WO2017142087A1 - 黒色粒子及び黒色粒子の製造方法 - Google Patents

黒色粒子及び黒色粒子の製造方法 Download PDF

Info

Publication number
WO2017142087A1
WO2017142087A1 PCT/JP2017/005999 JP2017005999W WO2017142087A1 WO 2017142087 A1 WO2017142087 A1 WO 2017142087A1 JP 2017005999 W JP2017005999 W JP 2017005999W WO 2017142087 A1 WO2017142087 A1 WO 2017142087A1
Authority
WO
WIPO (PCT)
Prior art keywords
black particles
solvent
particles
less
particles according
Prior art date
Application number
PCT/JP2017/005999
Other languages
English (en)
French (fr)
Inventor
孫 仁徳
省二 野里
中壽賀 章
博隆 伊原
誠 高藤
桑原 穣
村上 晶子
Original Assignee
積水化学工業株式会社
国立大学法人 熊本大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社, 国立大学法人 熊本大学 filed Critical 積水化学工業株式会社
Priority to CN201780002945.9A priority Critical patent/CN107949606B/zh
Priority to US16/066,771 priority patent/US20180354798A1/en
Priority to JP2017518168A priority patent/JP6941837B2/ja
Priority to KR1020187006979A priority patent/KR102658084B1/ko
Priority to EP17753341.1A priority patent/EP3418334A4/en
Publication of WO2017142087A1 publication Critical patent/WO2017142087A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/44Carbon
    • C09C1/48Carbon black
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/02Amorphous compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/82Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by IR- or Raman-data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/84Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by UV- or VIS- data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/89Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by mass-spectroscopy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/54Particles characterised by their aspect ratio, i.e. the ratio of sizes in the longest to the shortest dimension
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/10Solid density
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/60Optical properties, e.g. expressed in CIELAB-values

Definitions

  • the present invention relates to black particles having high electrical insulation, high blackness in the visible light region, and excellent dispersibility, and a method for producing the black particles.
  • Black particles such as carbon black are widely used as pigments, fillers, weather resistance improvers and the like. Such carbon particles are also used as a black matrix pigment for liquid crystal color displays.
  • a carbon black pigment defined by an oxygen amount is coated with a highly insulating resin film.
  • Patent Document 2 describes a method of forming an insulating black matrix using an insulating carbon black pigment whose surface is coated with an organic material or a carbon black pigment whose electric resistance is improved by coating with a resin. Yes.
  • carbon black pigments are inherently conductive materials, and it has been difficult to achieve sufficient insulation even with resin coating. Moreover, although these carbon particles are supposed to have a high light shielding rate, there is a problem that the visible light shielding property is insufficient.
  • carbon particles are used as a colorant for resin colorants, printing inks, paints, etc.
  • the carbon particles are required to have excellent dispersibility and colorability.
  • the particle diameter has been increased in order to improve the colorability of the carbon particles.
  • carbon particles having a large particle diameter are precipitated when they are blended into vehicles and resins of inks and paints. There is a problem in that dispersibility and fluidity decrease.
  • black particles with little variation in particle diameter and high monodispersibility are useful for electrophoretic display elements used in electronic paper and the like, but conventional carbon particles such as carbon black are There was a problem that dispersibility was insufficient and aggregation was likely to occur.
  • the present invention has been made in view of the above situation, and an object thereof is to provide black particles having high electrical insulation, high blackness in the visible light region, and excellent dispersibility, and a method for producing the black particles.
  • the present invention relates to black particles containing amorphous carbon, the amorphous carbon being derived from carbon contained in the oxazine resin, having a specific gravity of 1.8 g / cm 3 or less, and a zeta potential of ⁇ 70 to +80 mV.
  • Black particles having an average total light reflectance measured at a wavelength of 400 to 800 nm of 5% or less and a peak intensity ratio of G band to D band of 1.2 or more when measured by a Raman spectrum.
  • the present invention is described in detail below.
  • the inventors of the present invention contain carbon derived from a predetermined resin, and have specific gravity, zeta potential, average total light reflectance at a wavelength of 400 to 800 nm, and peak intensity ratio of G band and D band. It was found that the black particles within the above range have high electrical insulation, high blackness in the visible light region, and excellent dispersibility, and the present invention has been completed.
  • the black particles of the present invention contain amorphous carbon. By containing such amorphous carbon, not only can it be produced at low cost compared to conventional carbon black particles, but it also has higher sphericity and dispersibility, so it has higher performance black pigment Can be used as
  • the amorphous carbon constituting the black particles of the present invention has an amorphous structure in which sp2 bonds and sp3 bonds are mixed, and is composed of carbon.
  • the peak intensity ratio between the G band and the D band when a Raman spectrum is measured. Is 1.2 or more.
  • the amorphous carbon is measured by Raman spectroscopy, two peaks of a G band corresponding to sp2 bond (near 1580 cm ⁇ 1 ) and a D band corresponding to sp3 bond (near 1360 cm ⁇ 1 ) are clearly observed. Note that, when the carbon material is crystalline, one of the two bands is minimized. For example, in the case of single crystal diamond, the G band near 1580 cm ⁇ 1 is hardly observed.
  • the D band near 1360 cm ⁇ 1 hardly appears.
  • the denseness of the formed black particles is particularly high because the peak intensity ratio between the G band and the D band (peak intensity in the G band / peak intensity in the D band) is 1.2 or more.
  • the effect of suppressing sintering between particles at high temperatures is also excellent.
  • the peak intensity ratio is less than 1.2, not only the particle compactness and the sintering suppression effect at high temperatures are insufficient, but also the particle strength is lowered.
  • the peak intensity ratio is more preferably 1.7 or more, and more preferably 10 or less.
  • the black particles of the present invention may contain elements other than carbon.
  • elements other than carbon include nitrogen, hydrogen, and oxygen.
  • the content of such an element is preferably 10 atomic% or less with respect to the total of carbon and elements other than carbon.
  • the black particles of the present invention may contain a resin component.
  • the amorphous carbon constituting the black particles of the present invention is derived from the carbon contained in the oxazine resin. Since the oxazine resin can be carbonized at a low temperature, the cost can be reduced.
  • the oxazine resin is a resin generally classified as a phenol resin, but is a thermosetting resin obtained by adding and reacting amines in addition to phenols and formaldehyde.
  • phenols when a type in which the phenol ring further has an amino group, for example, phenol such as paraaminophenol, is used, it is not necessary to add amines in the above reaction, and carbonization tends to be easily performed. In terms of easiness of carbonization, the use of a naphthalene ring instead of a benzene ring makes carbonization easier.
  • the oxazine resin examples include a benzoxazine resin and a naphthoxazine resin, and among these, the naphthoxazine resin is preferable because it is easily carbonized at the lowest temperature.
  • a partial structure of the benzoxazine resin is shown in Formula (1)
  • a partial structure of the naphthoxazine resin is shown in Formula (2).
  • the oxazine resin refers to a resin having a 6-membered ring added to a benzene ring or naphthalene ring, and the 6-membered ring contains oxygen and nitrogen, which is the origin of the name. Yes.
  • black particles can be obtained at a considerably lower temperature than other resins such as an epoxy resin. Specifically, carbonization is possible at a temperature of 200 ° C. or lower. In particular, carbonization can be performed at a lower temperature by using a naphthoxazine resin. Thus, black particles containing amorphous carbon can be formed in an appropriate solvent by carbonizing at a lower temperature using an oxazine resin.
  • the black particles containing amorphous carbon can be formed by such a method, for example, when naphthalene oxazine resin is used as the oxazine resin, the naphthalene structure in the resin is locally connected by low-temperature heating, This is probably because a layered structure is formed at the molecular level. Since the above layered structure is not treated at a high temperature, it does not progress to a long-distance periodic structure such as graphite, and thus does not exhibit crystallinity.
  • the obtained carbon is a graphite-like structure or an amorphous structure is confirmed by whether or not a peak is detected at a position where 2 ⁇ is 26.4 ° by an X-ray diffraction method to be described later. be able to.
  • Dihydroxynaphthalene which is a phenol, and triazine, formaldehyde, and amines are used as raw materials for the naphthoxazine resin. These will be described in detail later.
  • the amorphous carbon is preferably obtained by heat-treating the oxazine resin at a temperature of 40 to 350 ° C.
  • amorphous carbon can be obtained at a relatively low temperature.
  • the photograph can be measured by analyzing the image using an image analyzer, and the average sphericity is obtained by, for example, obtaining an average value of sphericity for, for example, 100 particles arbitrarily selected in an electron micrograph. Can be calculated.
  • the temperature of the heat treatment is preferably 50 to 300 ° C.
  • the black particles of the present invention have a zeta potential (surface potential) of ⁇ 70 to +80 mV. By setting it within the above range, it is possible to obtain black particles having excellent particle diameter uniformity and good dispersibility in a solvent.
  • the preferable lower limit of the zeta potential is ⁇ 60 mV, and the preferable upper limit is +70 mV.
  • the zeta potential is measured by injecting a solution in which black particles are dispersed into a measurement cell using, for example, a microscope electrophoresis type zeta potential measuring apparatus, and applying a voltage while observing with a microscope, and the particles do not move ( It can be determined by measuring the potential when it is stationary.
  • the black particles of the present invention have an average total light reflectance measured at a wavelength of 400 to 800 nm of 5% or less. By setting it within the above range, most of the visible light is absorbed by the black particles, so that high blackness can be expressed in the visible light region. A preferable upper limit of the average of the total light reflectance is 4.5%.
  • the total light reflectance when the total light reflectance is measured at a wavelength of 400 to 800 nm, it is preferable that the peak at which the total light reflectance shows a maximum value is not detected.
  • the total light reflectance can be measured using, for example, a spectrophotometer with an integrating sphere.
  • the black particle of the present invention has a preferable lower limit of the average particle diameter of 0.005 ⁇ m and a preferable upper limit of 50 ⁇ m. By setting the average particle diameter within the range from 0.005 ⁇ m to 50 ⁇ m, sufficient blackness and high dispersibility can be obtained. A more preferable lower limit is 0.01 ⁇ m, and a more preferable upper limit is 40 ⁇ m.
  • the black particles of the present invention preferably have a particle diameter variation coefficient (CV value) of 20% or less.
  • CV value of the particle diameter is 20% or less, the monodispersity of the black particles is improved, and the particles are easily packed most closely when used as a black pigment. As a result, it is possible to enhance the shielding effect against visible light.
  • the upper limit with more preferable CV value of the said particle diameter is 15%.
  • the CV value (%) of the particle diameter is a value obtained by dividing the standard deviation by the average particle diameter as a percentage, and is a numerical value obtained by the following formula. The smaller the CV value, the smaller the variation in particle diameter.
  • CV value of particle diameter (%) (standard deviation of particle diameter / average particle diameter) ⁇ 100
  • the average particle size and standard deviation can be measured using, for example, FE-TEM.
  • the black particles of the present invention preferably have an average sphericity of 90% or more. Thereby, the effect of the present invention can be enhanced. A more preferable lower limit of the average sphericity is 95%.
  • the sphericity (minor axis / major axis) can be measured by analyzing an electron micrograph taken with FE-TEM or FE-SEM using an image analyzer, and the average sphericity. Can be calculated by obtaining an average value of sphericity for, for example, 100 particles arbitrarily selected in an electron micrograph.
  • Black particles of the present invention specific gravity of 1.8 g / cm 3 or less.
  • specific gravity When the specific gravity is 1.8 g / cm 3 or less, high dispersibility can be obtained.
  • the black particles of the present invention preferably have a volume resistivity of 1.0 ⁇ 10 7 ⁇ ⁇ cm or more.
  • the volume resistivity is 1.0 ⁇ 10 7 ⁇ ⁇ cm or more, high insulation can be ensured. More preferably, it is 1.0 ⁇ 10 8 ⁇ ⁇ cm or more, and further preferably 1.0 ⁇ 10 11 ⁇ ⁇ cm or more.
  • a preferable upper limit is 1.0 ⁇ 10 18 ⁇ ⁇ cm.
  • the black particles of the present invention when measured by time-of-flight secondary ion mass spectrometry (TOF-SIMS), at least one of a mass spectrum derived from a benzene ring and a mass spectrum derived from a naphthalene ring is detected. It is preferable. By detecting a mass spectrum derived from such a benzene ring or naphthalene ring, it is possible to confirm that it is derived from carbon contained in the oxazine resin, and at the same time, it is possible to obtain dense particles.
  • TOF-SIMS time-of-flight secondary ion mass spectrometry
  • a mass spectrum derived from a benzene ring refers to a mass spectrum near 77.12
  • a mass spectrum derived from a naphthalene ring refers to a mass spectrum near 127.27.
  • the above measurement can be performed using, for example, a TOF-SIMS device (manufactured by ION-TOF).
  • the black particles of the present invention are measured by X-ray diffraction method, it is preferable that no peak is detected at a position where 2 ⁇ is 26.4 °.
  • the peak at the position where 2 ⁇ is 26.4 ° is a crystal peak of graphite, and since no peak is detected at such a position, it can be said that the carbon forming the black particles has an amorphous structure.
  • the above measurement can be performed using, for example, an X-ray diffractometer (SmartLab Multipurpose, manufactured by Rigaku Corporation).
  • Examples of the method for producing black particles of the present invention include a method having a step of reacting a mixed solution containing triazine, dihydroxynaphthalene and a solvent, and reacting a mixed solution containing formaldehyde, aliphatic amine, dihydroxynaphthalene and a solvent. And a method having a step of causing the reaction to occur.
  • a mixed solution such as a mixed solution containing triazine, dihydroxynaphthalene and a solvent, or a mixed solution containing formaldehyde, aliphatic amine, dihydroxynaphthalene and a solvent is prepared.
  • formalin which is a formaldehyde solution.
  • Formalin usually contains a small amount of methanol as a stabilizer in addition to formaldehyde and water.
  • the formaldehyde used in the present invention may be formalin as long as the formaldehyde content is clear.
  • formaldehyde has paraformaldehyde as its polymerization form, and this form can also be used as a raw material.
  • the above-described formalin is preferably used.
  • the aliphatic amine is represented by the general formula R—NH 2 , and R is preferably an alkyl group having 5 or less carbon atoms.
  • R is preferably an alkyl group having 5 or less carbon atoms.
  • the alkyl group having 5 or less carbon atoms include, but are not limited to, for example, methyl group, ethyl group, n-propyl group, isopropyl group, cyclopropyl group, n-butyl group, isobutyl group, s-butyl group, t -Butyl group, cyclobutyl group, cyclopropylmethyl group, n-pentyl group, cyclopentyl group, cyclopropylethyl group, and cyclobutylmethyl group.
  • the substituent R is preferably a methyl group, an ethyl group, a propyl group or the like, and methylamine, ethylamine, propylamine or the like can be preferably used as the actual compound name. Most preferred is methylamine with the lowest molecular weight.
  • the dihydroxynaphthalene has many isomers. For example, 1,3-dihydroxynaphthalene, 1,5-dihydroxynaphthalene, 1,6-dihydroxynaphthalene, 1,7-dihydroxynaphthalene, 2,3-dihydroxynaphthalene, 2,6-dihydroxynaphthalene, 2,7-dihydroxynaphthalene Is mentioned. Of these, 1,5-dihydroxynaphthalene and 2,6-dihydroxynaphthalene are preferred because of their high reactivity. Further, 1,5-dihydroxynaphthalene is preferred because it has the highest reactivity.
  • the ratio of the three components of dihydroxynaphthalene, aliphatic amine and formaldehyde in the mixed solution is as follows. Most preferably, 1 mole of aliphatic amine and 2 moles of formaldehyde are blended with respect to mole. Depending on the reaction conditions, the raw materials are lost due to volatilization during the reaction, so the optimum blending ratio is not necessarily exactly the above ratio, but the aliphatic amine is 0.8 to 1.2 per mole of dihydroxynaphthalene. Mole and formaldehyde are preferably blended in the range of 1.6 to 2.4 moles.
  • an oxazine ring By setting the aliphatic amine to 0.8 mol or more, an oxazine ring can be sufficiently formed, and polymerization can be favorably proceeded.
  • the amount is 1.2 mol or less, the formaldehyde necessary for the reaction is not excessively consumed, so that the reaction proceeds smoothly and the desired naphthoxazine can be obtained.
  • the formaldehyde is 1.6 mol or more, the oxazine ring can be sufficiently formed, and the polymerization can proceed suitably.
  • it since it can reduce generation
  • the mixed solution contains a solvent for dissolving and reacting the two raw materials or the three raw materials.
  • the solvent include alcohols such as methanol, ethanol and isopropanol, ketones such as acetone and methyl ethyl ketone, tetrahydrofuran, dioxane, chloroform, ethyl acetate, dimethylformamide, dimethyl sulfoxide and the like.
  • the solvent only a single component may be used, or two or more kinds of mixed solvents may be used.
  • a solvent having a solubility parameter (SP value) of 9.0 or more is preferably used.
  • the solvent having an SP value of 9.0 or more include ethanol (12.7), methanol (14.7), isopropanol (11.5), cresol (13.3), ethylene glycol (14.2), and phenol.
  • the solvent having an SP value of 9.0 or more a solvent having an SP value of 9.0 to 15.0 is more preferable.
  • the boiling point is preferably 50 to 150 ° C. More preferably, it contains a solvent having a boiling point of 50 to 130 ° C. and an SP value of 9.0 or more.
  • the mixed solvent when the solvent is a mixed solvent composed of two or more kinds of solvents, the mixed solvent contains a solvent having a boiling point of 150 ° C. or higher, and the content of the solvent having a boiling point of 150 ° C. or higher is 60 volumes. % Or less is preferable. Thereby, black particles with a high average sphericity can be obtained.
  • the minimum with more preferable content of the solvent whose said boiling point is 150 degrees C or less is 45 volume%.
  • the amount of the solvent in the mixed solution is not particularly limited, but when the raw material (solute) containing dihydroxynaphthalene, triazine, aliphatic amine and formaldehyde is 100 parts by mass, it is usually blended at 300 to 200,000 parts by mass. Is preferred (corresponding to a molar concentration of solute of 1.0M to 0.001M). When the amount is 300 parts by mass or more, the solubility of the solute is increased, and when the amount is 200,000 parts by mass or less, the concentration is moderate and the reaction easily proceeds.
  • the process which makes the said mixed solution react is performed.
  • black particles containing amorphous carbon can be produced after the polynaphthoxazine resin is formed.
  • the produced oxazine ring opens, and when polymerization occurs, the molecular weight increases and a so-called polynaphthoxazine resin is obtained.
  • the particles are dispersed during the reaction.
  • a dispersion method known methods such as stirring, ultrasonic waves, and rotation can be used.
  • an appropriate dispersant may be added.
  • the heating temperature for the reaction is preferably 50 to 350 ° C.
  • the polynaphthoxazine resin is carbonized to form black particles containing amorphous carbon.
  • amorphous carbon can be obtained at a low temperature.
  • the heat treatment may be performed in air or in an inert gas such as nitrogen or argon. When the heat treatment temperature is 200 ° C. or higher, an inert gas atmosphere is more preferable.
  • heating temperature shall be 100 degreeC or more, it is preferable to perform reaction in a pressurized container.
  • the step of reacting the mixed solution may be performed in one step or in two steps.
  • the method performed in two steps includes a step of reacting the mixed solution to form polyoxazine resin particles and a step of carbonizing the formed polyoxazine resin particles by heat treatment at a predetermined temperature. It is preferable.
  • the reaction proceeds gradually even at room temperature, but it is preferable to carry out the reaction at a temperature of 50 to 150 ° C. in order to efficiently proceed the reaction.
  • reaction time can be adjusted with temperature and it is preferable that it is normally 30 minutes to 20 hours.
  • Spherical polyoxazine resin particles are obtained by the reaction under the above conditions.
  • the polyoxazine resin particles obtained in this step show green, brown, or black depending on the reaction conditions.
  • the particle size of the polyoxazine resin particles can be adjusted by parameters such as the concentration of the solution, the reaction temperature, the molar ratio of the raw materials, and the stirring conditions.
  • the heating temperature is preferably 100 to 350 ° C.
  • the heat treatment time is not particularly limited, but is preferably 1 to 30 hours from the viewpoint of completeness of carbonization and economical viewpoint.
  • the polynaphthoxazine resin can be carbonized to form black particles containing amorphous carbon.
  • a normal resin requires a higher temperature for carbonization, but in the present invention, since an oxazine resin that can be carbonized at a low temperature is used, amorphous carbon can be formed even at a low temperature such as 150 ° C. It becomes.
  • the heat treatment may be performed in air or in an inert gas such as nitrogen or argon. When the heat treatment temperature is 200 ° C. or higher, an inert gas atmosphere is more preferable.
  • the drying process which dries and removes a solvent by hot air, vacuum drying, etc.
  • the heat drying method it is preferable to perform a post-processing step of heating after the drying step.
  • the heating temperature in the post-treatment step is preferably 100 to 350 ° C., and the heating time is preferably 30 minutes to 30 hours.
  • the black particles of the present invention can be used for applications such as black pigments, fillers, weather resistance improvers, display elements such as electronic paper.
  • the present invention it is possible to provide black particles having high electrical insulation, high blackness in the visible light region, excellent dispersibility, and a method for producing the black particles.
  • FIG. 2 is an FE-SEM image of particles obtained in Example 1.
  • FIG. 3 is an FE-SEM image of particles obtained in Example 2.
  • FIG. 3 is an FE-SEM image of particles obtained in Comparative Example 1.
  • 3 is an FE-SEM image of particles obtained in Comparative Example 2.
  • Example 1 1.20 g of 1,5-dihydroxynaphthalene (1,5-DHN, manufactured by Tokyo Chemical Industry Co., Ltd.) and 0.98 g of 1,3,5-triazine (manufactured by Tokyo Chemical Industry Co., Ltd.) are sequentially dissolved in 50 ml of ethanol, and an ethanol mixed solution Was made. Next, the obtained mixed solution was heated and stirred (rotation speed: 300 rpm) at 80 ° C. for 1 hour. The solution was filtered through a glass filter, washed three times with ethanol, and then vacuum-dried at 50 ° C. for 3 hours. Then, the black carbon particle was obtained by heating at 110 degreeC for 2 hours.
  • nuclear magnetic resonance spectra NMR spectra
  • peaks corresponding to the methylene group of the "benzene ring -CH 2 -N” on Nafutokisajin ring and (3.95Ppm) A peak (4.92 ppm) corresponding to the methylene group of “O—CH 2 —N” was detected at almost the same intensity, confirming the formation of a resin component containing a naphthoxazine ring.
  • the nuclear magnetic resonance spectrum was measured using 1 H-NMR (600 MHz) manufactured by Varian Inova, and deuterium dimethyl sulfoxide was used for the measurement, the number of spectrum integration was 256 times, and the relaxation time was 10 seconds. did.
  • Example 2 In Example 1, instead of 50 ml of ethanol, 35 ml of ethanol and 15 ml of DMF (N, N-dimethylformamide) were used, and the black carbon particles were obtained in the same manner as in Example 1 except that the mixture was heated and stirred at 80 ° C. for 6 hours. Obtained. The heating temperature after drying was 200 ° C.
  • Example 3 In Example 1, instead of 50 ml of ethanol, 20 ml of ethanol and 30 ml of DMF (N, N-dimethylformamide) were used. Obtained. The heating temperature after drying was 350 ° C.
  • Example 4 0.012 g of 1,5-dihydroxynaphthalene (manufactured by Tokyo Chemical Industry Co., Ltd.), 0.006 g of 40% methylamine (manufactured by Wako Pure Chemical Industries, Ltd.), 0.012 g of 37% formaldehyde aqueous solution (manufactured by Wako Pure Chemical Industries, Ltd.), Were sequentially dissolved in 50 ml of ethanol to prepare an ethanol mixed solution. Next, the obtained mixed solution was processed in an ultrasonic bath at 50 ° C. for 2 hours (ultrasonic frequency: Hz). The solution was then filtered through a glass filter and the particles were washed 3 times with ethanol. The collected particles were vacuum-dried at 50 ° C. for 3 hours and then heat-treated at 110 ° C. for 2 hours. Black carbon particles were obtained.
  • Example 1 carbon particles were obtained in the same manner as in Example 1 except that 50 ml of DMF was used instead of 50 ml of ethanol and heated and stirred at 80 ° C. for 6 hours. The heating temperature after drying was 110 ° C.
  • Example 2 carbon particles were obtained in the same manner as in Example 1 except that ethanol 15 ml and DMF 35 mlg were used instead of ethanol 50 ml and the mixture was heated and stirred at 80 ° C. for 6 hours. The heating temperature after drying was 150 ° C.
  • volume resistivity The volume resistivity of the particles obtained in Examples and Comparative Examples was measured for a volume resistivity at a load of 15 N using a powder resistance measurement system (manufactured by Mitsubishi Chemical Analytech).
  • Dispersibility The dispersibility of the particles obtained in Examples and Comparative Examples was evaluated using a centrifugal sedimentation / light transmission type dispersion stability analyzer (LUMiSizer612 manufactured by LUM Co.). Specifically, about 1 ml of a composition in which particles are dispersed at a ratio of 5% by weight with respect to a 5% aqueous solution of polyvinyl alcohol (PVA) is placed in a glass analysis cell, and the supernatant is irradiated with light. The integrated value of the amount of change in the amount of light transmitted per time was determined, and the dispersibility was evaluated according to the following criteria. When the amount of change in the amount of light after 1 hour is 5% or less: ⁇ When the amount of change in the amount of light after 1 hour exceeds 5%: ⁇
  • TOF-SIMS measurement The obtained particles were subjected to time-of-flight secondary ion mass spectrometry (Time-of-Flight Secondary Mass Spectrometry, TOF) using a TOF-SIMS type 5 device (manufactured by ION-TOF). -SIMS) confirmed the mass spectrum derived from the benzene ring (near 77.12) and the mass spectrum derived from the naphthalene ring (near 127.27). The TOF-SIMS measurement was performed under the following conditions. Further, in order to avoid contamination derived from the air or a storage case as much as possible, the sample was stored in a clean case for storing silicon wafers.
  • the zeta potential of the particles was measured using a zeta potential measuring device (MODEL 502, manufactured by Nippon Lucas). Specifically, a KCl aqueous solution having a concentration of 0.01 M was used as a supporting electrolyte, and a KCl solution in which a small amount of black particles was dispersed was injected into the measurement cell. Thereafter, a voltage was applied while observing with a microscope, and the particles were adjusted until they stopped moving (still stopped), and the potential at that time was defined as a zeta potential.
  • the present invention it is possible to provide black particles having high electrical insulation, high blackness in the visible light region, excellent dispersibility, and a method for producing the black particles.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本発明は、電気絶縁性が高く、可視光領域において高い黒色性を有し、分散性に優れる黒色粒子、及び、該黒色粒子の製造方法を提供する。 本発明は、アモルファスカーボンを含有する黒色粒子であって、前記アモルファスカーボンは、オキサジン樹脂が含有するカーボンに由来するものであり、比重が1.8g/cm以下、ゼータ電位が-70~+80mV、波長400~800nmで測定した全光線反射率の平均が5%以下、ラマンスペクトルで測定した場合のGバンドとDバンドのピーク強度比が1.2以上である黒色粒子である。

Description

黒色粒子及び黒色粒子の製造方法
本発明は、電気絶縁性が高く、可視光領域において高い黒色性を有し、分散性に優れる黒色粒子、及び、該黒色粒子の製造方法に関する。
カーボンブラック等の黒色粒子は、顔料、充填剤、耐候性改善剤等として広く使用されている。また、このようなカーボン粒子は、液晶カラーディスプレーのブラックマトリックス用顔料としても使用されており、例えば、特許文献1には、酸素量で規定したカーボンブラック顔料を、絶縁性の高い樹脂皮膜で被覆して電気抵抗性を向上させたカーボンブラック顔料が提案されている。また、特許文献2には、表面を有機物処理した絶縁性カーボンブラック顔料あるいは樹脂で被覆して電気抵抗性を向上させたカーボンブラック顔料を使用して絶縁性ブラックマトリックスを形成させる方法が記載されている。
しかしながら、カーボンブラック顔料は本来、導電性を有する材料であり、樹脂被覆をしても絶縁性を充分に発揮することは困難であった。また、これらのカーボン粒子では、高い遮光率を有するとされているものの、可視光の遮蔽性が不充分であるという問題があった。
更に、カーボン粒子を樹脂着色剤、印刷インキ、塗料等の着色剤として使用する場合は、カーボン粒子が優れた分散性、着色性を有することが求められる。
一方で、近年はカーボン粒子の着色性を向上させるために、粒子径を大きくすることが行われているが、粒子径の大きいカーボン粒子は、インキや塗料のビヒクル並びに樹脂に配合した場合、沈降が起こりやすく、分散性や流動性の低下を引き起こすという問題があった。
また、粒子径にバラツキが少なく、単分散性の高い黒色粒子は、電子ペーパー等に利用されている電気泳動型の表示素子に有用であるが、カーボンブラックのような従来のカーボン粒子では、単分散性が不充分であり、凝集が起こりやすいという課題があった。
特許第3543501号公報 特許第4338479号公報
本発明は、上記現状に鑑み、電気絶縁性が高く、可視光領域において高い黒色性を有し、分散性に優れる黒色粒子、及び、該黒色粒子の製造方法を提供することを目的とする。
本発明は、アモルファスカーボンを含有する黒色粒子であって、前記アモルファスカーボンは、オキサジン樹脂が含有するカーボンに由来するものであり、比重が1.8g/cm以下、ゼータ電位が-70~+80mV、波長400~800nmで測定した全光線反射率の平均が5%以下、ラマンスペクトルで測定した場合のGバンドとDバンドのピーク強度比が1.2以上である黒色粒子である。
以下、本発明を詳述する。
本発明者らは、鋭意検討した結果、所定の樹脂由来のカーボンを含有し、比重、ゼータ電位、波長400~800nmでの全光線反射率の平均、GバンドとDバンドのピーク強度比が所定の範囲内である黒色粒子は、電気絶縁性が高く、可視光領域において高い黒色性を有し、分散性に優れるものとなることを見出し、本発明を完成させるに至った。
本発明の黒色粒子は、アモルファスカーボンを含有するものである。
このようなアモルファスカーボンを含有することで、従来のカーボン系黒色粒子に比べ、作製が容易のため低コストで得られるだけではなく、より高い球形度と分散性も有するため、高性能の黒色顔料として利用することができる。
本発明の黒色粒子を構成するアモルファスカーボンは、sp2結合とsp3結合が混在したアモルファス構造を有し、炭素からなるものであるが、ラマンスペクトルを測定した場合のGバンドとDバンドのピーク強度比が1.2以上である。
上記アモルファスカーボンをラマン分光で測定した場合、sp2結合に対応したGバンド(1580cm-1付近)及びsp3結合に対応したDバンド(1360cm-1付近)の2つのピークが明確に観察される。なお、炭素材料が結晶性の場合には、上記の2バンドのうち、何れかのバンドが極小化してゆく。例えば、単結晶ダイヤモンドの場合は1580cm-1付近のGバンドが殆ど観察されない。一方、高純度グラファイト構造の場合は、1360cm-1付近のDバンドが殆ど現れない。
本発明では、特にGバンドとDバンドのピーク強度比(Gバンドでのピーク強度/Dバンドでのピーク強度)が1.2以上であることで、形成された黒色粒子の緻密性が高く、高温における粒子間の焼結抑制効果も優れることとなる。
上記ピーク強度比が1.2未満であると、粒子の緻密性と高温における焼結抑制効果が不十分であることだけではなく、粒子強度も低下することとなる。
上記ピーク強度比は1.7以上であることがより好ましく、10以下であることがより好ましい。
本発明の黒色粒子は、カーボン以外の元素を含有しても良い。カーボン以外の元素としては、例えば、窒素、水素、酸素等が挙げられる。このような元素の含有量は、カーボンとカーボン以外の元素との合計に対して、10原子%以下であることが好ましい。
また、本発明の黒色粒子は、樹脂成分を含有してもよい。
本発明の黒色粒子を構成するアモルファスカーボンは、オキサジン樹脂が含有するカーボンに由来するものである。上記オキサジン樹脂は低温で炭化が可能であることから、コストを低減することが可能となる。
上記オキサジン樹脂は、一般にフェノール樹脂に分類される樹脂であるが、フェノール類とホルムアルデヒドに加えて、さらにアミン類を加えて反応させることで得られる熱硬化樹脂である。なお、フェノール類において、フェノール環にさらにアミノ基があるようなタイプ、例えば、パラアミノフェノールのようなフェノールを用いる場合には、上記反応でアミン類を加える必要はなく、炭化もしやすい傾向にある。炭化のしやすさでは、ベンゼン環ではなく、ナフタレン環を用いることで、さらに炭化がしやすくなる。
上記オキサジン樹脂としては、ベンゾオキサジン樹脂、ナフトオキサジン樹脂があり、このうち、ナフトオキサジン樹脂は、最も低温で炭化しやすいため好適である。以下にオキサジン樹脂の構造の一部として、ベンゾオキサジン樹脂の部分構造を式(1)に、ナフトキサジン樹脂の部分構造を式(2)に示す。
このように、オキサジン樹脂とは、ベンゼン環又はナフタレン環に付加した6員環をもつ樹脂のことをさし、その6員環には、酸素と窒素が含まれ、これが名前の由来となっている。
Figure JPOXMLDOC01-appb-C000001
上記オキサジン樹脂を用いることにより、エポキシ樹脂等の他の樹脂に比べてかなり低温で黒色粒子を得ることが可能となる。具体的には200℃以下の温度で炭化が可能である。特に、ナフトキサジン樹脂を用いることで、より低温で炭化させることができる。
このように、オキサジン樹脂を用いて、より低温で炭化させることにより、適当な溶媒において、アモルファスカーボンを含有する黒色粒子を形成することができる。
このような方法でアモルファスカーボンを含有する黒色粒子を形成できる理由については明らかではないが、例えば、オキサジン樹脂としてナフタレンオキサジン樹脂を使用した場合、樹脂中のナフタレン構造が低温加熱によって局部的に繋がり、分子レベルで層状構造が形成されるためであると考えられる。上記層状構造は、高温処理されていないため、グラファイトのような長距離の周期構造までは進展しないため、結晶性は示さない。
得られたカーボンが、グラファイトのような構造であるか、アモルファス構造であるかは、後述するX線回折法によって、2θが26.4°の位置にピークが検出されるか否かにより確認することができる。
上記ナフトキサジン樹脂の原料として用いられるのは、フェノール類であるジヒドロキシナフタレンと、トリアジンやホルムアルデヒド、アミン類である。なお、これらについては後に詳述する。
上記アモルファスカーボンは、上記オキサジン樹脂を40~350℃の温度で熱処理することにより得られるものであることが好ましい。本発明では、低温で炭化が可能なナフトオキサジン樹脂を用いていることで、比較的低温でアモルファスカーボンとすることが可能となる。
写真を画像解析装置を用いて、解析処理することにより測定することができ、平均球形度は、電子顕微鏡写真中において任意に選ばれた例えば100個の粒子について、球形度の平均値を求めることにより算出することができる。
このように低温で得られることで、従来より低コスト、且つ簡便なプロセスで作製できるという利点がある。
上記熱処理の温度は50~300℃であることが好ましい。
本発明の黒色粒子は、ゼータ電位(表面電位)が-70~+80mVである。
上記範囲内とすることで、粒子径の均一性に優れ、溶媒中の分散性が良好な黒色粒子とすることが可能となる。
上記ゼータ電位の好ましい下限は-60mV、好ましい上限は+70mVである。
なお、上記ゼータ電位は、例えば、顕微鏡電気泳動方式ゼータ電位測定装置を用いて、黒色粒子が分散した溶液を測定用セルに注入し、顕微鏡で観察しながら電圧をかけ、粒子が動かなくなった(静止した)時の電位を測定することで求めることができる。
本発明の黒色粒子は、波長400~800nmで測定した全光線反射率の平均が5%以下である。上記範囲内とすることで、可視光の大部分が黒色粒子に吸収されることから、可視光領域において高い黒色性を発現させることが可能となる。上記全光線反射率の平均の好ましい上限は4.5%である。
なお、本発明の黒色粒子について、波長400~800nmで全光線反射率を測定した場合、全光線反射率が極大値を示すピークが検出されないことが好ましい。
上記全光線反射率は、例えば、積分球付きの分光光度計を用いて測定することができる。
本発明の黒色粒子は、平均粒子径の好ましい下限が0.005μm、好ましい上限が50μmである。平均粒子径が0.005μmから50μmまでの範囲内とすることで、十分な黒色度と高い分散性を得ることができる。より好ましい下限は0.01μm、より好ましい上限は40μmである。
本発明の黒色粒子は、粒子径の変動係数(CV値)が、20%以下であることが好ましい。上記粒子径のCV値が20%以下であると、黒色粒子の単分散性が良くなり、黒色顔料として利用する場合に粒子を最密充填しやすくなる。その結果、可視光に対する遮蔽効果を高めることが可能となる。上記粒子径のCV値のより好ましい上限は15%である。なお、下限については特に限定されないが0.5%が好ましい。
粒子径のCV値(%)とは、標準偏差を平均粒子径で割った値を百分率で表したものであり、下記式により求められる数値のことである。CV値が小さいほど粒子径のばらつきが小さいことを意味する。
 粒子径のCV値(%)=(粒子径の標準偏差/平均粒子径)×100
平均粒子径及び標準偏差は、例えば、FE-TEMを用いて測定することができる。
本発明の黒色粒子は、平均球形度が90%以上であることが好ましい。
これにより、本発明の効果を高めることができる。上記平均球形度のより好ましい下限は95%である。
なお、球形度(短径/長径)は、FE-TEMまたはFE-SEMを用いて撮影された電子顕微鏡写真を画像解析装置を用いて、解析処理することにより測定することができ、平均球形度は、電子顕微鏡写真中において任意に選ばれた例えば100個の粒子について、球形度の平均値を求めることにより算出することができる。
本発明の黒色粒子は、比重が1.8g/cm以下である。比重が1.8g/cm以下であることで、高い分散性を得ることができる。上記比重の好ましい下限は1.20g/cm、好ましい上限は1.70g/cmである。
本発明の黒色粒子は、体積抵抗率が1.0×10Ω・cm以上であることが好ましい。体積抵抗率が1.0×10Ω・cm以上であることで、高い絶縁性を確保することができる。より好ましくは1.0×10Ω・cm以上、更に好ましくは1.0×1011Ω・cm以上である。また、好ましい上限は1.0×1018Ω・cmである。
本発明の黒色粒子は、飛行時間型二次イオン質量分析法(TOF-SIMS)によって測定した場合、ベンゼン環に由来する質量スペクトル、及び、ナフタレン環に由来する質量スペクトルのうち少なくとも1つが検出されることが好ましい。
このようなベンゼン環、ナフタレン環に由来する質量スペクトルが検出されることで、オキサジン樹脂が含有するカーボンに由来するものであることを確認できると同時に、緻密性の粒子を得ることができる。
本願発明において、ベンゼン環に由来する質量スペクトルとは、77.12付近の質量スペクトルをいい、ナフタレン環に由来する質量スペクトルとは、127.27付近の質量スペクトルをいう。
なお、上記測定は、例えば、TOF-SIMS装置(ION-TOF社製)等を用いて行うことができる。
本発明の黒色粒子は、X線回折法によって測定した場合、2θが26.4°の位置にピークが検出されないことが好ましい。
上記2θが26.4°の位置のピークは、グラファイトの結晶ピークであり、このような位置にピークが検出されないことで、黒色粒子を形成するカーボンがアモルファス構造であるということができる。
なお、上記測定は、例えば、X線回折装置(SmartLab Multipurpose、リガク社製)等を用いて行うことができる。
本発明の黒色粒子を製造する方法としては、例えば、トリアジン、ジヒドロキシナフタレン及び溶媒を含有する混合溶液を反応させる工程を有する方法、ホルムアルデヒド、脂肪族アミン、ジヒドロキシナフタレン及び溶媒を含有する混合溶液を反応させる工程を有する方法等が挙げられる。
本発明の黒色粒子の製造方法では、最初にトリアジン、ジヒドロキシナフタレン及び溶媒を含有する混合溶液や、ホルムアルデヒド、脂肪族アミン、ジヒドロキシナフタレン及び溶媒を含有する混合溶液等の混合溶液を調製する。
上記ホルムアルデヒドは不安定であるので、ホルムアルデヒド溶液であるホルマリンを用いることが好ましい。ホルマリンは、通常、ホルムアルデヒド及び水に加えて、安定剤として少量のメタノールが含有されている。本発明で用いられるホルムアルデヒドは、ホルムアルデヒド含量が明確なものであれば、ホルマリンであっても構わない。
また、ホルムアルデヒドには、その重合形態としてパラホルムアルデヒドがあり、こちらの方も原料として使用可能であるが、反応性が劣るため、好ましくは上記したホルマリンが用いられる。
上記脂肪族アミンは一般式R-NHで表され、Rは炭素数5以下のアルキル基であることが好ましい。炭素数5以下のアルキル基としては、以下に制限されないが、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、シクロプロピル基、n-ブチル基、イソブチル基、s-ブチル基、t-ブチル基、シクロブチル基、シクロプロピルメチル基、n-ペンチル基、シクロペンチル基、シクロプロピルエチル基、及びシクロブチルメチル基が挙げられる。
分子量を小さくする方が好ましいので、置換基Rは、メチル基、エチル基、プロピル基などが好ましく、実際の化合物名としては、メチルアミン、エチルアミン、プロピルアミン等が好ましく使用できる。最も好ましいものは、分子量が一番小さなメチルアミンである。
上記ジヒドロキシナフタレンとしては、多くの異性体がある。例えば、1,3-ジヒドロキシナフタレン、1,5-ジヒドロキシナフタレン、1,6-ジヒドロキシナフタレン、1,7-ジヒドロキシナフタレン、2,3-ジヒドロキシナフタレン、2,6-ジヒドロキシナフタレン、2,7-ジヒドロキシナフタレンが挙げられる。
このうち、反応性の高さから、1,5-ジヒドロキシナフタレン、2,6-ジヒドロキシナフタレンが好ましい。さらに1,5-ジヒドロキシナフタレンが最も反応性が高いので好ましい。
上記トリアジンを添加せずに、トリアジンの原料であるホルムアルデヒド、脂肪族アミンを添加する方法を用いる場合、上記混合溶液中におけるジヒドロキシナフタレン、脂肪族アミン、ホルムアルデヒドの3成分の比率については、ジヒドロキシナフタレン1モルに対して、脂肪族アミンを1モル、ホルムアルデヒドを2モル配合することが最も好ましい。
反応条件によっては、反応中に揮発などにより原料を失うので、最適な配合比は正確に上記比率とは限らないが、ジヒドロキシナフタレン1モルに対して、脂肪族アミンを0.8~1.2モル、ホルムアルデヒドを1.6~2.4モルの配合比の範囲で配合することが好ましい。
上記脂肪族アミンを0.8モル以上とすることにより、オキサジン環を十分に形成することができ、重合を好適に進めることができる。また1.2モル以下とすることにより、反応に必要なホルムアルデヒドを余計に消費することがないため、反応が順調に進み、所望のナフトキサジンを得ることができる。同様に、ホルムアルデヒドを1.6モル以上とすることで、オキサジン環を充分に形成することができ、重合を好適に進めることができる。また2.4モル以下とすることで、副反応の発生を低減できるため好ましい。
上記混合溶液は、上記2原料又は3原料を溶解し、反応させるための溶媒を含有する。
上記溶媒としては、例えば、メタノール、エタノール、イソプロパノール等のアルコール類、アセトン、メチルエチルケトン等のケトン類、テトラヒドロフラン、ジオキサン、クロロホルム、酢酸エチル、ジメチルホルムアミド、ジメチルスルホキシド等が挙げられる。
上記溶媒としては、単一成分のみを使ってもよく、二種類以上の混合溶媒を使ってもよい。上記溶媒としては、溶解度パラメーター(SP値)が9.0以上であるものを使用することが好ましい。
上記SP値が9.0以上の溶媒としては、エタノール(12.7)、メタノール(14.7)、イソプロパノール(11.5)、クレゾール(13.3)、エチレングリコール(14.2)、フェノール(14.5)、水(23.4)、DMF(N,N-ジメチルホルムアミド、12.3)、ジメチルスルホキシド(DMSO、13.0)、メチルエチルケトン(9.3)、ジオキサン(10.3)、酢酸エチル(9.0)、クロロホルム(9.4)、アセトン(10.0)等が挙げられる。
上記SP値が9.0以上の溶媒としては、SP値が9.0~15.0である溶媒がより好ましい。また、上記溶媒を単一成分のみを使う場合は、沸点が50~150℃であることが好ましい。沸点が50~130℃、かつ、SP値が9.0以上である溶媒を含有することが更に好ましい。
また、上記溶媒が2種類以上の溶媒から構成される混合溶媒である場合、上記混合溶媒は、沸点150℃以上の溶媒を含有し、かつ、上記沸点150℃以上の溶媒の含有量が60体積%以下であることが好ましい。これにより、平均球形度の高い黒色粒子が得ることができる。
上記沸点が150℃以下である溶媒の含有量のより好ましい下限は45体積%である。
上記混合溶液中の溶媒の添加量は特に限定されないが、ジヒドロキシナフタレン、トリアジン、脂肪族アミン及びホルムアルデヒドを含む原料(溶質)を100質量部とした場合は、通常300~200000質量部で配合することが好ましい(溶質のモル濃度1.0M~0.001Mに相当)。上記300質量部以上とすることで、溶質の溶解性が高くなり、200000質量部以下とすることで、濃度が適度なものとなることで反応が進行しやすくなる。
本発明の黒色粒子の製造方法では、上記混合溶液を反応させる工程を行う。反応を進行させることにより、ポリナフトキサジン樹脂を形成した後、アモルファスカーボンを含有する黒色粒子を作製することができる。
上記反応では、加温を続けることで、作製されたオキサジン環が開き、重合が起こると分子量が増加し、いわゆるポリナフトキサジン樹脂となる。
また、粒子の作製を均一に行うためには、反応時に粒子が分散された状態が好ましい。分散方法としては、撹拌、超音波、回転など公知の方法が利用できる。また、分散状態を改善するために、適当な分散剤を添加しても良い。
本発明の黒色粒子の製造方法では、反応させる際の加熱温度は50~350℃とすることが好ましい。これにより、ポリナフトキサジン樹脂が重合された後、ポリナフトキサジン樹脂が炭化されてアモルファスカーボンを含有する黒色粒子とすることができる。本発明では、低温で炭化が可能なオキサジン樹脂を用いていることから、低温でアモルファスカーボンとすることが可能となる。
上記加熱処理は、空気中で行っても良いし、窒素、アルゴンなどの不活性ガス中で行っても良い。熱処理温度が200℃以上の場合は、不活性ガス雰囲気の方がより好ましい。
なお、加熱温度を100℃以上とする場合は、反応を加圧容器中で行うことが好ましい。
上記混合溶液を反応させる工程は、1段階で行ってもよく、2段階に分けて行っても良い。
上記2段階に分けて行う方法としては、上記混合溶液を反応させてポリオキサジン樹脂粒子を形成する工程と、形成されたポリオキサジン樹脂粒子を所定の温度で加熱処理することにより炭化させる工程を有することが好ましい。
上記ポリオキサジン樹脂粒子を形成する工程は、室温でも反応が徐々に進行するが、反応を効率的に進行させるためには、50~150℃の温度で行うことが好ましい。また、反応時間は、温度によって調整可能であり、通常30分から20時間であることが好ましい。上記条件での反応によって、球状のポリオキサジン樹脂粒子が得られる。この工程で得られたポリオキサジン樹脂粒子は、反応条件によって、緑色、茶色、または黒色を示す。
なお、ポリオキサジン樹脂粒子の粒子径は溶液の濃度、反応温度、原料のモル比および撹拌条件などのパラメータによって調整することができる。
上記形成されたポリオキサジン樹脂粒子を所定の温度で加熱処理することにより炭化させる工程において、加熱温度は100~350℃が好ましい。加熱処理時間は特に限定されないが、炭化の完全性と経済的な観点から、1~30時間が好ましい。これにより、ポリナフトキサジン樹脂が炭化されてアモルファスカーボンを含有する黒色粒子とすることができる。通常の樹脂では、炭化させるためにより高い温度が必要であるが、本発明では、低温で炭化が可能なオキサジン樹脂を用いていることから、150℃のような低温でもアモルファスカーボンとすることが可能となる。
上記加熱処理は、空気中で行っても良いし、窒素、アルゴンなどの不活性ガス中で行っても良い。熱処理温度が200℃以上の場合は、不活性ガス雰囲気の方がより好ましい。
更に、上記反応工程を行った後に、熱風や真空乾燥等により溶媒を乾燥除去する乾燥工程を有してもよい。加熱乾燥方法についても特に制限はない。
加えて、上記乾燥工程を行った後、加熱を行う後処理工程を行うことが好ましい。上記後処理工程における加熱温度は100~350℃とすることが好ましく、加熱時間は30分から30時間であることが好ましい。
本発明の黒色粒子は、黒色顔料、充填剤、耐候性改善剤等や、電子ペーパー等の表示素子等の用途に使用することができる。
本発明によれば、電気絶縁性が高く、可視光領域において高い黒色性を有し、分散性に優れる黒色粒子、及び、該黒色粒子の製造方法を提供することが可能となる。
実施例1で得られた粒子のFE-SEM像である。 実施例2で得られた粒子のFE-SEM像である。 比較例1で得られた粒子のFE-SEM像である。 比較例2で得られた粒子のFE-SEM像である。
以下に実施例を掲げて本発明の態様を更に詳しく説明するが、本発明はこれら実施例のみに限定されない。
(実施例1)
1,5-ジヒドロキシナフタレン(1,5-DHN、東京化成社製)1.20gと、1,3,5-トリアジン(東京化成社製)0.98gをエタノール50mlに順次溶解し、エタノール混合溶液を作製した。
次に、得られた混合溶液を80℃で1時間加熱撹拌(回転数:300rpm)した。溶液をガラスフィルターで濾過し、エタノールで3回洗浄した後に、50℃で3時間真空乾燥した。その後、110℃で2時間加熱することで、黒色のカーボン粒子を得た。
80℃で1時間加熱した混合溶液について、核磁気共鳴スペクトル(NMRスペクトル)測定を行ったところ、ナフトキサジン環の「ベンゼン環-CH-N」のメチレン基に対応したピーク(3.95ppm)と、「O-CH-N」のメチレン基に対応したピーク(4.92ppm)がほぼ同強度で検出され、ナフトキサジン環を含有する樹脂成分が生成したことが確認された。
なお、核磁気共鳴スペクトル測定は、Varian Inova社製のH-NMR(600MHz)を用いて行い、測定に際して、重水素ジメチルスルホキシドを使用し、スペクトル積算回数は256回、緩和時間は10秒とした。
また、得られたカーボン粒子をAlmega XR(Thermo Fisher Scientific社製)を用いてラマン分光で測定したところ、GバンドとDバンドで共にピークが観察され、ナフトキサジン樹脂はアモルファスカーボンへと変化していると判断できた。
また、GバンドとDバンドのピーク強度比は1.8であった。なお、レーザー光は530nmとした。
(実施例2)
実施例1において、エタノール50mlに代えて、エタノール35ml、DMF(N,N-ジメチルホルムアミド)15mlを使用し、80℃で6時間加熱撹拌した以外は実施例1と同様にして黒色のカーボン粒子を得た。なお、乾燥後の加熱温度は200℃とした。
(実施例3)
実施例1において、エタノール50mlに代えて、エタノール20ml、DMF(N,N-ジメチルホルムアミド)30mlを使用し、80℃で6時間加熱撹拌した以外は実施例1と同様にして黒色のカーボン粒子を得た。なお、乾燥後の加熱温度は350℃とした。
(実施例4)
1,5-ジヒドロキシナフタレン(東京化成社製)0.012gと、40%メチルアミン(和光純薬工業社製)0.006gと、37%ホルムアルデヒド水溶液(和光純薬工業社製)0.012gとをエタノール50mlに順次溶解し、エタノール混合溶液を作製した。
次に、得られた混合溶液を50℃の超音波槽にて2時間処理した(超音波周波数:Hz)。その後、溶液をガラスフィルターで濾過し、粒子をエタノールで3回洗浄した。回収した粒子を50℃で3時間真空乾燥した後に、110℃で2時間熱処理した。黒色のカーボン粒子を得た。
(比較例1)
実施例1において、エタノール50mlに代えて、DMF50mlを使用し、80℃で6時間加熱撹拌した以外は実施例1と同様にしてカーボン粒子を得た。なお、乾燥後の加熱温度は110℃とした。
(比較例2)
実施例1において、エタノール50mlに代えて、エタノール15ml、DMF35mlgを使用し、80℃で6時間加熱撹拌した以外は実施例1と同様にしてカーボン粒子を得た。なお、乾燥後の加熱温度は150℃とした。
(比較例3)
100gの純水に12.3gのホルムアルデヒド溶液(37重量%)を添加し、その後、撹拌しながら9gのレゾルシノール(m-ジヒドロキシベンゼン)を添加した。その後、0.45gの炭酸ナトリウムを上記溶液に添加し、50℃で5時間反応させた。得られた生成物を濾過、洗浄を経て、110℃の真空乾燥機で真空を引きながら乾燥することでカーボン粒子を得た。
(比較例4)
平均粒子径約48nmのアセチレンブラック粒子(デンカ社製、Li-400)を用いた。
(評価方法)
(1)平均粒子径、CV値及び平均球形度
実施例と比較例で得られた粒子のFE-SEM像を画像解析ソフト(WINROOF、三谷商事社製)を用いて解析することにより、平均粒子径を測定した。
また、標準偏差を算出し、得られた数値から粒子径の変動係数(CV値)を算出した。
更に、粒子の最小径と最大径の比から球形度を求め、平均球形度を算出した。
なお、実施例1、2及び比較例1、2のFE-SEM像を図1~4に示す。図3、4に示すように、比較例1、2では球形粒子が得られなかったため、評価(1)~(5)及び(8)は行わなかった。
(2)比重
実施例と比較例で得られた粒子の比重を、乾式自動密度計(島津製作所社製、アキュピックII134)を用いて測定した(サンプル量:0.2g)。
(3)体積抵抗率
実施例と比較例で得られた粒子の体積抵抗率を、粉体抵抗測定システム(三菱化学アナリテック社製)を用いて、荷重15Nでの体積抵抗値を測定した。
(4)全光線反射率
実施例と比較例で得られた粒子について、積分球付き分光光度計(日立製作所社製、U-4100型)を用いて、400~800nmの全可視光領域の反射スペクトルを測定し、その反射率の平均値を求めた。
(5)分散性
実施例と比較例で得られた粒子の分散性を、遠心沈降・光透過方式の分散安定性分析装置(L.U.M社製LUMiSizer612)を用いて評価した。具体的には、ポリビニールアルコール(PVA)の5%水溶液に対して粒子を5重量%の割合で分散した組成物約1mlをガラス製分析セルに入れ、その上澄み液に光を照射し、1時間あたりの透過する光量の変化量の積分値を求め、分散性を以下の基準で評価した。
1時間後の光量の変化量の5%以下の場合:〇
1時間後の光量の変化量の5%を超える場合:×
(6)TOF-SIMS測定
得られた粒子について、TOF-SIMS 5型装置(ION-TOF社製)を用いて、飛行時間型二次イオン質量分析法(Time-of-Flight Secondary Mass Spectrometry,TOF-SIMS)によるベンゼン環に由来する質量スペクトル(77.12付近)、及び、ナフタレン環に由来する質量スペクトル(127.27付近)の確認を行った。なお、TOF-SIMS測定は、下記のような条件で行った。また、空気中や保管ケースに由来するコンタミをできるだけ避けるために、サンプル作製後に、シリコンウェハー保管用クリーンケースにて保管した。
≪測定条件≫
一次イオン:209Bi+1
イオン電圧:25kV
イオン電流:1pA
質量範囲:1~300mass
分析エリア:500×500μm
チャージ防止:電子照射中和
ランダムラスタスキャン
(7)X線回折
X線回折装置(SmartLab Multipurpose、リガク社製)を用い、以下の測定条件で測定した。
≪測定条件≫
X線波長:CuKα1.54A、測定範囲:2θ=10~70°、スキャン速度:4°/min、ステップ:0.02°
得られた回折データについて、2θ=26.4°の位置にピークが検出されるか否かを確認した。
(8)ゼータ電位
顕微鏡電気泳動方式ゼータ電位測定装置(MODEL 502、日本ルフト社製)を用いて、粒子のゼータ電位を測定した。具体的には、濃度0.01MのKCl水溶液を支持電解質として用い、少量の黒色粒子を分散したKCl溶液を測定用セルに注入した。その後、顕微鏡で観察しながら電圧をかけ、粒子が動かなくなる(静止する)まで調整し、その時の電位をゼータ電位とした。
Figure JPOXMLDOC01-appb-T000002
本発明によれば、電気絶縁性が高く、可視光領域において高い黒色性を有し、分散性に優れる黒色粒子、及び、該黒色粒子の製造方法を提供することができる。

Claims (10)

  1. アモルファスカーボンを含有する黒色粒子であって、
    前記アモルファスカーボンは、オキサジン樹脂が含有するカーボンに由来するものであり、
    比重が1.8g/cm以下、
    ゼータ電位が-70~+80mV、
    波長400~800nmで測定した全光線反射率の平均が5%以下、
    ラマンスペクトルで測定した場合のGバンドとDバンドのピーク強度比が1.2以上である
    ことを特徴とする黒色粒子。
  2. 平均粒子径が0.005~50μm、平均球形度が90%以上、変動係数(CV値)が20%以下であることを特徴とする請求項1記載の黒色粒子。
  3. 体積抵抗率が1.0×10Ω・cm以上であることを特徴とする請求項1又は2記載の黒色粒子。
  4. 波長400~800nmで測定した全光線反射率の平均が4.5%以下であることを特徴とする請求項1、2又は3記載の黒色粒子。
  5. 飛行時間型二次イオン質量分析法(TOF-SIMS)によって被覆層を測定した場合、ベンゼン環に由来する質量スペクトル、及び、ナフタレン環に由来する質量スペクトルのうち少なくとも1つが検出されることを特徴とする請求項1、2、3又は4記載の黒色粒子。
  6. X線回折法によって被覆層を測定した場合、2θが26.4°の位置にピークが検出されないことを特徴とする請求項1、2、3、4又は5記載の黒色粒子。
  7. 請求項1、2、3、4、5又は6記載の黒色粒子を製造する方法であって、
    トリアジン、ジヒドロキシナフタレン及び溶媒を含有する混合溶液を反応させる工程を有することを特徴とする黒色粒子の製造方法。
  8. 請求項1、2、3、4、5又は6記載の黒色粒子を製造する方法であって、
    ホルムアルデヒド、脂肪族アミン、ジヒドロキシナフタレン及び溶媒を含有する混合溶液を反応させる工程を有することを特徴とする黒色粒子の製造方法。
  9. 溶媒は、単一成分のみからなるものであり、溶解度パラメーター(SP値)が9.0以上、沸点が150℃以下であることを特徴とする請求項7又は8記載の黒色粒子の製造方法。
  10. 溶媒は、2種類以上の溶媒から構成される混合溶媒であり、前記混合溶媒は、沸点150℃以上の溶媒を含有し、かつ、前記沸点150℃以上の溶媒の含有量が60体積%以下であることを特徴とする請求項7又は8記載の黒色粒子の製造方法。
PCT/JP2017/005999 2016-02-18 2017-02-17 黒色粒子及び黒色粒子の製造方法 WO2017142087A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201780002945.9A CN107949606B (zh) 2016-02-18 2017-02-17 黑色粒子以及黑色粒子的制造方法
US16/066,771 US20180354798A1 (en) 2016-02-18 2017-02-17 Black particles and process for producing black particles
JP2017518168A JP6941837B2 (ja) 2016-02-18 2017-02-17 黒色粒子及び黒色粒子の製造方法
KR1020187006979A KR102658084B1 (ko) 2016-02-18 2017-02-17 흑색 입자 및 흑색 입자의 제조 방법
EP17753341.1A EP3418334A4 (en) 2016-02-18 2017-02-17 BLACK PARTICLES AND PROCESS FOR PRODUCING BLACK PARTICLES

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-029267 2016-02-18
JP2016029267 2016-02-18

Publications (1)

Publication Number Publication Date
WO2017142087A1 true WO2017142087A1 (ja) 2017-08-24

Family

ID=59625259

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/005999 WO2017142087A1 (ja) 2016-02-18 2017-02-17 黒色粒子及び黒色粒子の製造方法

Country Status (7)

Country Link
US (1) US20180354798A1 (ja)
EP (1) EP3418334A4 (ja)
JP (1) JP6941837B2 (ja)
KR (1) KR102658084B1 (ja)
CN (1) CN107949606B (ja)
TW (1) TWI739802B (ja)
WO (1) WO2017142087A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019085298A (ja) * 2017-11-07 2019-06-06 株式会社日本触媒 炭素材料の製造方法
WO2020171168A1 (ja) * 2019-02-20 2020-08-27 積水化学工業株式会社 樹脂組成物、硬化物、ブラックマトリックス、カラーフィルタ、液晶表示装置、有機エレクトロルミネッセンス表示装置及び樹脂組成物の製造方法
JP2020186307A (ja) * 2019-05-14 2020-11-19 積水化学工業株式会社 カーボン被覆粒子及び黒色顔料
WO2021100699A1 (ja) 2019-11-18 2021-05-27 積水化学工業株式会社 黒色粒子、黒色塗料、塗膜及びカラーフィルター用ブラックマトリクス
WO2022045341A1 (ja) * 2020-08-31 2022-03-03 積水化学工業株式会社 近赤外線透過性黒色材料

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI821522B (zh) * 2019-04-04 2023-11-11 日商納美仕有限公司 多孔質碳及樹脂組成物
KR102380787B1 (ko) 2019-09-24 2022-03-31 서울과학기술대학교 산학협력단 흑색 이산화티탄을 이용한 전기영동 디스플레이용 안료 및 잉크

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS543501B1 (ja) 1971-03-19 1979-02-23
JPH06505693A (ja) * 1991-03-12 1994-06-30 エデイソン・ポリマー・イノベイシヨン・コーポレイシヨン ベンズオキサジンによるコンポジットの緻密化
JPH1197011A (ja) * 1997-09-17 1999-04-09 Unitika Ltd 非水リチウム二次電池
JP2004285195A (ja) * 2003-03-20 2004-10-14 Lignyte Co Ltd カーボン・オキサジン系化合物複合成形材料及び燃料電池用セパレータ
WO2007129640A1 (ja) * 2006-05-01 2007-11-15 Sekisui Chemical Co., Ltd. 樹脂焼成物及びこれを搭載した電子機器
JP4338479B2 (ja) 2003-09-04 2009-10-07 富士フイルム株式会社 カラーフィルター及びその製造方法
JP2011068829A (ja) * 2009-09-28 2011-04-07 Sekisui Chem Co Ltd 耐熱膜の製造方法
WO2013027674A1 (ja) * 2011-08-19 2013-02-28 積水化学工業株式会社 炭素繊維複合材
JP2014162116A (ja) * 2013-02-26 2014-09-08 Sekisui Chem Co Ltd 繊維複合材、繊維複合材の製造方法、繊維束及び繊維束の製造方法
JP2015093883A (ja) * 2013-11-08 2015-05-18 積水化学工業株式会社 炭素繊維複合材及び炭素繊維
WO2016047606A1 (ja) * 2014-09-22 2016-03-31 積水化学工業株式会社 カーボン被覆二酸化バナジウム粒子
JP2016097654A (ja) * 2014-11-26 2016-05-30 積水化学工業株式会社 繊維基材、樹脂シート、繊維基材の製造方法及び樹脂シートの製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3576433B2 (ja) * 1999-10-18 2004-10-13 群栄化学工業株式会社 球状フェノール樹脂の製造方法
CN101157451B (zh) * 2007-09-16 2011-04-06 中国科学院山西煤炭化学研究所 一种树脂基球炭的制备方法
CN101830457B (zh) * 2010-05-20 2012-01-25 湖南大学 一种炭微球的制备方法及杂多酸在炭微球制备和石墨化中的应用
CN102225996B (zh) * 2011-05-06 2013-07-31 大连理工大学 一种苯并噁嗪树脂纳米聚合物球及炭球的制备方法
EP2922786A4 (en) * 2012-11-26 2016-07-20 Georgia Pacific Chemicals Llc PREPARATION OF POLYMERIC RESINS AND CARBON MATERIALS

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS543501B1 (ja) 1971-03-19 1979-02-23
JPH06505693A (ja) * 1991-03-12 1994-06-30 エデイソン・ポリマー・イノベイシヨン・コーポレイシヨン ベンズオキサジンによるコンポジットの緻密化
JPH1197011A (ja) * 1997-09-17 1999-04-09 Unitika Ltd 非水リチウム二次電池
JP2004285195A (ja) * 2003-03-20 2004-10-14 Lignyte Co Ltd カーボン・オキサジン系化合物複合成形材料及び燃料電池用セパレータ
JP4338479B2 (ja) 2003-09-04 2009-10-07 富士フイルム株式会社 カラーフィルター及びその製造方法
WO2007129640A1 (ja) * 2006-05-01 2007-11-15 Sekisui Chemical Co., Ltd. 樹脂焼成物及びこれを搭載した電子機器
JP2011068829A (ja) * 2009-09-28 2011-04-07 Sekisui Chem Co Ltd 耐熱膜の製造方法
WO2013027674A1 (ja) * 2011-08-19 2013-02-28 積水化学工業株式会社 炭素繊維複合材
JP2014162116A (ja) * 2013-02-26 2014-09-08 Sekisui Chem Co Ltd 繊維複合材、繊維複合材の製造方法、繊維束及び繊維束の製造方法
JP2015093883A (ja) * 2013-11-08 2015-05-18 積水化学工業株式会社 炭素繊維複合材及び炭素繊維
WO2016047606A1 (ja) * 2014-09-22 2016-03-31 積水化学工業株式会社 カーボン被覆二酸化バナジウム粒子
JP2016097654A (ja) * 2014-11-26 2016-05-30 積水化学工業株式会社 繊維基材、樹脂シート、繊維基材の製造方法及び樹脂シートの製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3418334A4

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019085298A (ja) * 2017-11-07 2019-06-06 株式会社日本触媒 炭素材料の製造方法
JP7112192B2 (ja) 2017-11-07 2022-08-03 株式会社日本触媒 炭素材料の製造方法
WO2020171168A1 (ja) * 2019-02-20 2020-08-27 積水化学工業株式会社 樹脂組成物、硬化物、ブラックマトリックス、カラーフィルタ、液晶表示装置、有機エレクトロルミネッセンス表示装置及び樹脂組成物の製造方法
JP7480035B2 (ja) 2019-02-20 2024-05-09 積水化学工業株式会社 樹脂組成物、硬化物、ブラックマトリックス、カラーフィルタ、液晶表示装置、有機エレクトロルミネッセンス表示装置及び樹脂組成物の製造方法
JP2020186307A (ja) * 2019-05-14 2020-11-19 積水化学工業株式会社 カーボン被覆粒子及び黒色顔料
JP7289477B2 (ja) 2019-05-14 2023-06-12 積水化学工業株式会社 カーボン被覆粒子及び黒色顔料
WO2021100699A1 (ja) 2019-11-18 2021-05-27 積水化学工業株式会社 黒色粒子、黒色塗料、塗膜及びカラーフィルター用ブラックマトリクス
CN114502677A (zh) * 2019-11-18 2022-05-13 积水化学工业株式会社 黑色粒子、黑色涂料、涂膜及滤色器用黑色矩阵
KR20220104142A (ko) 2019-11-18 2022-07-26 세키스이가가쿠 고교가부시키가이샤 흑색 입자, 흑색 도료, 도막 및 컬러 필터용 블랙 매트릭스
CN114502677B (zh) * 2019-11-18 2023-11-14 积水化学工业株式会社 黑色粒子、黑色涂料、涂膜及滤色器用黑色矩阵
WO2022045341A1 (ja) * 2020-08-31 2022-03-03 積水化学工業株式会社 近赤外線透過性黒色材料

Also Published As

Publication number Publication date
KR102658084B1 (ko) 2024-04-16
TWI739802B (zh) 2021-09-21
CN107949606A (zh) 2018-04-20
US20180354798A1 (en) 2018-12-13
JPWO2017142087A1 (ja) 2018-12-13
TW201733788A (zh) 2017-10-01
EP3418334A1 (en) 2018-12-26
EP3418334A4 (en) 2019-10-09
KR20180115664A (ko) 2018-10-23
JP6941837B2 (ja) 2021-09-29
CN107949606B (zh) 2021-10-12

Similar Documents

Publication Publication Date Title
WO2017142087A1 (ja) 黒色粒子及び黒色粒子の製造方法
JP5926868B1 (ja) カーボン被覆二酸化バナジウム粒子
Bian et al. Unveiling the effects of hydrolysis‐derived DMAI/DMAPbIx intermediate compound on the performance of CsPbI3 solar cells
CN108698829B (zh) 表面处理石墨烯、表面处理石墨烯/有机溶剂分散液、表面处理石墨烯-电极活性物质复合体粒子及电极糊
US11404686B2 (en) Negative electrode active material for lithium ion battery
EP3213912A1 (en) Carbon coated heat conducting material
US10741832B2 (en) Positive electrode active material for lithium ion battery
CN113851701A (zh) Lgps系固体电解质的制造方法
CN110635119A (zh) 核壳结构体及其制造方法、负极用组合物及其制造方法、负极及二次电池
EP3929252A1 (en) Resin composition, cured product, black matrix, color filter, liquid crystal display device, organic electroluminescent display device, and method for producing resin composition
Mandal et al. Highly Efficient and Stable Inverted Perovskite Solar Cell Using Pure δ‐FAPbI3 Single Crystals
EP3778786A1 (en) Systems, compositions, and methods for enhanced electromagnetic shielding and corrosion resistance
CN108025358B (zh) 导电材料用粉末、导电材料用油墨、导电糊剂以及导电材料用粉末的制造方法
WO2022045341A1 (ja) 近赤外線透過性黒色材料
JP4970836B2 (ja) 化学的作用基を導入しセラミック粉末及びスラリーを安定化させる方法
CN112960691B (zh) 用于短波ir设备的全无机钙钛矿材料
WO2020073101A1 (en) Graphitic compositions, coatings and materials
WO2024090406A1 (ja) ニオブ酸リチウム分散液
TWI672856B (zh) 鋰離子電池用正極活性物質
JP2023107750A (ja) グラフェン分散液およびグラフェン樹脂複合膜
JP2015078109A (ja) ZnO:Gaナノ粒子の合成方法及びZnO:Ga膜の製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017518168

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17753341

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20187006979

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017753341

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017753341

Country of ref document: EP

Effective date: 20180918