WO2022045341A1 - 近赤外線透過性黒色材料 - Google Patents

近赤外線透過性黒色材料 Download PDF

Info

Publication number
WO2022045341A1
WO2022045341A1 PCT/JP2021/031817 JP2021031817W WO2022045341A1 WO 2022045341 A1 WO2022045341 A1 WO 2022045341A1 JP 2021031817 W JP2021031817 W JP 2021031817W WO 2022045341 A1 WO2022045341 A1 WO 2022045341A1
Authority
WO
WIPO (PCT)
Prior art keywords
black material
group
infrared
resin
oxazine
Prior art date
Application number
PCT/JP2021/031817
Other languages
English (en)
French (fr)
Inventor
幹敏 末松
仁徳 孫
弘司 福井
正裕 石居
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to JP2021561029A priority Critical patent/JPWO2022045341A1/ja
Priority to EP21861762.9A priority patent/EP4174099A1/en
Priority to US18/021,451 priority patent/US20240043691A1/en
Priority to CN202180036323.4A priority patent/CN115668011A/zh
Publication of WO2022045341A1 publication Critical patent/WO2022045341A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B69/00Dyes not provided for by a single group of this subclass
    • C09B69/10Polymeric dyes; Reaction products of dyes with monomers or with macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/03Printing inks characterised by features other than the chemical nature of the binder
    • C09D11/037Printing inks characterised by features other than the chemical nature of the binder characterised by the pigment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G14/00Condensation polymers of aldehydes or ketones with two or more other monomers covered by at least two of the groups C08G8/00 - C08G12/00
    • C08G14/02Condensation polymers of aldehydes or ketones with two or more other monomers covered by at least two of the groups C08G8/00 - C08G12/00 of aldehydes
    • C08G14/04Condensation polymers of aldehydes or ketones with two or more other monomers covered by at least two of the groups C08G8/00 - C08G12/00 of aldehydes with phenols
    • C08G14/06Condensation polymers of aldehydes or ketones with two or more other monomers covered by at least two of the groups C08G8/00 - C08G12/00 of aldehydes with phenols and monomers containing hydrogen attached to nitrogen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B67/00Influencing the physical, e.g. the dyeing or printing properties of dyestuffs without chemical reactions, e.g. by treating with solvents grinding or grinding assistants, coating of pigments or dyes; Process features in the making of dyestuff preparations; Dyestuff preparations of a special physical nature, e.g. tablets, films
    • C09B67/006Preparation of organic pigments
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/10Printing inks based on artificial resins
    • C09D11/102Printing inks based on artificial resins containing macromolecular compounds obtained by reactions other than those only involving unsaturated carbon-to-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/50Sympathetic, colour changing or similar inks
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/208Filters for use with infrared or ultraviolet radiation, e.g. for separating visible light from infrared and/or ultraviolet radiation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • G02B5/223Absorbing filters containing organic substances, e.g. dyes, inks or pigments
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/26Reflecting filters

Definitions

  • the present invention relates to a near-infrared transmissive black material that can sufficiently absorb visible light and sufficiently suppress the absorption of near-infrared rays.
  • Patent Document 1 describes an infrared transmissive ink containing a magnetic material, a coloring pigment, and a varnish, and such an ink is said to have excellent concealment.
  • the ink of Patent Document 1 has a problem that the effect of suppressing the absorption of near infrared rays is insufficient.
  • Infrared transmissive pigments are also used in color filters.
  • Color filters are indispensable components for solid-state image sensors and liquid crystal displays.
  • color filters for solid-state image sensors are required to have improved color separation and color reproducibility.
  • Patent Document 2 describes a composition for a color filter containing a near-infrared transmissive black color material such as a bisbenzofuranone pigment, and such a composition is described. It is said that there is little noise derived from the visible light component.
  • the near-infrared transmissive black color material of Cited Document 2 has a problem that the effect of absorbing visible light is insufficient or the absorption of near-infrared rays cannot be sufficiently suppressed.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a near-infrared ray transmissive black material which can sufficiently absorb visible light and sufficiently suppress the absorption of near infrared rays.
  • the present invention is a near-infrared transmissive black material containing an oxazine resin.
  • the present invention will be described in detail.
  • the present inventors have found that the oxazine resin has high transparency in the infrared region while exhibiting brown to black, and has completed the present invention.
  • the near-infrared transmissive black material of the present invention contains an oxazine resin.
  • an oxazine resin By containing the above-mentioned oxazine resin, it is possible to achieve both absorption of visible light and suppression of absorption of near infrared rays.
  • an aromatic oxazine resin having an aromatic ring is preferable.
  • the aromatic oxazine resin include a benzoxazine resin having a benzene ring in the basic structure of the resin, a naphthooxazine resin having a naphthalene ring, and the like.
  • naphthooxazine resin is preferable because it has high absorbency to visible light and exhibits a higher degree of blackness.
  • the benzoxazine resin may have a plurality of benzene rings in the repeating structure. Further, the naphthooxazine resin may have a plurality of naphthalene rings in the repeating structure.
  • the oxazine resin is formed by ring-opening polymerization of oxazine, which is a precursor thereof.
  • oxazine As the structure of the oxazine, an example of the partial structure of benzoxazine, which is an aromatic oxazine, is shown in the following formula (1), and an example of the partial structure of naphthoxazine is shown in the following formulas (2) and (3).
  • R 1 in the formula (1), R 2 in the formula (2), and R 3 in the formula (3) independently represent a hydrogen atom, a hydroxyl group, a halogen atom, an alkyl group, or an alkoxy group.
  • the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, an iodine atom and the like.
  • the alkyl group include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a t-butyl group and the like.
  • alkoxy group examples include a methoxy group, an ethoxy group, an n-propoxy group, an isopropoxy group, an n-butoxy group, an isobutoxy group, a t-butoxy group and the like.
  • the aromatic oxazine has a 6-membered ring added to a benzene ring or a naphthalene ring, and the 6-membered ring contains oxygen and nitrogen, which is the origin of the name.
  • R 4 in the formula (4), R 5 in the formula (5), and R 6 in the formula (6) independently represent a hydrogen atom, a hydroxyl group, a halogen atom, an alkyl group, and an alkoxy group.
  • the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, an iodine atom and the like.
  • the alkyl group include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a t-butyl group and the like.
  • alkoxy group examples include a methoxy group, an ethoxy group, an n-propoxy group, an isopropoxy group, an n-butoxy group, an isobutoxy group, a t-butoxy group and the like.
  • the oxygen content of the oxazine resin is preferably 5.0% by weight or more, more preferably 10.0% by weight or more, preferably 50.0% by weight or less, and 40.0% by weight. % Or less is preferable. Further, the oxazine resin preferably has a nitrogen content of 0.5% by weight or more, more preferably 1.0% by weight or more, and preferably 20.0% by weight or less. It is more preferably 0% by weight or less.
  • the oxygen content and nitrogen content can be measured by, for example, X-ray photoelectron spectroscopy.
  • the carbon / oxygen weight ratio in the oxazine resin is preferably 1.0 or more, more preferably 2.0 or more, preferably 30.0 or less, and 25.0 or less. Is more preferable.
  • the carbon / nitrogen weight ratio in the oxazine resin is preferably 2.5 or more, more preferably 5.0 or more, preferably 100.0 or less, and 50.0 or less. It is more preferable to have.
  • the carbon / oxygen weight ratio and the carbon / nitrogen weight ratio can be measured by, for example, X-ray photoelectron spectroscopy.
  • Examples of the method for producing the oxazine resin include a method having a step of reacting a mixed solution containing triazine, dihydroxynaphthalene and a solvent, and a step of reacting a mixed solution containing formaldehyde, an aliphatic amine, dihydroxynaphthalene and a solvent. And the like.
  • the naphthooxazine resin can be produced by the above method.
  • a benzoxazine resin can be produced by using phenols (for example, phenol, bisphenol, etc.) instead of dihydroxynaphthalene.
  • a mixed solution containing triazine, dihydroxynaphthalene and a solvent, and a mixed solution containing formaldehyde, an aliphatic amine, dihydroxynaphthalene and a solvent are prepared.
  • formalin which is a formaldehyde solution.
  • Formalin usually contains a small amount of methanol as a stabilizer in addition to formaldehyde and water.
  • the formaldehyde used in the present invention may be formalin as long as the formaldehyde content is clear. Further, formaldehyde has paraformaldehyde as a polymerization form thereof, which can also be used as a raw material, but since the reactivity is inferior, the above-mentioned formalin is preferably used.
  • the aliphatic amine is represented by the general formula R-NH 2 , and R is preferably an alkyl group having 5 or less carbon atoms.
  • R is preferably an alkyl group having 5 or less carbon atoms.
  • the alkyl group having 5 or less carbon atoms include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, a cyclopropyl group, an n-butyl group, an isobutyl group, an s-butyl group, a t-butyl group and a cyclobutyl group.
  • the substituent R is preferably a methyl group, an ethyl group, a propyl group or the like, and as an actual compound name, methylamine, ethylamine, propylamine or the like can be preferably used.
  • the most preferred is methylamine, which has the smallest molecular weight.
  • dihydroxynaphthalene there are many isomers of the dihydroxynaphthalene.
  • 1,5-dihydroxynaphthalene and 2,6-dihydroxynaphthalene are preferable because of their high reactivity.
  • 1,5-dihydroxynaphthalene is preferable because it has the highest reactivity.
  • the ratio of the three components of dihydroxynaphthalene, aliphatic amine and formaldehyde in the mixed solution is based on 1 mol of dihydroxynaphthalene. Most preferably, 1 mol of aliphatic amine and 2 mol of formaldehyde are blended. Depending on the reaction conditions, the raw material is lost due to volatilization during the reaction, so the optimum compounding ratio is not always exactly the above ratio, but 0.8 to 2.2 aliphatic amines are added to 1 mol of dihydroxynaphthalene.
  • mol and formaldehyde in the range of 1.6 to 4.4 mol.
  • the amount of the aliphatic amine By setting the amount of the aliphatic amine to 0.8 mol or more, the oxazine ring can be sufficiently formed and the polymerization can be suitably promoted. Further, when the amount is 2.2 mol or less, formaldehyde required for the reaction is not excessively consumed, so that the reaction proceeds smoothly and the desired naphthoxazine can be obtained.
  • the formaldehyde to 1.6 mol or more, the oxazine ring can be sufficiently formed and the polymerization can be suitably promoted. Further, it is preferable that the amount is 4.4 mol or less because the occurrence of side reactions can be reduced.
  • the mixed solution contains a solvent for dissolving and reacting the two or three raw materials.
  • the solvent include alcohols such as methanol, ethanol and isopropanol, ketones such as acetone and methyl ethyl ketone, tetrahydrofuran, dioxane, chloroform, ethyl acetate, dimethylformamide, dimethyl sulfoxide and the like.
  • the solvent only a single component may be used, or a mixed solvent of two or more kinds may be used.
  • a solvent having a solubility parameter (SP value) of 9.0 or more examples include ethanol (12.7), methanol (14.7), isopropanol (11.5), cresol (13.3), ethylene glycol (14.2), and phenol. (14.5), water (23.4), DMF (N, N-dimethylformamide, 12.3), dimethyl sulfoxide (DMSO, 13.0), methyl ethyl ketone (9.3), dioxane (10.3).
  • the solvent having an SP value of 9.0 or more a solvent having an SP value of 9.0 to 15.0 is more preferable.
  • the boiling point is preferably 50 to 150 ° C. It is more preferable to contain a solvent having a boiling point of 50 to 130 ° C. and an SP value of 9.0 or more.
  • the mixed solvent contains a solvent having a boiling point of 150 ° C. or higher, and the content of the solvent having a boiling point of 150 ° C. or higher is 60 volumes. % Or less is preferable. Thereby, a black material having a high average sphericity can be obtained.
  • a more preferable lower limit of the content of the solvent having a boiling point of 150 ° C. or higher is 45% by volume.
  • the amount of the solvent added to the mixed solution is not particularly limited, but when the raw material (solute) containing dihydroxynaphthalene, triazine, aliphatic amine and formaldehyde is 100 parts by mass, it is usually blended in 300 to 200,000 parts by mass. Is preferable (corresponding to the molar concentration of the solute of 1.0 M to 0.001 M). When the content is 300 parts by mass or more, the solubility of the solute is high, and when the concentration is 200,000 parts by mass or less, the concentration becomes appropriate and the reaction can easily proceed.
  • a step of reacting the above-mentioned mixed solution is performed.
  • an oxazine resin can be formed.
  • the produced oxazine ring opens, and when polymerization occurs, the molecular weight increases, resulting in a so-called oxazine resin.
  • the particles are dispersed during the reaction.
  • known methods such as stirring, ultrasonic waves, and rotation can be used.
  • an appropriate dispersant may be added in order to improve the dispersed state.
  • the step of forming the oxazine resin gradually proceeds even at room temperature, but in order to allow the reaction to proceed efficiently, it is preferably performed at a temperature of 50 to 150 ° C.
  • the reaction time can be adjusted by the temperature, and is usually preferably 30 minutes to 20 hours.
  • spherical oxazine resin particles are obtained.
  • the oxazine resin particles obtained in this step show green, brown, or black depending on the reaction conditions.
  • the particle size of the oxazine resin particles can be adjusted by parameters such as the concentration of the solution, the reaction temperature, the molar ratio of the raw materials, and the stirring conditions.
  • the ring-opening polymerization reaction of oxazine is promoted by heating, in order to sufficiently proceed with the polymerization, it is preferable to heat-treat at 100 to 300 ° C. after performing the above reaction step, and heat treatment at 150 to 250 ° C. It is more preferable to do so.
  • the heating time is preferably 30 minutes to 50 hours.
  • the atmosphere during heating is preferably an inert gas atmosphere such as nitrogen or argon, and is preferably performed in a closed container in order to suppress evaporation.
  • the near-infrared ray transmissive black material of the present invention may contain a binder resin, an ultraviolet absorber, a dispersant and the like in addition to the above-mentioned oxazine resin.
  • the near-infrared transmissive black material of the present invention preferably has an average transmittance of 20% or less in the visible light region having a wavelength of 400 to 800 nm. Within the above range, it is possible to sufficiently absorb visible light and develop high blackness.
  • the average transmittance is more preferably 15% or less, and further preferably 12% or less.
  • the average transmittance can be measured, for example, using a spectrophotometer with an integrating sphere.
  • the near-infrared transmissive black material of the present invention preferably has an average transmittance of 60% or more in the near-infrared region having a wavelength of 900 to 2500 nm. Within the above range, the transparency of near infrared rays can be sufficiently enhanced.
  • the average transmittance is more preferably 70% or more.
  • the average transmittance can be measured, for example, using a spectrophotometer with an integrating sphere.
  • the near-infrared transmissive black material of the present invention preferably has a zeta potential (surface potential) of ⁇ 70 to +80 mV. Within the above range, it becomes possible to obtain black particles having excellent particle size uniformity and good dispersibility in a solvent.
  • the preferred lower limit of the zeta potential is ⁇ 60 mV, and the preferred upper limit is +70 mV.
  • zeta potential for example, a solution in which black particles were dispersed was injected into a measurement cell using a microscope electrophoresis type zeta potential measuring device, and a voltage was applied while observing with a microscope, and the particles did not move (. It can be obtained by measuring the potential at the time of (stationary).
  • the near-infrared transmissive black material of the present invention preferably has a density of 1.80 g / cm 3 or less. When the density is 1.80 g / cm 3 or less, high dispersibility can be obtained.
  • the preferred lower limit of the density is 1.20 g / cm 3 , and the preferred upper limit is 1.70 g / cm 3 .
  • the near-infrared transmissive black material of the present invention preferably has a volume resistivity of 1.0 ⁇ 107 ⁇ ⁇ cm or more.
  • the volume resistivity is 1.0 ⁇ 107 ⁇ ⁇ cm or more, high insulation can be ensured. It is more preferably 1.0 ⁇ 10 8 ⁇ ⁇ cm or more, and further preferably 1.0 ⁇ 10 11 ⁇ ⁇ cm or more.
  • the preferred upper limit is 1.0 ⁇ 10 18 ⁇ ⁇ cm.
  • the near-infrared transmissive black material of the present invention has at least one of a mass spectrum derived from a benzene ring and a mass spectrum derived from a naphthalene ring when measured by time-of-flight secondary ion mass spectrometry (TOF-SIMS). It is preferable that one is detected.
  • TOF-SIMS time-of-flight secondary ion mass spectrometry
  • the shape of the near-infrared ray transmissive black material of the present invention is not particularly limited, and examples thereof include a particle shape, a plate shape, a liquid shape, and the like, and the particle shape is particularly preferable.
  • the average particle diameter is preferably 0.01 ⁇ m or more, and preferably 10.0 ⁇ m or less. Within the above range, sufficient blackness and high dispersibility can be obtained.
  • the average particle size is more preferably 0.02 ⁇ m or more, and more preferably 5.0 ⁇ m or less.
  • the near-infrared transmissive black material of the present invention preferably has a coefficient of variation (CV value) of 20% or less in particle size.
  • CV value coefficient of variation
  • the CV value (%) of the particle size is the value obtained by dividing the standard deviation by the average particle size as a percentage, and is a numerical value obtained by the following formula. The smaller the CV value, the smaller the variation in particle size.
  • CV value of particle size (%) (standard deviation of particle size / average particle size) x 100
  • the average particle size and standard deviation can be measured using, for example, FE-TEM.
  • the near-infrared transmissive black material of the present invention preferably has an average sphericity of 90% or more. Thereby, the effect of the present invention can be enhanced. A more preferable lower limit of the average sphericity is 95%.
  • the degree of spheroidity (minor axis / major axis) can be measured by analyzing an electron micrograph taken by FE-TEM or FE-SEM using an image analyzer, and the average degree of sphericity can be measured. Can be calculated by obtaining the average value of the spherical degree for, for example, 100 particles arbitrarily selected in the electron micrograph.
  • the near-infrared transmissive black material of the present invention preferably has a lightness L * value of 30 or less in the CIE LAB (L * a * b *) color system. Within the above range, high blackness can be exhibited.
  • the brightness L * is more preferably 25 or less, and further preferably 20 or less.
  • the brightness L * can be measured by a spectrocolorimeter according to, for example, JIS Z 8722: 2009.
  • Examples of the method for producing the near-infrared ray transmissive black material of the present invention include the same method as the above-mentioned method for producing an oxazine resin.
  • the near-infrared transmissive black material of the present invention is used for near-infrared transmissive inks such as coating films, black paints and anti-counterfeit inks, near-infrared transmissive filters such as black matrix for color filters, and near-infrared transmissive films. Can be used for.
  • the near-infrared ray transmitting ink and the near infrared ray transmitting filter are also one of the present inventions.
  • the present invention it is possible to provide a near-infrared ray transmissive black material which can sufficiently absorb visible light and sufficiently suppress the absorption of near infrared rays.
  • Example 1 1.20 g of 1,5-dihydroxynaphthalene (1,5-DHN, manufactured by Tokyo Kasei Co., Ltd.) and 0.98 g of 1,3,5-trimethylhexahydro-1,3,5-triazine (manufactured by Tokyo Kasei Co., Ltd.) It was sequentially dissolved in 50 ml of ethanol to prepare an ethanol mixed solution. Next, the obtained mixed solution was heated and stirred at 80 ° C. for 5.0 hours (rotation speed: 300 rpm). The solution is filtered through a glass filter, washed 3 times with ethanol, vacuum dried at 50 ° C. for 3 hours, and further vacuum heated at 200 ° C.
  • a naphthooxazine resin as a near-infrared transmissive black material. Obtained particles. 4 parts by weight of the obtained black material was dispersed in 40 parts by weight of polyvinyl butyral resin, coated on a slide glass so as to have a thickness of 30 ⁇ m after drying, and dried at 100 ° C. for 2 hours to obtain a coating film. rice field.
  • the particles were recovered, washed, vacuum dried at 50 ° C. for 3 hours, and further heat-treated at 220 ° C. for 20 hours to obtain naphthooxazine resin particles as a near-infrared ray transmissive black material.
  • a coating film was prepared in the same manner as in Example 1 except that the obtained black material was used.
  • Example 1 A coating film was prepared in the same manner as in Example 1 except that carbon black was used.
  • the present invention it is possible to provide a near-infrared ray transmissive black material which can sufficiently absorb visible light and sufficiently suppress the absorption of near infrared rays.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Toxicology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本発明は、可視光を充分に吸収し、かつ、近赤外線の吸収を充分に抑制できる近赤外線透過性黒色材料を提供する。 本発明は、オキサジン樹脂を含む、近赤外線透過性黒色材料である。

Description

近赤外線透過性黒色材料
本発明は、可視光を充分に吸収し、かつ、近赤外線の吸収を充分に抑制できる近赤外線透過性黒色材料に関する。
近年、レーザー、特に半導体レーザーやそれに対するセンサーの発達により、従来一般に使用されていた顔料にはない光学的性質を有する機能性顔料を求める分野が多くなっている。例えば、印刷インキ分野では、赤外線透過性顔料を含むインキで印刷し、肉眼で識別不能な情報を赤外線リーダー等で読み取ることができる等、隠しバーコード、隠し2次元コードの印刷等の目的に使用される赤外線透過性顔料が求められている。
例えば、特許文献1には、磁性材料と着色顔料とワニスを含む赤外線透過性インキが記載されており、このようなインキは秘匿性に優れるとされている。
しかしながら、特許文献1のインキは、近赤外線の吸収を抑制する効果が不充分であるという問題がある。
また、赤外線透過性顔料は、カラーフィルターにも用いられる。カラーフィルターは、固体撮像素子や液晶ディスプレイに不可欠な構成部品である。特に、固体撮像素子用のカラーフィルターでは、色分解性の向上及び色再現性の向上が求められている。
このようなカラーフィルターとして、例えば、特許文献2には、ビスベンゾフラノン系顔料等の近赤外透過黒色色材を含有するカラーフィルター用組成物が記載されており、このような組成物は、可視光成分に由来するノイズが少ないとされている。
しかしながら、引用文献2の近赤外透過黒色色材であっても、可視光を吸収する効果が不充分であったり、近赤外線の吸収を充分に抑制できなかったりするという問題がある。
特開2015-196819号公報 特開2014-130173号公報
本発明は上記の事情を鑑みてなされたものであり、可視光を充分に吸収し、かつ、近赤外線の吸収を充分に抑制できる近赤外線透過性黒色材料を提供することを目的とする。
本発明は、オキサジン樹脂を含む近赤外線透過性黒色材料である。
以下、本発明を詳述する。
本発明者らは、鋭意検討した結果、オキサジン樹脂が褐色から黒色を示しながらも、赤外線領域で高い透過性を有することを見出し、本発明を完成させるに至った。
本発明の近赤外線透過性黒色材料は、オキサジン樹脂を含有する。
上記オキサジン樹脂を含有することで、可視光の吸収と近赤外線の吸収抑制とを両立することができる。
上記オキサジン樹脂としては、芳香族環を有する芳香族系オキサジン樹脂が好ましい。
芳香族系オキサジン樹脂としては、樹脂の基本構造にベンゼン環を有するベンゾオキサジン樹脂、ナフタレン環を有するナフトオキサジン樹脂等が挙げられる。
なかでも、可視光に対する吸収性が高く、より高い黒色度を示すことからナフトオキサジン樹脂が好ましい。
上記ベンゾオキサジン樹脂は、繰り返し構造中にベンゼン環を複数有するものであってもよい。また、上記ナフトオキサジン樹脂は、繰り返し構造中にナフタレン環を複数有するものであってもよい。
上記オキサジン樹脂は、その前駆体であるオキサジンの開環重合により形成される。
上記オキサジンの構造として、芳香族オキサジンであるベンゾオキサジンの部分構造の一例を下記式(1)に、ナフトキサジンの部分構造の一例を下記式(2)及び(3)に示す。
Figure JPOXMLDOC01-appb-C000001
式(1)中のR、式(2)中のR、式(3)中のRは、それぞれ独立して、水素原子、水酸基、ハロゲン原子、アルキル基又はアルコキシ基を表す。
上記ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。
上記アルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、t-ブチル基等が挙げられる。
上記アルコキシ基としては、例えば、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、イソブトキシ基、t-ブトキシ基等が挙げられる。
上記芳香族系オキサジンは、ベンゼン環又はナフタレン環に付加した6員環を有するものであり、その6員環には酸素と窒素が含まれ、これが名前の由来となっている。
上記芳香族系オキサジンの開環重合により得られたオキサジン樹脂の繰り返し構造の一例を下記式(4)~(6)に示す。
Figure JPOXMLDOC01-appb-C000002
式(4)中のR、式(5)中のR、式(6)中のRは、それぞれ独立して、水素原子、水酸基、ハロゲン原子、アルキル基、アルコキシ基を表す。
上記ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。
上記アルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、t-ブチル基等が挙げられる。
上記アルコキシ基としては、例えば、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、イソブトキシ基、t-ブトキシ基等が挙げられる。
上記オキサジン樹脂は、酸素含有量が5.0重量%以上であることが好ましく、10.0重量%以上であることがより好ましく、50.0重量%以下であることが好ましく、40.0重量%以下であることが好ましい。
また、上記オキサジン樹脂は、窒素含有量が0.5重量%以上であることが好ましく、1.0重量%以上であることがより好ましく、20.0重量%以下であることが好ましく、10.0重量%以下であることがより好ましい。
上記酸素含有量及び窒素含有量は、例えば、X線光電子分光法により測定することができる。
上記オキサジン樹脂における炭素/酸素の重量比は、1.0以上であることが好ましく、2.0以上であることがより好ましく、30.0以下であることが好ましく、25.0以下であることがより好ましい。
また、上記オキサジン樹脂における炭素/窒素の重量比は、2.5以上であることが好ましく、5.0以上であることがより好ましく、100.0以下であることが好ましく、50.0以下であることがより好ましい。
上記炭素/酸素の重量比及び炭素/窒素の重量比は、例えば、X線光電子分光法により測定することができる。
上記オキサジン樹脂を製造する方法としては、例えば、トリアジン、ジヒドロキシナフタレン及び溶媒を含有する混合溶液を反応させる工程を有する方法、ホルムアルデヒド、脂肪族アミン、ジヒドロキシナフタレン及び溶媒を含有する混合溶液を反応させる工程を有する方法等が挙げられる。上記方法により、ナフトオキサジン樹脂を製造することができる。
また、上記方法において、ジヒドロキシナフタレンに代えて、フェノール類(例えば、フェノール、ビスフェノール等)を用いることで、ベンゾオキサジン樹脂を製造することができる。
上記ナフトオキサジン樹脂を製造する方法では、最初にトリアジン、ジヒドロキシナフタレン及び溶媒を含有する混合溶液や、ホルムアルデヒド、脂肪族アミン、ジヒドロキシナフタレン及び溶媒を含有する混合溶液等の混合溶液を調製する。
上記ホルムアルデヒドは不安定であるので、ホルムアルデヒド溶液であるホルマリンを用いることが好ましい。ホルマリンは、通常、ホルムアルデヒド及び水に加えて、安定剤として少量のメタノールが含有されている。本発明で用いられるホルムアルデヒドは、ホルムアルデヒド含量が明確なものであれば、ホルマリンであっても構わない。
また、ホルムアルデヒドには、その重合形態としてパラホルムアルデヒドがあり、こちらの方も原料として使用可能であるが、反応性が劣るため、好ましくは上記したホルマリンが用いられる。
上記脂肪族アミンは一般式R-NHで表され、Rは炭素数5以下のアルキル基であることが好ましい。炭素数5以下のアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、シクロプロピル基、n-ブチル基、イソブチル基、s-ブチル基、t-ブチル基、シクロブチル基、シクロプロピルメチル基、n-ペンチル基、シクロペンチル基、シクロプロピルエチル基、及びシクロブチルメチル基が挙げられる。
分子量を小さくする方が好ましいので、置換基Rは、メチル基、エチル基、プロピル基等が好ましく、実際の化合物名としては、メチルアミン、エチルアミン、プロピルアミン等が好ましく使用できる。最も好ましいものは、分子量が一番小さなメチルアミンである。
上記ジヒドロキシナフタレンとしては、多くの異性体がある。例えば、1,3-ジヒドロキシナフタレン、1,5-ジヒドロキシナフタレン、1,6-ジヒドロキシナフタレン、1,7-ジヒドロキシナフタレン、2,3-ジヒドロキシナフタレン、2,6-ジヒドロキシナフタレン、2,7-ジヒドロキシナフタレンが挙げられる。
このうち、反応性の高さから、1,5-ジヒドロキシナフタレン、2,6-ジヒドロキシナフタレンが好ましい。更に1,5-ジヒドロキシナフタレンが最も反応性が高いので好ましい。
上記トリアジンを添加せずに、ホルムアルデヒド、脂肪族アミンを添加する方法を用いる場合、上記混合溶液中におけるジヒドロキシナフタレン、脂肪族アミン、ホルムアルデヒドの3成分の比率については、ジヒドロキシナフタレン1モルに対して、脂肪族アミンを1モル、ホルムアルデヒドを2モル配合することが最も好ましい。
反応条件によっては、反応中に揮発等により原料を失うので、最適な配合比は正確に上記比率とは限らないが、ジヒドロキシナフタレン1モルに対して、脂肪族アミンを0.8~2.2モル、ホルムアルデヒドを1.6~4.4モルの配合比の範囲で配合することが好ましい。
上記脂肪族アミンを0.8モル以上とすることにより、オキサジン環を十分に形成することができ、重合を好適に進めることができる。また2.2モル以下とすることにより、反応に必要なホルムアルデヒドを余計に消費することがないため、反応が順調に進み、所望のナフトキサジンを得ることができる。
同様に、ホルムアルデヒドを1.6モル以上とすることで、オキサジン環を充分に形成することができ、重合を好適に進めることができる。また4.4モル以下とすることで、副反応の発生を低減できるため好ましい。
上記混合溶液は、上記2原料又は3原料を溶解し、反応させるための溶媒を含有する。
上記溶媒としては、例えば、メタノール、エタノール、イソプロパノール等のアルコール類、アセトン、メチルエチルケトン等のケトン類、テトラヒドロフラン、ジオキサン、クロロホルム、酢酸エチル、ジメチルホルムアミド、ジメチルスルホキシド等が挙げられる。
上記溶媒としては、単一成分のみを使ってもよく、二種類以上の混合溶媒を使ってもよい。上記溶媒としては、溶解度パラメーター(SP値)が9.0以上であるものを使用することが好ましい。
上記SP値が9.0以上の溶媒としては、エタノール(12.7)、メタノール(14.7)、イソプロパノール(11.5)、クレゾール(13.3)、エチレングリコール(14.2)、フェノール(14.5)、水(23.4)、DMF(N,N-ジメチルホルムアミド、12.3)、ジメチルスルホキシド(DMSO、13.0)、メチルエチルケトン(9.3)、ジオキサン(10.3)、酢酸エチル(9.0)、クロロホルム(9.4)、アセトン(10.0)等が挙げられる。
上記SP値が9.0以上の溶媒としては、SP値が9.0~15.0である溶媒がより好ましい。また、上記溶媒を単一成分のみを使う場合は、沸点が50~150℃であることが好ましい。沸点が50~130℃、かつ、SP値が9.0以上である溶媒を含有することが更に好ましい。
また、上記溶媒が2種類以上の溶媒から構成される混合溶媒である場合、上記混合溶媒は、沸点150℃以上の溶媒を含有し、かつ、上記沸点150℃以上の溶媒の含有量が60体積%以下であることが好ましい。これにより、平均球形度の高い黒色材料を得ることができる。
上記沸点が150℃以上である溶媒の含有量のより好ましい下限は45体積%である。
上記混合溶液中の溶媒の添加量は特に限定されないが、ジヒドロキシナフタレン、トリアジン、脂肪族アミン及びホルムアルデヒドを含む原料(溶質)を100質量部とした場合は、通常300~200000質量部で配合することが好ましい(溶質のモル濃度1.0M~0.001Mに相当)。上記300質量部以上とすることで、溶質の溶解性が高くなり、200000質量部以下とすることで、濃度が適度なものとなることで反応が進行しやすくなる。
上記オキサジン樹脂の製造方法では、上記混合溶液を反応させる工程を行う。反応を進行させることにより、オキサジン樹脂を形成することができる。
上記反応では、加温を続けることで、作製されたオキサジン環が開き、重合が起こると分子量が増加し、いわゆるオキサジン樹脂となる。
また、粒子の作製を均一に行うためには、反応時に粒子が分散された状態が好ましい。分散方法としては、撹拌、超音波、回転等公知の方法が利用できる。また、分散状態を改善するために、適当な分散剤を添加しても良い。
上記オキサジン樹脂を形成する工程は、室温でも反応が徐々に進行するが、反応を効率的に進行させるためには、50~150℃の温度で行うことが好ましい。また、反応時間は、温度によって調整可能であり、通常30分から20時間であることが好ましい。上記条件での反応によって、球状のオキサジン樹脂粒子が得られる。この工程で得られたオキサジン樹脂粒子は、反応条件によって、緑色、茶色、又は黒色を示す。
なお、オキサジン樹脂粒子の粒子径は溶液の濃度、反応温度、原料のモル比及び撹拌条件等のパラメータによって調整することができる。
更に、オキサジンの開環重合反応は加熱によって促進されるため、重合を充分に進行させるためには、上記反応工程を行った後に100~300℃で熱処理することが好ましく、150~250℃で熱処理することがより好ましい。加熱時間は30分から50時間であることが好ましい。
加熱時の雰囲気は、窒素やアルゴン等の不活性ガス雰囲気が好ましく、また、蒸発を抑えるために密閉された容器で行うことが好ましい。
本発明の近赤外線透過性黒色材料は、上記オキサジン樹脂以外にバインダー樹脂、紫外線吸収剤、分散剤等を含んでいてもよい。
本発明の近赤外線透過性黒色材料は、波長400~800nmの可視光領域での平均透過率が20%以下であることが好ましい。
上記範囲とすることで、可視光を充分に吸収して、高い黒色性を発現させることができる。
上記平均透過率は、15%以下であることがより好ましく、12%以下であることが更に好ましい。
上記平均透過率は、例えば、積分球付きの分光光度計を用いて測定することができる。
本発明の近赤外線透過性黒色材料は、波長900~2500nmの近赤外領域での平均透過率が60%以上であることが好ましい。
上記範囲とすることで、近赤外線の透過性を充分に高めることができる。
上記平均透過率は、70%以上であることがより好ましい。
上記平均透過率は、例えば、積分球付きの分光光度計を用いて測定することができる。
本発明の近赤外線透過性黒色材料は、ゼータ電位(表面電位)が-70~+80mVであることが好ましい。
上記範囲とすることで、粒子径の均一性に優れ、溶媒中の分散性が良好な黒色粒子とすることが可能となる。
上記ゼータ電位の好ましい下限は-60mV、好ましい上限は+70mVである。
なお、上記ゼータ電位は、例えば、顕微鏡電気泳動方式ゼータ電位測定装置を用いて、黒色粒子が分散した溶液を測定用セルに注入し、顕微鏡で観察しながら電圧をかけ、粒子が動かなくなった(静止した)時の電位を測定することで求めることができる。
本発明の近赤外線透過性黒色材料は、密度が1.80g/cm以下であることが好ましい。
密度が1.80g/cm以下であることで、高い分散性を得ることができる。上記密度の好ましい下限は1.20g/cm、好ましい上限は1.70g/cmである。
本発明の近赤外線透過性黒色材料は、体積抵抗率が1.0×10Ω・cm以上であることが好ましい。
体積抵抗率が1.0×10Ω・cm以上であることで、高い絶縁性を確保することができる。より好ましくは1.0×10Ω・cm以上、更に好ましくは1.0×1011Ω・cm以上である。また、好ましい上限は1.0×1018Ω・cmである。
本発明の近赤外線透過性黒色材料は、飛行時間型二次イオン質量分析法(TOF-SIMS)によって測定した場合、ベンゼン環に由来する質量スペクトル、及び、ナフタレン環に由来する質量スペクトルのうち少なくとも1つが検出されることが好ましい。
上記のような構造を有することで緻密性の高い粒子を得ることができる。
本願発明において、ベンゼン環に由来する質量スペクトルとは、77.12付近の質量スペクトルをいい、ナフタレン環に由来する質量スペクトルとは、127.27付近の質量スペクトルをいう。
なお、上記測定は、例えば、TOF-SIMS装置(ION-TOF社製)等を用いて行うことができる。
本発明の近赤外線透過性黒色材料の形状は特に限定されず、粒子形状、板状、液状等の形状が挙げられ、なかでも粒子形状であることが好ましい。
本発明の近赤外線透過性黒色材料が粒子形状である場合、平均粒子径が0.01μm以上であることが好ましく、10.0μm以下であることが好ましい。
上記範囲とすることで、充分な黒色度と高い分散性を得ることができる。
上記平均粒子径は、0.02μm以上であることがより好ましく、5.0μm以下であることがより好ましい。
本発明の近赤外線透過性黒色材料は、粒子径の変動係数(CV値)が、20%以下であることが好ましい。
上記粒子径のCV値が20%以下であると、黒色材料の単分散性が良くなり、黒色顔料として利用する場合に粒子を最密充填しやすくなる。その結果、可視光に対する遮蔽効果を高めることが可能となる。上記粒子径のCV値のより好ましい上限は15%である。なお、下限については特に限定されないが0.5%が好ましい。
粒子径のCV値(%)とは、標準偏差を平均粒子径で割った値を百分率で表したものであり、下記式により求められる数値のことである。CV値が小さいほど粒子径のばらつきが小さいことを意味する。
 粒子径のCV値(%)=(粒子径の標準偏差/平均粒子径)×100
平均粒子径及び標準偏差は、例えば、FE-TEMを用いて測定することができる。
本発明の近赤外線透過性黒色材料は、平均球形度が90%以上であることが好ましい。
これにより、本発明の効果を高めることができる。
上記平均球形度のより好ましい下限は95%である。
なお、球形度(短径/長径)は、FE-TEM又はFE-SEMを用いて撮影された電子顕微鏡写真を画像解析装置を用いて、解析処理することにより測定することができ、平均球形度は、電子顕微鏡写真中において任意に選ばれた例えば100個の粒子について、球形度の平均値を求めることにより算出することができる。
本発明の近赤外線透過性黒色材料は、CIE LAB(L*a*b*)表色系における明度L*値が30以下であることが好ましい。
上記範囲とすることで、高い黒色性を発現させることができる。
上記明度L*は25以下であることがより好ましく、20以下であることが更に好ましい。
上記明度L*は、例えば、JIS Z 8722:2009に準拠して分光測色計により測定することができる。
本発明の近赤外線透過性黒色材料を製造する方法としては、例えば、上記オキサジン樹脂の製造方法と同様の方法が挙げられる。
本発明の近赤外線透過性黒色材料は、塗膜、黒色塗料、偽造防止用インク等の近赤外線透過性インク、カラーフィルター用ブラックマトリックス等の近赤外線透過性フィルター、近赤外線透過性フィルム等の用途に使用することができる。
上記近赤外線透過性インク、近赤外線透過性フィルターもまた本発明の1つである。
本発明によれば、可視光を充分に吸収し、かつ、近赤外線の吸収を充分に抑制できる近赤外線透過性黒色材料を提供することができる。
以下に実施例を掲げて本発明の態様を更に詳しく説明するが、本発明はこれら実施例のみに限定されない。
(実施例1)
1,5-ジヒドロキシナフタレン(1,5-DHN、東京化成社製)1.20gと、1,3,5-トリメチルヘキサヒドロ-1,3,5-トリアジン(東京化成社製)0.98gをエタノール50mlに順次溶解し、エタノール混合溶液を作製した。
次に、得られた混合溶液を80℃で5.0時間加熱撹拌(回転数:300rpm)した。溶液をガラスフィルターで濾過し、エタノールで3回洗浄した後に、50℃で3時間真空乾燥して、更に、200℃で12時間真空加熱することによって、近赤外線透過性黒色材料としてのナフトオキサジン樹脂粒子を得た。
得られた黒色材料4重量部をポリビニルブチラール樹脂40重量部に分散し、スライドガラス上に乾燥後の厚さが30μmとなるように塗工し、100℃で2時間乾燥して塗布膜を得た。
(実施例2)
1,5-ジヒドロキシナフタレン(東京化成社製)1.0gと、40%メチルアミン(富士フイルム和光純薬社製)0.5gと、37%ホルムアルデヒド水溶液(富士フイルム和光純薬社製)1.0gとをイソプロパノールと水の混合溶液(イソプロパノールと水の重量比=4:1)500mlに順次溶解した。
次に、得られた混合溶液を30℃で一晩反応させ、更に80℃で10時間加熱撹拌(回転数:300rpm)した。粒子を回収、洗浄し、50℃で3時間真空乾燥して、更に、220℃で20時間熱処理することによって、近赤外線透過性黒色材料としてのナフトオキサジン樹脂粒子を得た。
得られた黒色材料を用いた以外は、実施例1と同様にして塗布膜を作製した。
(比較例1)
カーボンブラックを用いた以外は、実施例1と同様にして塗布膜を作製した。
(評価方法)
(1)平均粒子径、CV値及び平均球形度
実施例で得られた黒色材料及び比較例で用いたカーボンブラックのFE-SEM像を画像解析ソフト(WINROOF、三谷商事社製)を用いて解析することにより、平均粒子径を測定した。
また、実施例で得られた黒色材料について、標準偏差を算出し、得られた数値から粒子径の変動係数(CV値)を算出した。
更に、実施例で得られた黒色材料について、粒子の最小径と最大径の比から球形度を求め、平均球形度を算出した。
(2)平均透過率及び明度L*
実施例及び比較例で得られた塗布膜について、積分球付き分光光度計(日本分光社製、V-670)を用いて、波長400~800nmの可視光領域及び波長900~2500nmの近赤外領域での反射スペクトルを測定し、それぞれの波長範囲での透過率の幾何平均を求め、それぞれの波長範囲での透過率の平均値として、平均透過率を求めた。
また、実施例及び比較例で得られた塗布膜について、積分球付き分光光度計(日本分光社製、V-670)を用い、JIS Z 8722:2009に準拠してCIE LAB(L*a*b*)表色系における明度L*値を測定した。
Figure JPOXMLDOC01-appb-T000003
本発明によれば、可視光を充分に吸収し、かつ、近赤外線の吸収を充分に抑制できる近赤外線透過性黒色材料を提供することができる。

Claims (6)

  1. オキサジン樹脂を含む、近赤外線透過性黒色材料。
  2. オキサジン樹脂は、ナフトオキサジン樹脂である、請求項1に記載の近赤外線透過性黒色材料。
  3. 粒子形状であり、平均粒子径が0.02μm以上10.0μm以下である、請求項1又は2に記載の近赤外線透過性黒色材料。
  4. 波長400~800nmの可視光領域での平均透過率が20%以下であり、かつ、波長900~2500nmの近赤外領域での平均透過率が60%以上である、請求項1~3のいずれかに記載の近赤外線透過性黒色材料。
  5. 請求項1~4のいずれかに記載の近赤外線透過性黒色材料を含む近赤外線透過性インク。
  6. 請求項1~4のいずれかに記載の近赤外線透過性黒色材料を含む近赤外線透過性フィルター。
PCT/JP2021/031817 2020-08-31 2021-08-31 近赤外線透過性黒色材料 WO2022045341A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2021561029A JPWO2022045341A1 (ja) 2020-08-31 2021-08-31
EP21861762.9A EP4174099A1 (en) 2020-08-31 2021-08-31 Near-infrared light transmitting black material
US18/021,451 US20240043691A1 (en) 2020-08-31 2021-08-31 Near-infrared light transmitting black material
CN202180036323.4A CN115668011A (zh) 2020-08-31 2021-08-31 近红外线透射性黑色材料

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020145902 2020-08-31
JP2020-145902 2020-08-31

Publications (1)

Publication Number Publication Date
WO2022045341A1 true WO2022045341A1 (ja) 2022-03-03

Family

ID=80353484

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/031817 WO2022045341A1 (ja) 2020-08-31 2021-08-31 近赤外線透過性黒色材料

Country Status (5)

Country Link
US (1) US20240043691A1 (ja)
EP (1) EP4174099A1 (ja)
JP (1) JPWO2022045341A1 (ja)
CN (1) CN115668011A (ja)
WO (1) WO2022045341A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102225996A (zh) * 2011-05-06 2011-10-26 大连理工大学 一种苯并噁嗪树脂纳米聚合物球及炭球的制备方法
JP2014130173A (ja) 2012-12-27 2014-07-10 Fujifilm Corp カラーフィルタ用組成物、赤外線透過フィルタ及びその製造方法、並びに赤外線センサー
JP2015196819A (ja) 2014-04-03 2015-11-09 独立行政法人 国立印刷局 赤外透過軟磁性インキ及び真偽判別印刷物
JP2016014094A (ja) * 2014-07-01 2016-01-28 国立大学法人東京工業大学 ポリベンゾオキサジン−シリカ複合体およびその製造方法
WO2017142087A1 (ja) * 2016-02-18 2017-08-24 積水化学工業株式会社 黒色粒子及び黒色粒子の製造方法
WO2020171168A1 (ja) * 2019-02-20 2020-08-27 積水化学工業株式会社 樹脂組成物、硬化物、ブラックマトリックス、カラーフィルタ、液晶表示装置、有機エレクトロルミネッセンス表示装置及び樹脂組成物の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102225996A (zh) * 2011-05-06 2011-10-26 大连理工大学 一种苯并噁嗪树脂纳米聚合物球及炭球的制备方法
JP2014130173A (ja) 2012-12-27 2014-07-10 Fujifilm Corp カラーフィルタ用組成物、赤外線透過フィルタ及びその製造方法、並びに赤外線センサー
JP2015196819A (ja) 2014-04-03 2015-11-09 独立行政法人 国立印刷局 赤外透過軟磁性インキ及び真偽判別印刷物
JP2016014094A (ja) * 2014-07-01 2016-01-28 国立大学法人東京工業大学 ポリベンゾオキサジン−シリカ複合体およびその製造方法
WO2017142087A1 (ja) * 2016-02-18 2017-08-24 積水化学工業株式会社 黒色粒子及び黒色粒子の製造方法
WO2020171168A1 (ja) * 2019-02-20 2020-08-27 積水化学工業株式会社 樹脂組成物、硬化物、ブラックマトリックス、カラーフィルタ、液晶表示装置、有機エレクトロルミネッセンス表示装置及び樹脂組成物の製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HANO NANAMI, TAKAFUJI MAKOTO, NOGUCHI HIROKI, IHARA HIROTAKA: "Monodisperse Surface-Charge-Controlled Black Nanoparticles for Near-Infrared Shielding", ACS APPLIED NANO MATERIALS, vol. 2, no. 6, 28 June 2019 (2019-06-28), pages 3597 - 3605, XP055902844, ISSN: 2574-0970, DOI: 10.1021/acsanm.9b00555 *
MURAKAMI AKIKO, NOGUCHI HIROKI, KUWAHARA YUTAKA, TAKAFUJI MAKOTO, NOZATO SHOJI, SUN REN-DE, NAKASUGA AKIRA, IHARA HIROTAKA: "Non-conductive, Size-controlled Monodisperse Black Particles Prepared by a One-pot Polymerization and Low-temperature Calcination", CHEMISTRY LETTERS, CHEMICAL SOCIETY OF JAPAN,NIPPON KAGAKUKAI, JP, vol. 46, no. 5, 5 May 2017 (2017-05-05), JP , pages 680 - 682, XP055902847, ISSN: 0366-7022, DOI: 10.1246/cl.170084 *

Also Published As

Publication number Publication date
US20240043691A1 (en) 2024-02-08
EP4174099A1 (en) 2023-05-03
JPWO2022045341A1 (ja) 2022-03-03
CN115668011A (zh) 2023-01-31

Similar Documents

Publication Publication Date Title
US10974963B2 (en) Zirconium nitride powder and production method therefor
WO2018061666A1 (ja) 窒化ジルコニウム粉末及びその製造方法
KR102658084B1 (ko) 흑색 입자 및 흑색 입자의 제조 방법
EP3199494B1 (en) Carbon-coated vanadium dioxide particles
KR101977347B1 (ko) 근적외선 차단용 코팅 조성물에 포함되는 코어-쉘 구조의 황화구리 나노입자 및 이의 제조 방법
KR102629669B1 (ko) 흑색 차광막 형성용 분말 및 그 제조 방법
WO2018096874A1 (ja) 黒色膜形成用混合粉末及びその製造方法
JP5747475B2 (ja) 青色遮蔽黒色粉末とその製造方法および用途
WO2017061519A1 (ja) ケイ素酸化物で被覆された酸化鉄粒子を含む積層塗膜用組成物
KR20150093186A (ko) 근적외선 흡수 필터 및 촬상소자
JP5747476B2 (ja) チタン系黒色粉末とその製造方法および用途
EP1913093B1 (en) Poly cross-linked phthalocyanine compound and near-infrared absorbing ink composition comprising the same
WO2022045341A1 (ja) 近赤外線透過性黒色材料
EP3584221A1 (en) Silicon-doped metal oxide particles, and uv-absorbing composition containing silicon-doped metal oxide particles
JP2015160759A (ja) 透明導電性複合酸化物微粉末及びその製造方法並びに透明導電性膜
CN112960691B (zh) 用于短波ir设备的全无机钙钛矿材料
WO2022045343A1 (ja) 近赤外線反射性黒色粒子及び近赤外線反射性積層体
JP2017128485A (ja) ホウ化物微粒子の製造方法
EP1690905A1 (en) Near-infrared shielding paint, near-infrared shielding laminate obtained therefrom and process for producing the same
CN112919537A (zh) 用于短波IR装置的无Pb钙钛矿材料
WO2017208616A1 (ja) 着色紫外線防御剤
KR102515196B1 (ko) 열선 차폐 입자 분산액 및 그 제조 방법
JP2019026502A (ja) 黒色膜形成用混合粉末の製造方法
WO2017119379A1 (ja) モリブデン系低次酸化物粒子及びこれを用いた分散体並びにモリブデン系低次酸化物粒子の製造方法
CN115160827A (zh) 着色紫外线防御剂

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021561029

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21861762

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021861762

Country of ref document: EP

Effective date: 20230127

WWE Wipo information: entry into national phase

Ref document number: 18021451

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE