tools 831 and 841 are detachably coupled;
  • the support parts 832 and 842 may include a tool moving part which sequentially moves the loading position, the pressing position, and the unloading position.
  • the support parts 832 and 842 are configured to support one or more of the element pressing tools 831 and 841 so that the element pressing tools 831 and 841 are detachably coupled to the supporting structure of the element pressing tools 831 and 841. Therefore, various configurations are possible.
  • the support parts 832 and 842 are main bodies 832a and 842a coupled to a moving structure (not shown) so as to be moved by a tool moving unit, which will be described later, and one in a state of being coupled to the main bodies 832a and 842a.
  • the above-described device pressing tools 831 and 841 may include buffer members 832b and 842b detachably coupled thereto.
  • the main bodies 832a and 842a may be variously configured in a configuration that is coupled to a moving structure (not shown) so as to be moved by a tool moving part.
  • the buffer members 832b and 842b may be variously configured as one or more element pressing tools 831 and 841 are detachably coupled in a state of being coupled to the main bodies 832a and 842a.
  • the buffer members 832b and 842b include a detachable coupling structure with the element pressing tools 831 and 841, a vacuum pressure transfer to the element pressing tools 831 and 841, a sensor installed in the element pressing tools 831 and 841, and the like. Additional components can be installed for power supply and signal transmission and reception.
  • the subsidiary elements installed in the buffer members 832b and 842b may be automatically coupled or connected to at least some of the subsidiary elements installed in the element pressing tools 831 and 841 when the element pressing tools 831 and 841 are detached and coupled. have.
  • the tool moving part is configured to move the loading, pressing and unloading positions of the element pressing tools 831 and 841 coupled to the support parts 832 and 842, that is, the support parts 832 and 842 in sequence.
  • the tool moving part is configured to move the loading, pressing and unloading positions of the element pressing tools 831 and 841 coupled to the support parts 832 and 842, that is, the support parts 832 and 842 in sequence.
  • Various configurations are possible depending on the structure.
  • the tool moving unit various embodiments are presented in the prior art documents presented in the background technology, detailed description thereof will be omitted.
  • the element pressing tools 831 and 841 are configured to pick up the element 1 by vacuum pressure, and various configurations are possible.
  • the element pressing tools 831 and 841 include a pickup head for picking up the element 1 by vacuum pressure in order to have a device pick-up by vacuum pressure and a heating or cooling function of the element 1 during element pressing. 832, 842; When the element 1 picked up by the pickup heads 832 and 842 is pressed in the test socket 310, the pressure is applied to the upper surface of the element 1 to press the element 1 toward the test socket 310.
  • the thermoelectric device includes a first heat exchanger 711 and a second heat exchanger 712 and is coupled to the pressure blocks 833 and 843 to control the temperature of the pressure blocks 833 and 843 through the first heat exchanger 711.
  • a module unit 710 A first temperature sensing unit 731 installed on a surface of the pressure block 833 and 843 to be in surface contact with the upper surface of the element 1 to measure the temperature of the element 1; Coupled to the second heat exchanger 712 of the thermoelectric module 710 to heat the second heat exchanger 712 according to the temperature control conditions of the pressure blocks 833 and 843 through the first heat exchanger 711.
  • the pickup heads 832 and 842 are configured to pick up the device 1 by vacuum pressure, and are formed by vacuum pressure through a vacuum pressure forming passage 741 formed in the pressure blocks 833 and 843 described later. Various configurations are possible, such as configured to pick up 1).
  • the pickup heads 832 and 842 protrude from the bottom surfaces of the pressing blocks 833 and 843 when the element 1 is picked up, and the pressing blocks 833 and 843 press the upper and lower surfaces of the element 1 when the element is pressed. It is preferably configured to be positioned inward of the pressure block (833, 843) to be in contact.
  • the pickup heads 832 and 842 may be formed so that at least a portion of the pick-up head and the like may be elastically deformed, or an elastic member (not shown) may be installed on the upper side so that the pressing block 833, Protruding from the bottom of the 843, the pressure block 833, 843 may be positioned inwardly of the pressure block 833, 843 so that the pressure blocks 833, 843 may be in surface contact with the top surface of the device 1.
  • the pressing blocks 833 and 843 are in surface contact with the upper surface of the element 1 when the element 1 picked up by the pickup heads 832 and 842 is pressed in the test socket 310.
  • Various configurations are possible depending on the pressing structure of the device 1 as the configuration for pressing the test socket 310 toward.
  • the pick-up heads 832 and 842 are characterized by at least one of movement and deformation of the device 1 when the device 1 picked up by the pick-up heads 832 and 842 is pressed in the test socket 310. It is preferable to be configured to be inserted into the pressure block (833, 843) or the same as the pressure surface in surface contact with the upper surface.
  • the pressing blocks 833 and 843 are projected downward to correspond to the edges of the rectangular element 1 and guide parts 834 and 844 inclined such that the inner side faces the edge of the element 1.
  • the pressing blocks 833 and 843 are projected downward to correspond to the edges of the rectangular element 1 and guide parts 834 and 844 inclined such that the inner side faces the edge of the element 1.
  • the guide parts 834 and 844 protrude downward to correspond to the edges of the rectangular element 1, and are formed to be inclined such that the inner side faces the edge of the element 1. 1) is positioned at the correct position on the bottom of the pressure block (833, 843).
  • the pressing blocks 833 and 843 are characterized in that the element 1 is heated or cooled by the thermoelectric module unit 710 which will be described later in a surface contact state with the upper surface of the element 1.
  • the bottom surfaces of the pressing blocks 833 and 843 that is, the pressing surface, are formed to make surface contact with the upper surface of the device 1.
  • the pressure blocks 833 and 843 may control the temperature of the pressure blocks 833 and 843 by measuring the temperature of the device 1 such that the test of the device 1 may be performed under a preset test temperature.
  • a first temperature sensing unit 731 may be installed on a surface of the device 1 that is in surface contact with each other to measure the temperature of the device 1.
  • the first temperature sensing unit 731 is installed on a surface in contact with the upper surface of the device 1 to measure the temperature of the device 1, and includes various temperature resistance resistors such as PT100. This is possible.
  • the first temperature sensing unit 731 may indirectly measure the temperature of the device 1 by using a relational expression calculated in advance through experiments or the like by measuring the temperatures of the pressure blocks 833 and 843. Of course.
  • the temperature of the element 1 measured by the first temperature sensing unit 731 is referred to a controller (not shown), the thermoelectric module unit 710 which will be described later so that the temperature of the element 1 becomes a preset temperature.
  • the applied voltage applied to may be controlled by a pulse width modulation (PWM) scheme or the like.
  • the thermoelectric module unit 710 is configured to heat or cool by a plurality of thermoelectric devices, and includes a first heat exchanger 711 and a second heat exchanger 712.
  • the first heat exchanger 711 is coupled to the pressure blocks 833 and 843 to control the temperature of the pressure blocks 833 and 843.
  • the first heat exchange part 711 may be configured to have an optimized structure to facilitate heat exchange with the pressure blocks 833 and 843.
  • the second heat exchanger 712 is configured to transfer or transfer heat to the first heat exchanger 711 according to voltages applied to the plurality of thermoelectric elements so as to facilitate heat exchange with the auxiliary temperature controller 720 described later. It can be configured with an optimized structure.
  • the auxiliary temperature control unit 720 is coupled to the second heat exchange unit 712 of the thermoelectric module unit 710 and according to the temperature control conditions of the pressure blocks 833 and 843 through the first heat exchange unit 711.
  • a configuration for heating or cooling the two heat exchange parts 712 various configurations are possible according to a heat exchange method such as water cooling, air cooling, and a heat sink.
  • the auxiliary temperature controller 720 may include a heat sink 721 coupled to the second heat exchanger 712 as illustrated in FIGS. 5A, 5B, and 6; A gas injection unit 781 which receives heat exchange gas from the heat exchange gas supply device 723 and injects the heat exchange gas into the heat sink 721; In order to control the heating or cooling of the second heat exchanger 712 by the auxiliary temperature control unit 720, the gas injection unit (according to the temperature of the second heat exchanger 712 measured by the second temperature sensor 732). 781 may include a flow control unit 724 for controlling the flow rate of the heat exchange gas.
  • the heat sink 721 is coupled to the second heat exchanger 712 to exchange heat with the second heat exchanger 712, and a heat exchanger to exchange heat with the second heat exchanger 712, and a heat exchanger to be described later.
  • Various configurations are possible, including a heat transfer part that receives heat or receives heat by the heat exchange gas injected by the gas injection unit 781.
  • the gas injection unit 781 is configured to inject heat exchange gas from the heat exchange gas supply device 723 and to spray the heat sink 721.
  • the heat exchange gas supply device 723 is configured to supply heat exchange gas such as air, nitrogen, and helium, and may be configured in various ways, and in consideration of being injected into the outside of the device inspection device as heat exchange gas, compressed air, more specifically, CDA. (Clean Dyr Air) can be used.
  • heat exchange gas such as air, nitrogen, and helium
  • CDA Compact Dyr Air
  • the heat exchange gas supply device 723 may supply the cooled CDA so that the heat sink 721 cools the second heat exchange part 712.
  • the gas injection unit 781 may be configured in various ways according to the heat exchange method with the heat sink 721.
  • the gas injection unit 781 receives a plurality of fins of the heat exchange gas supplied from the heat exchange gas supply device 723. It may be composed of a spray nozzle for spraying toward the ().
  • the flow rate control unit 724 is a second heat exchange unit (measured by the second temperature sensing unit 732 to be described later to control the heating or cooling of the second heat exchange unit 712 by the auxiliary temperature control unit 720 ( Various configurations are possible as a configuration for controlling the flow rate of the heat exchange gas by the gas injection unit 781 according to the temperature of 712.
  • the flow rate controller 724 uses the temperature of the second heat exchanger 712 measured by the second temperature detector 732 as an input value, and the flow rate of the heat exchange gas, for example, the air flow rate, by various methods such as PID control. (lpm, liter per minute) can be controlled.
  • a proportional directional control valve controlled by a control unit may be used as a physical configuration.
  • the second temperature sensing unit 732 measures various temperatures of the second heat exchanger 712 in order to control heating or cooling of the second heat exchanger 712 by the auxiliary temperature controller 720. Configuration is possible.
  • the second temperature sensing unit 732 is preferably installed in contact with the second heat exchange unit 712 in order to measure the temperature of the second heat exchange unit 712.
  • the second temperature sensing unit 732 may be configured to include a resistance thermometer such as PT100 like the first temperature sensing unit 731 described above.
  • the auxiliary temperature control unit 720 is a one-sided structure, such as the injection of heat exchange gas from the heat exchange gas supply device 723 to the heat sink 721, the heat exchange between the heat exchange gas supply device 723 and the heat sink 721 Various structures such as a gas circulation structure are possible.
  • the auxiliary temperature controller 720 uses the temperature of the second heat exchanger 712 measured by the second temperature detector 732 as an input value to exchange heat exchange gas by various methods such as PID control.
  • the temperature of the second heat exchanger 712 is constant by controlling the heating or cooling of the second heat exchanger 712 by the auxiliary temperature controller 720 through a flow rate of the air, for example, a liter per minute (lpm). It can be maintained within the temperature range.
  • the auxiliary temperature controller 720 protects the second heat exchanger 712 by preventing the second heat exchanger 712 from rising or cooling to an excessive temperature, and provides the second temperature sensor 732 with the second temperature sensor 732.
  • the temperature control by the second heat exchanger 712 is maintained within a constant temperature range, as a result, the heat exchange between the first heat exchanger 711 and the second heat exchanger 712 is stable, so that the temperature of the element 1 is increased. It can be stably maintained at a preset temperature, that is, a test temperature.
  • the error range of the test temperature for inspecting the device 1 is minimized, thereby greatly improving the reliability of the test for the device 1.
  • thermoelectric element Furthermore, it is possible to prevent breakage of the device 1, the thermoelectric element, and the like to be tested by preventing a sudden temperature change by abnormal operation.

Abstract

본 발명은 소자검사장치에 관한 것으로, 보다 상세하게는, 소자에 대한 전기적 특성을 검사하는 소자검사장치 및 그에 사용되는 소자가압툴에 관한 것이다. 본 발명은, 진공압에 의하여 소자(1)를 픽업하는 픽업헤드(832, 842)와; 상기 픽업헤드(832, 842)에 의하여 픽업된 소자(1)가 상기 테스트소켓(310)에서 가압될 때 상기 소자(1)의 상면에 면접촉되어 소자(1)를 상기 테스트소켓(310)을 향하여 가압하는 가압블록(833, 843)과; 제1열교환부(711) 및 제2열교환부(712)를 구비하고 상기 가압블록(833, 843)에 결합되어 상기 제1열교환부(711)를 통하여 상기 가압블록(833, 843)의 온도를 제어하는 열전모듈부(710)와; 상기 가압블록(833, 843)의 온도를 제어하기 위하여 상기 소자(1)의 상면에 면접촉되는 면에 설치되어 상기 소자(1)의 온도를 측정하는 제1온도감지부(731)와; 상기 열전모듈부(710)의 제2열교환부(712)에 결합되어 상기 제1열교환부(711)를 통한 상기 가압블록(833, 843)의 온도제어조건에 따라서 상기 제2열교환부(712)를 가열하거나 냉각하는 보조온도제어부(720)와; 상기 보조온도제어부(720)에 의한 상기 제2열교환부(712)의 가열 또는 냉각을 제어하기 위하여 상기 제2열교환부(712)의 온도를 측정하는 제2온도감지부(732)를 포함하는 소자가압툴을 개시한다.

Description

소자검사장치 및 그에 사용되는 소자가압툴
본 발명은 소자검사장치에 관한 것으로, 보다 상세하게는, 소자에 대한 전기적 특성을 검사하는 소자검사장치 및 그에 사용되는 소자가압툴에 관한 것이다.
반도체소자(이하, '소자'라 한다)는 패키지공정을 마친 후 반도체소자 검사장치에 의하여 전기특성, 열이나 압력에 대한 신뢰성 검사 등 다양한 검사를 거친다.
소자에 대한 검사는 메모리소자 또는 CPU (Central Processing Unit), GPU (Graphic Processing Unit) 등과 같은 비메모리소자, LED 소자, 태양광소자 등 소자의 종류에 따라서 실온환경에서 수행하는 실온검사, 고온환경에서 수행되는 가열검사 등 다양한 검사들이 있다.
한편, 스마트폰, 스마트패드, 스마트TV 등 IT 기기의 종류가 다양해지며 대중화됨에 따라 CPU 등과 같은 비메모리소자, 즉, LSI (Large Scale Integration)의 수요가 급증하고 있다.
그리고 LSI는, 가혹한 환경, 즉 고온환경, 저온환경 등에서 원활하게 작동하는지 여부에 대해 검사가 수행되고 있다.
이러한 소자검사의 수행을 위하여, 소자의 종류, 검사내용에 따라서 다양한 소자검사장치가 제시되고 있다.
그런데 LSI와 같은 소자들의 박형화, 소형화, 나노 제조공정 등으로 인하여 테스트 온도조건 또한 정밀하게 설정될 필요가 있다.
(특허문헌 1) KR10-1169406 B
(특허문헌 2) KR10-2012-0004068 A
(특허문헌 3) KR10-1177746 B
(특허문헌 4) KR10-1216359 B
(특허문헌 5) KR10-2013-0099781 A
(특허문헌 6) 10-1417773 B
본 발명의 목적은, 상기한 종래기술의 문제점 및 필요성을 인식하여, 정확한 테스트온도 조건을 조성할 수 있는 소자검사장치 및 그에 사용되는 소자가압툴을 제공하는 데에 있다.
본 발명은, 상기와 같은 본 발명의 목적을 달성하기 위하여 창출된 것으로, 본 발명은, 복수의 소자(1)가 로딩되는 로딩부(100)와; 상기 로딩부(100)로부터 이송된 소자(1)에 대한 테스트를 위한 복수의 테스트소켓(310)들이 구비되는 테스트부(300)와; 상기 테스트부(300)에서 테스트가 완료된 소자(1)를 테스트결과에 따라 분류하는 언로딩부와(500); 진공압에 의하여 소자(1)를 픽업하는 하나 이상의 소자가압툴(831, 841)을 구비하여, 상기 로딩부(100)로부터 직접 또는 간접으로 소자(1)를 전달받는 로딩위치, 상기 테스트소켓(310)에 소자(1)를 가압한 상태에서 테스트를 수행하는 가압위치, 및 상기 테스트부(300)에서 테스트가 완료된 소자(1)를 상기 언로딩부(500)로 직접 또는 간접으로 소자(1)를 전달하는 언로딩위치를 순차적으로 이동하는 하나 이상의 소자가압부(830, 840)를 포함하며, 상기 소자가압툴(831, 841)은, 진공압에 의하여 소자(1)를 픽업하는 픽업헤드(832, 842)와; 상기 픽업헤드(832, 842)에 의하여 픽업된 소자(1)가 상기 테스트소켓(310)에서 가압될 때 상기 소자(1)의 상면에 면접촉되어 소자(1)를 상기 테스트소켓(310)을 향하여 가압하는 가압블록(833, 843)과; 제1열교환부(711) 및 제2열교환부(712)를 구비하고 상기 가압블록(833, 843)에 결합되어 상기 제1열교환부(711)를 통하여 상기 가압블록(833, 843)의 온도를 제어하는 열전모듈부(710)와; 상기 가압블록(833, 843)의 온도를 제어하기 위하여 상기 소자(1)의 상면에 면접촉되는 면에 설치되어 상기 소자(1)의 온도를 측정하는 제1온도감지부(731)와; 상기 열전모듈부(710)의 제2열교환부(712)에 결합되어 상기 제1열교환부(711)를 통한 상기 가압블록(833, 843)의 온도제어조건에 따라서 상기 제2열교환부(712)를 가열하거나 냉각하는 보조온도제어부(720)와; 상기 보조온도제어부(720)에 의한 상기 제2열교환부(712)의 가열 또는 냉각을 제어하기 위하여 상기 제2열교환부(712)의 온도를 측정하는 제2온도감지부(732)를 포함하는 것을 특징으로 하는 소자검사장치를 개시한다.
상기 소자가압부(830, 840)는, 하나 이상의 상기 소자가압툴(831, 841)과; 상기 소자가압툴(831, 841)이 탈착가능하게 결합되는 지지부(832, 842)와; 상기 지지부(832, 842)를 상기 로딩위치, 상기 가압위치 및 상기 언로딩위치를 순차적으로 이동시키는 툴이동부를 포함할 수 있다.
상기 픽업헤드(832, 842)는, 상기 픽업헤드(832, 842)에 의하여 픽업된 소자(1)가 상기 테스트소켓(310)에서 가압될 때 이동 및 변형 중 적어도 하나에 의하여 상기 소자(1)의 상면에 면접촉되는 가압면과 동일하거나 상기 가압블록(833, 843) 내측으로 삽입될 수 있다.
상기 픽업헤드(832, 842)는, 소자(1)의 픽업시 상기 가압블록(833, 843)의 저면으로부터 돌출되며, 소자(1)의 가압시 상기 가압블록(833, 843)이 소자(1)의 상면과 면접촉할 수 있도록 가압블록(833, 843)의 내측으로 위치되도록 적어도 일부분이 탄성변형 가능하게 형성될 수 있다.
상기 가압블록(833, 843)은 상기 직사각형 형상의 소자(1)의 가장자리에 대응되어 하측으로 돌출되며 내측면이 소자(1)의 가장자리를 향하도록 경사를 이루는 가이드부(834, 744)가 형성될 수 있다.
상기 보조온도제어부(720)는, 상기 제2열교환부(712)에 결합되는 히트싱크(721)와; 열교환가스공급장치(723)로부터 열교환가스를 공급받아 상기 히트싱크(721)로 분사하는 가스분사부(781)와; 상기 보조온도제어부(720)에 의한 상기 제2열교환부(712)의 가열 또는 냉각을 제어하기 위하여 상기 제2온도감지부(732)에 의하여 측정된 상기 제2열교환부(712)의 온도에 따라서 상기 가스분사부(781)에 의한 열교환가스의 유량을 제어하는 유량제어부(724)를 포함할 수 있다.
상기 제2온도감지부(732)는, 상기 제2열교환부(712)에 접한 상태로 설치될 수 있다.
상기 소자검사장치는, 상기 로딩버퍼부(200)로부터 전달된 소자(1)를 상기 테스트부(300) 쪽으로 이송하고 상기 테스트부(300)로부터 전달된 소자(1)를 상기 언로딩버퍼부(400) 쪽으로 이송하는 셔틀부(610, 620)를 더 포함할 수 있다.
상기 소자검사장치는, 상기 테스트부(300)의 테스트소켓(310)을 사이에 두고 상기 테스트소켓(310)의 양측에 배치되는 제1셔틀부(610) 및 제2셔틀부(620)와, 상기 제1셔틀부(610)와 상기 테스트부(300) 사이에서 이동하면서 상기 제1셔틀부(610)에서 소자(1)를 픽업하여 상기 테스트소켓(310)으로 가압하고 상기 테스트소켓(310)에 가압되어 테스트가 완료된 소자를 상기 제1셔틀부(610)로 전달하는 제1소자가압부(830)와, 상기 제2셔틀부(620)와 상기 테스트부(300) 사이에서 이동하면서 상기 제2셔틀부(620)에서 소자(1)를 픽업하여 상기 테스트소켓(310)으로 가압하고 상기 테스트소켓(310)에 가압되어 테스트가 완료된 소자를 상기 제2셔틀부(620)로 전달하는 제2소자가압부(840)를 포함할 수 있다.
상기 로딩부(100)는 다수개의 소자(1)들이 적재된 하나 이상의 트레이(2)가 로딩되며, 상기 로딩부(100)의 트레이(2)로부터 로딩이송툴(810)을 통해 소자(3)들을 전달받아 임시로 적재하는 로딩버퍼부(200)가 설치되며, 상기 테스트부(300)는 상기 로딩버퍼부(200)로부터 소자(3)들을 전달받아 테스트를 수행하며, 상기 테스트부(300)를 중심으로 상기 로딩버퍼부(200)와 대향되는 위치에 설치되어 상기 테스트부(300)에 의한 테스트가 완료된 소자(1)들을 전달받는 언로딩버퍼부(400)가 설치되며, 상기 언로딩부(500)는, 상기 테스트부(300)의 테스트결과에 따라서 상기 언로딩버퍼부(400)에 적재된 소자(1)들을 언로딩이송툴(820)을 통해 분류하여 적재될 수 있다.
본 발명의 실시예에 따른 소자검사장치 및 그에 사용되는 소자가압툴은, 테스트소켓 상의 소자를 가압하는 가압블록에 결합되어 가압블록을 제1열교환부를 통하여 가열하거나 냉각함으로써 소자를 테스트온도로 가열하거나 냉각하는 열전모듈과, 열전모듈의 제2열교환부를 통하여 제1열교환부의 가열 또는 냉각을 제어하기 위한 보조온도제어부와, 제2열교환부의 온도를 측정하기 위한 온도감지부를 포함하고, 온도감지부에 의하여 측정된 제2열교환부의 온도를 기준으로 보조온도제어부를 제어함으로써 가열블록의 가열 및 냉각의 제어가 정밀하여 보다 정확한 온도범위의 테스트온도 환경을 제공함으로써 소자에 대한 검사의 신뢰성을 향상시킬 수 있다.
도 1은 본 발명의 실시예에 따른 소자검사장치가 개략적으로 도시된 평면도이다.
도 2는 도 1의 소자검사장치에서, 로딩버퍼부 및 언로딩버퍼부의 플레이트부재의 일 예가 개략적으로 도시된 평면도이다.
도 3은 도 1의 소자검사장치에서, 제1셔틀부 및 제2셔틀부가 개략적으로 도시된 단면도이다.
도 4a 및 도 4b는, 각각 도 1의 소자검사장치에서, 한 쌍의 소자가압툴들이 가압위치로 번갈아가면서 이동하는 과정을 보여주는 개략도이다.
도 5a 및 도 5b는, 각각 도 1의 소자가압툴의 구성을 보여주는 단면도들로서, 도 5a 는, 소자 픽업 상태, 도 5b는, 소자 가압 상태를 보여주는 도면이다.
도 6은, 도 5a의 소자가압부의 온도제어를 보여주는 블럭도이다.
이하, 본 발명의 실시예에 따른 소자검사장치 및 그에 사용되는 소자검사장치에 관하여 첨부된 도면을 참조하여 설명한다.
본 발명의 실시예에 따른 소자검사장치는, 도 1에 도시된 바와 같이, 다수의 소자들(1)이 로딩되는 로딩부(100)와; 로딩부(100)로부터 전달된 소자들(1)을 테스트하는 테스트부(300)와; 테스트부(300)의 테스트결과에 따라 소자들(1)을 분류하여 적재하는 언로딩부(500)를 포함할 수 있다.
테스트의 대상이 되는 소자(1)는 메모리반도체나, CPU (Central Processing Unit), GPU (Graphics Processing Unit), 시스템 LSI (Large Scale Integration)와 같은 비메모리소자가 될 수 있다. 소자(1)는 비메모리소자, 특히, 저면에 볼형상의 접속단자들이 형성되는 소자가 될 수 있다.
상기 로딩부(100), 테스트부(300) 및 언로딩부(500) 사이에서 소자들(1)을 이송하는 방법은, 다양한 방법에 의하여 수행될 수 있다.
상기 로딩부(100) 및 언로딩부(500)는, 복수의 소자들(1)이 적재된 하나 이상의 트레이(2)가 적재되는 구성으로서, 설계에 따라 다양한 구성이 가능하다.
상기 로딩부(100) 및 언로딩부(500)에는, 복수의 트레이들(2)이 적재될 수 있는 트레이적재부(미도시)가 설치될 수 있다.
예를 들면, 상기 로딩부(100)에는, 소자들(1)이 연속적으로 픽업되어 이송될 수 있도록 복수의 트레이들(2)이 적절하게 배치된다.
그리고, 상기 소자들(1)이 비워진 트레이(2)는, 소자들(1)이 채워진 트레이(2)와 교체될 수 있다. 예를 들면, 일정 묶음의 트레이들(2)이 자동 또는 수동으로 트레이적재부로 로딩될 수 있다.
상기 로딩부(100) 내에서 소자들(1)이 인출된 후의 빈 트레이(2)는, 트레이전달부(미도시)에 의하여 언로딩부(500)로 이송될 수 있다.
또한, 상기 빈 트레이(2)가 언로딩부(500)로 이송되기 전에 트레이(2)로부터 미처 인출되지 않은 소자(1)가 제거될 수 있도록, 트레이(2)가 트레이반전부(미도시)에서 회전(반전)될 수 있다.
한편, 상기 언로딩부(500)는, 로딩부(100)와 유사하게 구성될 수 있다. 예를 들면, 언로딩부(500)에는, 소자들(1)이 테스트결과에 따라 연속적으로 분류되어 적재될 수 있도록, 복수의 빈 트레이들(2)이 분류등급에 따라 적절하게 배치될 수 있다.
상기 언로딩부(500)에서, 테스트가 완료된 소자들(1)이 채워진 트레이(2)는, 빈 트레이(2)와 교체될 수 있다.
또한, 상기 로딩부(100)와 언로딩부(500) 사이에는, 빈 트레이(2)가 임시로 적재될 수 있도록, 빈 트레이(2)가 임시로 적재되는 트레이버퍼부(미도시)가 추가로 설치될 수 있다.
상기 트레이(2)에는, 복수의 소자들(1)이 적재될 수 있도록 복수의 수용홈(2a)이 형성될 수 있다. 예를 들면, 복수의 수용홈(2a)은 트레이(2)에 8X16 등의 행렬로 형성될 수 있다.
상기 소자(1)가 이송되는 속도가 증가될 수 있도록, 및/또는 복수의 소자들(1)이 충분히 예열될 수 있도록, 로딩부(100)와 테스트부(300)의 사이에는 로딩부(100)의 트레이(2)로부터 전달된 소자들(1)이 임시로 적재되는 로딩버퍼부(200)가 설치될 수 있다.
그리고, 상기 소자(1)가 이송되는 속도가 증가될 수 있도록, 테스트부(300)와 언로딩부(500)의 사이에는, 테스트부(300)에 의하여 테스트가 완료된 소자들(1)이 임시로 적재되는 언로딩버퍼부(400)가 구비될 수 있다.
상기 언로딩버퍼부(400)는, 테스트부(300)를 중심으로 로딩버퍼부(200)와 대향되는 위치에 설치될 수 있다.
따라서, 상기 테스트의 대상이 되는 소자(1)는, 로딩부(100)로부터 이송되어 로딩버퍼부(200)에 임시로 적재된 후 테스트부(300)으로 이송될 수 있고, 테스트가 완료된 소자(1)는 테스트부(300)로부터 이송되어 언로딩버퍼부(400)에 임시로 적재된 후 언로딩부(500)로 이송될 수 있다.
특히, 상기 로딩버퍼부(200) 및 언로딩버퍼부(500)에는, 상대적으로 적은 수의 소자들(1)이 적재된 트레이(2)에 비하여 상대적으로 많은 수의 소자들(1)이 적재될 수 있다.
상기 로딩버퍼부(200) 및 언로딩버퍼부(400)는, 도 2 및 도 3에 도시된 바와 같이, 복수의 소자들(1)이 적재될 수 있도록 상면에 다수의 적재홈들(211, 411)이 형성되는 판형상의 플레이트부재(210, 410)를 포함할 수 있다.
상기 로딩버퍼부(200) 및 언로딩버퍼부(400)의 플레이트부재(210, 410)는, 서로 거의 동일하게 구성될 수 있다. 다만, 소자(1)를 테스트하기 위하여 소자(1)를 가열(예열)할 필요가 있는 경우, 로딩버퍼부(200)의 플레이트부재(210)에는 히터와 같은 가열수단이 부가될 수 있다.
상기 로딩버퍼부(200) 및 언로딩버퍼부(400)의 플레이트부재(210, 410)의 적재홈들(211, 411)은, 테스트부(300)의 테스트소켓들(310)의 간격에 맞게 배열될 수 있거나, 트레이(2)의 수용홈들(2a)의 간격에 맞게 배열될 수 있다.
예를 들면, 상기 트레이(2)의 수용홈(2a)들의 간격과 로딩버퍼부(200) 및 언로딩버퍼부(400)의 플레이트부재(210, 410)의 적재홈(211, 411)들의 간격은 동일하게 하고, 테스트부(300)의 테스트소켓(310)들의 간격은 트레이(2)의 수용홈들(2a)의 간격보다 n배, 예를 들면, 2배로 형성될 수 있다.
상기 플레이트부재들(210, 410)은 소자들(1)을 임시로 적재하여 테스트부(300)와의 소자교환을 위한 구성으로서, 소자검사장치의 내부에서 고정된 상태로 설치되거나, 이동가능하게 설치되는 등 다양한 구성이 가능하다.
도 1에 도시된 바와 같이, 상기 테스트부(300)는, 로딩버퍼부(200)로부터 전달된 소자(1)를 테스트하기 위한 것으로, 테스트의 종류에 따라 다양한 구성이 가능하다. 테스트부(300)에는 소자(1)가 가압되는 복수의 테스트소켓들(310)이 설치된다.
예를 들면, 상기 복수의 테스트소켓들(310)에는, 소자(1)의 단자들에 대응되어 테스트보드와 연결되는 단자가 구비되고, 소자(1)가 단자에 가압되는 과정을 통하여 테스트온도 하에서 소자(1)의 작동여부 등의 검사가 수행될 수 있다.
상기 테스트소켓들(310)은, 8X2, 8X4 등 다양한 행렬로 배치될 수 있다.
상기 테스트소켓(310)은, 소자(1)의 테스트를 위하여 소자(1)와 단자 사이의 연결을 위한 구성으로서, 다양한 구성이 가능하다. 이러한 테스트소켓(310)은 소자의 종류, 테스트 종류 등에 따라서 교체가 가능하게 설치될 수 있다.
한편, 상기 테스트부(300)는 테스트소켓(310)과 나머지 구성이 모듈화된 독립적 구성이 될 수 있으며, 간단한 구성으로서 테스트소켓(310)이 설치된 PCB보드로 구현될 수 있다.
특히, 상기 테스트부(300)가 테스트소켓(310)이 설치된 PCB보드로 구현되는 경우에는 테스트소켓(310)을 각 테스트 별로 특성화함으로써 상대적으로 고가인 테스트부(300)의 구성비용을 현저하게 절감할 수 있다.
한편, 상기 테스트부(300)에서는, 다양한 테스트가 수행될 수 있다. 보다 바람직하게는, 테스트부(300)는 고온, 저온 등의 테스트온도 하에서 소자(1)에 대한 테스트가 가능하게 구성될 수 있다.
상기 테스트부(300)는, 고온테스트 등 온도에 연관된 테스트의 경우, 온도변화를 최소화하기 위하여, 테스트소켓(310)를 포함하여 일부 영역을 둘러싸는 챔버부재가 그 주변에 설치될 수 있다.
한편, 상기 테스트부(300)와 로딩버퍼부(200)의 사이 또는 테스트부(300)와 언로딩버퍼부(400) 사이의 소자교환은 직접 이루어지기보다는 로딩버퍼부(200)로부터 전달된 소자(1)를 테스트부(300) 쪽으로 이송하고 테스트부(300)로부터 전달된 소자(1)를 언로딩버퍼부(400) 쪽으로 이송하는 셔틀부(610, 620)에 의하여 이루어질 수 있다.
상기 셔틀부(610, 620)는, 테스트부(300)와 로딩버퍼부(200) 사이의 소자교환 또는 테스트부(300)와 언로딩버퍼부(400) 사이의 소자교환을 위한 구성으로서 다양한 구성이 가능하다.
예를 들면, 도 1 및 도 3에 도시된 바와 같이, 상기 셔틀부(610, 620)는 로딩부(100)로부터 소자(1)를 전달받기 위한 제1소자전달위치, 테스트부(300)와 소자(1)를 교환하기 위한 소자교환위치 및 언로딩부(500)로 소자(1)를 전달하기 위한 제2소자전달위치 사이에서 이동되는 제1셔틀부(610)와, 로딩부(100)로부터 소자(1)를 전달받기 위한 제1소자전달위치, 테스트부(300)와 소자(1)를 교환하기 위한 소자교환위치 및 언로딩부(500)로 소자(1)를 전달하기 위한 제2소자전달위치의 사이에서 이동되는 제2셔틀부(620)를 포함할 수 있다.
여기에서, 상기 제1소자전달위치, 소자교환위치 및 제2소자전달위치는 장치의 구성에 따라서 다양하게 배치될 수 있으며, 직선으로 순차적으로 배치될 수 있다.
상기 제1셔틀부(610) 및 제2셔틀부(620)는, 테스트부(300)의 테스트소켓(310)을 사이에 두고 테스트소켓(310)의 양측에 배치될 수 있다.
상기 제1셔틀부(610) 및 제2셔틀부(620)는, 테스트부(300)를 중심으로 서로 대향되게 설치되는 가이드레일(611, 621)과, 가이드레일(611, 621)을 따라 수평으로 이동되면서, 로딩버퍼부(200)로부터 소자를 전달받기 위한 제1소자전달위치, 테스트부(300)와의 소자교환위치, 언로딩버퍼부(400)로 소자를 전달하기 위한 제2소자전달위치를 번갈아 가면서 이동되며 소자들(1)이 적재되는 하나 이상의 셔틀플레이트(612, 622)와, 셔틀플레이트(612, 622)가 탈착가능하게 결합되며 가이드레일(611, 621)을 따라 이동되도록 설치된 플레이트고정부(613, 623)를 포함할 수 있다.
상기 가이드레일(611, 621)은 셔틀플레이트(612, 622)의 이동을 안내하기 위한 구성으로서 다양한 구성이 가능하다.
상기 셔틀플레이트(612, 622)에는, 테스트부(300)와 로딩버퍼부(200) 사이의 소자교환 또는 테스트부(300)와 언로딩버퍼부(400) 사이의 소자교환을 위하여, 소자(1)가 안착되는 하나 이상의 소자안착홈이 형성된다.
상기 플레이트고정부(613, 623)는 셔틀플레이트(612, 622)의 교체 편의를 위하여 설치된 구성으로서 다양한 구성이 가능하며, 소자(1)를 가열하기 위한 히터 등이 구비될 수 있다.
상기 셔틀플레이트(612, 622)가 플레이트고정부(613, 623)에 탈착가능하게 설치되므로, 검사대상인 소자(1)의 종류, 특히, 소자(1)의 크기가 달라지는 경우 소자(1)가 안착되는 셔틀플레이트(612, 622)가 교체될 수 있다.
상기 플레이트고정부(613, 623)에는, 셔틀플레이트(612, 622)를 플레이트고정부(613, 623)에 탈착가능하게 고정시키는 플레이트탈착부(614, 624)가 구비될 수 있다.
상기 플레이트탈착부(614, 624)는, 플레이트고정부(613, 623)에서 셔틀플레이트(612, 622)의 탈착을 위한 구성으로서 다양한 구성이 가능하며, 간단한 수작업에 의하여 셔틀플레이트(612, 622)의 탈착이 가능하도록 구성될 수 있다.
한편, 상기 로딩부(100)와 셔틀부(610, 620)의 사이에서 이동되면서 로딩부(100)에서 소자(1)를 픽업하여 셔틀부(610, 620)로 전달하는 하나 이상의 로딩이송툴(810, 814)이 설치될 수 있다.
이와 같은 경우, 상기 하나의 로딩이송툴(810, 814)이 로딩부(100)와 셔틀부(610, 620) 사이에서 이동하면서 로딩부(100)에서 소자(1)를 픽업하여 셔틀부(610, 620)로 전달하도록 구성될 수 있다.
그리고, 전술한 바와 같이, 상기 로딩버퍼부(200)가 설치되는 경우, 로딩이송툴(810, 814)은 로딩부(100)에서 소자(1)를 픽업하여 로딩버퍼부(200)로 전달하는 제1로딩이송툴(810)과, 로딩버퍼부(200)에서 소자(1)를 픽업하여 셔틀부(610, 620)로 전달하는 제2로딩이송툴(814)을 포함할 수 있다.
또한, 상기 셔틀부(610, 620)와 언로딩부(500) 사이에서 이동되면서 셔틀부(610, 620)에서 소자(1)를 픽업하여 언로딩부(500)로 전달하는 하나 이상의 언로딩이송툴(820, 824)이 설치될 수 있다.
이와 같은 경우, 상기 하나의 언로딩이송툴(820, 824)이 셔틀부(610, 620)와 언로딩부(500) 사이에서 이동하면서 셔틀부(610, 620)에서 소자(1)를 픽업하여 언로딩부(500)로 전달하도록 구성될 수 있다.
그리고, 전술한 바와 같이, 상기 언로딩버퍼부(400)가 설치되는 경우, 언로딩이송툴(820, 824)은 언로딩버퍼부(400)에서 소자(1)를 픽업하여 언로딩부(500)으로 전달하는 제1언로딩이송툴(820)과, 셔틀부(610, 620)에서 소자(1)를 픽업하여 언로딩버퍼부(400)로 전달하는 제2언로딩이송툴(824)을 포함할 수 있다.
상기 로딩이송툴(810, 814) 및 언로딩이송툴(820, 824)은, 서로 동일하거나 유사하게 구성될 수 있다.
상기 로딩이송툴(810, 814) 및 언로딩이송툴(820, 824)에는, 각각 소자(1)를 이송하기 위한 구성으로서, 소자(1)를 픽업하는 복수의 픽커들 및 상하방향(Z방향) 및 수평방향(X-Y방향) 등으로 복수의 픽커들의 이동을 구동하기 위한 구동장치를 포함할 수 있다.
상기 픽커는, 소자(1)를 픽업하여 소정의 위치로 이송하기 위한 구성으로서, 다양한 구성이 가능하며 소자(1)의 상면에 진공압을 형성하는 흡착패드 및 흡착패드에 공압을 전달하는 공압실린더로 구성될 수 있다.
상기 픽커들은, 로딩부(100) 및 언로딩부(500)의 트레이(2)의 수용홈들(2a)의 간격 및 로딩버퍼부(200)와 언로딩버퍼부(400)의 플레이트부재(210, 410)들의 적재홈(211, 411)들의 간격이 서로 다른 경우를 고려하여 가로 및 세로 간격의 조절이 가능하도록 구성될 수 있으나, 보다 많은 수의 반도체소자(10)들의 이송이 가능하도록 가로 및 세로 간격이 고정될 수 있다.
상기 복수의 픽커들을 이동시키는 구동장치는, 픽커들의 구동태양에 따라서 다양한 구성이 가능하며, 픽커들을 상하로 이동시키기 위한 상하이동장치 및 좌우방향으로 이동하기 위한 좌우이동장치를 포함하여 구성될 수 있다.
상기 상하이동장치는 픽커들 전체를 한꺼번에 상하로 이동시키도록 구성되거나, 각 픽커들이 독립적으로 상하로 이동되도록 각 픽커들과 개별적으로 연결될 수 있다.
상기 좌우이동장치는 픽커들의 이동태양에 따라서 다양한 구성이 가능하며, X방향 또는 Y방향으로의 단일방향의 이동, 또는 X-Y방향 이동이 가능하도록 구성될 수 있다.
한편, 상기 테스트부(300)와 셔틀부(610, 620) 사이에서 이동되면서 셔틀부(610, 620)에서 소자(1)를 픽업하여 테스트소켓(310)으로 가압하고, 테스트소켓(310)에 가압되어 테스트가 완료된 소자를 셔틀부(610, 620)으로 전달하는 소자가압부(830, 840)가 설치될 수 있다.
상기 소자가압부(830, 840)는, 테스트부(300)와 제1셔틀부(610) 사이 및 테스트부(300)와 제2셔틀부(620) 사이에서 소자(1)를 이송하기 위한 구성으로서, 소자(1)의 이송태양에 따라서 다양한 구성이 가능하다.
상기 소자가압부(830, 840)는, 도 4a 및 도 4b에 도시된 바와 같이, 제1셔틀부(610)와 테스트부(300) 사이에서 이동하면서 제1셔틀부(610)에서 소자(1)를 픽업하여 테스트소켓(310)으로 가압하고 테스트소켓(310)에 가압되어 테스트가 완료된 소자를 제1셔틀부(610)로 전달하는 제1소자가압부(830)와, 제2셔틀부(620)와 테스트부(300) 사이에서 이동하면서 제2셔틀부(620)에서 소자(1)를 픽업하여 테스트소켓(310)으로 가압하고 테스트소켓(310)에 가압되어 테스트가 완료된 소자를 제2셔틀부(620)로 전달하는 제2소자가압부(840)를 포함할 수 있다.
이와 같이, 상기 소자가압부(830, 840)가 한 쌍으로 구성되는 경우에는, 소자교환의 편의를 위하여, 한 쌍의 소자가압부(830, 840)가 서로 연동하여 이동될 수 있다.
한편 상기 소자가압부(830, 840)는, 진공압에 의하여 소자(1)를 픽업하는 하나 이상의 소자가압툴(831, 841)을 구비하여, 로딩부(100)로부터 직접 또는 간접으로 소자(1)를 전달받는 로딩위치, 테스트소켓(310)에 소자(1)를 가압한 상태에서 테스트를 수행하는 가압위치, 및 테스트부(300)에서 테스트가 완료된 소자(1)를 언로딩부(500)로 직접 또는 간접으로 소자(1)를 전달하는 언로딩위치를 순차적으로 이동하는 구성으로서, 도 4a 및 도 4b의 실시예 이외에 다양한 구성이 가능하다.
예로서, 상기 소자가압부(830, 840)는, 하나 이상의 소자가압툴(831, 841)과; 소자가압툴(831, 841)이 탈착가능하게 결합되는 지지부(832, 842)와; 지지부(832, 842)를 로딩위치, 가압위치 및 언로딩위치를 순차적으로 이동시키는 툴이동부를 포함할 수 있다.
상기 지지부(832, 842)는, 하나 이상의 소자가압툴(831, 841)이 탈착가능하게 결합되어 소자가압툴(831, 841)을 지지하는 구성으로서 소자가압툴(831, 841)의 지지구조에 따라서 다양한 구성이 가능하다.
예로서, 상기 지지부(832, 842)는, 후술하는 툴이동부에 의하여 이동되도록 이동구조물(미도시)에 결합되는 본체(832a, 842a)와, 본체(832a, 842a)에 결합된 상태에서 하나 이상의 소자가압툴(831, 841)이 탈착가능하게 결합되는 버퍼부재(832b, 842b)를 포함할 수 있다.
상기 본체(832a, 842a)는, 툴이동부에 의하여 이동되도록 이동구조물(미도시)에 결합되는 구성으로 다양한 구성이 가능하다.
상기 버퍼부재(832b, 842b)는, 본체(832a, 842a)에 결합된 상태에서 하나 이상의 소자가압툴(831, 841)이 탈착가능하게 결합되는 구성으로서 다양한 구성이 가능하다.
특히 상기 버퍼부재(832b, 842b)는, 소자가압툴(831, 841)와의 탈착가능결합구조, 소자가압툴(831, 841)로의 진공압 전달, 소자가압툴(831, 841)에 설치된 센서 등의 전원공급 및 신호송수신 등을 위한 부대구성들이 설치될 수 있다.
특히 상기 버퍼부재(832b, 842b)에 설치된 부대구성들은, 소자가압툴(831, 841)의 탈착결합시 소자가압툴(831, 841) 내에 설치된 부대구성들의 적어도 일부와 자동으로 결합되거나, 연결될 수 있다.
상기 툴이동부는, 지지부(832, 842), 즉 지지부(832, 842)에 결합된 소자가압툴(831, 841)을 로딩위치, 가압위치 및 언로딩위치를 순차적으로 이동시키는 구성으로서 그 이동구조에 따라서 다양한 구성이 가능하다.
상기 툴이동부는, 배경이 되는 기술에서 제시된 선행기술문헌들에 다양한 실시예들이 제시되는바 자세한 설명은 생략한다.
상기 소자가압툴(831, 841)은, 진공압에 의하여 소자(1)를 픽업하는 구성으로서 다양한 구성이 가능하다.
특히 상기 소자가압툴(831, 841)은, 진공압에 의한 소자픽업 및 소자가압시 소자(1)의 가열 또는 냉각기능을 구비하기 위하여, 진공압에 의하여 소자(1)를 픽업하는 픽업헤드(832, 842)와; 픽업헤드(832, 842)에 의하여 픽업된 소자(1)가 테스트소켓(310)에서 가압될 때 소자(1)의 상면에 면접촉되어 소자(1)를 테스트소켓(310)을 향하여 가압하는 가압블록(833, 843)과; 제1열교환부(711) 및 제2열교환부(712)를 구비하고 가압블록(833, 843)에 결합되어 제1열교환부(711)를 통하여 가압블록(833, 843)의 온도를 제어하는 열전모듈부(710)와; 가압블록(833, 843)의 온도를 제어하기 위하여 소자(1)의 상면에 면접촉되는 면에 설치되어 소자(1)의 온도를 측정하는 제1온도감지부(731)와; 열전모듈부(710)의 제2열교환부(712)에 결합되어 제1열교환부(711)를 통한 가압블록(833, 843)의 온도제어조건에 따라서 상기 제2열교환부(712)를 가열하거나 냉각하는 보조온도제어부(720)와; 보조온도제어부(720)에 의한 제2열교환부(712)의 가열 또는 냉각을 제어하기 위하여 제2열교환부(712)의 온도를 측정하는 제2온도감지부(732)를 포함할 수 있다.
상기 픽업헤드(832, 842)는, 진공압에 의하여 소자(1)를 픽업하는 구성으로서 후술하는 가압블록(833, 843) 내부에 형성된 진공압형성유로(741)를 통하여 진공압에 의하여 소자(1)를 픽업하도록 구성되는 등 다양한 구성이 가능하다.
한편 상기 픽업헤드(832, 842)는, 소자(1)의 픽업시 가압블록(833, 843)의 저면으로부터 돌출되며, 소자가압시 가압블록(833, 843)이 소자(1)의 상면과 면접촉할 수 있도록 가압블록(833, 843)의 내측으로 위치되도록 구성됨이 바람직하다.
예로서, 상기 픽업헤드(832, 842)는, 끝단부분 등 적어도 일부분이 탄성변형이 가능하도록 형성되거나, 상측에 탄성부재(미도시)가 설치되어 소자(1)의 픽업시 가압블록(833, 843)의 저면으로부터 돌출되며, 소자가압시 가압블록(833, 843)이 소자(1)의 상면과 면접촉할 수 있도록 가압블록(833, 843)의 내측으로 위치될 수 있다.
상기 가압블록(833, 843)은, 픽업헤드(832, 842)에 의하여 픽업된 소자(1)가 테스트소켓(310)에서 가압될 때 소자(1)의 상면에 면접촉되어 소자(1)를 테스트소켓(310)을 향하여 가압하는 구성으로서 소자(1)의 가압구조 등에 따라서 다양한 구성이 가능하다.
즉, 상기 픽업헤드(832, 842)는, 픽업헤드(832, 842)에 의하여 픽업된 소자(1)가 테스트소켓(310)에서 가압될 때 이동 및 변형 중 적어도 하나에 의하여 소자(1)의 상면에 면접촉되는 가압면과 동일하거나 가압블록(833, 843) 내측으로 삽입되도록 구성됨이 바람직하다.
특히 상기 가압블록(833, 843)은, 직사각형 형상의 소자(1)의 가장자리에 대응되어 하측으로 돌출되며 내측면이 소자(1)의 가장자리를 향하도록 경사를 이루는 가이드부(834, 844)가 형성됨이 바람직하다.
상기 가이드부(834, 844)는, 직사각형 형상의 소자(1)의 가장자리에 대응되어 하측으로 돌출되며 내측면이 소자(1)의 가장자리를 향하도록 경사를 이루어 형성됨으로써 소자픽업 및 가압시 소자(1)가 가압블록(833, 843)의 저면에 정확한 위치에 위치되도록 한다.
한편 상기 가압블록(833, 843)은, 소자(1)의 상면과의 면접촉 상태에서 후술하는 열전모듈부(710)에 의하여 소자(1)를 가열하거나 냉각함을 특징으로 한다.
이에 상기 가압블록(833, 843)의 저면, 즉 가압면은 소자(1)의 상면과의 면접촉을 이루도록 형성됨을 특징으로 한다.
그리고 상기 가압블록(833, 843)은, 미리 설정된 테스트온도 하에서 상기 소자(1)에 대한 테스트 수행이 가능하도록 소자(1)의 온도를 측정함으로써 가압블록(833, 843)의 온도를 제어하기 위하여 소자(1)의 상면에 면접촉되는 면에 설치되어 소자(1)의 온도를 측정하는 제1온도감지부(731)가 설치될 수 있다.
상기 제1온도감지부(731)는, 소자(1)의 상면에 면접촉되는 면에 설치되어 소자(1)의 온도를 측정하는 구성으로서, PT100과 같은 측온저항체를 포함하여 구성되는 등 다양한 구성이 가능하다.
여기서 상기 제1온도감지부(731)는, 가압블록(833, 843)의 온도를 측정함으로써 실험 등을 통하여 미리 계산된 관계식 등을 이용하여 소자(1)의 온도를 간접적으로 측정할 수도 있음은 물론이다.
한편 상기 제1온도감지부(731)에 의하여 측정된 소자(1)의 온도는, 제어부(미도시)에 참조되어 소자(1)의 온도가 미리 설정된 온도가 되도록 후술하는 열전모듈부(710)에 인가되는 인가전압을 PWM(pulse width modulation; 펄스 폭 변조) 방식 등으로 제어될 수 있다.
상기 열전모듈부(710)는, 다수의 열전소자(Peltier device)들에 의하여 가열 또는 냉각하는 구성으로서 제1열교환부(711) 및 제2열교환부(712)를 구비함을 특징으로 한다.
상기 제1열교환부(711)는, 가압블록(833, 843)에 결합됨으로써 가압블록(833, 843)의 온도를 제어한다.
여기서 상기 제1열교환부(711)는, 가압블록(833, 843)과의 열교환이 원활하도록 최적화된 구조로 구성될 수 있다.
상기 제2열교환부(712)는, 다수의 열전소자들에 인가된 전압에 따라서 제1열교환부(711)로 열을 전달하거나 전달받는 구성으로서 후술하는 보조온도제어부(720)와의 열교환이 원활하도록 최적화된 구조로 구성될 수 있다.
상기 보조온도제어부(720)는, 열전모듈부(710)의 제2열교환부(712)에 결합되어 제1열교환부(711)를 통한 가압블록(833, 843)의 온도제어조건에 따라서 상기 제2열교환부(712)를 가열하거나 냉각하는 구성으로서, 수냉식, 공냉식, 히트싱크 등 열교환방식에 따라서 다양한 구성이 가능하다.
예로서, 상기 보조온도제어부(720)는, 도 5a 및 도 5b, 도 6에 도시된 바와 같이, 제2열교환부(712)에 결합되는 히트싱크(721)와; 열교환가스공급장치(723)로부터 열교환가스를 공급받아 히트싱크(721)로 분사하는 가스분사부(781)와; 보조온도제어부(720)에 의한 제2열교환부(712)의 가열 또는 냉각을 제어하기 위하여 제2온도감지부(732)에 의하여 측정된 제2열교환부(712)의 온도에 따라서 가스분사부(781)에 의한 열교환가스의 유량을 제어하는 유량제어부(724)를 포함할 수 있다.
상기 히트싱크(721)는, 제2열교환부(712)에 결합되어 제2열교환부(712)와 열교환하는 구성으로서 제2열교환부(712)와 열교환하는 열교환부분과, 열교환부분과 결합되어 후술하는 가스분사부(781)에 의하여 분사되는 열교환가스에 의하여 열을 빼앗기거나 열을 받는 열전달부분으로 구성되는 등 다양한 구성이 가능하다.
상기 가스분사부(781)는, 열교환가스공급장치(723)로부터 열교환가스를 공급받아 히트싱크(721)로 분사하는 구성으로서 다양한 구성이 가능하다.
여기서 열교환가스공급장치(723)는, 공기, 질소, 헬륨 등 열교환가스를 공급하기 위한 구성으로서 다양한 구성이 가능하며, 열교환가스로서 소자검사장치의 외부로 분사됨을 고려하여 압축공기, 보다 구체적으로 CDA(Clean Dyr Air)가 사용될 수 있다.
특히 상기 히트싱크(721)가 제2열교환부(712)가 냉각하도록 열교환가스공급장치(723)는, 냉각된 CDA를 공급할 수 있다.
상기 가스분사부(781)는, 히트싱크(721)와의 열교환방식에 따라서 다양한 구성이 가능하다.
예로서, 상기 가스분사부(781)는, 히트싱크(721)의 열전달부분이 다수의 핀(fin)들로 구성되는 경우 열교환가스공급장치(723)로부터 공급받은 열교환가스를 다수의 핀(fin)들을 향하여 분사하는 분사노즐로 구성될 수 있다.
상기 유량제어부(724)는, 보조온도제어부(720)에 의한 제2열교환부(712)의 가열 또는 냉각을 제어하기 위하여 후술하는 제2온도감지부(732)에 의하여 측정된 제2열교환부(712)의 온도에 따라서 가스분사부(781)에 의한 열교환가스의 유량을 제어하는 구성으로서 다양한 구성이 가능하다.
상기 유량제어부(724)는, 제2온도감지부(732)에 의하여 측정된 제2열교환부(712)의 온도를 입력값으로 하여 PID 제어 등 다양한 방식에 의하여 열교환가스의 유량, 예를 들면 풍량(lpm, liter per minute) 등을 제어할 수 있다.
상기 유량제어부(724)는, 물리적 구성으로서 제어부에 의하여 제어되는 비례 방향 제어 밸브(PROPORTIONAL DIRECTIONAL CONTROL VALVE) 등이 사용될 수 있다.
한편 상기 제2온도감지부(732)는, 보조온도제어부(720)에 의한 제2열교환부(712)의 가열 또는 냉각을 제어하기 위하여 제2열교환부(712)의 온도를 측정하는 구성으로서 다양한 구성이 가능하다.
특히 상기 제2온도감지부(732)는, 제2열교환부(712)의 온도를 측정하기 위하여 제2열교환부(712)에 접한 상태로 설치됨이 바람직하다.
그리고 상기 제2온도감지부(732)는, 앞서 설명한 제1온도감지부(731)와 같이 PT100과 같은 측온저항체를 포함하여 구성되는 등 다양한 구성이 가능하다.
한편 상기 보조온도제어부(720)는, 열교환가스공급장치(723)로부터 히트싱크(721)로의 열교환가스의 분사와 같은 일방적인 구조, 열교환가스공급장치(723) 및 히트싱크(721) 사이의 열교환가스의 순환구조 등 다양한 구조가 가능하다.
그리고 상기와 같은 구성을 가지는 보조온도제어부(720)는, 제2온도감지부(732)에 의하여 측정된 제2열교환부(712)의 온도를 입력값으로 하여 PID 제어 등 다양한 방식에 의하여 열교환가스의 유량, 예를 들면 풍량(lpm, liter per minute) 등을 통하여 보조온도제어부(720)에 의한 제2열교환부(712)의 가열 또는 냉각을 제어함으로써 제2열교환부(712)의 온도를 일정한 온도범위 내로 유지시킬 수 있다.
이에 의하여 상기 보조온도제어부(720)는, 제2열교환부(712)가 과도한 온도로 상승하거나 냉각하는 것을 방지하여 제2열교환부(712)를 보호하는 한편, 제2온도감지부(732)에 의한 온도제어에 의하여 제2열교환부(712)가 일정한 온도범위 내로 유지되어 결과적으로 제1열교환부(711) 및 제2열교환부(712) 사이의 열교환이 안정적으로 이루어져 소자(1)의 온도가 미리 설정된 온도, 즉 테스트온도로 안정적으로 유지시킬 수 있다.
이에, 소자(1)를 검사하기 위한 테스트온도의 오차범위가 최소화됨으로써 소자(1)에 대한 검사의 신뢰성을 크게 향상시킬 수 있다.
더 나아가, 이상 작동에 의하여 급격한 온도변화를 방지함으로써 테스트 대상인 소자(1), 열전소자 등의 파손을 방지할 수 있다.
이상에서는 본 발명의 바람직한 실시예를 예시적으로 설명하였으나, 본 발명의 범위는 이와 같은 특정 실시예에만 한정되는 것은 아니며, 특허청구범위에 기재된 범주 내에서 적절하게 변경 가능한 것이다.

Claims (10)

  1. 복수의 소자(1)가 로딩되는 로딩부(100)와;
    상기 로딩부(100)로부터 이송된 소자(1)에 대한 테스트를 위한 복수의 테스트소켓(310)들이 구비되는 테스트부(300)와;
    상기 테스트부(300)에서 테스트가 완료된 소자(1)를 테스트결과에 따라 분류하는 언로딩부와(500);
    진공압에 의하여 소자(1)를 픽업하는 하나 이상의 소자가압툴(831, 841)을 구비하여, 상기 로딩부(100)로부터 직접 또는 간접으로 소자(1)를 전달받는 로딩위치, 상기 테스트소켓(310)에 소자(1)를 가압한 상태에서 테스트를 수행하는 가압위치, 및 상기 테스트부(300)에서 테스트가 완료된 소자(1)를 상기 언로딩부(500)로 직접 또는 간접으로 소자(1)를 전달하는 언로딩위치를 순차적으로 이동하는 하나 이상의 소자가압부(830, 840)를 포함하며,
    상기 소자가압툴(831, 841)은,
    진공압에 의하여 소자(1)를 픽업하는 픽업헤드(832, 842)와;
    상기 픽업헤드(832, 842)에 의하여 픽업된 소자(1)가 상기 테스트소켓(310)에서 가압될 때 상기 소자(1)의 상면에 면접촉되어 소자(1)를 상기 테스트소켓(310)을 향하여 가압하는 가압블록(833, 843)과;
    제1열교환부(711) 및 제2열교환부(712)를 구비하고 상기 가압블록(833, 843)에 결합되어 상기 제1열교환부(711)를 통하여 상기 가압블록(833, 843)의 온도를 제어하는 열전모듈부(710)와;
    상기 가압블록(833, 843)의 온도를 제어하기 위하여 상기 소자(1)의 상면에 면접촉되는 면에 설치되어 상기 소자(1)의 온도를 측정하는 제1온도감지부(731)와;
    상기 열전모듈부(710)의 제2열교환부(712)에 결합되어 상기 제1열교환부(711)를 통한 상기 가압블록(833, 843)의 온도제어조건에 따라서 상기 제2열교환부(712)를 가열하거나 냉각하는 보조온도제어부(720)와;
    상기 보조온도제어부(720)에 의한 상기 제2열교환부(712)의 가열 또는 냉각을 제어하기 위하여 상기 제2열교환부(712)의 온도를 측정하는 제2온도감지부(732)를 포함하는 것을 특징으로 하는 소자검사장치.
  2. 청구항 1에 있어서,
    상기 소자가압부(830, 840)는,
    하나 이상의 상기 소자가압툴(831, 841)과;
    상기 소자가압툴(831, 841)이 탈착가능하게 결합되는 지지부(832, 842)와;
    상기 지지부(832, 842)를 상기 로딩위치, 상기 가압위치 및 상기 언로딩위치를 순차적으로 이동시키는 툴이동부를 포함하는 것을 특징으로 하는 소자검사장치.
  3. 청구항 1에 있어서,
    상기 픽업헤드(832, 842)는, 상기 픽업헤드(832, 842)에 의하여 픽업된 소자(1)가 상기 테스트소켓(310)에서 가압될 때 이동 및 변형 중 적어도 하나에 의하여 상기 소자(1)의 상면에 면접촉되는 가압면과 동일하거나 상기 가압블록(833, 843) 내측으로 삽입되는 것을 특징으로 하는 소자검사장치.
  4. 청구항 3에 있어서,
    상기 픽업헤드(832, 842)는, 소자(1)의 픽업시 상기 가압블록(833, 843)의 저면으로부터 돌출되며, 소자(1)의 가압시 상기 가압블록(833, 843)이 소자(1)의 상면과 면접촉할 수 있도록 가압블록(833, 843)의 내측으로 위치되도록 적어도 일부분이 탄성변형 가능하게 형성되는 것을 특징으로 하는 소자검사장치.
  5. 청구항 1에 있어서,
    상기 가압블록(833, 843)은 상기 직사각형 형상의 소자(1)의 가장자리에 대응되어 하측으로 돌출되며 내측면이 소자(1)의 가장자리를 향하도록 경사를 이루는 가이드부(834, 744)가 형성된 것을 특징으로 하는 소자검사장치.
  6. 청구항 1에 있어서,
    상기 보조온도제어부(720)는,
    상기 제2열교환부(712)에 결합되는 히트싱크(721)와;
    열교환가스공급장치(723)로부터 열교환가스를 공급받아 상기 히트싱크(721)로 분사하는 가스분사부(781)와;
    상기 보조온도제어부(720)에 의한 상기 제2열교환부(712)의 가열 또는 냉각을 제어하기 위하여 상기 제2온도감지부(732)에 의하여 측정된 상기 제2열교환부(712)의 온도에 따라서 상기 가스분사부(781)에 의한 열교환가스의 유량을 제어하는 유량제어부(724)를 포함하는 것을 특징으로 하는 소자검사장치.
  7. 청구항 1에 있어서,
    상기 제2온도감지부(732)는, 상기 제2열교환부(712)에 접한 상태로 설치되는 것을 특징으로 하는 소자검사장치.
  8. 청구항 1에 있어서,
    상기 소자검사장치는,
    상기 로딩버퍼부(200)로부터 전달된 소자(1)를 상기 테스트부(300) 쪽으로 이송하고 상기 테스트부(300)로부터 전달된 소자(1)를 상기 언로딩버퍼부(400) 쪽으로 이송하는 셔틀부(610, 620)를 더 포함하는 것을 특징으로 하는 소자검사장치.
  9. 청구항 8에 있어서,
    상기 소자검사장치는,
    상기 테스트부(300)의 테스트소켓(310)을 사이에 두고 상기 테스트소켓(310)의 양측에 배치되는 제1셔틀부(610) 및 제2셔틀부(620)와,
    상기 제1셔틀부(610)와 상기 테스트부(300) 사이에서 이동하면서 상기 제1셔틀부(610)에서 소자(1)를 픽업하여 상기 테스트소켓(310)으로 가압하고 상기 테스트소켓(310)에 가압되어 테스트가 완료된 소자를 상기 제1셔틀부(610)로 전달하는 제1소자가압부(830)와,
    상기 제2셔틀부(620)와 상기 테스트부(300) 사이에서 이동하면서 상기 제2셔틀부(620)에서 소자(1)를 픽업하여 상기 테스트소켓(310)으로 가압하고 상기 테스트소켓(310)에 가압되어 테스트가 완료된 소자를 상기 제2셔틀부(620)로 전달하는 제2소자가압부(840)를 포함하는 것을 특징으로 하는 소자검사장치.
  10. 청구항 1 내지 청구항 9 중 어느 하나의 항에 있어서,
    상기 로딩부(100)는 다수개의 소자(1)들이 적재된 하나 이상의 트레이(2)가 로딩되며,
    상기 로딩부(100)의 트레이(2)로부터 로딩이송툴(810)을 통해 소자(3)들을 전달받아 임시로 적재하는 로딩버퍼부(200)가 설치되며,
    상기 테스트부(300)는 상기 로딩버퍼부(200)로부터 소자(3)들을 전달받아 테스트를 수행하며,
    상기 테스트부(300)를 중심으로 상기 로딩버퍼부(200)와 대향되는 위치에 설치되어 상기 테스트부(300)에 의한 테스트가 완료된 소자(1)들을 전달받는 언로딩버퍼부(400)가 설치되며,
    상기 언로딩부(500)는, 상기 테스트부(300)의 테스트결과에 따라서 상기 언로딩버퍼부(400)에 적재된 소자(1)들을 언로딩이송툴(820)을 통해 분류하여 적재되는 것을 특징으로 하는 소자검사장치.
PCT/KR2017/001661 2016-02-15 2017-02-15 소자검사장치 및 그에 사용되는 소자가압툴 WO2017142312A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020160017395A KR20170095655A (ko) 2016-02-15 2016-02-15 소자검사장치 및 그에 사용되는 소자가압툴
KR10-2016-0017395 2016-02-15

Publications (1)

Publication Number Publication Date
WO2017142312A1 true WO2017142312A1 (ko) 2017-08-24

Family

ID=59625296

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/001661 WO2017142312A1 (ko) 2016-02-15 2017-02-15 소자검사장치 및 그에 사용되는 소자가압툴

Country Status (3)

Country Link
KR (1) KR20170095655A (ko)
TW (1) TWI614509B (ko)
WO (1) WO2017142312A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111868536A (zh) * 2018-03-11 2020-10-30 宰体有限公司 元件检查装置
CN111886509A (zh) * 2018-03-06 2020-11-03 宰体有限公司 元件处理器

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10514416B2 (en) * 2017-09-29 2019-12-24 Advantest Corporation Electronic component handling apparatus and electronic component testing apparatus
KR102514009B1 (ko) * 2018-03-09 2023-03-28 (주)테크윙 전자부품 테스트용 핸들러
KR20190120678A (ko) * 2018-04-16 2019-10-24 (주)제이티 소자핸들러
JP7245639B2 (ja) * 2018-12-14 2023-03-24 株式会社アドバンテスト センサ試験装置
KR102190482B1 (ko) * 2019-05-14 2020-12-15 주식회사 탑 엔지니어링 어레이 테스터
KR102348976B1 (ko) * 2019-12-19 2022-01-07 현대제철 주식회사 시편 이송 장치
US11867749B2 (en) 2020-10-22 2024-01-09 Teradyne, Inc. Vision system for an automated test system
US11754622B2 (en) 2020-10-22 2023-09-12 Teradyne, Inc. Thermal control system for an automated test system
US11754596B2 (en) * 2020-10-22 2023-09-12 Teradyne, Inc. Test site configuration in an automated test system
US11953519B2 (en) 2020-10-22 2024-04-09 Teradyne, Inc. Modular automated test system
US11899042B2 (en) 2020-10-22 2024-02-13 Teradyne, Inc. Automated test system
TWI825981B (zh) * 2022-09-07 2023-12-11 京元電子股份有限公司 測試系統及其測試裝置與測試方法
CN115794526B (zh) * 2023-01-05 2023-10-10 法特迪精密科技(苏州)有限公司 片上芯片高温老化测试插座控制系统及控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100427094B1 (ko) * 1998-11-25 2004-04-17 가부시키가이샤 어드밴티스트 전자부품 시험장치
JP2008267945A (ja) * 2007-04-19 2008-11-06 Mitsubishi Electric Corp 電子部品の温度試験装置
KR20130099826A (ko) * 2012-02-29 2013-09-06 (주)제이티 소자검사장치
KR20140000873U (ko) * 2012-07-27 2014-02-07 세메스 주식회사 반도체 소자들의 온도를 제어하기 위한 장치
KR101396539B1 (ko) * 2012-12-06 2014-05-21 피티씨 주식회사 모바일 메모리 모듈 온도 검사장치

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI236723B (en) * 2002-10-02 2005-07-21 Renesas Tech Corp Probe sheet, probe card, semiconductor inspection device, and manufacturing method for semiconductor device
KR100541546B1 (ko) * 2003-07-14 2006-01-10 삼성전자주식회사 반도체 디바이스 테스트장치
JP2007225526A (ja) * 2006-02-24 2007-09-06 Yamada Denon Kk 電気信号及び電源供給試験基板
JP5055097B2 (ja) * 2007-11-08 2012-10-24 日東電工株式会社 検査用粘着シート

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100427094B1 (ko) * 1998-11-25 2004-04-17 가부시키가이샤 어드밴티스트 전자부품 시험장치
JP2008267945A (ja) * 2007-04-19 2008-11-06 Mitsubishi Electric Corp 電子部品の温度試験装置
KR20130099826A (ko) * 2012-02-29 2013-09-06 (주)제이티 소자검사장치
KR20140000873U (ko) * 2012-07-27 2014-02-07 세메스 주식회사 반도체 소자들의 온도를 제어하기 위한 장치
KR101396539B1 (ko) * 2012-12-06 2014-05-21 피티씨 주식회사 모바일 메모리 모듈 온도 검사장치

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111886509A (zh) * 2018-03-06 2020-11-03 宰体有限公司 元件处理器
CN111868536A (zh) * 2018-03-11 2020-10-30 宰体有限公司 元件检查装置

Also Published As

Publication number Publication date
TWI614509B (zh) 2018-02-11
TW201734489A (zh) 2017-10-01
KR20170095655A (ko) 2017-08-23

Similar Documents

Publication Publication Date Title
WO2017142312A1 (ko) 소자검사장치 및 그에 사용되는 소자가압툴
WO2013129872A1 (ko) 소자검사장치
JP2821046B2 (ja) 半導体素子用特性検査装置
KR100827465B1 (ko) 기판 검사 장치 및 기판 검사 방법
WO2021071340A1 (ko) 가압모듈 및 그를 가지는 소자 핸들러
WO2015083858A1 (ko) Amoled 패널 검사를 위한 표시 패널 검사 장치 및 그 방법
KR20130083813A (ko) 핸들러 장치 및 시험 방법
WO2014148857A1 (ko) 기판과 기판 반송용 트레이 반송장치 및 반송방법
KR20130111915A (ko) 기판 제조 설비 및 기판 제조 방법
WO2018131921A1 (ko) 소자핸들러
JP2021141143A (ja) 検査装置
WO2017217771A1 (ko) 무선이동모듈, 그가 설치된 소자핸들러
WO2019004620A1 (ko) 본딩 헤드 및 이를 갖는 본딩 장치
KR101333435B1 (ko) 테스트 핸들러
WO2013042906A2 (ko) Fpc에 부재플레이트를 부착하기 위한 부재플레이트 부착장치 및 이에 이용되는 부재플레이트 분리 유닛과 프레스 유닛
WO2018190632A1 (ko) 소자 픽업 모듈 및 이를 구비하는 반도체 소자 테스트 장치
WO2018174355A1 (ko) 본딩 헤드 및 이를 갖는 본딩 장치
TW201812948A (zh) 電子零件搬送裝置及電子零件檢查裝置
WO2017052090A1 (ko) 소자핸들러
WO2023158270A1 (ko) 반도체 소자 테스트 장치
US11932498B2 (en) Temperature control and method for devices under test and image sensor-testing apparatus having the system
US11933839B2 (en) Inspection apparatus and inspection method
WO2021006627A1 (ko) 소자검사장치
US20070132471A1 (en) Method and apparatus for testing integrated circuits over a range of temperatures
WO2017023130A1 (ko) 프로브핀 본딩 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17753473

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17753473

Country of ref document: EP

Kind code of ref document: A1