WO2018174355A1 - 본딩 헤드 및 이를 갖는 본딩 장치 - Google Patents

본딩 헤드 및 이를 갖는 본딩 장치 Download PDF

Info

Publication number
WO2018174355A1
WO2018174355A1 PCT/KR2017/009849 KR2017009849W WO2018174355A1 WO 2018174355 A1 WO2018174355 A1 WO 2018174355A1 KR 2017009849 W KR2017009849 W KR 2017009849W WO 2018174355 A1 WO2018174355 A1 WO 2018174355A1
Authority
WO
WIPO (PCT)
Prior art keywords
block
heating
plate
vacuum
chip
Prior art date
Application number
PCT/KR2017/009849
Other languages
English (en)
French (fr)
Inventor
남성용
김민기
정인영
Original Assignee
주식회사 미코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 미코 filed Critical 주식회사 미코
Publication of WO2018174355A1 publication Critical patent/WO2018174355A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/52Mounting semiconductor bodies in containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67703Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations between different workstations
    • H01L21/67712Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations between different workstations the substrate being handled substantially vertically
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67703Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations between different workstations
    • H01L21/67721Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations between different workstations the substrates to be conveyed not being semiconductor wafers or large planar substrates, e.g. chips, lead frames
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/71Means for bonding not being attached to, or not being formed on, the surface to be connected
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies
    • H01L24/741Apparatus for manufacturing means for bonding, e.g. connectors

Definitions

  • the present invention relates to a bonding head and a bonding apparatus having the same, and more particularly, to a bonding head for bonding a chip on a wafer and a bonding apparatus having the same.
  • the stacked chip package is a semiconductor package in which chips are stacked on a package substrate, and thus may be highly integrated.
  • the stacked chip package is manufactured at the chip level or wafer level.
  • an operation for bonding a chip and a chip or a wafer and a wafer or a chip and a wafer by applying heat and pressure is performed.
  • An apparatus for performing the operation is called a bonding apparatus.
  • the bonding apparatus stacks chips on a wafer and thermocompresses the wafer and chips with a bonding head.
  • the bonding head bonds the chip to the wafer by heating and melting the bumps. It takes time for the bonding head to heat the bump, and since the bonding head does not have a separate cooling means, it takes much time for the heated bump to naturally cool down. Therefore, it takes a lot of time to bond the chip and wafer using the bonding head.
  • the bonding head takes a long time to heat and cool the bumps, the heated bumps may spread toward the adjacent bumps without maintaining a constant shape. If adjacent bumps interfere with each other, poor bonding between the chip and the wafer may occur.
  • the bonding head since the bonding head only performs the operation of simply bonding the stacked wafer and the chip, a separate chip transfer means for stacking the chip on the wafer is required. Therefore, the structure of the bonding apparatus can be complicated.
  • a bump can be rapidly heated and cooled to stably bond chips and wafers, reduce maintenance costs due to abrasion of a portion contacting the chip, and provide a bonding head capable of transferring the chips. to provide.
  • the present invention provides a bonding apparatus having the bonding head and capable of simplifying the structure.
  • the bonding head according to the present invention includes a base block and a heating element provided on the base block and generating heat by a power source applied from the outside, and extending to an upper surface to provide a vacuum force.
  • a heating block having a first vacuum line and a second vacuum line to be fixed by the vacuum force of the first vacuum line on the heating block, and connected to the second vacuum line to fix the chip with the vacuum force. It may include a suction plate having a hole.
  • the bonding head may be provided inside the base block, and may further include a cooling line for cooling the chip by cooling the heating block.
  • the suction plate may be replaceable according to the damage of the suction plate or the change of the chip size.
  • the base block is provided on the first block and the first block made of a metal material, to reduce the transfer of heat generated in the heating block to the first block It may include a second block made of a ceramic material having a lower thermal conductivity than the heating block.
  • the base block is provided between the first block and the second block, and is made of a ceramic material to reduce the transfer of heat of the second block to the first block It may further comprise a third block made.
  • the bonding apparatus includes a chuck structure and a base block for supporting a wafer, and a heating element provided on the base block and generating heat by a power source applied from the outside to heat the chip.
  • a heating block having a first vacuum line and a second vacuum line extending to an upper surface for providing and fixed by the vacuum force of the first vacuum line on the heating block, the first to vacuum the chip;
  • a suction plate having a vacuum hole connected to two vacuum lines, and disposed to be movable above the chuck structure such that the suction plate faces downward, and may be formed of a bonding head for heating the chip and bonding the wafer to the wafer.
  • the chuck structure includes a third vacuum line and a fourth vacuum, which includes a heating element that generates heat by a power source applied from the outside, and extends to an upper surface to provide a vacuum force.
  • a heating plate having a line and placed on the heating plate, supporting a wafer on an upper surface, transferring heat generated from the heating plate to the wafer so that the wafer is heated, and adsorbing the wafer with the vacuum force.
  • a fifth vacuum line connected to a third vacuum line and a vacuum groove provided on the lower surface to be connected to the fourth vacuum line to be vacuum-adsorbed to the heating plate, and defined by the upper surface of the heating plate to form a space; And having a chuck plate.
  • the alignment pin is provided on any one of the upper surface of the heating plate and the lower surface of the chuck plate in the chuck structure, the other side to accommodate the alignment pin to the heating
  • a receiving groove for aligning the plate and the chuck plate may be provided.
  • the chuck structure is caught in the groove formed along the upper edge of the heating plate and the guide ring for guiding the circumference of the heating plate and the upper surface of the chuck plate while covering the edge It may be fixed to the guide ring, and may further include a clamp for fixing the chuck plate in close contact with the heating plate.
  • the clamp may be placed in a groove formed along the upper edge of the chuck plate such that the upper surface of the clamp and the upper surface of the chuck plate are at the same height.
  • the guide ring and the clamp may be made of a material having a lower thermal conductivity than the heating plate and the chuck plate to prevent heat loss through the side of the heating plate and the chuck plate. .
  • the bonding head according to the present invention fixes the suction plate by using a vacuum force
  • the suction plate can be easily replaced by providing or releasing the vacuum force. Therefore, the bonding head may respond by replacing only the suction plate when the suction plate is damaged or the size of the chip fixed to the suction plate is changed. Therefore, maintenance costs of the bonding head can be reduced.
  • the bonding head bonds the chip to the wafer by heating the chip in a state in which the chip is in close contact with the wafer, melting the bumps, and then cooling the chip again. Since the bonding head heats and cools the chip rapidly, a process of bonding the chip to the wafer can be quickly performed. Therefore, the efficiency of the bonding process can be improved.
  • the bonding head heats and cools the chip rapidly, the heated bumps can maintain a constant shape and do not interfere with adjacent bumps. Therefore, it is possible to form a solder of excellent quality and good shape between the wafer and the chip. Therefore, the wafer and the chip can be bonded stably.
  • the bonding head may stack the chip on the wafer. Therefore, no separate chip transfer means is necessary. Therefore, the structure of the bonding apparatus including the bonding head can be simplified.
  • FIG. 1 is a cross-sectional view illustrating a bonding head according to an embodiment of the present invention.
  • FIG. 2 is a schematic configuration diagram illustrating a bonding apparatus according to an embodiment of the present invention.
  • FIG. 3 is a plan view illustrating the chuck structure shown in FIG. 2.
  • FIG. 4 is a bottom view for explaining the chuck plate shown in FIG. 2.
  • FIG. 5 is an enlarged cross-sectional view illustrating an enlarged portion A shown in FIG. 2.
  • the bonding head according to the present invention includes a base block and a heating element provided on the base block and generating heat by a power source applied from the outside, and extending to an upper surface to provide a vacuum force.
  • a heating block having a first vacuum line and a second vacuum line to be fixed by the vacuum force of the first vacuum line on the heating block, and connected to the second vacuum line to fix the chip with the vacuum force. It may include a suction plate having a hole.
  • first and second may be used to describe various components, but the components should not be limited by the terms. The terms are used only for the purpose of distinguishing one component from another.
  • the first component may be referred to as the second component, and similarly, the second component may also be referred to as the first component.
  • FIG. 1 is a cross-sectional view illustrating a bonding head according to an embodiment of the present invention.
  • the bonding head 100 transfers the chip 10 to a wafer (not shown) and bonds the wafer to the wafer.
  • the base block 110, the heating block 120, and the adsorption plate 130 may be bonded to the wafer. Include. Although not shown, the bonding head 100 may be provided to enable horizontal movement, vertical movement, rotation, inversion, and the like for the transfer of the chip 10.
  • the base block 110 includes a first block 112 and a second block 114.
  • the first block 112 is made of a metal material.
  • the metal material may be stainless steel material.
  • the second block 114 is provided on the first block 112.
  • the second block 114 may be made of a ceramic material having a lower thermal conductivity than the heating block 120. Examples of the ceramic material may include aluminum oxide (Al 2 O 3). Since the thermal conductivity of the second block 114 is lower than that of the heating block 120, the second block 114 may reduce the transfer of heat generated in the heating block 120 to the first block 112. Can be.
  • the base block 110 further includes a third block 116.
  • the third block 116 is provided between the first block 112 and the second block 114.
  • the third block 116 acts as a buffer block to reduce the transfer of heat from the second block 114 to the first block 112.
  • the third block 116 may be made of a ceramic material, and an example of the ceramic material may be aluminum oxide.
  • the heating block 120 is provided on the base block 110, specifically, the second block 114.
  • the heating block 120 houses the heating element 122.
  • the heating element 122 may be made of a metal material.
  • the heating element 122 generates heat by a power source applied from the outside, and heats the chip 10 adsorbed to the adsorption plate 130 using the heat. For example, the heating element 122 may instantly heat the chip 10 to about 450 ° C. to melt the bumps of the chip 10.
  • the heating block 120 may be made of a ceramic material having excellent insulation and thermal conductivity.
  • the heating block 120 may be made of aluminum nitride (AlN).
  • AlN aluminum nitride
  • the thermal conductivity may be about 170 W / m ⁇ k or more.
  • the chip 10 may be quickly heated using heat generated by the heating element 122.
  • the heating block 120 has a first vacuum line 124 and a second vacuum line 126 extending to the top surface to provide a vacuum force.
  • the first vacuum line 124 and the second vacuum line 126 are not connected to each other, and the vacuum force is provided respectively.
  • the first vacuum line 124 penetrates up and down the edge portion of the heating block 120
  • the second vacuum line 126 penetrates up and down the center portion of the heating block 120.
  • the suction plate 130 is provided on the heating block 120.
  • the suction plate 130 is fixed to the upper surface of the heating block 120 by the vacuum force of the first vacuum line 124.
  • the suction plate 130 may be replaced by providing a vacuum force to the first vacuum line 124 or releasing the vacuum force. Therefore, when the adsorption plate 130 is damaged or the size of the chip 10 is changed, only the adsorption plate 130 may be selectively replaced.
  • the suction plate 130 has a vacuum hole 132.
  • the vacuum hole 132 is connected to the second vacuum line 126 of the heating block 120. Therefore, the chip 10 placed on the suction plate 130 may be fixed by the vacuum force provided through the second vacuum line 126.
  • the bonding head 100 may move to stack the chip 10 on the wafer.
  • the chip 10 may be pressed toward the wafer by the adsorption plate 130.
  • the bonding head 100 further includes a cooling line 140.
  • the cooling line 140 cools the heating block 120 to cool the chip 10.
  • the chip 10 may be cooled to about 100 ° C. by the cooling line 140.
  • the cooling line 140 includes a first cooling line 142 and a second cooling line 144.
  • the first cooling line 142 extends from the base block 110 to the inside of the second block 114 and cools the heating block 120 through heat conduction.
  • the second cooling line 144 is provided inside the first block 112 in the base block 110 and cools the first block 112. As the first block 112 is cooled, the third block 116, the second block 114, and the heating block 120 may be cooled through heat conduction. Accordingly, the second cooling line 144 may auxiliaryly cool the heating block 120.
  • the heating block 120 is mainly cooled using the first cooling line 142, and auxiliary cooling is performed using the second cooling line 144.
  • the cooling block 140 may be used to quickly cool the heating block 120.
  • the chip 10 fixed to the adsorption plate 130 may also be cooled quickly.
  • the bonding head 100 may further include a temperature sensor.
  • the temperature sensor is provided inside the heating block 120 and senses the temperature of the heating block 120. According to the sensing result of the temperature sensor, it is possible to control the temperature and circulation of the refrigerant on and off of the power provided to the heating element 122 and the cooling line 140.
  • the bonding head 100 heats the chip 10 with the heating block 120 in the state in which the chip 10 is brought into close contact with the wafer to melt the bumps of the chip 10 and then uses the cooling line 140.
  • the chip 10 is bonded to the wafer by cooling the chip 10. Since the bonding head 100 rapidly heats and rapidly cools the chip 10, it is possible to form solder of excellent quality and good shape between the wafer and the chip 10.
  • the bonding head 100 may rapidly perform heating and cooling of the chip 10, the bonding head 100 may improve the efficiency of bonding the chip 10 to the wafer.
  • FIG. 2 is a schematic diagram illustrating a bonding apparatus according to an embodiment of the present invention
  • FIG. 3 is a plan view illustrating the chuck structure shown in FIG. 2
  • FIG. 4 is a chuck plate shown in FIG. 2.
  • 5 is an enlarged cross-sectional view illustrating an enlarged portion A shown in FIG. 2.
  • the bonding apparatus 300 includes a bonding head 100 and a chuck structure 200.
  • the bonding head 100 transfers the chip 10 on the chuck structure 200 and bonds the wafer 10 to the wafer 20.
  • the bonding head 100 includes a base block 110, a heating block 120, and a suction plate 130. Although not shown, the bonding head 100 may be provided to enable horizontal movement, vertical movement, rotation, inversion, and the like for the transfer of the chip 10.
  • bonding head 100 A detailed description of the bonding head 100 is omitted since it is substantially the same as the bonding head 100 shown in FIG. 1.
  • the bonding head 100 may be disposed such that the adsorption plate 130 faces downward for bonding the chip 10 and the wafer 20.
  • the chuck structure 200 supports the wafer 20.
  • a circuit pattern may be formed on the wafer 20.
  • the chuck structure 200 includes a heating plate 210, a chuck plate 220, a guide ring 230, a clamp 240, a power cable 250, and a temperature sensor 260.
  • the heating plate 210 has a substantially disc shape and includes a heat generator 212 that generates heat by a power source applied from the outside.
  • the heating element 212 may be provided to form a predetermined pattern on the inner surface of the heating plate 210.
  • Examples of the heating element 212 include an electrode layer, a heating coil, and the like.
  • the heating plate 210 has a third vacuum line 214 and a fourth vacuum line 215 extending to the top surface.
  • the third vacuum line 214 and the fourth vacuum line 215 may extend from the bottom surface or the side surface of the heating plate 210 to the top surface, respectively.
  • the third vacuum line 214 and the fourth vacuum line 215 are not connected to each other.
  • the third vacuum line 214 is connected with a vacuum pump (not shown) and provides a vacuum force for adsorbing the wafer 20.
  • the fourth vacuum line 215 is connected to a vacuum pump (not shown) and provides a vacuum force for adsorbing the chuck plate 220.
  • the heating plate 210 has an alignment pin 216 on the top surface.
  • the alignment pin 216 is for aligning the chuck plate 220 of the heating plate 210, and a plurality of alignment pins 216 may be provided. Alignment pins 216 may be disposed at the top edge of the heating plate 210.
  • the heating plate 210 also has a groove 218 formed along the top surface edge.
  • the groove 218 can be used to secure the guide ring 230.
  • the chuck plate 220 has a substantially disc shape and is placed on the heating plate 210.
  • the chuck plate 220 supports the wafer 20 on the top surface.
  • the chuck plate 220 has a fifth vacuum line 222 connected with a third vacuum line 214 to adsorb the wafer 20.
  • the fifth vacuum line 222 has a vacuum groove 222a and a plurality of vacuum holes 222b.
  • the vacuum groove 222a is formed in the lower surface of the chuck plate 220.
  • the vacuum groove 222a may have a shape in which grooves having concentric circles and grooves extending radially are combined with respect to the center of the lower surface of the chuck plate 220, or may have a circular groove shape. At this time, the vacuum groove 222a does not extend to the bottom edge of the chuck plate 220 to prevent leakage of the vacuum force.
  • the chuck plate 220 is placed on the heating plate 210 while the vacuum groove 222a is defined by the upper surface of the heating plate 210 to form a space.
  • the vacuum groove 222a is connected to the third vacuum line 214.
  • the vacuum holes 222b penetrate the chuck plate 220 and extend from the lower surface on which the vacuum groove 222a is formed to the upper surface of the chuck plate 220.
  • the vacuum holes 222b are arranged to be spaced apart from each other.
  • the vacuum holes 222b may be arranged concentrically or radially.
  • the fifth vacuum line 222 may be connected to the third vacuum line 214 and may adsorb the wafer 20 by the vacuum force provided through the third vacuum line 214.
  • the chuck plate 220 has a vacuum groove 223 provided to be connected to the fourth vacuum line 215 on the lower surface to be vacuum-adsorbed to the heating plate 210.
  • the vacuum groove 223 is formed in the lower surface of the chuck plate 220.
  • the vacuum groove 223 may have a shape in which grooves having concentric shapes and radially extending grooves are combined with respect to the center of the lower surface of the chuck plate 220, or may have a circular groove shape. At this time, the vacuum groove 223 does not extend to the bottom edge of the chuck plate 220 to prevent leakage of the vacuum force.
  • the vacuum groove 223 may be formed so as not to be connected to the fifth vacuum line 222.
  • the chuck plate 220 is placed on the heating plate 210 while the vacuum groove 223 is defined by the upper surface of the heating plate 210 to form a space.
  • the vacuum groove 223 is connected to the fourth vacuum line 215.
  • the vacuum groove 223 is connected to the fourth vacuum line 215, and the chuck plate 220 may be tightly fixed onto the heating plate 210 by the vacuum force provided through the fourth vacuum line 215. . Therefore, the warp or bending of the chuck plate 220 may be minimized to smoothly support the wafer 20 on the chuck plate 220.
  • the heating plate 210 and the chuck plate 220 may be kept in close contact by the vacuum force provided through the fourth vacuum line 215 and the vacuum groove 223. Therefore, a separate fastening member for fastening the heating plate 210 and the chuck plate 220 is unnecessary.
  • the vacuum force provided through the third vacuum line 214 and the fourth vacuum line 215 may be released to replace and replace the heating plate 210 and the chuck plate 220. Therefore, maintenance of the chuck structure 200 can be performed quickly.
  • the upper surface of the heating plate 210 and the lower surface of the chuck plate 220 each have a flatness of greater than about 10 ⁇ m, a minute gap exists between the heating plate 210 and the chuck plate 220. Can be. Therefore, the vacuum force may leak between the heating plate 210 and the chuck plate 220.
  • the upper surface of the heating plate 210 and the lower surface of the chuck plate 220 each have a flatness of about 10 ⁇ m or less, preferably 7 ⁇ m or less. In this case, the heating plate 210 and the chuck plate 220 may be in close contact, and the vacuum force may be prevented from leaking between the heating plate 210 and the chuck plate 220.
  • the chuck plate 220 transfers heat generated from the heating plate 210 to the wafer 20.
  • the wafer 20 may be maintained at a temperature of about 140 to 150 ° C. to facilitate bonding between the chip 10 and the wafer 20.
  • the heating plate 210 and the chuck plate 220 may each be made of a ceramic material.
  • the ceramic material may include aluminum nitride (AlN). Since the aluminum nitride has a high thermal conductivity, heat generated from the heating element 212 may be uniformly transmitted to the heating plate 210 and the chuck plate 220. In addition, the temperature distribution of the chuck plate 220 may be uniform, and the wafer 20 may be uniformly heated.
  • the chuck plate 220 has a receiving groove 224 for receiving the alignment pin 216.
  • the receiving groove 224 may be formed at a position corresponding to the alignment pin 216 of the heating plate 210.
  • the receiving groove 224 may also be disposed at the edge of the chuck plate 220.
  • the alignment pin 216 of the heating plate 210 may be inserted into the receiving groove 224 of the chuck plate 220.
  • the heating plate 210 and the chuck plate 220 can be accurately aligned.
  • the alignment pin 216 is provided in the heating plate 210 and the receiving groove 224 is formed in the chuck plate 220, the receiving groove is formed in the heating plate 210, and the chuck plate ( The alignment pin 220 may be provided.
  • the chuck plate 220 also has a groove 226 formed along the top surface edge.
  • the groove 226 may be used to seat the clamp 240.
  • the guide ring 230 is caught in the groove 218 formed along the upper edge of the heating plate 210 and guides the circumference of the heating plate 210.
  • the guide ring 230 has a first latching jaw 232, the guide ring 230 is mounted to the heating plate 210 as the first locking jaw 232 is caught in the groove 218.
  • the upper surface of the guide ring 230 and the upper surface of the heating plate 210 may be located at the same height.
  • the chuck plate 220 may be easily mounted on the upper surface of the heating plate 210 in a state in which the guide ring 230 is mounted on the heating plate 210.
  • the guide ring 230 when the upper surface of the guide ring 230 is positioned higher than the upper surface of the heating plate 210, when the chuck plate 220 is seated on the upper surface of the heating plate 210, the guide ring 230 to the alignment reference It is available.
  • the clamp 240 is fixed to the guide ring while covering the upper edge of the chuck plate 220.
  • the clamp 240 may be fixed to the guide ring 230 by the fastening screw 242.
  • a plurality of clamps 240 may be provided to partially cover the upper edge of the chuck plate 220.
  • the clamp 240 may have a substantially ring shape and may entirely cover the upper edge of the chuck plate 220.
  • the clamp 240 Since the clamp 240 is fixed to the guide ring 230 while covering the upper edge of the chuck plate 220, the clamp 240 may press the chuck plate 220 downward. Accordingly, the clamp 240 may closely contact the chuck plate 220 to the heating plate 210.
  • the clamp 240 has a second locking jaw 244, and the second locking jaw 244 may be placed in the groove 226 of the chuck plate 220. Therefore, the upper surface of the clamp 240 and the upper surface of the chuck plate 220 may be positioned at the same height. Therefore, the wafer 20 can be seated when the wafer 20 is stably transferred to the upper surface of the chuck plate 220 without the interference of the clamp 240.
  • the guide ring 230 and the clamp 240 may each be made of a ceramic material.
  • the guide ring 230 and the clamp 240 may be a ceramic material having a lower thermal conductivity than the heating plate 210 and the chuck plate 220.
  • the guide ring 230 and the clamp 240 may be made of aluminum oxide (Al 2 O 3) material. Since the aluminum oxide has a lower thermal conductivity than the aluminum nitride, the guide ring 230 and the clamp 240 may prevent heat loss through the side surfaces of the heating plate 210 and the chuck plate 220.
  • the power cable 250 extends to the inside of the heating plate 210 and is connected to the heating element 212, and the heating element 212 provides power for generating heat.
  • the temperature sensor 260 extends from the outside to the inside of the heating plate 210 and measures the temperature of the heating plate 210 heated by the heating element 212.
  • the temperature of the heating element 212 may be controlled using the temperature measured by the temperature sensor 260.
  • the temperature of the heating plate 210 can be adjusted by controlling the temperature of the heating element 212.
  • thermocouple An example of the temperature sensor 260 may be a thermocouple.
  • the chuck structure 200 may closely contact the heating plate 210 and the chuck plate 220 with a vacuum force for adsorbing the wafer 20. Therefore, a separate fastening member for fastening the heating plate 210 and the chuck plate 220 is unnecessary.
  • the bonding apparatus 300 transfers the chip 10 to the bonding head 100 in a state where the wafer 20 is fixed by using the chuck structure 200 and heated to a predetermined temperature, and then closely adhered to the wafer 20.
  • the chip 10 is bonded to the wafer 20 by heating the chip 10 with the bonding head 100 to melt the bumps of the chip 10 and then cooling the chip 10. Therefore, it is possible to form a solder of excellent quality and good shape between the chip 10 and the wafer 20.
  • the heating and cooling of the chip 10 can be performed quickly, the efficiency of the process of bonding the chip 10 using the bonding apparatus 300 to the wafer 20 can be improved.
  • the bonding head 100 may transfer the chip 10 to be stacked on the wafer. Therefore, since the bonding apparatus 300 does not need to include a separate chip transfer means, the structure of the bonding apparatus 300 can be simplified.
  • the bonding head according to the present invention can reduce maintenance costs and can bond wafers and chips quickly and stably. Therefore, the efficiency and productivity of the bonding process using the bonding head can be improved.
  • the bonding apparatus according to the present invention can be in close contact with the heating plate and the chuck plate with a vacuum force in the chuck structure. Since only the vacuum force is released to repair or replace the heating plate and the chuck plate, the maintenance of the chuck structure can be performed quickly.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Wire Bonding (AREA)

Abstract

본딩 장치의 본딩 헤드는 베이스 블록과, 상기 베이스 블록 상에 구비되고, 외부로부터 인가되는 전원에 의해 열을 발생하여 칩을 가열하기 위한 발열체를 내장하며, 진공력을 제공하기 위해 상부면까지 연장하는 제1 진공 라인 및 제2 진공 라인을 갖는 가열 블록 및 상기 가열 블록 상에 상기 제1 진공 라인의 진공력에 의해 고정되며, 칩을 진공력으로 고정하기 위해 상기 제2 진공 라인과 연결되는 진공홀을 갖는 흡착판을 포함할 수 있다.

Description

본딩 헤드 및 이를 갖는 본딩 장치
본 발명은 본딩 헤드 및 이를 갖는 본딩 장치에 관한 것으로, 보다 상세하게는 칩을 웨이퍼 상에 본딩하기 위한 본딩 헤드 및 이를 갖는 본딩 장치에 관한 것이다.
최근, 반도체 패키지를 비롯한 전자 부품의 소형화 요구에 대응하기 위해 복수의 전자 부품을 적층시켜 적층 칩 패키지를 형성하는 기술이 개발되었다.
상기 적층 칩 패키지는 패키지 기판 위에 칩들이 적층된 반도체 패키지로서, 고집적화를 이룰 수 있다. 상기 적층 칩 패키지는 칩 레벨(chip level) 또는 웨이퍼 레벨(wafer level)에서 제조가 이루어진다.
상기 칩 레벨 또는 웨이퍼 레벨에서 적층 칩 패키지를 제조하기 위하여 칩과 칩 또는 웨이퍼와 웨이퍼 또는 칩과 웨이퍼에 열과 압력을 가하여 본딩하기 위한 작업이 수행되는데, 이러한 작업을 수행하는 장치를 본딩 장치라 한다. 상기 본딩 장치는 웨이퍼 상에 칩을 적층하여 상기 웨이퍼와 칩을 본딩 헤드로 열압착한다.
상기 본딩 헤드는 범프를 가열하여 녹임으로써 상기 칩을 상기 웨이퍼에 본딩한다. 상기 본딩 헤드가 상기 범프를 가열하는데 시간이 소요되고, 상기 본딩 헤드가 별도의 냉각 수단이 없으므로, 상기 가열된 범프가 자연 냉각되는데 많은 시간이 소요된다. 그러므로, 상기 본딩 헤드를 이용하여 상기 칩과 웨이퍼를 본딩하는데 많은 시간이 소요된다.
또한, 상기 본딩 헤드가 상기 범프를 가열 및 냉각하는데 많은 시간이 소요되므로, 가열된 범프가 일정한 형상을 유지하지 못하고 인접하는 범프를 향해 퍼질 수 있다. 인접하는 범프들이 서로 간섭되는 경우, 상기 칩과 웨이퍼의 본딩 불량이 발생할 수 있다.
그리고, 상기 본딩 헤드를 이용하여 상기 본딩 공정을 반복적으로 수행하는 경우, 상기 본딩 헤드에서 상기 칩과 접촉하는 부위가 마모될 수 있다. 상기 부위가 마모되는 경우, 상기 본딩 헤드 전체를 교체해야 하므로, 상기 본딩 헤드의 유지 보수 비용이 증가할 수 있다.
한편, 상기 본딩 헤드는 적층된 웨이퍼와 칩을 단순히 본딩하는 작업만을 수행하므로, 상기 칩을 상기 웨이퍼 상에 적층시키기 위한 별도의 칩 이송 수단이 요구된다. 그러므로, 상기 본딩 장치의 구조가 복잡해질 수 있다.
본 발명은 범프를 신속하여 가열 및 냉각하여 칩과 웨이퍼를 안정적으로 본딩할 수 있고, 상기 칩과 접촉하는 부위의 마모로 인한 유지 보수 비용을 줄일 수 있으며, 상기 칩을 이송할 수 있는 본딩 헤드를 제공한다.
본 발명은 상기 본딩 헤드를 가지며 구조를 단순화할 수 있는 본딩 장치를 제공한다.
본 발명에 따른 본딩 헤드는 베이스 블록과, 상기 베이스 블록 상에 구비되고, 외부로부터 인가되는 전원에 의해 열을 발생하여 칩을 가열하기 위한 발열체를 내장하며, 진공력을 제공하기 위해 상부면까지 연장하는 제1 진공 라인 및 제2 진공 라인을 갖는 가열 블록 및 상기 가열 블록 상에 상기 제1 진공 라인의 진공력에 의해 고정되며, 칩을 진공력으로 고정하기 위해 상기 제2 진공 라인과 연결되는 진공홀을 갖는 흡착판을 포함할 수 있다.
본 발명의 일 실시예들에 따르면, 상기 본딩 헤드는 상기 베이스 블록의 내부에 구비되며, 상기 가열 블록을 냉각하여 상기 칩을 냉각시키기 위한 냉각 라인을 더 포함할 수 있다.
본 발명의 일 실시예들에 따르면, 상기 흡착판의 손상이나 상기 칩 사이즈의 변경에 따라 상기 흡착판은 교체가능할 수 있다.
본 발명의 일 실시예들에 따르면, 상기 베이스 블록은, 금속 재질로 이루어지는 제1 블록 및 상기 제1 블록 상에 구비되며, 가열 블록에서 발생한 열이 상기 제1 블록으로 전달되는 것을 감소시키기 위해 상기 가열 블록보다 낮은 열전도성을 갖는 세라믹 재질로 이루어지는 제2 블록을 포함할 수 있다.
본 발명의 일 실시예들에 따르면, 상기 베이스 블록은, 상기 제1 블록과 상기 제2 블록 사이에 구비되며, 상기 제2 블록의 열이 상기 제1 블록으로 전달되는 것을 감소시키기 위해 세라믹 재질로 이루어지는 제3 블록을 더 포함할 수 있다.
본 발명에 따른 본딩 장치는 웨이퍼를 지지하는 척 구조물 및 베이스 블록과, 상기 베이스 블록 상에 구비되고, 외부로부터 인가되는 전원에 의해 열을 발생하여 칩을 가열하기 위한 발열체를 내장하며, 진공력을 제공하기 위해 상부면까지 연장하는 제1 진공 라인 및 제2 진공 라인을 갖는 가열 블록 및 상기 가열 블록 상에 상기 제1 진공 라인의 진공력에 의해 고정되며, 칩을 진공력으로 고정하기 위해 상기 제2 진공 라인과 연결되는 진공홀을 갖는 흡착판을 포함하고, 상기 흡착판이 하방을 향하도록 상기 척 구조물의 상방에 이동 가능하도록 배치되며, 상기 칩을 가열하여 상기 웨이퍼에 본딩하는 본딩 헤드로 이루어질 수 있다.
본 발명의 일 실시예들에 따르면, 상기 척 구조물은, 외부로부터 인가되는 전원에 의해 열을 발생하는 발열체를 내장하며, 진공력을 제공하기 위해 상부면까지 연장하는 제3 진공 라인 및 제4 진공 라인을 갖는 가열 플레이트 및 상기 가열 플레이트 상에 놓여지며, 상면에 웨이퍼를 지지하며, 상기 웨이퍼가 가열되도록 상기 가열 플레이트에서 발생한 열을 상기 웨이퍼로 전달하고, 상기 진공력으로 상기 웨이퍼를 흡착하기 위해 상기 제3 진공 라인과 연결되는 제5 진공 라인 및 상기 가열 플레이트에 진공 흡착되도록 하부면에 상기 제4 진공 라인과 연결되도록 구비되며, 상기 가열 플레이트의 상부면에 의해 한정되어 공간을 형성하는 진공 홈을 갖는 척 플레이트를 포함할 수 있다.
본 발명의 일 실시예들에 따르면, 상기 척 구조물에서 상기 가열 플레이트의 상부면과 상기 척 플레이트의 하부면 중 어느 한 면에는 정렬 핀이 구비되고, 나머지 한 면에는 상기 정렬 핀을 수용하여 상기 가열 플레이트와 상기 척 플레이트를 정렬하기 위한 수용홈이 구비될 수 있다.
본 발명의 일 실시예들에 따르면, 상기 척 구조물은, 상기 가열 플레이트의 상면 가장자리를 따라 형성된 홈에 걸리며 상기 가열 플레이트의 둘레를 가이드하는 가이드 링 및 상기 척 플레이트의 상부면 가장자리를 덮은 상태로 상기 가이드 링에 고정되며, 상기 척 플레이트를 상기 가열 플레이트에 밀착시키는 고정시키는 클램프를 더 포함할 수 있다.
본 발명의 일 실시예들에 따르면, 상기 클램프의 상면과 상기 척 플레이트의 상면이 동일한 높이에 위치하도록 상기 클램프는 상기 척 플레이트의 상면 가장자리를 따라 형성된 홈에 놓여질 수 있다.
본 발명의 일 실시예들에 따르면, 상기 가열 플레이트 및 상기 척 플레이트의 측면을 통한 열손실을 방지하기 위해 상기 가이드 링 및 상기 클램프는 상기 가열 플레이트 및 상기 척 플레이트보다 열전도율이 낮은 재질로 이루어질 수 있다.
본 발명에 따른 본딩 헤드는 진공력을 이용하여 흡착판을 고정하므로, 상기 진공력을 제공하거나 해제함으로써 상기 흡착판을 용이하게 교체할 수 있다. 따라서, 상기 본딩 헤드는 상기 흡착판이 손상되거나 상기 흡착판에 고정되는 칩의 사이즈가 변경되는 경우, 상기 흡착판만을 교체하여 대응할 수 있다. 그러므로, 상기 본딩 헤드의 유지 보수 비용을 절감할 수 있다.
또한, 상기 본딩 헤드는 상기 칩을 웨이퍼에 밀착시킨 상태에서 상기 칩을 가열하여 범프를 녹인 후 다시 냉각시킴으로써 상기 칩을 상기 웨이퍼에 본딩한다. 상기 본딩 헤드가 상기 칩을 급속으로 가열하고 냉각하므로, 상기 칩을 상기 웨이퍼에 본딩하는 공정을 신속하게 수행할 수 있다. 따라서, 상기 본딩 공정의 효율을 향상시킬 수 있다.
그리고, 상기 본딩 헤드가 상기 칩을 급속으로 가열하고 냉각하므로, 가열된 범프가 일정한 형상을 유지할 수 있고 인접하는 범프와 간섭되지 않는다. 따라서, 상기 웨이퍼와 상기 칩 사이에 우수한 품질과 양호한 형상의 솔더를 형성할 수 있다. 그러므로, 상기 웨이퍼와 상기 칩을 안정적으로 본딩할 수 있다.
상기 본딩 헤드는 상기 칩을 상기 웨이퍼 상에 적층시킬 수 있다. 따라서, 별도의 칩 이송 수단이 불필요하다. 그러므로, 상기 본딩 헤드를 포함하는 본딩 장치의 구조를 단순화할 수 있다.
도 1은 본 발명의 일 실시예에 따른 본딩 헤드를 설명하기 위한 단면도이다.
도 2는 본 발명의 일 실시예에 따른 본딩 장치를 설명하기 위한 개략적인 구성도이다.
도 3은 도 2에 도시된 척 구조물을 설명하기 위한 평면도이다.
도 4는 도 2에 도시된 척 플레이트를 설명하기 위한 저면도이다.
도 5는 도 2에 도시된 A 부분을 확대한 확대 단면도이다.
본 발명에 따른 본딩 헤드는 베이스 블록과, 상기 베이스 블록 상에 구비되고, 외부로부터 인가되는 전원에 의해 열을 발생하여 칩을 가열하기 위한 발열체를 내장하며, 진공력을 제공하기 위해 상부면까지 연장하는 제1 진공 라인 및 제2 진공 라인을 갖는 가열 블록 및 상기 가열 블록 상에 상기 제1 진공 라인의 진공력에 의해 고정되며, 칩을 진공력으로 고정하기 위해 상기 제2 진공 라인과 연결되는 진공홀을 갖는 흡착판을 포함할 수 있다.
이하, 첨부한 도면을 참조하여 본 발명의 실시예에 따른 본딩 헤드 및 이를 갖는 본딩 장치에 대해 상세히 설명한다. 본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는 바, 특정 실시 예들을 도면에 예시하고 본문에 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 각 도면을 설명하면서 유사한 참조부호를 유사한 구성요소에 대해 사용하였다. 첨부된 도면에 있어서, 구조물들의 치수는 본 발명의 명확성을 기하기 위하여 실제보다 확대하여 도시한 것이다.
제1, 제2 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제1 구성요소는 제2 구성요소로 명명될 수 있고, 유사하게 제2 구성요소도 제1 구성요소로 명명될 수 있다.
본 출원에서 사용한 용어는 단지 특정한 실시 예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서 상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥 상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.
도 1은 본 발명의 일 실시예에 따른 본딩 헤드를 설명하기 위한 단면도이다.
도 1을 참조하면, 본딩 헤드(100)는 칩(10)을 웨이퍼(미도시)로 이송하여 상기 웨이퍼에 본딩하기 위한 것으로, 베이스 블록(110), 가열 블록(120) 및 흡착판(130)을 포함한다. 도시되지는 않았지만, 본딩 헤드(100)는 칩(10)의 이송을 위해 수평 이동, 상하 이동, 회전, 반전 등이 가능하도록 구비될 수 있다.
베이스 블록(110)은 제1 블록(112) 및 제2 블록(114)을 포함한다.
제1 블록(112)은 금속 재질로 이루어진다. 상기 금속 재질의 예로는 스테인리스 스틸 재질일 수 있다.
제2 블록(114)은 제1 블록(112) 상에 구비된다. 제2 블록(114)은 가열 블록(120)보다 낮은 열전도성을 갖는 세라믹 재질로 이루어질 수 있다. 상기 세라믹 재질의 예로는 산화알루미늄(Al2O3)을 들 수 있다. 제2 블록(114)의 열전도성이 가열 블록(120)의 열전도성보다 낮으므로, 제2 블록(114)은 가열 블록(120)에서 발생한 열이 제1 블록(112)으로 전달되는 것을 감소시킬 수 있다.
또한, 베이스 블록(110)은 제3 블록(116)을 더 포함한다.
제3 블록(116)은 제1 블록(112)과 제2 블록(114) 사이에 구비된다. 제3 블록(116)은 버퍼 블록으로 작용하여 제2 블록(114)의 열이 제1 블록(112)으로 전달되는 것을 감소시킨다. 제3 블록(116)은 세라믹 재질로 이루어질 수 있으며, 상기 세라믹 재질의 예로는 산화알루미늄을 들 수 있다.
가열 블록(120)은 베이스 블록(110), 구체적으로 제2 블록(114) 상에 구비된다. 가열 블록(120)은 발열체(122)를 내장한다. 발열체(122)는 금속 재질로 이루어질 수 있다. 발열체(122)는 외부로부터 인가되는 전원에 의해 열을 발생하고, 상기 열을 이용하여 흡착판(130)에 흡착되는 칩(10)을 가열한다. 예를 들면, 칩(10)의 범프를 녹이기 위해 발열체(122)는 칩(10)을 순간적으로 약 450 ℃까지 가열할 수 있다.
가열 블록(120)은 절연성과 열전도성이 우수한 세라믹 재질로 이루어질 수 있다. 예를 들면, 가열 블록(120)은 질화알루미늄(AlN) 재질일 수 있다. 이때, 상기 열전도성은 약 170 W/m·k 이상일 수 있다.
가열 블록(120)의 열전도성이 우수하므로, 발열체(122)에서 발생된 열을 이용하여 칩(10)을 신속하게 가열시킬 수 있다.
가열 블록(120)은 진공력을 제공하기 위해 상부면까지 연장하는 제1 진공 라인(124) 및 제2 진공 라인(126)을 갖는다.
제1 진공 라인(124)과 제2 진공 라인(126)은 서로 연결되지 않으며, 상기 진공력이 각각 제공된다. 예를 들면, 제1 진공 라인(124)은 가열 블록(120)의 가장자리 부위의 상하를 관통하고, 제2 진공 라인(126)은 가열 블록(120)의 중앙 부위의 상하를 관통한다.
흡착판(130)은 가열 블록(120) 상에 구비된다. 흡착판(130)은 제1 진공 라인(124)의 진공력에 의해 가열 블록(120)의 상부면에 고정된다. 제1 진공 라인(124)으로 진공력을 제공하거나 상기 진공력을 해제함으로써 흡착판(130)을 교체할 수 있다. 따라서, 흡착판(130)이 손상되거나 칩(10)의 사이즈가 변경되는 경우, 흡착판(130)만을 선택적으로 교체할 수 있다.
또한, 흡착판(130)은 진공홀(132)을 갖는다. 진공홀(132)은 가열 블록(120)의 제2 진공 라인(126)과 연결된다. 따라서, 제2 진공 라인(126)을 통해 제공되는 진공력으로 흡착판(130) 상에 놓여지는 칩(10)을 고정할 수 있다.
흡착판(130)으로 칩(10)을 고정한 상태에서 본딩 헤드(100)가 이동하여 칩(10)을 상기 웨이퍼 상에 적층할 수 있다. 또한, 흡착판(130)으로 상기 웨이퍼를 향해 칩(10)을 가압할 수 있다.
본딩 헤드(100)는 냉각 라인(140)을 더 포함한다.
냉각 라인(140)은 가열 블록(120)을 냉각하여 칩(10)을 냉각시킨다. 이때, 냉각 라인(140)에 의해 칩(10)은 약 100℃로 냉각될 수 있다.
구체적으로, 냉각 라인(140)은 제1 냉각 라인(142)과 제2 냉각 라인(144)을 포함한다.
제1 냉각 라인(142)은 베이스 블록(110)에서 제2 블록(114)의 내부까지 연장하며, 열전도를 통해 가열 블록(120)을 냉각한다.
제2 냉각 라인(144)은 베이스 블록(110)에서 제1 블록(112)의 내부에 구비되며, 제1 블록(112)을 냉각한다. 제1 블록(112)이 냉각됨에 따라 열전도를 통해 제3 블록(116), 제2 블록(114) 및 가열 블록(120)이 냉각될 수 있다. 따라서, 제2 냉각 라인(144)은 보조적으로 가열 블록(120)을 냉각할 수 있다.
제1 냉각 라인(142)을 이용하여 가열 블록(120)을 주로 냉각하고, 제2 냉각 라인(144)을 이용하여 보조적으로 냉각한다. 따라서, 냉각 라인(140)을 이용하여 가열 블록(120)을 신속하게 냉각할 수 있다. 가열 블록(120)이 냉각됨에 따라 흡착판(130)에 고정된 칩(10)도 신속하게 냉각할 수 있다.
한편, 본딩 헤드(100)는 온도 센서를 더 포함할 수 있다. 상기 온도 센서는 가열 블록(120)의 내부에 구비되며, 가열 블록(120)의 온도를 감지한다. 상기 온도 센서의 감지 결과에 따라 발열체(122)에 제공되는 전원의 온오프 및 냉각 라인(140)의 냉매 온도 및 순환을 제어할 수 있다.
본딩 헤드(100)는 칩(10)을 이송하여 상기 웨이퍼에 밀착시킨 상태에서 가열 블록(120)으로 칩(10)을 가열하여 칩(10)의 범프를 녹인 후 냉각 라인(140)을 이용하여 상기 칩(10)을 냉각시킴으로써 칩(10)을 상기 웨이퍼에 본딩한다. 본딩 헤드(100)가 칩(10)을 급속으로 가열하고 급속으로 냉각하므로, 상기 웨이퍼와 칩(10) 사이에 우수한 품질과 양호한 형상의 솔더를 형성할 수 있다.
본딩 헤드(100)는 상기 칩(10)의 가열과 냉각을 신속하게 수행할 수 있으므로, 칩(10)을 상기 웨이퍼에 본딩하는 공정의 효율성을 향상시킬 수 있다.
도 2는 본 발명의 일 실시예에 따른 본딩 장치를 설명하기 위한 개략적인 구성도이고, 도 3은 도 2에 도시된 척 구조물을 설명하기 위한 평면도이며, 도 4는 도 2에 도시된 척 플레이트를 설명하기 위한 저면도이고, 도 5는 도 2에 도시된 A 부분을 확대한 확대 단면도이다.
도 2 내지 도 5를 참조하면, 본딩 장치(300)는 본딩 헤드(100) 및 척 구조물(200)을 포함한다.
본딩 헤드(100)는 칩(10)을 척 구조물(200) 상의 이송하여 웨이퍼(20)에 본딩하기 위한 것으로, 베이스 블록(110), 가열 블록(120) 및 흡착판(130)을 포함한다. 도시되지는 않았지만, 본딩 헤드(100)는 칩(10)의 이송을 위해 수평 이동, 상하 이동, 회전, 반전 등이 가능하도록 구비될 수 있다.
본딩 헤드(100)에 대한 구체적인 설명은 도 1에 도시된 본딩 헤드(100)와 실질적으로 동일하므로 생략한다.
또한, 본딩 헤드(100)는 칩(10)과 웨이퍼(20)의 본딩을 위해 흡착판(130)이 하방을 향하도록 배치될 수 있다.
척 구조물(200)은 웨이퍼(20)를 지지한다. 이때, 웨이퍼(20)에는 회로 패턴이 형성될 수 있다.
척 구조물(200)은 가열 플레이트(210), 척 플레이트(220), 가이드 링(230), 클램프(240), 전원케이블(250) 및 온도 센서(260)를 포함한다.
가열 플레이트(210)는 대략 원판 형태를 가지며, 외부로부터 인가되는 전원에 의해 열을 발생하는 발열체(212)를 내장한다.
발열체(212)는 가열 플레이트(210)의 내측면에 일정한 패턴을 이루도록 구비될 수 있다. 발열체(212)의 예로는 전극층, 발열 코일 등을 들 수 있다.
가열 플레이트(210)는 상부면까지 연장하는 제3 진공 라인(214) 및 제4 진공 라인(215)을 갖는다. 제3 진공 라인(214)과 제4 진공 라인(215)은 각각 가열 플레이트(210)의 하부면 또는 측면에서 상기 상부면까지 연장할 수 있다. 제3 진공 라인(214)과 제4 진공 라인(215)은 각각 서로 연결되지 않는다. 제3 진공 라인(214)은 진공 펌프(미도시)와 연결되며, 웨이퍼(20)를 흡착하기 위한 진공력을 제공한다. 제4 진공 라인(215)은 진공 펌프(미도시)와 연결되며, 척 플레이트(220)를 흡착하기 위한 진공력을 제공한다.
가열 플레이트(210)는 상부면에 정렬 핀(216)을 갖는다. 정렬 핀(216)은 가열 플레이트(210)의 척 플레이트(220)를 정렬하기 위한 것으로, 복수 개가 구비될 수 있다. 정렬 핀(216)은 가열 플레이트(210)의 상부면 가장자리에 배치될 수 있다.
또한, 가열 플레이트(210)는 상부면 가장자리를 따라 형성된 홈(218)을 갖는다. 홈(218)은 가이드 링(230)을 고정하는데 이용될 수 있다.
척 플레이트(220)는 대략 원판 형태를 가지며, 가열 플레이트(210) 상에 놓여진다. 척 플레이트(220)는 상부면에 웨이퍼(20)를 지지한다.
척 플레이트(220)는 웨이퍼(20)를 흡착하기 위해 제3 진공 라인(214)과 연결되는 제5 진공 라인(222)을 갖는다.
제5 진공 라인(222)은 진공 홈(222a) 및 다수의 진공 홀(222b)들을 갖는다.
진공 홈(222a)은 척 플레이트(220)의 하부면에 형성된다. 예를 들면, 진공 홈(222a)은 척 플레이트(220)의 하부면 중심을 기준으로 동심원 형태를 갖는 홈들과 방사상으로 연장하는 홈들이 결합된 형상을 갖거나, 원형 홈 형상을 가질 수 있다. 이때, 진공 홈(222a)은 상기 진공력의 누설을 방지하기 위해 척 플레이트(220)의 하부면 가장자리까지 연장하지 않는다.
척 플레이트(220)는 가열 플레이트(210) 상에 놓여지면서 진공 홈(222a)은 가열 플레이트(210)의 상부면에 의해 한정되어 공간을 형성한다. 또한, 진공 홈(222a)은 제3 진공 라인(214)과 연결된다.
진공 홀(222b)들은 척 플레이트(220)를 관통하여 진공 홈(222a)이 형성된 하부면에서 척 플레이트(220)의 상부면까지 연장한다. 진공 홀(222b)은 서로 이격되도록 배열된다. 예를 들면, 진공 홀(222b)들은 동심원 형상 또는 방사 형상으로 배열될 수 있다.
따라서, 제5 진공 라인(222)은 제3 진공 라인(214)과 연결되며, 제3 진공 라인(214)을 통해 제공되는 진공력으로 웨이퍼(20)를 흡착할 수 있다.
또한, 척 플레이트(220)는 가열 플레이트(210)에 진공 흡착되도록 하부면에 제4 진공 라인(215)과 연결되도록 구비되는 진공 홈(223)을 갖는다.
진공 홈(223)은 척 플레이트(220)의 하부면에 형성된다. 예를 들면, 진공 홈(223)은 척 플레이트(220)의 하부면 중심을 기준으로 동심원 형태를 갖는 홈들과 방사상으로 연장하는 홈들이 결합된 형상을 갖거나, 원형 홈 형상을 가질 수 있다. 이때, 진공 홈(223)은 상기 진공력의 누설을 방지하기 위해 척 플레이트(220)의 하부면 가장자리까지 연장하지 않는다. 또한, 도 4에 도시된 바와 같이 진공 홈(223)은 제5 진공 라인(222)과 서로 연결되지 않도록 형성될 수 있다.
척 플레이트(220)는 가열 플레이트(210) 상에 놓여지면서 진공 홈(223)은 가열 플레이트(210)의 상부면에 의해 한정되어 공간을 형성한다. 또한, 진공 홈(223)은 제4 진공 라인(215)과 연결된다.
진공 홈(223)은 제4 진공 라인(215)과 연결되며, 제4 진공 라인(215)을 통해 제공되는 진공력으로 척 플레이트(220)가 가열 플레이트(210) 상에 밀착되어 고정될 수 있다. 그러므로, 척 플레이트(220)의 뒤틀림이나 벤딩을 최소화하여 척 플레이트(220) 상의 웨이퍼(20)를 평탄하게 지지할 수 있다.
가열 플레이트(210)와 척 플레이트(220)는 제4 진공 라인(215) 및 진공 홈(223)을 통해 제공되는 상기 진공력에 의해 밀착된 상태를 유지할 수 있다. 그러므로, 가열 플레이트(210)와 척 플레이트(220)를 체결하기 위한 별도의 체결 부재가 불필요하다.
또한, 제3 진공 라인(214)과 제4 진공 라인(215)을 통해 제공되는 상기 진공력을 해제하여 가열 플레이트(210)와 척 플레이트(220)를 분리하여 교체할 수 있다. 그러므로, 척 구조물(200)의 유지 보수를 신속하게 수행할 수 있다.
한편, 가열 플레이트(210)의 상부면과 척 플레이트(220)의 하부면은 각각 약 10 ㎛를 초과하는 평탄도를 갖는 경우, 가열 플레이트(210)와 척 플레이트(220) 사이에 미세한 간격이 존재할 수 있다. 따라서, 가열 플레이트(210)와 척 플레이트(220) 사이를 통해 상기 진공력이 누설될 수 있다.
가열 플레이트(210)의 상부면과 척 플레이트(220)의 하부면은 각각 약 10 ㎛ 이하, 바람직하게는 7 ㎛ 이하의 평탄도를 갖는다. 이 경우, 가열 플레이트(210)와 척 플레이트(220)가 밀착될 수 있고, 가열 플레이트(210)와 척 플레이트(220) 사이를 통해 상기 진공력이 누설되는 것을 방지할 수 있다.
척 플레이트(220)는 가열 플레이트(210)에서 발생한 열을 웨이퍼(20)로 전달한다. 이때, 칩(10)과 웨이퍼(20)의 본딩이 용이하게 이루어지도록 웨이퍼(20)는 약 140 내지 150 ℃의 온도로 유지될 수 있다.
가열 플레이트(210) 및 척 플레이트(220)는 각각 세라믹 재질로 이루어질 수 있다. 상기 세라믹 재질의 예로는 질화알루미늄(AlN)을 들 수 있다. 상기 질화알루미늄은 높은 열전도율을 가지므로, 발열체(212)에서 발생한 열이 가열 플레이트(210) 및 척 플레이트(220)에 균일하게 전달될 수 있다. 또한, 척 플레이트(220)의 온도 분포를 균일하게 하여 웨이퍼(20)를 균일하게 가열할 수 있다.
척 플레이트(220)는 정렬 핀(216)을 수용하기 위한 수용홈(224)을 갖는다. 수용홈(224)은 가열 플레이트(210)의 정렬 핀(216)과 대응하는 위치에 형성될 수 있다. 예를 들면 수용홈(224)도 척 플레이트(220)의 가장자리에 배치될 수 있다.
척 플레이트(220)가 가열 플레이트(210)의 상부면에 안착될 때, 가열 플레이트(210)의 정렬 핀(216)이 척 플레이트(220)의 수용홈(224)에 삽입될 수 있다. 따라서, 가열 플레이트(210)와 척 플레이트(220)가 정확하게 정렬될 수 있다.
상기에서 가열 플레이트(210)에 정렬 핀(216)이 구비되고, 척 플레이트(220)에 수용홈(224)이 형성되는 것으로 설명되었지만, 가열 플레이트(210)에 수용홈이형성되고, 척 플레이트(220)에 정렬 핀이 구비될 수도 있다.
또한, 척 플레이트(220)는 상부면 가장자리를 따라 형성된 홈(226)을 갖는다. 홈(226)은 클램프(240)가 안착되는데 이용될 수 있다.
가이드 링(230)은 가열 플레이트(210)의 상면 가장자리를 따라 형성된 홈(218)에 걸리며 가열 플레이트(210)의 둘레를 가이드한다.
구체적으로, 가이드 링(230)은 제1 걸림턱(232)을 가지며, 제1 걸림턱(232)이 홈(218)에 걸림으로서 가이드 링(230)이 가열 플레이트(210)에 장착된다.
한편, 가이드 링(230)의 상면과 가열 플레이트(210)의 상면은 동일한 높이에 위치할 수 있다. 이 경우, 가열 플레이트(210)에 가이드 링(230)을 장착한 상태에서 척 플레이트(220)를 가열 플레이트(210)의 상부면에 용이하게 안착시킬 수 있다.
또한, 가이드 링(230)의 상면이 가열 플레이트(210)의 상면보다 높게 위치하는 경우, 척 플레이트(220)를 가열 플레이트(210)의 상부면에 안착할 때 가이드 링(230)을 정렬 기준으로 이용할 수 있다.
클램프(240)는 척 플레이트(220)의 상부면 가장자리를 덮은 상태로 가이드 링에 고정된다. 클램프(240)는 체결 나사(242)에 의해 가이드 링(230)에 고정될 수 있다.
일 예로, 클램프(240)는 다수개가 구비되어 척 플레이트(220)의 상부면 가장자리를 부분적으로 덮을 수 있다. 다른 예로, 클램프(240)가 대략 링 형태를 가지며, 척 플레이트(220)의 상부면 가장자리를 전체적으로 덮을 수도 있다.
클램프(240)가 척 플레이트(220)의 상부면 가장자리를 덮은 상태로 가이드 링(230)에 고정되므로, 클램프(240)가 척 플레이트(220)를 하방으로 가압할 수 있다. 따라서, 클램프(240)는 척 플레이트(220)를 가열 플레이트(210)에 밀착시킬 수 있다.
클램프(240)는 제2 걸림턱(244)을 가지며, 제2 걸림턱(244)이 척 플레이트(220)의 홈(226)에 놓여질 수 있다. 따라서, 클램프(240)의 상면과 척 플레이트(220)의 상면을 동일한 높이에 위치시킬 수 있다. 그러므로, 클램프(240)의 방해없이 웨이퍼(20)를 척 플레이트(220)의 상부면으로 안정적으로 이송할 때 안착할 수 있다.
가이드 링(230) 및 클램프(240)는 각각 세라믹 재질로 이루어질 수 있다. 이때, 가이드 링(230) 및 클램프(240)는 가열 플레이트(210) 및 척 플레이트(220)보다 낮은 열전도율을 갖는 세라믹 재질이 사용될 수 있다. 예를 들면, 가이드 링(230) 및 클램프(240)는 산화알루미늄(Al2O3) 재질로 이루어질 수 있다. 상기 산화알루미늄은 상기 질화알루미늄보다 열전도율이 낮으므로, 가이드 링(230) 및 클램프(240)는 가열 플레이트(210) 및 척 플레이트(220)의 측면을 통한 열손실을 방지할 수 있다.
전원케이블(250)은 가열 플레이트(210)의 내부까지 연장하여 발열체(212)와 연결되며, 발열체(212)가 열을 발생시키기 위한 전원을 제공한다.
온도 센서(260)는 외부에서 가열 플레이트(210)의 내부까지 연장하며, 발열체(212)에 의해 가열되는 가열 플레이트(210)의 온도를 측정한다. 온도 센서(260)에서 측정된 온도를 이용하여 발열체(212)의 온도를 제어할 수 있다. 발열체(212)의 온도를 제어함으로써 가열 플레이트(210)의 온도를 조절할 수 있다.
온도 센서(260)의 예로는 열전대를 들 수 있다.
상기 척 구조물(200)은 웨이퍼(20)를 흡착하기 위한 진공력으로 가열 플레이트(210)와 척 플레이트(220)를 서로 밀착시킬 수 있다. 따라서, 가열 플레이트(210)와 척 플레이트(220)를 체결하기 위한 별도의 체결 부재가 불필요하다.
또한, 상기 진공력만을 해제하여 가열 플레이트(210)와 척 플레이트(220)를 분리하여 교체할 수 있다. 그러므로, 척 구조물(200)의 유지 보수를 신속하게 수행할 수 있다.
본딩 장치(300)는 척 구조물(200)을 이용하여 웨이퍼(20)를 고정하여 일정 온도로 가열한 상태에서 본딩 헤드(100)로 칩(10)을 이송하여 웨이퍼(20)에 밀착시킨 후, 본딩 헤드(100)로 칩(10)의 가열하여 칩(10)의 범프를 녹인 후 칩(10)을 냉각시킴으로써 칩(10)을 웨이퍼(20)에 본딩한다. 따라서, 칩(10)과 웨이퍼(20) 사이에 우수한 품질과 양호한 형상의 솔더를 형성할 수 있다. 또한, 칩(10)의 가열과 냉각을 신속하게 수행할 수 있으므로, 본딩 장치(300)를 이용한 칩(10)을 웨이퍼(20)에 본딩하는 공정의 효율성을 향상시킬 수 있다.
본딩 헤드(100)는 칩(10)을 이송하여 상기 웨이퍼 상에 적층시킬 수 있다. 따라서, 본딩 장치(300)가 별도의 칩 이송 수단을 구비할 필요가 없으므로, 본딩 장치(300)의 구조를 단순화할 수 있다.
본 발명에 따른 본딩 헤드는 유지 보수 비용을 절감할 수 있고, 웨이퍼와 칩을 신속하고 안정적으로 본딩할 수 있다. 따라서, 상기 본딩 헤드를 이용하는 본딩 공정의 효율 및 생산성을 향상시킬 수 있다.
또한, 본 발명에 따른 본딩 장치는 척 구조물에서 진공력으로 가열 플레이트와 척 플레이트를 밀착시킬 수 있다. 상기 진공력만을 해제하여 상기 가열 플레이트와 상기 척 플레이트를 분리할 수 수리 또는 교체가 가능하므로, 상기 척 구조물에 대한 유지 보수를 신속하게 수행할 수 있다.
상기에서는 본 발명의 바람직한 실시예를 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 하기의 특허 청구 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.

Claims (12)

  1. 베이스 블록;
    상기 베이스 블록 상에 구비되고, 외부로부터 인가되는 전원에 의해 열을 발생하여 칩을 가열하기 위한 발열체를 내장하며, 진공력을 제공하기 위해 상부면까지 연장하는 제1 진공 라인 및 제2 진공 라인을 갖는 가열 블록; 및
    상기 가열 블록 상에 상기 제1 진공 라인의 진공력에 의해 고정되며, 칩을 진공력으로 고정하기 위해 상기 제2 진공 라인과 연결되는 진공홀을 갖는 흡착판을 포함하는 것을 특징으로 하는 본딩 헤드.
  2. 제1항에 있어서, 상기 베이스 블록의 내부에 구비되며, 상기 가열 블록을 냉각하여 상기 칩을 냉각시키기 위한 냉각 라인을 더 포함하는 것을 특징으로 하는 본딩 헤드.
  3. 제1항에 있어서, 상기 흡착판의 손상이나 상기 칩 사이즈의 변경에 따라 상기 흡착판은 교체가능한 것을 특징으로 하는 본딩 헤드.
  4. 제1항에 있어서, 상기 베이스 블록은,
    금속 재질로 이루어지는 제1 블록; 및
    상기 제1 블록 상에 구비되며, 가열 블록에서 발생한 열이 상기 제1 블록으로 전달되는 것을 감소시키기 위해 상기 가열 블록보다 낮은 열전도성을 갖는 세라믹 재질로 이루어지는 제2 블록을 포함하는 것을 특징으로 하는 본딩 헤드.
  5. 제4항에 있어서, 상기 베이스 블록은,
    상기 제1 블록과 상기 제2 블록 사이에 구비되며, 상기 제2 블록의 열이 상기 제1 블록으로 전달되는 것을 감소시키기 위해 세라믹 재질로 이루어지는 제3 블록을 더 포함하는 것을 특징으로 하는 본딩 헤드.
  6. 제1항에 있어서, 상기 가열 블록의 내부에 구비되며 상기 가열 블록의 온도를 감지하기 위한 온도 센서를 더 포함하는 것을 특징으로 하는 본딩 헤드.
  7. 웨이퍼를 지지하는 척 구조물; 및
    베이스 블록과, 상기 베이스 블록 상에 구비되고, 외부로부터 인가되는 전원에 의해 열을 발생하여 칩을 가열하기 위한 발열체를 내장하며, 진공력을 제공하기 위해 상부면까지 연장하는 제1 진공 라인 및 제2 진공 라인을 갖는 가열 블록 및 상기 가열 블록 상에 상기 제1 진공 라인의 진공력에 의해 고정되며, 칩을 진공력으로 고정하기 위해 상기 제2 진공 라인과 연결되는 진공홀을 갖는 흡착판을 포함하고, 상기 흡착판이 하방을 향하도록 상기 척 구조물의 상방에 이동 가능하도록 배치되며, 상기 칩을 가열하여 상기 웨이퍼에 본딩하는 본딩 헤드로 이루어지는 본딩 장치.
  8. 제7항에 있어서, 상기 척 구조물은,
    외부로부터 인가되는 전원에 의해 열을 발생하는 발열체를 내장하며, 진공력을 제공하기 위해 상부면까지 연장하는 제3 진공 라인 및 제4 진공 라인을 갖는 가열 플레이트; 및
    상기 가열 플레이트 상에 놓여지며, 상면에 웨이퍼를 지지하며, 상기 웨이퍼가 가열되도록 상기 가열 플레이트에서 발생한 열을 상기 웨이퍼로 전달하고, 상기 진공력으로 상기 웨이퍼를 흡착하기 위해 상기 제3 진공 라인과 연결되는 제5 진공 라인 및 상기 가열 플레이트에 진공 흡착되도록 하부면에 상기 제4 진공 라인과 연결되도록 구비되며, 상기 가열 플레이트의 상부면에 의해 한정되어 공간을 형성하는 진공 홈을 갖는 척 플레이트를 포함하는 것을 특징으로 하는 본딩 장치.
  9. 제8항에 있어서, 상기 척 구조물에서 상기 가열 플레이트의 상부면과 상기 척 플레이트의 하부면 중 어느 한 면에는 정렬 핀이 구비되고, 나머지 한 면에는 상기 정렬 핀을 수용하여 상기 가열 플레이트와 상기 척 플레이트를 정렬하기 위한 수용홈이 구비되는 것을 특징으로 하는 본딩 장치.
  10. 제8항에 있어서, 상기 척 구조물은,
    상기 가열 플레이트의 상면 가장자리를 따라 형성된 홈에 걸리며 상기 가열 플레이트의 둘레를 가이드하는 가이드 링: 및
    상기 척 플레이트의 상부면 가장자리를 덮은 상태로 상기 가이드 링에 고정되며, 상기 척 플레이트를 상기 가열 플레이트에 밀착시키는 고정시키는 클램프를 더 포함하는 것을 특징으로 하는 본딩 장치.
  11. 제10항에 있어서, 상기 클램프의 상면과 상기 척 플레이트의 상면이 동일한 높이에 위치하도록 상기 클램프는 상기 척 플레이트의 상면 가장자리를 따라 형성된 홈에 놓여지는 것을 특징으로 하는 본딩 장치.
  12. 제10항에 있어서, 상기 가열 플레이트 및 상기 척 플레이트의 측면을 통한 열손실을 방지하기 위해 상기 가이드 링 및 상기 클램프는 상기 가열 플레이트 및 상기 척 플레이트보다 열전도율이 낮은 재질로 이루어지는 것을 특징으로 하는 본딩 장치.
PCT/KR2017/009849 2017-03-24 2017-09-08 본딩 헤드 및 이를 갖는 본딩 장치 WO2018174355A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0037349 2017-03-24
KR1020170037349A KR102347123B1 (ko) 2017-03-24 2017-03-24 본딩 헤드 및 이를 갖는 본딩 장치

Publications (1)

Publication Number Publication Date
WO2018174355A1 true WO2018174355A1 (ko) 2018-09-27

Family

ID=63584471

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/009849 WO2018174355A1 (ko) 2017-03-24 2017-09-08 본딩 헤드 및 이를 갖는 본딩 장치

Country Status (2)

Country Link
KR (1) KR102347123B1 (ko)
WO (1) WO2018174355A1 (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210029530A (ko) 2019-09-06 2021-03-16 삼성전자주식회사 열전도성 물질들을 갖는 헤드부를 포함하는 반도체 칩 본딩 장치
KR102344112B1 (ko) * 2020-03-06 2021-12-29 세메스 주식회사 반도체 패키지들을 진공 흡착하기 위한 진공 테이블
CN116313941B (zh) * 2023-05-19 2023-08-01 东莞市华越半导体技术股份有限公司 一种芯片封装设备及封装方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6179924B1 (en) * 1998-04-28 2001-01-30 Applied Materials, Inc. Heater for use in substrate processing apparatus to deposit tungsten
KR100378187B1 (ko) * 2000-11-09 2003-03-29 삼성전자주식회사 정전척을 구비한 웨이퍼 지지대 및 이를 이용한 웨이퍼 디척킹 방법
KR20090019273A (ko) * 2007-08-20 2009-02-25 세크론 주식회사 기판 가열 장치
KR20140045436A (ko) * 2011-05-27 2014-04-16 토레이 엔지니어링 컴퍼니, 리미티드 실장 방법 및 실장 장치
JP5482282B2 (ja) * 2009-03-03 2014-05-07 東京エレクトロン株式会社 載置台構造及び成膜装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4508124B2 (ja) * 2006-02-15 2010-07-21 パナソニック株式会社 半導体部品の熱圧着装置
KR101141154B1 (ko) * 2009-09-21 2012-07-13 세메스 주식회사 기판 가열 유닛, 이를 포함하는 기판 처리 장치, 그리고 이를 이용한 기판 처리 방법
KR101499335B1 (ko) 2013-07-29 2015-03-06 이향이 반도체 다이본딩용 히터블럭
KR102141189B1 (ko) * 2014-06-30 2020-08-04 세메스 주식회사 본딩 헤드 및 이를 포함하는 다이 본딩 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6179924B1 (en) * 1998-04-28 2001-01-30 Applied Materials, Inc. Heater for use in substrate processing apparatus to deposit tungsten
KR100378187B1 (ko) * 2000-11-09 2003-03-29 삼성전자주식회사 정전척을 구비한 웨이퍼 지지대 및 이를 이용한 웨이퍼 디척킹 방법
KR20090019273A (ko) * 2007-08-20 2009-02-25 세크론 주식회사 기판 가열 장치
JP5482282B2 (ja) * 2009-03-03 2014-05-07 東京エレクトロン株式会社 載置台構造及び成膜装置
KR20140045436A (ko) * 2011-05-27 2014-04-16 토레이 엔지니어링 컴퍼니, 리미티드 실장 방법 및 실장 장치

Also Published As

Publication number Publication date
KR20180108066A (ko) 2018-10-04
KR102347123B1 (ko) 2022-01-05

Similar Documents

Publication Publication Date Title
WO2019093609A1 (ko) 척 플레이트, 상기 척 플레이트를 갖는 척 구조물 및 척 구조물을 갖는 본딩 장치
WO2018174355A1 (ko) 본딩 헤드 및 이를 갖는 본딩 장치
WO2017142312A1 (ko) 소자검사장치 및 그에 사용되는 소자가압툴
WO2019004620A1 (ko) 본딩 헤드 및 이를 갖는 본딩 장치
WO2018012783A1 (ko) 반도체 후공정용 척 플레이트, 상기 척 플레이트를 갖는 척 구조물 및 척 구조물을 갖는 칩 분리 장치
TWI559412B (zh) 熱壓鍵合過程中固定多個半導體器件的設備和鍵合方法
WO2016159705A1 (ko) 얼라이너 구조 및 얼라인 방법
WO2022124780A1 (ko) 본딩 헤드 및 이를 갖는 본딩 장치
US20210003631A1 (en) Semiconductor package test apparatus
WO2019190031A1 (ko) 마이크로 소자 전사장치 및 마이크로 소자 전사방법
TW202121495A (zh) 用於基板翹曲校正的方法及裝置
WO2020204394A1 (ko) 미소 소자 흡착 픽커
WO2016114491A1 (ko) 테스트 핸들러용 가압장치
KR102439615B1 (ko) 본딩 헤드 및 이를 갖는 본딩 장치
WO2011043567A2 (ko) 웨이퍼 지지 부재, 그 제조방법 및 이를 포함하는 웨이퍼 연마 유닛.
US5622304A (en) Tape bonding apparatus
WO2015170792A1 (ko) 반도체 소자들을 패키징하는 방법 및 이를 수행하기 위한 장치
WO2015170800A1 (ko) 반도체 소자들을 패키징하는 방법 및 이를 수행하기 위한 장치
WO2023074947A1 (ko) 멀티 프로버용 카트리지 락킹장치
WO2016085135A1 (ko) 전자부품 테스트용 핸들러
WO2022050453A1 (ko) 멀티 프로버용 카트리지 얼라이너 장치
WO2015072594A1 (ko) 레이저 칩 본딩기의 칩 정렬장치
WO2022235005A1 (ko) 프로브 어레이 그리퍼 및 이를 포함하는 프로브 어레이 본딩 장비
WO2022045861A1 (ko) 소자 리페어 장치
WO2019066256A1 (ko) 기판 검사 카트리지 및 이의 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17902127

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17902127

Country of ref document: EP

Kind code of ref document: A1