WO2018061666A1 - 窒化ジルコニウム粉末及びその製造方法 - Google Patents

窒化ジルコニウム粉末及びその製造方法 Download PDF

Info

Publication number
WO2018061666A1
WO2018061666A1 PCT/JP2017/032037 JP2017032037W WO2018061666A1 WO 2018061666 A1 WO2018061666 A1 WO 2018061666A1 JP 2017032037 W JP2017032037 W JP 2017032037W WO 2018061666 A1 WO2018061666 A1 WO 2018061666A1
Authority
WO
WIPO (PCT)
Prior art keywords
zirconium
powder
gas
zirconium dioxide
magnesium
Prior art date
Application number
PCT/JP2017/032037
Other languages
English (en)
French (fr)
Inventor
謙介 影山
隆史 小西
Original Assignee
三菱マテリアル電子化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱マテリアル電子化成株式会社 filed Critical 三菱マテリアル電子化成株式会社
Priority to EP17855624.7A priority Critical patent/EP3521242B1/en
Priority to CN201780058547.9A priority patent/CN109923062B/zh
Priority to US16/336,634 priority patent/US11577958B2/en
Priority to KR1020197007932A priority patent/KR102411232B1/ko
Publication of WO2018061666A1 publication Critical patent/WO2018061666A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/076Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with titanium or zirconium or hafnium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/0615Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with transition metals other than titanium, zirconium or hafnium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0047Photosensitive materials characterised by additives for obtaining a metallic or ceramic pattern, e.g. by firing
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/60Optical properties, e.g. expressed in CIELAB-values

Definitions

  • the present invention relates to a zirconium nitride powder suitably used as an insulating black pigment and a method for producing the same. More specifically, the present invention relates to a zirconium nitride powder that forms a high-resolution patterning film when a black patterning film is formed as a black pigment and has a high light-shielding performance, and a method for manufacturing the same.
  • This international application claims priority based on Japanese Patent Application No. 191425 (Japanese Patent Application No. 2016-191425) filed on September 29, 2016. The entire contents of Japanese Patent Application No. 2016-191425 are hereby incorporated by reference. Incorporated into this international application.
  • This type of black pigment is dispersed in a photosensitive resin to prepare a black photosensitive composition, and this composition is applied to a substrate to form a photoresist film, which is then exposed to the photoresist film by a photolithography method.
  • a patterning film By forming a patterning film, it is used for a black matrix of an image forming element such as a color filter of a liquid crystal display. Since carbon black as a conventional black pigment is electrically conductive, it is not suitable for applications that require insulation.
  • a black powder made of titanium oxynitride which is also called titanium black having a specific composition, and Y 2 O 3 , ZrO 2 , Al 2 O 3 , SiO 2 , TiO 2 , V
  • a high-resistance black powder containing 2 O 5 and at least one insulating powder is disclosed (for example, see Patent Document 1).
  • this black powder when a black film is formed, the resistance value is high and the light-shielding property is excellent, so that it is suitable as a black matrix for a color filter.
  • the X-ray diffraction profile has a low-order zirconium oxide peak and a zirconium nitride peak, and a specific surface area of 10 to 60 m 2 / g.
  • a fine particle low-order zirconium oxide / zirconium nitride composite characterized by (see, for example, Patent Document 2).
  • This fine particle low-order zirconium oxide / zirconium nitride composite is composed of a mixture of zirconium dioxide or zirconium hydroxide, magnesium oxide, and metallic magnesium at 650 to 800 ° C. in an inert gas stream containing nitrogen gas or nitrogen gas.
  • the above-mentioned fine particle low-order zirconium oxide / zirconium nitride composite can be used as a fine particle material that is black and has low electrical conductivity, and is more electrically conductive to black matrices for displays such as televisions that use carbon black.
  • the fine particle low-order zirconium oxide / zirconium nitride composite can be produced (mass produced) on an industrial scale according to the production method. .
  • JP 2008-266045 A (Claim 1, paragraph [0002], paragraph [0010])
  • JP 2009-091205 A (Claim 1, Claim 2, Paragraph [0015], Paragraph [0016])
  • An object of the present invention is to provide a zirconium nitride powder which forms a high resolution patterning film when forming a black patterning film as a black pigment and has a high light-shielding performance, and a method for producing the same.
  • the present inventors have noticed that the light-shielding performance is remarkably deteriorated when a peak of zirconium dioxide, low-order zirconium oxide, or low-order zirconium oxynitride is present even in a trace amount. It has been found that a high-resolution patterning film cannot be formed when forming the film, and that the light shielding performance of the formed patterning film is lowered, and the present invention has been achieved.
  • the first aspect of the present invention is that the specific surface area measured by the BET method is 20 to 90 m 2 / g, and the X-ray diffraction profile has a zirconium nitride peak, while the zirconium dioxide peak, low-order zirconium oxide
  • the light transmittance X at 370 nm is at least 18%
  • the light transmittance Y at 550 nm is 12% or less.
  • the zirconium nitride powder is characterized in that the light transmittance Y (X / Y) at 550 nm with respect to the light transmittance X at 370 nm is 2.5 or more.
  • a second aspect of the present invention is an invention based on the first aspect, which contains silicon oxide and / or silicon nitride in a proportion of 10.0% by mass or less, and has a specific surface area measured by the BET method of 40.
  • Zirconium nitride powder that is ⁇ 90 m 2 / g.
  • zirconium dioxide powder or silica-coated zirconium dioxide powder, metal magnesium powder, and magnesium nitride powder are used, wherein the metal magnesium is 2.0 to 6.0 times mol of zirconium dioxide.
  • the mixture is mixed with nitrogen gas alone or with nitrogen gas and hydrogen.
  • the zirconium nitride powder according to the first or second aspect is obtained by reducing the zirconium dioxide powder by firing at a temperature of 650 to 900 ° C. in an atmosphere of a mixed gas of gas or a mixed gas of nitrogen gas and ammonia gas. Is a method for producing a zirconium nitride powder.
  • a fourth aspect of the present invention is the invention based on the third aspect, wherein the zirconium dioxide powder coated with silica is prepared by mixing a zirconium dioxide powder and a silicate sol-gel solution, Is a method for producing a zirconium nitride powder obtained by drying and grinding.
  • a fifth aspect of the present invention is the invention based on the third or fourth aspect, wherein the mixed gas of nitrogen gas and hydrogen gas contains 0 to 40% by volume of hydrogen gas, and the nitrogen gas and ammonia gas Is a method for producing zirconium nitride powder containing 0 to 50% by volume of ammonia gas.
  • a black photosensitive composition comprising the zirconium nitride powder of the first or second aspect or the zirconium nitride powder produced by the method of any one of the third to fifth aspects as a black pigment. It is a composition.
  • the seventh aspect of the present invention is a method of forming a black patterning film using the black photosensitive composition of the sixth aspect.
  • the zirconium nitride powder according to the first aspect of the present invention has a specific surface area of 20 m 2 / g or more, it has an effect of suppressing sedimentation when used as a resist, and since it is 90 m 2 / g or less, sufficient light shielding is achieved. Has the effect of having sex.
  • the X-ray diffraction profile has a zirconium nitride peak, but does not have a zirconium dioxide peak, a low-order zirconium oxide peak, and a low-order zirconium oxynitride peak.
  • the light transmittance X is at least 18%, the light transmittance Y at 550 nm is 12% or less, and the X / Y is 2.5 or more.
  • X / Y is 2.5 or more, there is a feature of further transmitting ultraviolet rays.
  • a black patterning film is formed as a black pigment, a high-resolution patterning film can be formed, and the formed patterning film has a high light shielding performance.
  • the zirconium nitride powder according to the second aspect of the present invention contains silicon oxide and / or silicon nitride in a proportion of 10.0% by mass or less, there is an effect of suppressing oxidation. Further, since the specific surface area is 40 to 90 m 2 / g, there is an effect of suppressing the precipitation of the resist solution.
  • the manufacturing method of patent document 2 is an atmosphere of the inert gas containing nitrogen gas or nitrogen gas, zirconium dioxide powder, metallic magnesium powder, magnesium oxide powder of Compared with firing the mixture, magnesium nitride is used instead of magnesium oxide, so that the nitriding efficiency of zirconium oxide is significantly improved. That is, when magnesium oxide is contained as in Patent Document 2, metal magnesium is partially used for nitriding magnesium oxide, but when magnesium nitride is used as in the present invention, metal magnesium is oxidized. It is used for nitriding only zirconium, improving the reaction efficiency.
  • the reaction proceeds even with nitrogen gas alone, but the reduction reaction is further promoted by firing the mixture in an atmosphere of a mixed gas of nitrogen gas and hydrogen gas or a mixed gas of nitrogen gas and ammonia gas,
  • the reaction efficiency is further increased, and only a zirconium nitride powder free from zirconium dioxide, low-order zirconium oxide and low-order zirconium oxynitride can be produced with a smaller amount of magnesium metal.
  • a zirconium dioxide powder coated with silica as a starting material, it is possible to suppress grain growth during firing, and a finer zirconium nitride powder can be obtained.
  • a fine zirconium dioxide powder raw material can be obtained by coating the zirconium dioxide powder with silica more uniformly and simply.
  • hydrogen gas in the mixed gas is in a proportion of 0 to 40% by volume, and ammonia gas is mixed in the mixed gas in a proportion of 0 to 50% by volume.
  • Inclusion further promotes the reduction reaction, further increases the reaction efficiency, and produces only zirconium nitride powder free of zirconium dioxide, low order zirconium oxide and low order zirconium oxynitride even with a small amount of magnesium metal. be able to.
  • the black photosensitive composition of the sixth aspect of the present invention since only the zirconium nitride powder is used as the black pigment, if a black patterning film is formed using this composition, a high-resolution patterning film is formed. In addition, the formed patterning film has high light shielding performance.
  • a high-resolution patterning film can be formed, and the formed patterning film has a high light shielding performance.
  • Example 3 is an X-ray diffraction profile of zirconium nitride powder obtained in Example 1 and Comparative Example 1 of the present invention. It is a spectral curve which shows the light transmittance in the dispersion liquid which diluted the dispersion liquid of the zirconium nitride powder obtained in Example 1 of this invention and Comparative Examples 1 and 2 to the powder density
  • zirconium dioxide (ZrO 2 ) or silica-coated zirconium dioxide (ZrO 2 ), metal magnesium (metal Mg), and magnesium nitride (Mg 3 N 2 ) powders are used as starting materials. And calcination at a specific temperature and time in a specific atmosphere to produce zirconium nitride (ZrN) powder having a specific surface area of 20 to 90 m 2 / g measured by the BET method.
  • zirconium dioxide powder As the zirconium dioxide powder of this embodiment, for example, any powder of zirconium dioxide such as monoclinic zirconium dioxide, cubic zirconium dioxide, yttrium-stabilized zirconium dioxide can be used. From the viewpoint of increasing the rate, monoclinic zirconium dioxide powder is preferred.
  • the average primary particle size of the zirconium dioxide powder or the zirconium dioxide powder coated with silica according to the present embodiment and the average primary particle size of the magnesium oxide powder have a specific surface area of 20 to 90 m 2 / g measured by the BET method.
  • the average primary particle size converted to a sphere from the measured value of the specific surface area is 500 nm or less. From the ease of handling of the powder, the average primary particle size is 500 nm or less and 10 nm or more. Preferably there is.
  • the zirconium dioxide powder coated with silica is obtained by mixing a zirconium dioxide powder and a silicate sol-gel solution to prepare a slurry, and drying and pulverizing the slurry.
  • the silica content is less than the lower limit, the silica coverage on the surface of zirconium dioxide is too low, and when the silica content exceeds the upper limit, the light shielding properties are insufficient when a patterned film is formed using the obtained zirconium nitride powder. There is.
  • the zirconium dioxide powder is mixed in a dispersion of water, alcohol, etc., and then mixed with the silicate sol-gel solution because the zirconium dioxide is uniformly mixed with the sol-gel solution.
  • the silicate sol-gel solution is preferably a solution in which a silicate such as methyl silicate or ethyl silicate is dissolved in a solvent such as water or alcohol.
  • the mixing ratio of the zirconium dioxide and the sol-gel solution is determined so that the solid content concentration of the resulting slurry is 10 to 50% by mass in terms of solid content.
  • the obtained slurry is dried in the air or in a vacuum atmosphere at a temperature of 60 to 120 ° C. for 1 to 360 minutes to obtain a zirconium dioxide powder coated with silica.
  • the zirconium nitride powder contains silicon oxide and / or silicon nitride in a proportion of 10.0% by mass or less, preferably 9.0% by mass or less.
  • the content exceeds 10.0% by mass, there is a problem that the light shielding property is insufficient when a patterning film is formed using the obtained zirconium nitride powder.
  • the metal magnesium powder If the particle diameter of the metal magnesium powder is too small, the reaction proceeds rapidly and the risk of operation becomes high. Therefore, the metal magnesium powder preferably has a particle diameter of 100 to 1000 ⁇ m, particularly 200 to 500 ⁇ m in the mesh pass of the sieve. The granular form is preferable. However, even if the metal magnesium is not all in the above particle size range, it is sufficient that 80% by mass or more, particularly 90% by mass or more thereof is in the above range.
  • the amount of the metal magnesium powder added to the zirconium dioxide powder affects the reducing power of the zirconium dioxide together with the amounts of ammonia gas and hydrogen gas in the atmospheric gas described later. If the amount of magnesium metal is too small, it will be difficult to obtain the desired zirconium nitride powder due to insufficient reduction. If it is too large, the reaction temperature will rise rapidly due to excess metal magnesium, which may cause grain growth of the powder. And it becomes uneconomical.
  • the metal magnesium powder is added to the zirconium dioxide powder and mixed so that the metal magnesium has a ratio of 2.0 to 6.0 moles of zirconium dioxide depending on the size of the particle size.
  • the molar amount is preferably 3.0 to 5.0 times.
  • Magnesium nitride powder coats the surface of zirconium nitride during firing to relax the reducing power of metallic magnesium and prevent sintering and grain growth of the zirconium nitride powder.
  • Magnesium nitride powder is added to zirconium dioxide and mixed so that magnesium nitride is in a ratio of 0.3 to 3.0 times mol of zirconium dioxide depending on the size of the particle size. If the amount is less than 0.3 times mol, sintering of the zirconium nitride powder is not prevented. If the amount exceeds 3.0 times mol, there is a problem that the amount of the acidic solution required for acid cleaning after firing increases.
  • the amount is preferably 0.4 to 2.0 times mol.
  • the magnesium nitride powder preferably has an average primary particle size of 1000 nm or less converted to a sphere from the measured value of the specific surface area, and preferably has an average primary particle size of 500 nm or less and 10 nm or more for ease of handling of the powder. Since not only magnesium nitride but also magnesium oxide is effective in preventing sintering of zirconium nitride, it is possible to partially use magnesium oxide mixed with magnesium nitride.
  • the temperature during the reduction reaction with magnesium metal for producing the zirconium nitride powder of the present embodiment is 650 to 900 ° C., preferably 700 to 800 ° C. 650 ° C. is a melting temperature of metallic magnesium, and if the temperature is lower than that, the reduction reaction of zirconium dioxide does not occur sufficiently. Further, even if the temperature is higher than 900 ° C., the effect is not increased, and heat energy is wasted and particle sintering proceeds, which is not preferable.
  • the reduction reaction time is preferably 30 to 90 minutes, and more preferably 30 to 60 minutes.
  • the reaction vessel for carrying out the reduction reaction preferably has a lid so that raw materials and products are not scattered during the reaction. This is because when the metal magnesium starts to melt, the reduction reaction proceeds abruptly, the temperature rises accordingly, and the gas inside the container expands, and the inside of the container scatters outside. Because there is a fear.
  • the characteristic point of this embodiment is the atmospheric gas during the reduction reaction.
  • the atmospheric gas of the present embodiment is a single nitrogen gas, a mixed gas of nitrogen gas and hydrogen gas, or a mixed gas of nitrogen gas and ammonia gas.
  • the reduction reaction is performed in the mixed gas stream.
  • Nitrogen gas in the mixed gas has a role of preventing contact between metal magnesium or a reduction product and oxygen, preventing oxidation thereof, and reacting nitrogen with zirconium to generate zirconium nitride.
  • Hydrogen gas or ammonia gas in the mixed gas has a role of reducing zirconium dioxide together with metallic magnesium.
  • Hydrogen gas is preferably contained in the mixed gas in an amount of 0 to 40% by volume, more preferably 10 to 30% by volume.
  • the ammonia gas is preferably contained in the mixed gas in an amount of 0 to 50% by volume, more preferably 0 to 40% by volume.
  • this reducing atmosphere gas it is possible to finally produce a zirconium nitride powder that does not contain low-order zirconium oxide and low-order zirconium oxynitride.
  • the ratio of hydrogen gas or ammonia gas is higher than this range, the reduction proceeds but the nitrogen source decreases, so low order zirconium oxide or low order zirconium oxynitride is generated, which is not desirable.
  • the reason why the ratio of ammonia gas is higher than the ratio of hydrogen gas is thought to be because ammonia has a higher nitriding ability than hydrogen.
  • reaction product after firing A reaction product obtained by calcining a mixture of zirconium dioxide powder or zirconium dioxide powder coated with silica, magnesium oxide powder, and magnesium metal in an atmosphere of the above mixed gas is taken out from the reaction vessel, and finally After cooling to room temperature, it is washed with an acid solution such as an aqueous hydrochloric acid solution to remove magnesium oxide produced by oxidation of metallic magnesium and magnesium oxide contained from the beginning of the reaction to prevent sintering of the product.
  • the acid cleaning is preferably performed at a pH of 0.5 or more, particularly pH 1.0 or more, and a temperature of 90 ° C. or less.
  • zirconium may be eluted. Then, after the acid washing, the pH is adjusted to 5 to 6 with aqueous ammonia, the solid content is separated by filtration or centrifugation, the solid content is dried, and pulverized to obtain zirconium nitride powder.
  • zirconium nitride powder mainly using metallic magnesium is described, but this zirconium nitride powder can also be produced by a nanoparticle plasma synthesis method. Specifically, it is a method of introducing metal zirconium powder into a plasma nanoparticle production apparatus and obtaining zirconium nitride nanoparticles in an N 2 gas atmosphere. Zirconium nitride synthesized by this method can also be obtained with a specific surface area measured by the BET method of 20 to 90 m 2 / g as in the embodiment of the present application.
  • metal zirconium as a raw material has high flammability and is dangerous. There is a disadvantage that it is expensive.
  • the zirconium nitride powder obtained in this embodiment has a specific surface area of 20 to 90 m 2 / g measured by the BET method.
  • the specific surface area of the zirconium nitride powder is 20 m 2 / g or less, the black resist has a problem that the pigment settles during long-term storage.
  • the specific surface area exceeds 90 m 2 / g, the patterning film is formed as a black pigment.
  • Zirconium nitride powder has a light transmittance X at 370 nm of at least 18%, that is, 18% or more, and a light transmittance Y at 550 nm of 12% or less in a dispersion transmission spectrum having a powder concentration of 50 ppm. If the light transmittance X is less than 18%, when the patterning film is formed as a black pigment, the bottom of the photoresist film is not exposed and an undercut of the patterning film occurs. On the other hand, if the light transmittance Y exceeds 12%, the formed patterning film has insufficient light shielding properties and a high OD value cannot be obtained.
  • the preferable light transmittance X is 19% or more, and the preferable light transmittance Y is 8% or less.
  • the zirconium nitride powder of this embodiment has a light transmittance Y (X / Y) of 550 nm with respect to the light transmittance X of 370 nm of 2. .5 or more, preferably 3.0 or more. That is, when X / Y is 2.5 or more, there is an effect of transmitting ultraviolet light, and priority is given to not generating an undercut of the patterning film.
  • the photoresist film is exposed to a predetermined pattern shape through a photomask, and then developed using an alkali developer to dissolve and remove the unexposed portions of the photoresist film, and then preferably post-baking is performed. Thereby, a predetermined black patterning film is formed.
  • An optical density that is, an OD (Optical Density) value is known as an index representing the light shielding property (attenuation of transmittance) of the formed patterning film.
  • the patterning film formed using the zirconium nitride powder of this embodiment has a high OD value.
  • the OD value is a logarithm of the degree to which light is absorbed when passing through the patterning film, and is defined by the following equation (1).
  • I is the transmitted light amount
  • I 0 the incident light amount.
  • OD value -log 10 (I / I 0 ) (1)
  • the substrate examples include glass, silicon, polycarbonate, polyester, aromatic polyamide, polyamideimide, and polyimide.
  • the substrate may be subjected to appropriate pretreatment such as chemical treatment with a silane coupling agent or the like, plasma treatment, ion plating, sputtering, gas phase reaction method, vacuum deposition, or the like, if desired.
  • an appropriate application method such as spin coating, cast coating, roll coating or the like can be employed.
  • the coating thickness is usually 0.1 to 10 ⁇ m, preferably 0.2 to 7.0 ⁇ m, and more preferably 0.5 to 6.0 ⁇ m as the film thickness after drying.
  • the radiation used for forming the patterning film is preferably radiation having a wavelength in the range of 250 to 370 nm.
  • the amount of irradiation energy is preferably 10 to 10,000 J / m 2 .
  • the alkaline developer include sodium carbonate, sodium hydroxide, potassium hydroxide, tetramethylammonium hydroxide, choline, 1,8-diazabicyclo- [5.4.0] -7-undecene, 1,5.
  • An aqueous solution of -diazabicyclo- [4.3.0] -5-nonene is preferred.
  • An appropriate amount of a water-soluble organic solvent such as methanol or ethanol, a surfactant or the like can be added to the alkaline developer.
  • the development processing method a shower development method, a spray development method, a dip (immersion) development method, a paddle (liquid buildup) development method, or the like can be applied.
  • the development conditions are preferably 5 to 300 seconds at room temperature.
  • the patterning film thus formed is a high-definition liquid crystal, a black matrix material for organic EL, and a light shielding material for image sensors. It is suitably used for a light shielding material for optical members, a light shielding filter, an IR cut filter and the like.
  • Example 1 7.4 g of monoclinic zirconium dioxide powder having an average primary particle size of 50 nm calculated from the specific surface area measured by the BET method, 7.3 g of metal magnesium powder having an average primary particle size of 150 ⁇ m, and an average primary particle size of Then, 3.0 g of 200 nm magnesium nitride powder was added, and the mixture was uniformly mixed by a reactor equipped with a quartz boat in a quartz glass tube. At this time, the amount of metal magnesium added was 5.0 times mol of zirconium dioxide, and the amount of magnesium nitride added was 0.5 times mol of zirconium dioxide. This mixture was baked at a temperature of 700 ° C.
  • the mixture was filtered with a suction filtration device, further washed with an equal amount of ion-exchanged water, and dried with a hot air dryer at a set temperature of 120 ° C. to obtain zirconium nitride powder.
  • Example 2 The same metallic magnesium powder as in Example 1 was changed to 4.4 g (3.0 times mol of zirconium dioxide), the reaction gas was a mixed gas of nitrogen gas and hydrogen gas, and the ratio of these volume percentages (N 2 : H 2 ) was prepared in the same manner as in Example 1 except that the mixed gas atmosphere was 90%: 10% and the firing time was 30 minutes.
  • Example 3 7.4 g of the same zirconium dioxide powder as in Example 1 was dispersed in ethanol, and this mixed solution was added to and mixed with a silicate sol-gel solution mainly composed of ethyl silicate silicate (silica content 0.1522 g) to a solid content concentration of 30. A mass percent slurry was prepared. This slurry was dried by a box dryer at 70 ° C. for 120 minutes in the air atmosphere to obtain a zirconium dioxide powder having an average primary particle size of 50 nm coated with silica. This powder contained 3.0% by mass of silica (SiO 2 ) in zirconium dioxide.
  • zirconium dioxide powder 7.5 g, 8.8 g of metal magnesium powder having an average primary particle size of 300 ⁇ m and 2.1 g of magnesium nitride powder having an average primary particle size of 500 nm were added and mixed uniformly as in Example 1. .
  • the addition amount of metal magnesium was 6.0 times mol of zirconium dioxide, and the addition amount of magnesium nitride was 2.0 times mol of zirconium dioxide.
  • zirconium nitride powder was obtained in the same manner as in Example 1.
  • Example 4 The addition amount of magnesium metal and magnesium nitride is 2.5 times mol and 0.5 times mol of zirconium dioxide, the reaction gas is a mixed gas of nitrogen gas and ammonia gas, and the ratio of these volume percentages (N 2 : The mixture was baked for 30 minutes at a temperature of 750 ° C. in an atmosphere of a mixed gas of 80%: 20% NH 3 ) to obtain a baked product. Otherwise, using the same raw materials as in Example 1, zirconium nitride powder was obtained in the same manner as in Example 1.
  • Example 5 The addition amount of magnesium metal and magnesium nitride is 3.5 times mol and 0.5 times mol of zirconium dioxide, respectively, and the reaction gas is a mixed gas of nitrogen gas and ammonia gas, and the ratio of these volume% (N 2 : A fired product was obtained by firing for 60 minutes at a temperature of 700 ° C. in an atmosphere of a mixed gas of 80%: 20% NH 3 ). Otherwise, using the same raw materials as in Example 1, zirconium nitride powder was obtained in the same manner as in Example 1.
  • Example 6 Metallic magnesium with an average primary particle size of 500 ⁇ m was added to a zirconium dioxide powder with an average primary particle size of 40 nm coated with silica in the same manner as in Example 3 so that 10.0% by mass of silica (SiO 2 ) was contained in zirconium dioxide.
  • 4.4 g of powder and 3.0 g of magnesium nitride powder having an average primary particle size of 500 nm were added and mixed uniformly as in Example 1. At this time, the addition amounts of metal magnesium and magnesium nitride were 3.0 times mol and 0.5 times mol of zirconium dioxide, respectively.
  • the reaction gas is a mixed gas of nitrogen gas and hydrogen gas, and calcined at a temperature of 800 ° C. for 60 minutes in an atmosphere of a mixed gas of 90%: 10% by volume (N 2 : H 2 ). A fired product was obtained. Thereafter, zirconium nitride powder was obtained in the same manner as in Example 1.
  • Example 7 Zirconium nitride powder was obtained in the same manner as in Example 1 using the same raw materials as in Example 1, except that the amount of metal magnesium added was changed to 2.0 times the molar amount of zirconium dioxide.
  • Example 8 Zirconium nitride powder was obtained in the same manner as in Example 1, except that the amount of magnesium nitride added was changed to 0.3 times the molar amount of zirconium dioxide.
  • Example 9 Zirconium nitride powder was obtained in the same manner as in Example 1, except that the amount of magnesium nitride added was changed to 3.0 times the molar amount of zirconium dioxide.
  • Example 10 Zirconium nitride powder was obtained in the same manner as in Example 1, except that the firing temperature was changed to 650 ° C., using the same raw materials as in Example 1.
  • Example 11 Zirconium nitride powder was obtained in the same manner as in Example 1 using the same raw materials as in Example 1 except that the firing temperature was changed to 900 ° C.
  • Example 12 The same raw material as in Example 1 except that the reaction gas is a mixed gas of nitrogen gas and hydrogen gas, and the mixture is changed to a mixed gas atmosphere in which the ratio of volume% (N 2 : H 2 ) is 50%: 50%.
  • the reaction gas is a mixed gas of nitrogen gas and hydrogen gas
  • the mixture is changed to a mixed gas atmosphere in which the ratio of volume% (N 2 : H 2 ) is 50%: 50%.
  • Zirconium nitride powder was obtained in the same manner as in Example 1.
  • Example 13 The same raw materials as in Example 1 except that the reaction gas is a mixed gas of nitrogen gas and ammonia gas, and the atmosphere of the mixed gas is 40%: 60% of these volume percentages (N 2 : NH 3 ). Zirconium nitride powder was obtained in the same manner as in Example 1.
  • Example 1 A fine particle low-order zirconium oxide / zirconium nitride composite was obtained by a method according to the method shown in Example 1 of Patent Document 2. That is, 7.2 g of zirconium dioxide powder having an average primary particle size of 19 nm and 3.3 g of fine particle magnesium oxide having an average primary particle size of 20 nm were mixed and pulverized to obtain a mixed powder A. To 0.5 g of this mixed powder, 2.1 g of metallic magnesium powder having an average primary particle size of 150 ⁇ m was added and mixed to obtain mixed powder B. At this time, the addition amounts of metal magnesium and magnesium oxide were 1.4 times mol and 1.4 times mol of zirconium dioxide, respectively.
  • This mixed powder B was fired at a temperature of 700 ° C. for 60 minutes in an atmosphere of nitrogen gas. Thereafter, in the same manner as in Example 1, a fine particle low-order zirconium oxide / zirconium nitride composite was obtained.
  • a black powder of titanium black shown in Example 1 of Patent Document 1 was prepared. That is, titanium oxide powder having an average primary particle size of 160 nm was baked for 180 minutes at a temperature of 850 ° C. in an ammonia gas atmosphere to obtain 70 nm of titanium oxynitride (TiO 0.3 N 0.9 ).
  • a black powder was prepared by adding 5.0 parts by mass of an insulating powder made of Al 2 O 3 having an average primary particle size of 10 nm to 100 parts by mass of titanic nitride.
  • Example 3 In order to contain 11.0% by mass of silica (SiO 2 ) in zirconium dioxide, 7.8 g of zirconium dioxide powder having an average primary particle diameter of 40 nm coated with silica in the same manner as in Example 2 has an average primary particle diameter of 150 ⁇ m. Then, 4.6 g of metal magnesium powder and 3.2 g of magnesium nitride powder having an average primary particle size of 100 nm were added and mixed uniformly in the same manner as in Example 1. At this time, the addition amounts of metal magnesium and magnesium nitride were 3.0 times mol and 0.5 times mol of zirconium dioxide, respectively. The reaction gas as the atmosphere gas was made 100% by volume of nitrogen gas and baked at a temperature of 750 ° C. for 60 minutes to obtain a baked product. Thereafter, zirconium nitride powder was obtained in the same manner as in Example 1.
  • Example 5 Zirconium nitride powder was obtained in the same manner as in Example 1 except that the amount of metallic magnesium added was changed to 1.5 times the molar amount of zirconium dioxide, using the same raw materials as in Example 1.
  • Example 6 Zirconium nitride powder was obtained in the same manner as in Example 1 except that the amount of metallic magnesium added was changed to 6.5 times the molar amount of zirconium dioxide, using the same raw materials as in Example 1.
  • Example 8 Zirconium nitride powder was obtained in the same manner as in Example 1, except that the amount of magnesium nitride added was changed to 3.5 moles of zirconium dioxide, using the same raw materials as in Example 1.
  • Examples 1 to 13 and Comparative Examples 1 to 9 molar ratio of zirconium dioxide to addition amount of metal magnesium and magnesium nitride or magnesium oxide (hereinafter referred to as Mg source), kind and ratio of additive, atmosphere
  • Mg source metal magnesium and magnesium nitride or magnesium oxide
  • Table 1 shows the kind of reaction gas, which is a gas, the ratio of its volume%, the firing temperature and the firing time.
  • FIG. 1 shows an X-ray diffraction profile.
  • ZrN means zirconium nitride
  • Zr 2 N 2 O means low-order zirconium oxynitride.
  • Light transmittance X at 370 nm and light transmittance Y at 550 nm Light transmittances X and Y were read from the spectral curves of the samples of Examples 1 to 13 and Comparative Examples 1 to 9, respectively.
  • the sample of Example 1 had a zirconium nitride peak in the X-ray diffraction profile, but had no zirconium dioxide peak, low-order zirconium oxide peak, or low-order zirconium oxynitride peak.
  • the samples of Comparative Example 1 and Comparative Example 2 have a transmittance of 370 nm in the spectral transmission curve of 24.1% and 8.8%, respectively, and a transmittance of 550 nm, respectively. They were 20.8% and 10.0%.
  • the transmittance at 370 nm in the spectral transmission curve of the sample of Example 1 is 26.0%, which is higher than Comparative Examples 1 and 2, and the transmittance at 550 nm is 7.3%, which is higher than Comparative Examples 1 and 2. It was low.
  • the sample of Comparative Example 1 has a low 560 nm OD value of visible light due to insufficient reduction of zirconium dioxide. It was “bad”. Further, the titanium black sample of Comparative Example 2 had a high UV 370 nm OD value due to insufficient UV transmission performance, and was “bad”. Further, since the sample of Comparative Example 3 had a large amount of silica, the 560 nm OD value of visible light was low and “bad”.
  • the sample of Comparative Example 4 had a high firing temperature, so the particle size was coarse, and the 560 nm OD value of visible light was low and “bad”.
  • the ratio of metallic magnesium was too small, and the reduction of zirconium dioxide was insufficient, so the 560 nm OD value of visible light was low and “bad”.
  • the sample of Comparative Example 6 since the proportion of metallic magnesium was too large and the particle diameter became coarse, the UV 370 nm OD value was high and “bad”.
  • the proportion of magnesium nitride was too small to prevent the sintering of zirconium nitride, so the UV 370 nm OD value was high and “bad”.
  • the sample of Comparative Example 8 had a too high proportion of magnesium nitride and contained low-order zirconium oxynitride, so the 560 nm OD value of visible light was low and “bad”.
  • the sample of Comparative Example 9 had a firing temperature that was too low, and zirconium dioxide was not sufficiently reduced, and the 560 nm OD value of visible light was low and “bad”.
  • the samples of Examples 1 to 13 satisfy the requirements of the present invention, the 370 nm OD value of ultraviolet (UV) is “excellent” or “good”, and the OD of 560 nm of visible light. The value was also “excellent” or “good”. From this, it was found that the samples of Examples 1 to 13 are advantageous for patterning because they have high visible light shielding performance and transmit ultraviolet rays.
  • UV ultraviolet
  • the zirconium nitride powder of the present invention is a high-definition liquid crystal, a black matrix material for organic EL, and a light shielding material for image sensors. It can be used for a light shielding material for optical members, a light shielding filter, an IR cut filter, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

BET法により測定される比表面積が20~90m2/gであり、X線回折プロファイルにおいて、窒化ジルコニウムのピークを有する一方、二酸化ジルコニウムのピーク、低次酸化ジルコニウムのピーク及び低次酸窒化ジルコニウムのピークを有さず、かつ粉末濃度50ppmの分散液透過スペクトルにおいて、370nmの光透過率Xが少なくとも18%であり、550nmの光透過率Yが12%以下であって、370nmの光透過率Xに対する550nmの光透過率Y(X/Y)が2.5以上である窒化ジルコニウム粉末である。

Description

窒化ジルコニウム粉末及びその製造方法
 本発明は、絶縁性の黒色顔料として好適に用いられる窒化ジルコニウム粉末及びその製造方法に関する。更に詳しくは、黒色顔料として黒色パターニング膜を形成するときに高解像度のパターニング膜を形成するとともに形成したパターニング膜が高い遮光性能を有する窒化ジルコニウム粉末及びその製造方法に関するものである。なお、本国際出願は、2016年9月29日に出願した日本国特許出願第191425号(特願2016-191425)に基づく優先権を主張するものであり、特願2016-191425の全内容を本国際出願に援用する。
 この種の黒色顔料は、感光性樹脂に分散されて黒色感光性組成物に調製され、この組成物を基板に塗布してフォトレジスト膜を形成し、フォトリソグラフィー法でフォトレジスト膜に露光してパターニング膜を形成することで、液晶ディスプレイのカラーフィルター等の画像形成素子のブラックマトリックスに用いられる。従来の黒色顔料としてのカーボンブラックは導電性があるため、絶縁性が要求される用途には向かない。
  従来、絶縁性の高い黒色顔料として、特定の組成のチタンブラックとも称されるチタン酸窒化物からなる黒色粉末と、Y23、ZrO2、Al23、SiO2、TiO2、V25を少なくとも1種からなる絶縁粉末とを含有する高抵抗黒色粉末が開示されている(例えば、特許文献1参照。)。この黒色粉末によれば、黒色膜にしたときに、抵抗値が高く、遮光性に優れるので、カラーフィルターのブラックマトリックスとして好適であるとされている。
 また、絶縁性の黒色顔料であって窒化ジルコニウムを含むものとして、X線回折プロファイルにおいて、低次酸化ジルコニウムのピークと窒化ジルコニウムのピークを有し、比表面積が10~60m2/gであることを特徴とする微粒子低次酸化ジルコニウム・窒化ジルコニウム複合体が開示されている(例えば、特許文献2参照。)。この微粒子低次酸化ジルコニウム・窒化ジルコニウム複合体は、二酸化ジルコニウム又は水酸化ジルコニウムと、酸化マグネシウムと、金属マグネシウムとの混合物を、窒素ガス又は窒素ガスを含む不活性ガス気流中、650~800℃で焼成する工程を経て製造される。上記微粒子低次酸化ジルコニウム・窒化ジルコニウム複合体は、黒色系で電気伝導性の低い微粒子材料として使用でき、カーボンブラックなどが使用されているテレビなどのディスプレイ用のブラックマトリクスなどへ、より電気伝導性の低い微粒子黒色顔料として使用することができるとされ、また上記製造方法によれば、上記微粒子低次酸化ジルコニウム・窒化ジルコニウム複合体を工業的規模で製造(量産)することができるとされている。
特開2008-266045号公報(請求項1、段落[0002]、段落[0010]) 特開2009-091205号公報(請求項1、請求項2、段落[0015]、段落[0016])
 しかしながら、特許文献1に示されるチタンブラックと称される黒色粉末、並びに特許文献2に示される微粒子低次酸化ジルコニウム・窒化ジルコニウム複合体は、黒色顔料として用いる場合、より高い遮光性を得るために顔料濃度を高くして黒色感光性組成物を調製し、この組成物を基板に塗布してフォトレジスト膜を形成し、フォトリソグラフィー法でフォトレジスト膜に露光して黒色パターニング膜を形成するときにフォトレジスト膜中の黒色顔料が紫外線であるi線(波長365nm)も遮蔽してしまうため、紫外線がフォトレジスト膜の底部まで届かず、底部にアンダーカットが発生し、高解像度のパターニング膜を形成することができない問題があった。
 本発明の目的は、黒色顔料として黒色パターニング膜を形成するときに高解像度のパターニング膜を形成するとともに形成したパターニング膜が高い遮光性能を有する窒化ジルコニウム粉末及びその製造方法を提供することにある。
  本発明者らは、X線回折プロファイルにおいて、二酸化ジルコニウムや低次酸化ジルコニウムや低次酸窒化ジルコニウムのピークが微量でも存在すると、遮光性能が著しく低下するため、この粉末を黒色顔料として黒色パターニング膜を形成するときに高解像度のパターニング膜を形成することができず、しかも形成したパターニング膜の遮光性能が低下することを知見し、本発明に到達した。
 本発明の第1の観点は、BET法により測定される比表面積が20~90m2/gであり、X線回折プロファイルにおいて、窒化ジルコニウムのピークを有する一方、二酸化ジルコニウムのピーク、低次酸化ジルコニウムのピーク及び低次酸窒化ジルコニウムのピークを有さず、かつ粉末濃度50ppmの分散液透過スペクトルにおいて、370nmの光透過率Xが少なくとも18%であり、550nmの光透過率Yが12%以下であって、前記370nmの光透過率Xに対する前記550nmの光透過率Y(X/Y)が2.5以上であることを特徴とする窒化ジルコニウム粉末である。
 本発明の第2の観点は、第1の観点に基づく発明であって、酸化ケイ素及び/又は窒化ケイ素を10.0質量%以下の割合で含有し、BET法により測定される比表面積が40~90m2/gである窒化ジルコニウム粉末である。
 本発明の第3の観点は、二酸化ジルコニウム粉末又はシリカがコーティングされた二酸化ジルコニウム粉末と、金属マグネシウム粉末と、窒化マグネシウム粉末とを、金属マグネシウムが二酸化ジルコニウムの2.0~6.0倍モルの割合になるように、かつ窒化マグネシウムが二酸化ジルコニウムの0.3~3.0倍モルの割合になるように、混合して混合物を得た後、前記混合物を窒素ガス単体、又は窒素ガスと水素ガスの混合ガス、又は窒素ガスとアンモニアガスの混合ガスの雰囲気下、650~900℃の温度で焼成することにより、前記二酸化ジルコニウム粉末を還元して、第1又は第2の観点の窒化ジルコニウム粉末を製造することを特徴とする窒化ジルコニウム粉末の製造方法である。
 本発明の第4の観点は、第3の観点に基づく発明であって、前記シリカがコーティングされた二酸化ジルコニウム粉末が、二酸化ジルコニウム粉末とシリケートゾルゲル液とを混合してスラリーを調製し、このスラリーを乾燥し粉砕して得られる窒化ジルコニウム粉末の製造方法である。
 本発明の第5の観点は、第3又は第4の観点に基づく発明であって、前記窒素ガスと水素ガスの混合ガス中、水素ガスを0~40体積%含み、前記窒素ガスとアンモニアガスの混合ガス中、アンモニアガスを0~50体積%含む窒化ジルコニウム粉末の製造方法である。
 本発明の第6の観点は、第1又は第2の観点の窒化ジルコニウム粉末又は第3ないし第5の観点のいずれかの観点の方法により製造された窒化ジルコニウム粉末を黒色顔料として含む黒色感光性組成物である。
 本発明の第7の観点は、第6の観点の黒色感光性組成物を用いて黒色パターニング膜を形成する方法である。
 本発明の第1の観点の窒化ジルコニウム粉末は、比表面積が20m2/g以上であるため、レジストとした場合の沈降抑制の効果があり、また90m2/g以下であるため、十分な遮光性を有する効果がある。またX線回折プロファイルにおいて、窒化ジルコニウムのピークを有する一方、二酸化ジルコニウムのピーク、低次酸化ジルコニウムのピーク及び低次酸窒化ジルコニウムのピークを有しないため、粉末濃度50ppmの分散液透過スペクトルにおいて、370nmの光透過率Xが少なくとも18%であり、550nmの光透過率Yが12%以下である特徴を有し、またX/Yが2.5以上である特徴を有する。X/Yが2.5以上であることにより、紫外線をより一層透過する特長がある。この結果、黒色顔料として黒色パターニング膜を形成するときに高解像度のパターニング膜を形成することができ、しかも形成したパターニング膜は高い遮光性能を有するようになる。
 本発明の第2の観点の窒化ジルコニウム粉末は、酸化ケイ素及び/又は窒化ケイ素を10.0質量%以下の割合で含有するため、酸化抑制の効果がある。また比表面積が40~90m2/gであるため、レジスト液の沈降を抑制する効果がある。
  本発明の第3の観点の窒化ジルコニウム粉末の製造方法では、特許文献2の製造方法が窒素ガス又は窒素ガスを含む不活性ガスの雰囲気下で、二酸化ジルコニウム粉末、金属マグネシウム粉末、酸化マグネシウム粉末の混合物を焼成しているのに比較して、酸化マグネシウムの代わりに窒化マグネシウムを使用するため、酸化ジルコニウムの窒化効率が著しく向上する。すなわち、特許文献2のように酸化マグネシウムが含まれる場合には、金属マグネシウムが酸化マグネシウムを窒化することに一部使用されるが、本発明のように窒化マグネシウムを使用した場合、金属マグネシウムは酸化ジルコニウムのみを窒化することに使用され、反応効率が向上する。
 更に、本発明では窒素ガス単体でも反応は進行するが、混合物を窒素ガスと水素ガスの混合ガス又は窒素ガスとアンモニアガスの混合ガスの雰囲気下で焼成することにより、還元反応がより促進され、反応効率がより高まって、より少ない金属マグネシウム量でも二酸化ジルコニウム、低次酸化ジルコニウム及び低次酸窒化ジルコニウムのない、窒化ジルコニウム粉末のみを製造することができる。また出発原料にシリカがコーティングされた二酸化ジルコニウム粉末を用いることにより、焼成時に粒成長を抑えることが可能となり、より微細な窒化ジルコニウム粉末を得ることができる。
  本発明の第4の観点の窒化ジルコニウム粉末の製造方法によれば、より均一にかつ簡便に二酸化ジルコニウム粉末にシリカをコーティングして微細な二酸化ジルコニウム粉末原料にすることができる。
  本発明の第5の観点の窒化ジルコニウム粉末の製造方法によれば、混合ガス中の水素ガスを0~40体積%の割合で、また混合ガス中にアンモニアガスを0~50体積%の割合で含ませることにより、還元反応が更により一層促進され、反応効率がより一層高まって、少ない金属マグネシウム量でも二酸化ジルコニウム、低次酸化ジルコニウム及び低次酸窒化ジルコニウムのない、窒化ジルコニウム粉末のみを製造することができる。
  本発明の第6の観点の黒色感光性組成物によれば、黒色顔料として窒化ジルコニウム粉末のみであるため、この組成物を用いて黒色パターニング膜を形成すれば、高解像度のパターニング膜を形成することができ、しかも形成したパターニング膜が高い遮光性能を有するようになる。
  本発明の第7の観点の黒色パターニング膜の形成方法によれば、高解像度のパターニング膜を形成することができ、しかも形成したパターニング膜が高い遮光性能を有するようになる。
本発明の実施例1と比較例1でそれぞれ得られた窒化ジルコニウム粉末のX線回折プロファイルである。 本発明の実施例1と比較例1、2で得られた窒化ジルコニウム粉末の分散液を粉末濃度50ppmに希釈した分散液における光透過率を示す分光曲線である。
 次に本発明を実施するための形態を説明する。
〔ZrO2、Mg32及び金属Mgを出発原料として焼成によりZrNを製造する方法〕
  本発明の第1の実施形態は、二酸化ジルコニウム(ZrO2 )又はシリカがコーティングされた二酸化ジルコニウム(ZrO2 )、金属マグネシウム(金属Mg)及び窒化マグネシウム(Mg32)の各粉末を出発原料として用い、特定の雰囲気下、特定の温度と時間で焼成することにより、BET法により測定される比表面積が20~90m2/gの窒化ジルコニウム(ZrN)粉末を製造する方法である。
[二酸化ジルコニウム粉末]
  本実施形態の二酸化ジルコニウム粉末としては、例えば、単斜晶系二酸化ジルコニウム、立方晶系二酸化ジルコニウム、イットリウム安定化二酸化ジルコニウム等の二酸化ジルコニウムの粉末がいずれも使用可能であるが、窒化ジルコニウム粉末の生成率が高くなる観点から、単斜晶系二酸化ジルコニウム粉末が好ましい。
  また本実施形態の二酸化ジルコニウム粉末又はシリカがコーティングされた二酸化ジルコニウム粉末の各平均一次粒径、及び酸化マグネシウム粉末の平均一次粒径は、BET法により測定される比表面積が20~90m2/gの窒化ジルコニウム粉末を得るためには、比表面積の測定値から球形換算した平均一次粒径で500nm以下であることが好ましく、粉末の取扱い易さから、平均一次粒径で500nm以下で10nm以上であることが好ましい。
[シリカがコーティングされた二酸化ジルコニウム粉末]
  シリカがコーティングされた二酸化ジルコニウム粉末は、二酸化ジルコニウム粉末とシリケートゾルゲル液とを混合してスラリーを調製し、このスラリーを乾燥し粉砕して得られる。二酸化ジルコニウムとシリケートゾルゲル液とを混合割合は、質量比で二酸化ジルコニウム:シリケートゾルゲル液のシリカ分=99.5~0.5:90.0~10.0であることが好ましい。シリカ分が下限値未満では、二酸化ジルコニウム表面のシリカ被覆率が低すぎ、シリカ分が上限値を超えると、得られた窒化ジルコニウム粉末を用いてパターニング膜を形成したときに遮光性が不足する不具合がある。
 二酸化ジルコニウム粉末を水、アルコールなどの分散液に入れて混合した後、この混合液をシリケートゾルゲル液に添加混合することが、二酸化ジルコニウムがゾルゲル液に均一に混合するため、好ましい。シリケートゾルゲル液は、メチルシリケート、エチルシリケートなどのシリケートが水、アルコールなどの溶媒に溶解した液が好ましい。二酸化ジルコニウムとゾルゲル液との混合割合は、得られるスラリーの固形分濃度が固形分で10~50質量%になるように決められる。得られたスラリーを大気中又は真空雰囲気下60~120℃の温度で1~360分間乾燥して、シリカがコーティングされた二酸化ジルコニウム粉末が得られる。
 出発原料にシリカがコーティングされた二酸化ジルコニウム粉末を用いることにより、焼成時に粒成長を抑えることが可能となり、BET法により測定される比表面積が20~90m2/gであるより微細な窒化ジルコニウム粉末を得ることができる。このとき、窒化ジルコニウム粉末は、酸化ケイ素及び/又は窒化ケイ素を10.0質量%以下、好ましくは9.0質量%以下の割合で含有する。10.0質量%を超えると、得られた窒化ジルコニウム粉末を用いてパターニング膜を形成したときに遮光性が不足する不具合がある。
[金属マグネシウム粉末]
  金属マグネシウム粉末は、粒径が小さすぎると、反応が急激に進行して操作上危険性が高くなるので、粒径が篩のメッシュパスで100~1000μmの粒状のものが好ましく、特に200~500μmの粒状のものが好ましい。ただし、金属マグネシウムは、すべて上記粒径範囲内になくても、その80質量%以上、特に90質量%以上が上記範囲内にあればよい。
  二酸化ジルコニウム粉末に対する金属マグネシウム粉末の添加量の多寡は、後述する雰囲気ガス中のアンモニアガス及び水素ガスの量とともに二酸化ジルコニウムの還元力に影響を与える。金属マグネシウムの量が少なすぎると、還元不足で目的とする窒化ジルコニウム粉末が得られにくくなり、多すぎると、過剰な金属マグネシウムにより反応温度が急激に上昇し、粉末の粒成長を引き起こす恐れがあるとともに不経済となる。金属マグネシウム粉末は、その粒径の大きさによって、金属マグネシウムが二酸化ジルコニウムの2.0~6.0倍モルの割合になるように、金属マグネシウム粉末を二酸化ジルコニウム粉末に添加して混合する。2.0倍モル未満では、二酸化ジルコニウムの還元力が不足し、6.0倍モルを超えると、過剰な金属マグネシウムにより反応温度が急激に上昇し、粉末の粒成長を引き起こす恐れがあるとともに不経済となる。好ましくは3.0~5.0倍モルである。
[窒化マグネシウム粉末]
  窒化マグネシウム粉末は、焼成時に窒化ジルコニウム表面をコーティングして、金属マグネシウムの還元力を緩和して、窒化ジルコニウム粉末の焼結及び粒成長を防止する。窒化マグネシウム粉末は、その粒径の大きさによって、窒化マグネシウムが二酸化ジルコニウムの0.3~3.0倍モルの割合になるように、二酸化ジルコニウムに添加して混合する。0.3倍モル未満では窒化ジルコニウム粉末の焼結防止にならず、3.0倍モルを超えると、焼成後の酸洗浄時に要する酸性溶液の使用量が増加する不具合がある。好ましくは0.4~2.0倍モルである。窒化マグネシウム粉末は、比表面積の測定値から球形換算した平均一次粒径で1000nm以下であることが好ましく、粉末の取扱い易さから、平均一次粒径で500nm以下で10nm以上であることが好ましい。なお、窒化マグネシウムのみではなく、酸化マグネシウムも窒化ジルコニウムの焼結予防に有効であるため、窒化マグネシウムに一部酸化マグネシウムを混合して使用することも可能である。
[金属マグネシウム粉末による還元反応]
  本実施形態の窒化ジルコニウム粉末を生成させるための金属マグネシウムによる還元反応時の温度は、650~900℃、好ましくは700~800℃である。650℃は金属マグネシウムの溶融温度であり、温度がそれより低いと、二酸化ジルコニウムの還元反応が十分に生じない。また、温度を900℃より高くしても、その効果は増加せず、熱エネルギーの無駄になるとともに粒子の焼結が進行し好ましくない。また還元反応時間は30~90分が好ましく、30~60分が更に好ましい。
  上記還元反応を行う際の反応容器は、反応時に原料や生成物が飛び散らないように、蓋を有するものが好ましい。これは、金属マグネシウムの溶融が開始されると、還元反応が急激に進行し、それに伴って温度が上昇して、容器内部の気体が膨張し、それによって、容器の内部のものが外部に飛び散るおそれがあるからである。
[金属マグネシウム粉末による還元反応時の雰囲気ガス]
  本実施形態の特徴ある点は、上記還元反応時の雰囲気ガスにある。本実施形態の雰囲気ガスは、窒素ガス単体であるか、又は窒素ガスと水素ガスの混合ガスであるか、又は窒素ガスとアンモニアガスの混合ガスである。上記還元反応は上記混合ガスの気流中で行われる。混合ガス中の窒素ガスは、金属マグネシウムや還元生成物と酸素との接触を防ぎ、それらの酸化を防ぐとともに、窒素をジルコニウムと反応させ、窒化ジルコニウムを生成させる役割を有する。混合ガス中の水素ガス又はアンモニアガスは、金属マグネシウムとともに、二酸化ジルコニウムを還元させる役割を有する。水素ガスは、上記混合ガス中、0~40体積%含むことが好ましく、10~30体積%含むことが更に好ましい。またアンモニアガスは、上記混合ガス中、0~50体積%含むことが好ましく、0~40体積%含むことが更に好ましい。この還元力のある雰囲気ガスを使用することにより、最終的に低次酸化ジルコニウム及び低次酸窒化ジルコニウムを含まない窒化ジルコニウム粉末を製造することができる。一方、この範囲より水素ガスの割合、或いはアンモニアガスの割合が高いと還元は進むものの窒素源が少なくなるため、低次酸化ジルコニウム又は低次酸窒化ジルコニウムが生成してしまい、望ましくない。また、水素ガスの割合よりもアンモニアガスの割合が高いのは、ガスの窒化能力が水素よりアンモニアのほうが高いからと考えられる。
[焼成後の反応物の処理]
  二酸化ジルコニウム粉末又はシリカがコーティングされた二酸化ジルコニウム粉末と、酸化マグネシウム粉末と、金属マグネシウムとの混合物を上記混合ガスの雰囲気下で焼成することにより得られた反応物は、反応容器から取り出し、最終的には室温まで冷却した後、塩酸水溶液などの酸溶液で洗浄して、金属マグネシウムの酸化によって生じた酸化マグネシウムや生成物の焼結防止のため反応当初から含まれていた酸化マグネシウムを除去する。この酸洗浄に関しては、pH0.5以上、特にpH1.0以上、温度は90℃以下で行うのが好ましい。これは酸性が強すぎたり温度が高すぎるとジルコニウムまでが溶出してしまうおそれがあるためである。そして、その酸洗浄後、アンモニア水などでpHを5~6に調整した後、濾過又は遠心分離により固形分を分離し、その固形分を乾燥した後、粉砕して窒化ジルコニウム粉末を得る。
 本実施形態では、主に金属マグネシウムを使用した窒化ジルコニウム粉末について記載しているが、この窒化ジルコニウム粉末はナノ粒子プラズマ合成法により作製することも可能である。具体的にはプラズマナノ粒子製造装置に金属ジルコニウム粉末を導入し、N2ガス雰囲気にて窒化ジルコニウムナノ粒子を得る方法である。本方法により合成される窒化ジルコニウムも本願実施形態と同様に20~90m2/gのBET法により測定される比表面積のものを得ることができるが、原料である金属ジルコニウムが燃焼性が高く危険であること、コスト的に高くなるデメリットがある。
<本実施形態で得られた窒化ジルコニウム粉末の特性>
 本実施形態で得られた窒化ジルコニウム粉末は、BET法により測定される比表面積が20~90m2/gである。窒化ジルコニウム粉末の上記比表面積が20m2/g以下では、黒色レジストとしたときに、長期保管時に顔料が沈降する不具合があり、90m2/gを超えると、黒色顔料としてパターニング膜を形成したときに、遮光性が不足する不具合がある。30~60m2/gが好ましい。
  窒化ジルコニウム粉末は、粉末濃度50ppmの分散液透過スペクトルにおいて、370nmの光透過率Xが少なくとも18%、すなわち、18%以上であり、550nmの光透過率Yが12%以下である。光透過率Xが18%未満では、黒色顔料としてパターニング膜を形成するときにフォトレジスト膜の底部まで露光されず、パターニング膜のアンダーカットが発生する。また光透過率Yが12%を超えると、形成したパターニング膜の遮光性が不足し高いOD値が得られない。好ましい光透過率Xは19%以上であり、好ましい光透過率Yは8%以下である。上記光透過率Xと光透過率Yの二律背反的な特性を考慮して、本実施形態の窒化ジルコニウム粉末は、370nmの光透過率Xに対する前記550nmの光透過率Y(X/Y)が2.5以上、好ましくは3.0以上である。即ち、X/Yが2.5以上であることにより、紫外線透過の効果があり、パターニング膜のアンダーカットを発生しないことが優先される。
〔窒化ジルコニウム粉末を黒色顔料として用いたパターニング膜の形成方法〕
  上記窒化ジルコニウム粉末を黒色顔料として用いた、ブラックマトリックスに代表されるパターニング膜の形成方法について述べる。先ず、上記窒化ジルコニウム粉末を感光性樹脂に分散して黒色感光性組成物に調製する。次いでこの黒色感光性組成物を基板上に塗布した後、プリベークを行って溶剤を蒸発させて、フォトレジスト膜を形成する。次にこのフォトレジスト膜にフォトマスクを介して所定のパターン形状に露光したのち、アルカリ現像液を用いて現像して、フォトレジスト膜の未露光部を溶解除去し、その後好ましくはポストベークを行うことにより、所定の黒色パターニング膜が形成される。
 形成されたパターニング膜の遮光性(透過率の減衰)を表す指標として光学濃度、即ちOD(Optical Density)値が知られている。本実施形態の窒化ジルコニウム粉末を用いて形成されたパターニング膜は高いOD値を有する。ここでOD値は、光がパターニング膜を通過する際に吸収される度合を対数で表示したものであって、次の式(1)で定義される。式(1)中、Iは透過光量、I0は入射光量である。
              OD値=-log10(I/I0)                 (1)
 上記基板としては、例えば、ガラス、シリコン、ポリカーボネート、ポリエステル、芳香族ポリアミド、ポリアミドイミド、ポリイミド等を挙げることができる。また上記基板には、所望により、シランカップリング剤等による薬品処理、プラズマ処理、イオンプレーティング、スパッタリング、気相反応法、真空蒸着等の適宜の前処理を施しておくこともできる。黒色感光性組成物を基板に塗布する際には、回転塗布、流延塗布、ロール塗布等の適宜の塗布法を採用することができる。塗布厚さは、乾燥後の膜厚として、通常、0.1~10μm、好ましくは0.2~7.0μm、更に好ましくは0.5~6.0μmである。パターニング膜を形成する際に使用される放射線としては、本実施形態では、波長が250~370nmの範囲にある放射線が好ましい。放射線の照射エネルギー量は、好ましくは10~10,000J/m2 である。また上記アルカリ現像液としては、例えば、炭酸ナトリウム、水酸化ナトリウム、水酸化カリウム、テトラメチルアンモニウムハイドロオキサイド、コリン、1,8-ジアザビシクロ-[5.4.0]-7-ウンデセン、1,5-ジアザビシクロ-[4.3.0]-5-ノネン等の水溶液が好ましい。上記アルカリ現像液には、例えばメタノール、エタノール等の水溶性有機溶剤や界面活性剤等を適量添加することもできる。なお、アルカリ現像後は、通常、水洗する。現像処理法としては、シャワー現像法、スプレー現像法、ディップ(浸漬)現像法、パドル(液盛り)現像法等を適用することができ、現像条件は、常温で5~300秒が好ましい。このようにして形成されたパターニング膜は、高精細の液晶、有機EL用ブラックマトリックス材、イメージセンサー用遮光材。光学部材用遮光材、遮光フィルター、IRカットフィルター等に好適に用いられる。
 次に本発明の実施例を比較例とともに詳しく説明する。
<実施例1>
  BET法により測定される比表面積から算出される平均一次粒径が50nmの単斜晶系二酸化ジルコニウム粉末7.4gに、平均一次粒径が150μmの金属マグネシウム粉末7.3gと平均一次粒径が200nmの窒化マグネシウム粉末3.0gを添加し、石英製ガラス管に黒鉛のボートを内装した反応装置により均一に混合した。このとき金属マグネシウムの添加量は二酸化ジルコニウムの5.0倍モル、窒化マグネシウムの添加量は二酸化ジルコニウムの0.5倍モルであった。この混合物を窒素ガスの雰囲気下、700℃の温度で60分間焼成して焼成物を得た。この焼成物を、1リットルの水に分散し、10%塩酸を徐々に添加して、pHを1以上で、温度を100℃以下に保ちながら洗浄した後、25%アンモニア水にてpH7~8に調整し、濾過した。その濾過固形分を水中に400g/リットルに再分散し、もう一度、前記と同様に酸洗浄、アンモニア水でのpH調整をした後、濾過した。このように酸洗浄-アンモニア水によるpH調整を2回繰り返した後、濾過物をイオン交換水に固形分換算で500g/リットルで分散させ、60℃での加熱攪拌とpH7への調整をした後、吸引濾過装置で濾過し、さらに等量のイオン交換水で洗浄し、設定温度;120℃の熱風乾燥機にて乾燥することにより、窒化ジルコニウム粉末を得た。
<実施例2>
 実施例1と同一の金属マグネシウム粉末を4.4g(二酸化ジルコニウムの3.0倍モル)に変更し、反応ガスを窒素ガスと水素ガスの混合ガスにして、これらの体積%の割合(N2:H2)が90%:10%の混合ガスの雰囲気下とし、焼成時間を30分にしたこと以外は実施例1と同様にして窒化ジルコニウム粉末を作製した。
<実施例3>
  実施例1と同一の二酸化ジルコニウム粉末7.4gをエタノール中に分散させ、この混合液をエチルシリケートシリケートを主成分とするシリケートゾルゲル液(シリカ分0.1522g)に添加混合して固形分濃度30質量%のスラリーを調製した。このスラリーを大気雰囲気下、70℃の温度で120分間、箱型乾燥機により乾燥して、シリカがコーティングされた平均一次粒径が50nmの二酸化ジルコニウム粉末を得た。この粉末にはシリカ(SiO2)が二酸化ジルコニウム中、3.0質量%含まれていた。この二酸化ジルコニウム粉末7.5gに、平均一次粒径が300μmの金属マグネシウム粉末8.8gと平均一次粒径が500nmの窒化マグネシウム粉末2.1gを添加し、実施例1と同様に均一に混合した。このとき金属マグネシウムの添加量は二酸化ジルコニウムの6.0倍モル、窒化マグネシウムの添加量は二酸化ジルコニウムの2.0倍モルであった。以下、実施例1と同様にして窒化ジルコニウム粉末を得た。
<実施例4>
  金属マグネシウムと窒化マグネシウムの添加量をそれぞれ二酸化ジルコニウムの2.5倍モル、0.5倍モルにし、反応ガスを窒素ガスとアンモニアガスの混合ガスにして、これらの体積%の割合(N2:NH3)が80%:20%の混合ガスの雰囲気下、750℃の温度で30分間焼成して焼成物を得た。それ以外は、実施例1と同一の原料を用いて、実施例1と同様にして窒化ジルコニウム粉末を得た。
<実施例5>
  金属マグネシウムと窒化マグネシウムの添加量をそれぞれ二酸化ジルコニウムの3.5倍モル、0.5倍モルにし、反応ガスを窒素ガスとアンモニアガスの混合ガスにして、これらの体積%の割合(N2:NH3)が80%:20%の混合ガスの雰囲気下、700℃の温度で60分間焼成して焼成物を得た。それ以外は、実施例1と同一の原料を用いて、実施例1と同様にして窒化ジルコニウム粉末を得た。
<実施例6>
  シリカ(SiO2)が二酸化ジルコニウム中、10.0質量%含まれるように、実施例3と同様にシリカコーティングした平均一次粒径が40nmの二酸化ジルコニウム粉末に、平均一次粒径が500μmの金属マグネシウム粉末4.4gと平均一次粒径が500nmの窒化マグネシウム粉末3.0gを添加し、実施例1と同様に均一に混合した。このとき金属マグネシウムと窒化マグネシウムの添加量はそれぞれ二酸化ジルコニウムの3.0倍モル、0.5倍モルであった。反応ガスを窒素ガスと水素ガスの混合ガスにして、これらの体積%の割合(N2:H2)が90%:10%の混合ガスの雰囲気下、800℃の温度で60分間焼成して焼成物を得た。以下、実施例1と同様にして窒化ジルコニウム粉末を得た。
<実施例7>
  金属マグネシウムの添加量を二酸化ジルコニウムの2.0倍モルに変更した以外、実施例1と同一の原料を用いて、実施例1と同様にして窒化ジルコニウム粉末を得た。
<実施例8>
  窒化マグネシウムの添加量を二酸化ジルコニウムの0.3倍モルに変更した以外、実施例1と同一の原料を用いて、実施例1と同様にして窒化ジルコニウム粉末を得た。
<実施例9>
  窒化マグネシウムの添加量を二酸化ジルコニウムの3.0倍モルに変更した以外、実施例1と同一の原料を用いて、実施例1と同様にして窒化ジルコニウム粉末を得た。
<実施例10>
  焼成温度を650℃に変更した以外、実施例1と同一の原料を用いて、実施例1と同様にして窒化ジルコニウム粉末を得た。
<実施例11>
  焼成温度を900℃に変更した以外、実施例1と同一の原料を用いて、実施例1と同様にして窒化ジルコニウム粉末を得た。
<実施例12>
  反応ガスを窒素ガスと水素ガスの混合ガスにして、これらの体積%の割合(N2:H2)が50%:50%の混合ガスの雰囲気に変更した以外、実施例1と同一の原料を用いて、実施例1と同様にして窒化ジルコニウム粉末を得た。
<実施例13>
  反応ガスを窒素ガスとアンモニアガスの混合ガスにして、これらの体積%の割合(N2:NH3)が40%:60%の混合ガスの雰囲気に変更した以外、実施例1と同一の原料を用いて、実施例1と同様にして窒化ジルコニウム粉末を得た。
<比較例1>
  特許文献2の実施例1に示された方法に準じた方法で、微粒子低次酸化ジルコニウム・窒化ジルコニウム複合体を得た。即ち、平均一次粒径が19nmの二酸化ジルコニウム粉末7.2gと、平均一次粒径が20nmの微粒子酸化マグネシウム3.3gを混合粉砕して混合粉体Aを得た。この混合粉体0.5gに平均一次粒径が150μmの金属マグネシウム粉末2.1gを加えて混合し混合粉体Bを得た。このとき金属マグネシウムと酸化マグネシウムの添加量はそれぞれ二酸化ジルコニウムの1.4倍モル、1.4倍モルであった。この混合粉体Bを窒素ガスの雰囲気下、700℃の温度で60分間焼成した。以下、実施例1と同様にして、微粒子低次酸化ジルコニウム・窒化ジルコニウム複合体を得た。
<比較例2>
  特許文献1の実施例1に示されるチタンブラックの黒色粉末を用意した。即ち、平均一次粒径160nmの酸化チタン粉末をアンモニアガスの雰囲気下、850℃の温度で180分間焼成して70nmのチタン酸窒化物(TiO0.30.9)を得た後、このチタン酸窒化物と平均一次粒径10nmのAl23からなる絶縁粉末とを、チタン酸窒化物100質量部に対して5.0質量部添加し混合して黒色粉末を用意した。
<比較例3>
  シリカ(SiO2)が二酸化ジルコニウム中、11.0質量%含まれるように、実施例2と同様にシリカコーティングした平均一次粒径が40nmの二酸化ジルコニウム粉末7.8gに、平均一次粒径が150μmの金属マグネシウム粉末4.6gと平均一次粒径が100nmの窒化マグネシウム粉末3.2gを添加し、実施例1と同様に均一に混合した。このとき金属マグネシウムと窒化マグネシウムの添加量はそれぞれ二酸化ジルコニウムの3.0倍モル、0.5倍モルであった。雰囲気ガスである反応ガスを窒素ガス100体積%にし、750℃の温度で60分間焼成して焼成物を得た。以下、実施例1と同様にして窒化ジルコニウム粉末を得た。
<比較例4>
  平均一次粒径が40nmの二酸化ジルコニウム粉末7.2gに、平均一次粒径が150μmの金属マグネシウム粉末7.1gと平均一次粒径が200nmの窒化マグネシウム粉末2.9gを添加し、実施例1と同様に均一に混合した。雰囲気ガスである反応ガスを窒素ガス100体積%にし、また焼成温度を1000℃、焼成時間を60分にした。それ以外、実施例1と同一の原料を用いて、実施例1と同様にして窒化ジルコニウム粉末を得た。
<比較例5>
  金属マグネシウムの添加量を二酸化ジルコニウムの1.5倍モルに変更した以外、実施例1と同一の原料を用いて、実施例1と同様にして窒化ジルコニウム粉末を得た。
<比較例6>
  金属マグネシウムの添加量を二酸化ジルコニウムの6.5倍モルに変更した以外、実施例1と同一の原料を用いて、実施例1と同様にして窒化ジルコニウム粉末を得た。
<比較例7>
  窒化マグネシウムの添加量を二酸化ジルコニウムの0.2倍モルに変更した以外、実施例1と同一の原料を用いて、実施例1と同様にして窒化ジルコニウム粉末を得た。
<比較例8>
  窒化マグネシウムの添加量を二酸化ジルコニウムの3.5倍モルに変更した以外、実施例1と同一の原料を用いて、実施例1と同様にして窒化ジルコニウム粉末を得た。
<比較例9>
  焼成温度を600℃に変更した以外、実施例1と同一の原料を用いて、実施例1と同様にして窒化ジルコニウム粉末を得た。
 実施例1~13及び比較例1~9の各製造方法、金属マグネシウムと窒化マグネシウム又は酸化マグネシウム(以下、Mg源という。)の添加量に対する二酸化ジルコニウムのモル比、添加物の種類と割合、雰囲気ガスである反応ガスの種類とその体積%の割合、焼成温度と焼成時間を表1に示す。
Figure JPOXMLDOC01-appb-T000001
<比較試験と評価その1>
 実施例1~13、比較例3~9で得られた窒化ジルコニウム粉末、比較例1で得られた微粒子低次酸化ジルコニウム・窒化ジルコニウム複合体、及び比較例2で用意した黒色粉末をそれぞれ試料として、以下に詳述する方法で、(1) 比表面積、(2) X線回折プロファイル、(3) 粉末濃度50ppmの分散液における分光曲線、(4) 370nmの光透過率X及び550nmの光透過率Y、及び(5) X/Yを測定又は算出した。それぞれの測定結果又は算出結果を表2に示す。表2において、「Zr22O」は低次酸窒化ジルコニウムを意味し、「TiB」はチタンブラックを意味する。
(1) 比表面積: 全ての試料について、比表面積測定装置(柴田化学社製、SA-1100)を用いて、窒素吸着によるBET1点法により測定した。
(2) X線回折プロファイル: 実施例1と比較例1の試料について、X線回折装置(リガク社製、型番MiniflexII)により、CuKα線を用いて印加電圧45kV,印加電流40mAの条件にて、θ-2θ法でX線回折プロファイルからX線回折分析を行った。そのX線回折プロファイルから、窒化ジルコニウムのピーク(2θ=33.95°、39.3°)、二酸化ジルコニウムのピーク(2θ=30.2°)、低次酸化ジルコニウムのピーク及び低次酸窒化ジルコニウムのピーク(2θ=30.5°、35.3°)の有無を調べた。図1にX線回折プロファイルを示す。図1において、「ZrN」は窒化ジルコニウムを、「Zr22O」は低次酸窒化ジルコニウムをそれぞれ意味する。
(3) 粉末濃度50ppmの分散液における分光曲線: 実施例1~13と比較例1~9の各試料について、これらの試料を循環式横型ビーズミル(メディア:ジルコニア)に各別に入れ、アミン系分散剤を添加して、プロピレングリコールモノメチルエーテルアセテート(PGM-AC)溶剤中での分散処理を行った。得られた22種類の分散液を10万倍に希釈し粉末濃度を50ppmに調整した。この希釈した分散液における各試料の光透過率を日立ハイテクフィールディング((株)(UH-4150)を用い、波長240nmから1300nmの範囲で測定し、i線(365nm)近傍の波長370nmと、波長550nmにおける各光透過率(%)を求めた。図2には、実施例1と比較例1、2の3つの分光曲線を示す。
(4) 370nmの光透過率X及び550nmの光透過率Y: 実施例1~13と比較例1~9の各試料の分光曲線から、それぞれの光透過率X及びYを読み取った。
(5) X/Y: 実施例1~13と比較例1~9の各試料の分光曲線から読み取られた光透過率Xと光透過率YよりX/Yを算出した。
Figure JPOXMLDOC01-appb-T000002
 図1から明らかなように、比較例1の試料は、X線回折プロファイルにおいて、窒化ジルコニウムのピーク(2θ=33.95°、39.3°)のみならず、低次酸窒化ジルコニウムのピーク(2θ=30.5°、35.3°)を有した。これに対して実施例1の試料は、X線回折プロファイルにおいて、窒化ジルコニウムのピークを有する一方、二酸化ジルコニウムのピークも低次酸化ジルコニウムのピークも低次酸窒化ジルコニウムのピークも有しなかった。
 図2及び表2から明らかなように、比較例1及び比較例2の試料は分光透過曲線における370nmの透過率がそれぞれ24.1%、8.8%であって、550nmの透過率がそれぞれ20.8%、10.0%であった。これに対して、実施例1の試料の分光透過曲線における370nmの透過率は26.0%と比較例1、2より高く、また550nmの透過率が7.3%と比較例1、2より低かった。また370nmの光透過率Xに対する550nmの光透過率Y(X/Y)に関して、表2から明らかなように、比較例1~9は、本発明の要件を満たさないため、いずれも2.5未満であった。これに対して実施例1~13は本発明の要件を満たしており、すべて2.5以上であった。以上のことから、実施例1~13の試料は、可視光の遮光性能が高いことに加え、紫外線を透過するためパターニングに有利であることが判った。
<比較試験と評価その2>
 実施例1~13、比較例1~9で得られた試料を光透過率の測定に用いた分散液にアクリル樹脂を、質量比で黒色顔料:樹脂=6:4となる割合で添加し混合して黒色感光性組成物を調製した。この組成物をガラス基板上に焼成後の膜厚が1μmになるようにスピンコートし、250℃の温度で60分間焼成して被膜を形成した。この被膜の紫外線(中心波長370nm)および可視光(中心波長560nm)のOD値を前述した式(1)に基づき、マクベス社製の品名D200の濃度計(densitometer)を用いて、測定した。その結果を表2に示す。表2において、紫外線の透過性を示す尺度として、紫外線(UV)の370nmのOD値が2.0以下を「優」とし、2.0を超え2.5以下を「良」とし、2.5を超える場合を「不良」とした。また可視光の遮光性を示す尺度として、可視光の560nmのOD値が4.5を超える場合を「優」とし、3.8以上4.5以下を「良」とし、3.8未満を「不良」とした。
 表2から明らかなように、紫外線の透過性及び視光の遮光性を示す尺度としてのOD値に関して、比較例1の試料は二酸化ジルコニウムの還元が不十分のため、可視光の560nmOD値が低く「不良」であった。また比較例2のチタンブラック試料は紫外線透過性能が十分でないため、UVの370nmOD値が高く「不良」であった。また比較例3の試料はシリカ量が多いため、可視光の560nmOD値が低く「不良」であった。
 また比較例4の試料は焼成温度が高いため粒子径が粗大となり、可視光の560nmOD値が低く「不良」であった。また比較例5の試料は金属マグネシウムの割合が少な過ぎ、二酸化ジルコニウムの還元が不十分のため、可視光の560nmOD値が低く「不良」であった。また比較例6の試料は金属マグネシウムの割合が多過ぎ、粒子径が粗大となったため、UVの370nmOD値は高く「不良」であった。
 また比較例7の試料は窒化マグネシウムの割合が少な過ぎ、窒化ジルコニウムの焼結防止にならなかったため、UVの370nmOD値が高く「不良」であった。また比較例8の試料は窒化マグネシウムの割合が多過ぎ、また低次酸窒化ジルコニウムが含まれているため、可視光の560nmOD値が低く「不良」であった。また比較例9の試料は焼成温度が低過ぎて、二酸化ジルコニウムの還元が十分に生じず、可視光の560nmOD値が低く「不良」であった。
 これに対して、実施例1~13の試料は、本発明の要件を満たしているため、紫外線(UV)の370nmOD値は、「優」又は「良」であり、また可視光の560nmのOD値も「優」又は「良」であった。このことから、実施例1~13の試料は、可視光の遮光性能が高いことに加え、紫外線を透過するためパターニングに有利であることが判った。
 本発明の窒化ジルコニウム粉末は、高精細の液晶、有機EL用ブラックマトリックス材、イメージセンサー用遮光材。光学部材用遮光材、遮光フィルター、IRカットフィルター等に利用することができる。

Claims (7)

  1.  BET法により測定される比表面積が20~90m2/gであり、X線回折プロファイルにおいて、窒化ジルコニウムのピークを有する一方、二酸化ジルコニウムのピーク、低次酸化ジルコニウムのピーク及び低次酸窒化ジルコニウムのピークを有さず、かつ粉末濃度50ppmの分散液透過スペクトルにおいて、370nmの光透過率Xが少なくとも18%であり、550nmの光透過率Yが12%以下であって、前記370nmの光透過率Xに対する前記550nmの光透過率Y(X/Y)が2.5以上であることを特徴とする窒化ジルコニウム粉末。
  2.   酸化ケイ素及び/又は窒化ケイ素を10.0質量%以下の割合で含有し、BET法により測定される比表面積が40~90m2/gである請求項1記載の窒化ジルコニウム粉末。
  3.  二酸化ジルコニウム粉末又はシリカがコーティングされた二酸化ジルコニウム粉末と、金属マグネシウム粉末と、窒化マグネシウム粉末とを、金属マグネシウムが二酸化ジルコニウムの2.0~6.0倍モルの割合になるように、かつ窒化マグネシウムが二酸化ジルコニウムの0.3~3.0倍モルの割合になるように混合して混合物を得た後、前記混合物を窒素ガス単独、又は窒素ガスと水素ガスの混合ガス、又は窒素ガスとアンモニアガスの混合ガスの雰囲気下、650~900℃の温度で焼成することにより、前記二酸化ジルコニウム粉末を還元して、請求項1又は2記載の窒化ジルコニウム粉末を製造することを特徴とする窒化ジルコニウム粉末の製造方法。
  4.   前記シリカがコーティングされた二酸化ジルコニウム粉末が、二酸化ジルコニウム粉末とシリケートゾルゲル液とを混合してスラリーを調製し、このスラリーを乾燥し粉砕して得られる請求項3記載の窒化ジルコニウム粉末の製造方法。
  5.   前記窒素ガスと水素ガスの混合ガス中、水素ガスを0~40体積%含み、前記窒素ガスとアンモニアガスの混合ガス中、アンモニアガスを0~50体積%含む請求項3又は4記載の窒化ジルコニウム粉末の製造方法。
  6.   請求項1又は2記載の窒化ジルコニウム粉末又は請求項3ないし5のいずれか1項に記載の方法により製造された窒化ジルコニウム粉末を黒色顔料として含む黒色感光性組成物。
  7.  請求項6記載の黒色感光性組成物を用いて黒色パターニング膜を形成する方法。
PCT/JP2017/032037 2016-09-29 2017-09-06 窒化ジルコニウム粉末及びその製造方法 WO2018061666A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP17855624.7A EP3521242B1 (en) 2016-09-29 2017-09-06 Zirconium nitride powder and method for producing same
CN201780058547.9A CN109923062B (zh) 2016-09-29 2017-09-06 氮化锆粉末及其制造方法
US16/336,634 US11577958B2 (en) 2016-09-29 2017-09-06 Zirconium nitride powder and method for producing same
KR1020197007932A KR102411232B1 (ko) 2016-09-29 2017-09-06 질화지르코늄 분말 및 그 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016191425A JP6591948B2 (ja) 2016-09-29 2016-09-29 窒化ジルコニウム粉末及びその製造方法
JP2016-191425 2016-09-29

Publications (1)

Publication Number Publication Date
WO2018061666A1 true WO2018061666A1 (ja) 2018-04-05

Family

ID=60687607

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/032037 WO2018061666A1 (ja) 2016-09-29 2017-09-06 窒化ジルコニウム粉末及びその製造方法

Country Status (6)

Country Link
US (1) US11577958B2 (ja)
EP (1) EP3521242B1 (ja)
JP (1) JP6591948B2 (ja)
KR (1) KR102411232B1 (ja)
CN (1) CN109923062B (ja)
WO (1) WO2018061666A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020180036A (ja) * 2019-04-24 2020-11-05 三菱マテリアル電子化成株式会社 黒色材料及びその製造方法、黒色感光性組成物及びその製造方法、並びに黒色パターニング膜及びその形成方法
CN113825797A (zh) * 2019-05-20 2021-12-21 三菱瓦斯化学株式会社 树脂组合物、预浸料、带支撑体的树脂片、覆金属箔层叠板和印刷电路板
CN113880591A (zh) * 2021-10-28 2022-01-04 深圳市辰昱科技有限公司 氮化硅基陶瓷体、氮化硅基陶瓷表面原位自生成氮化锆涂层的方法

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6954769B2 (ja) 2017-06-09 2021-10-27 三菱マテリアル電子化成株式会社 窒化ジルコニウム粉末及びその製造方法
JPWO2019059359A1 (ja) * 2017-09-25 2020-09-03 東レ株式会社 着色樹脂組成物、着色膜、カラーフィルターおよび液晶表示装置
JP6971834B2 (ja) * 2017-12-26 2021-11-24 三菱マテリアル電子化成株式会社 黒色遮光膜形成用粉末及びその製造方法
JP7141885B2 (ja) * 2018-08-03 2022-09-26 三菱マテリアル電子化成株式会社 表面処理された窒化ジルコニウム粉末及びその表面処理方法
JP7212471B2 (ja) * 2018-08-03 2023-01-25 三菱マテリアル電子化成株式会社 窒化ジルコニウム膜の製造方法
CN112601912A (zh) 2018-09-07 2021-04-02 富士胶片株式会社 车辆用前照灯单元、前照灯用遮光膜、前照灯用遮光膜的制造方法
JP7181827B2 (ja) * 2019-03-28 2022-12-01 三菱マテリアル電子化成株式会社 アルミナにより被覆された窒化ジルコニウム粉末及びその製造方法
KR20200119444A (ko) * 2019-04-09 2020-10-20 삼성디스플레이 주식회사 표시장치 및 이의 제조 방법
JP7339080B2 (ja) * 2019-09-04 2023-09-05 三菱マテリアル電子化成株式会社 窒化ジルコニウム粉末及びその製造方法
CN111003696B (zh) * 2019-12-13 2022-09-02 合肥中航纳米技术发展有限公司 一种纳米氮化锆粉体的制备方法
KR20220056680A (ko) 2020-10-28 2022-05-06 미쓰비시마테리알덴시카세이가부시키가이샤 질화지르코늄 분말 및 그 제조 방법
EP4015582B1 (en) 2020-12-18 2023-05-24 Mitsubishi Materials Electronic Chemicals Co., Ltd. Zirconium nitride powder and method for producing same
US11697156B2 (en) 2020-12-18 2023-07-11 Mitsubishi Materials Electronic Chemicals Co., Ltd. Zirconium nitride powder and method for producing same
JPWO2022210175A1 (ja) 2021-03-29 2022-10-06
KR20240060751A (ko) 2021-09-28 2024-05-08 미쓰비시마테리알덴시카세이가부시키가이샤 산화알루미늄계 조성물 함유 질화지르코늄 분말 및 그 제조 방법

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60186407A (ja) * 1984-03-06 1985-09-21 Toyo Soda Mfg Co Ltd 窒化ジルコニウム微粉末の製造法
JPS6311507A (ja) * 1986-06-30 1988-01-19 Res Dev Corp Of Japan 高圧アンモニア法による窒化ジルコニウム微粉末の製造方法
JPH01264913A (ja) * 1988-04-18 1989-10-23 Toshiba Ceramics Co Ltd 金属窒化物紛末の製造方法
JPH046102A (ja) * 1990-04-23 1992-01-10 Tokuyama Soda Co Ltd 窒化ジルコニウム粉末の製造方法
JPH08504396A (ja) * 1992-12-17 1996-05-14 ユナイテッド テクノロジーズ コーポレイション 金属窒化物粉末
JP2009091205A (ja) * 2007-10-10 2009-04-30 Tayca Corp 微粒子低次酸化ジルコニウム・窒化ジルコニウム複合体およびその製造方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3311481A (en) 1962-03-01 1967-03-28 Hitco Refractory fibers and methods of making them
US3459546A (en) * 1966-03-15 1969-08-05 Fansteel Inc Processes for producing dispersion-modified alloys
US3709706A (en) * 1969-05-16 1973-01-09 Minnesota Mining & Mfg Refractory fibers and other articles of zirconia and silica mixtures
US4975260A (en) 1988-04-18 1990-12-04 Toshiba Ceramics Co., Ltd. Process for preparing metal nitride powder
US5211768A (en) * 1990-11-15 1993-05-18 Degussa Aktiengesellschaft Method of nitriding work pieces of steel under pressure
CN1239385C (zh) * 2003-11-28 2006-02-01 中国科学院上海硅酸盐研究所 一种立方相纳米氮化锆粉体的还原氮化制备方法
JP4642593B2 (ja) 2005-08-11 2011-03-02 東京応化工業株式会社 機能性パターン形成用感光性樹脂組成物および機能性パターン形成方法
JP4915664B2 (ja) 2007-04-17 2012-04-11 三菱マテリアル株式会社 高抵抗黒色粉末およびその分散液、塗料、黒色膜
CN101402449A (zh) * 2008-06-30 2009-04-08 马北越 氮化锆-氮化硅复合粉体的制备方法
CN102584302A (zh) 2012-03-12 2012-07-18 中国地质大学(北京) 一种ZrN-Si3N4复相耐火材料粉体及其制备方法
CN104176716B (zh) 2013-05-22 2016-01-06 安徽港铭新材料科技有限公司 一种氮化锆的制备方法
TWI524140B (zh) * 2014-06-23 2016-03-01 奇美實業股份有限公司 黑色矩陣用之感光性樹脂組成物及其應用
CN104194493A (zh) 2014-08-07 2014-12-10 淄博陶正陶瓷颜料有限公司 一种墨水专用镨黄色料的配方及生产方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60186407A (ja) * 1984-03-06 1985-09-21 Toyo Soda Mfg Co Ltd 窒化ジルコニウム微粉末の製造法
JPS6311507A (ja) * 1986-06-30 1988-01-19 Res Dev Corp Of Japan 高圧アンモニア法による窒化ジルコニウム微粉末の製造方法
JPH01264913A (ja) * 1988-04-18 1989-10-23 Toshiba Ceramics Co Ltd 金属窒化物紛末の製造方法
JPH046102A (ja) * 1990-04-23 1992-01-10 Tokuyama Soda Co Ltd 窒化ジルコニウム粉末の製造方法
JPH08504396A (ja) * 1992-12-17 1996-05-14 ユナイテッド テクノロジーズ コーポレイション 金属窒化物粉末
JP2009091205A (ja) * 2007-10-10 2009-04-30 Tayca Corp 微粒子低次酸化ジルコニウム・窒化ジルコニウム複合体およびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3521242A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020180036A (ja) * 2019-04-24 2020-11-05 三菱マテリアル電子化成株式会社 黒色材料及びその製造方法、黒色感光性組成物及びその製造方法、並びに黒色パターニング膜及びその形成方法
WO2021171703A1 (ja) * 2019-04-24 2021-09-02 三菱マテリアル電子化成株式会社 黒色材料及びその製造方法、黒色感光性組成物及びその製造方法、並びに黒色パターニング膜及びその形成方法
EP4095091A4 (en) * 2019-04-24 2024-03-13 Mitsubishi Mat Electronic Chemicals Co Ltd BLACK MATERIAL AND METHOD FOR PRODUCING THEREOF, BLACK LIGHT-SENSITIVE COMPOSITION AND METHOD FOR PRODUCING THEREOF, BLACK PATTERNING FILM AND METHOD FOR PRODUCING THEREOF
CN113825797A (zh) * 2019-05-20 2021-12-21 三菱瓦斯化学株式会社 树脂组合物、预浸料、带支撑体的树脂片、覆金属箔层叠板和印刷电路板
CN113880591A (zh) * 2021-10-28 2022-01-04 深圳市辰昱科技有限公司 氮化硅基陶瓷体、氮化硅基陶瓷表面原位自生成氮化锆涂层的方法

Also Published As

Publication number Publication date
JP2017222559A (ja) 2017-12-21
CN109923062B (zh) 2023-04-11
CN109923062A (zh) 2019-06-21
JP6591948B2 (ja) 2019-10-16
EP3521242A4 (en) 2020-05-13
US11577958B2 (en) 2023-02-14
EP3521242B1 (en) 2024-05-29
US20200198969A1 (en) 2020-06-25
KR20190059271A (ko) 2019-05-30
KR102411232B1 (ko) 2022-06-20
EP3521242A1 (en) 2019-08-07

Similar Documents

Publication Publication Date Title
JP6591948B2 (ja) 窒化ジルコニウム粉末及びその製造方法
JP6954769B2 (ja) 窒化ジルコニウム粉末及びその製造方法
WO2018096874A1 (ja) 黒色膜形成用混合粉末及びその製造方法
KR102629669B1 (ko) 흑색 차광막 형성용 분말 및 그 제조 방법
JP7141885B2 (ja) 表面処理された窒化ジルコニウム粉末及びその表面処理方法
JP6949604B2 (ja) 黒色膜形成用混合粉末の製造方法
JP7212471B2 (ja) 窒化ジルコニウム膜の製造方法
JP2022054794A (ja) 窒化ジルコニウム粉末及びその製造方法
WO2023053809A1 (ja) 酸化アルミニウム系組成物含有窒化ジルコニウム粉末及びその製造方法
JP2023107263A (ja) 亜鉛系組成物含有窒化ジルコニウム粉末及びその製造方法
JP2023132124A (ja) 窒化ジルコニウム粉末及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17855624

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197007932

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017855624

Country of ref document: EP

Effective date: 20190429