CN112960691B - 用于短波ir设备的全无机钙钛矿材料 - Google Patents

用于短波ir设备的全无机钙钛矿材料 Download PDF

Info

Publication number
CN112960691B
CN112960691B CN202011366679.8A CN202011366679A CN112960691B CN 112960691 B CN112960691 B CN 112960691B CN 202011366679 A CN202011366679 A CN 202011366679A CN 112960691 B CN112960691 B CN 112960691B
Authority
CN
China
Prior art keywords
perovskite material
inorganic perovskite
metal salt
precursor solution
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011366679.8A
Other languages
English (en)
Other versions
CN112960691A (zh
Inventor
陈顾刚
饶毅
李霞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Utah State University USU
Original Assignee
Honda Motor Co Ltd
Utah State University USU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd, Utah State University USU filed Critical Honda Motor Co Ltd
Publication of CN112960691A publication Critical patent/CN112960691A/zh
Application granted granted Critical
Publication of CN112960691B publication Critical patent/CN112960691B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G21/00Compounds of lead
    • C01G21/006Compounds containing, besides lead, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • C03C17/23Oxides
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/003Light absorbing elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/208Filters for use with infrared or ultraviolet radiation, e.g. for separating visible light from infrared and/or ultraviolet radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/30Three-dimensional structures
    • C01P2002/34Three-dimensional structures perovskite-type (ABO3)
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/82Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by IR- or Raman-data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/85Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by XPS, EDX or EDAX data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/21Oxides
    • C03C2217/228Other specific oxides
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/28Other inorganic materials
    • C03C2217/284Halides
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/28Other inorganic materials
    • C03C2217/284Halides
    • C03C2217/285Fluorides
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/28Other inorganic materials
    • C03C2217/284Halides
    • C03C2217/286Chlorides
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/11Deposition methods from solutions or suspensions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/11Deposition methods from solutions or suspensions
    • C03C2218/116Deposition methods from solutions or suspensions by spin-coating, centrifugation
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/30Aspects of methods for coating glass not covered above
    • C03C2218/32After-treatment
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/207Filters comprising semiconducting materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Optics & Photonics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明题为“用于短波IR设备的全无机钙钛矿材料”。本发明公开了具有改善的化学稳定性和长期稳定性的用于短波IR(SWIR)设备的全无机钙钛矿。本文还公开了制备用于短波IR(SWIR)设备的全无机钙钛矿的改进方法。

Description

用于短波IR设备的全无机钙钛矿材料
联合研究协议
受权利要求书保护的本发明是由联合研究协议的下列各方或代表联合研究协议的下列各方作出的。联合研究协议在提出受权利要求书保护的发明之时或之前生效,并且受权利要求书保护的发明是由于在联合研究协议范围内进行的活动而导致的结果。联合研究协议的各方为:1)本田研究所美国公司(Honda Research Institute USA,Inc.);以及2)犹他州大学(Utah State University)。
背景技术
阳光由从紫外光和可见光到短波红外(short-wave infrared,SWIR)光的许多宽带能量构成。对于SWIR成像,SWIR的各种波长可从550nm延伸至1.7微米并且至多2.5微米。与可见光检测器相比,SWIR检测器可在多种应用中具有许多优点,该多种应用包括电子板制造、产品检查、识别和分类、监控、防伪、工艺质量控制等。例如,当用SWIR成像时,水蒸气、雾和某些材料诸如硅可为透明的。与从对象发射的中波红外(Mid-Wave Infrared,MWIR)光和长波红外(Long-Wave Infrared,LWIR)光不同,SWIR可类似于可见光,因为光子被对象反射或吸收,从而提供高分辨率成像所需的强对比度。为了检测SWIR,量子检测器可基于各种光子吸收半导体材料。这些技术可具有可调谐特性(高量子效率、相对较低的暗电流、高均匀度、快速时间响应),但是,例如典型的SWIR检测器是昂贵的。因此,对这些类型的技术的获取可限于国防和科学应用,诸如天文学。这些限制源于InGaAs和各种其他材料的复杂制造。因此,需要生产成本较低并且对环境友好的短波IR材料,该短波IR材料从可见光到SWIR具有独特的吸光度。
发明内容
本公开涉及用于短波IR设备的全无机钙钛矿,该全无机钙钛矿具有可调谐的吸光度以及优异的化学和结晶稳定性。在一些实施方案中,本文所公开的材料具有比传统SWIR材料(诸如InGaAs、HgCdTe和InSb)宽的1000nm至2800nm的吸光度。在一些实施方案中,与现有SWIR材料不同,本文所公开的SWIR材料的前体是通用的并且低成本的。制备本文所公开的SWIR材料的方法是简单的。本文所公开的SWIR材料和制备方法具有广泛的应用,例如在保安、监控、军事、机器视觉、光伏太阳能电池、医疗、光谱检测器和温度记录中。先前的钙钛矿具有较差的化学和结晶稳定性,更不必说长期不稳定性,并且传统SWIR材料的制造工序是复杂的。
附图说明
图1示出了根据本公开的一些方面的利用场发射SEM(FEI Quanta 450 FEG)的玻璃上CsPbI3钙钛矿薄膜的扫描电子显微镜(scanning electron microscope,SEM)图像。
图2示出了图1中的玻璃上CsPbI3钙钛矿薄膜图像的EDS(SEM能量色散X射线光谱法)元素分布图。在图2中,元素被指示为I(绿色)、Cs(红色)和Pb(黄色)。
图3示出了图2所示薄膜钙钛矿的化学组成和原子百分比(At%)。
图4示出了CsPbI3钙钛矿薄膜的约400nm-2500nm的UV-Vis-NIR吸光度光谱。
图5示出了在不同基底温度处制备的全无机钙钛矿材料的可调谐特性。根据本文所公开的制备钙钛矿的方法,随着基底温度的升高,SWIR吸光度向更高的波长偏移。1520nm、1372nm和1230nm处的峰分别对应于在100℃、80℃和50℃的基底温度处制造的薄膜。灰色曲线示出无SWIR吸光度,该灰色曲线属于在室温处在相同基底上制造的膜。
图6示出了CsPbI3钙钛矿薄膜在环境条件下存储8天后的UV-Vis-NIR吸光度光谱。SWIR特性在8天后几乎保持不变,表明了本文所公开的材料的稳定性。
具体实施方式
本公开涉及制备用于短波IR设备的全无机钙钛矿的方法。与先前的有机和无机钙钛矿材料相比,本文所公开的全无机钙钛矿具有可调谐的吸光度和优异的化学和/或结晶稳定性。本公开还涉及本文所公开的钙钛矿材料、利用这些材料的设备、使用这些材料的方法,以及由本公开使得能够实现的能力。
在一些实施方案中,制备全无机钙钛矿的方法可包括制备金属前体溶液。根据一些方面,金属前体溶液含有一种或多种一价金属盐与一种或多种二价金属盐的混合物。例如,CsI可用作一价金属盐,并且Cs可被其他单价、无机或有机金属阳离子替代。二价金属盐的非限制性示例为PbI2,其中铅(阳离子)可被任何其他二价金属替代。示例性阴离子I-可被其他一价非金属替代,并且阴离子的非限制性示例为Cl-和Br-。
根据一些方面,金属前体溶液可通过将一价金属盐和二价金属盐分别以2∶1的摩尔比溶于合适的溶剂中来制备。合适的溶剂可为具有溶解盐的能力的有机溶剂,并且溶剂的一些非限制性示例为DMSO(二甲基亚砜)和DMF(二甲基甲酰胺)。根据一些方面,除了溶解的盐之外,一种或多种稳定剂也可任选地分散或溶解于金属前体溶液中。稳定剂的非限制性示例为1-(3-磺丙基)吡啶鎓氢氧化物内盐,其可以以与一价金属盐和二价金属盐的总重量成比例的约0.8%重量比添加。在一些实施方案中,所利用的溶剂可稳定钙钛矿结构。金属前体溶液可例如在约20℃-80℃、任选地约40℃-80℃或任选地约60℃-80℃的温度处制备。
在一些实施方案中,可在制备后将金属前体溶液加热至低于有机溶剂沸点的温度,任选地加热至约25℃-90℃的温度、任选地加热至约40℃-90℃的温度,或任选地加热至约60℃-80℃的温度。然后可将金属前体溶液分散到合适的受热基底上。基底可为柔性或非柔性材料,例如,可利用玻璃或可利用柔性聚合物。可将基底加热至约40℃-300℃的温度,任选地加热至约50℃-190℃的温度、任选地加热至约80℃-190℃的温度,并且任选地加热至约100℃-190℃的温度。在一些实施方案中,所利用的基底可稳定随后在基底上形成的钙钛矿结构。
可通过本领域中已知的任何手段将金属前体溶液分散到基底上,以在基底上形成金属前体溶液的薄膜。分散的一个非限制性示例为旋涂,其包括使基底以合适的速度自旋,以及将金属前体溶液分散到自旋基底上。例如,金属前体溶液可在自旋基底上形成薄膜。基底可以合适的速度自旋以分散金属前体溶液(并形成金属前体溶液的薄膜),但不能以致使从基底移去金属前体溶液的过快速度自旋。自旋速度的非限制性示例为约500rpm-3000rpm,任选地约1000rpm-2000rpm,并且任选地约2000rpm。应当理解的是,自旋速度可根据例如金属前体溶液中所利用的溶剂的粘度或金属前体溶液的浓度而变化。
根据一些方面,在基底上形成薄膜之后,可在基底上对分散的金属前体溶液进行退火。在一些实施方案中,在基底上对金属前体溶液的薄膜进行退火以形成钙钛矿材料。根据一些方面,根据退火条件以及例如金属前体溶液的化学组成,所得钙钛矿材料的最大SWIR吸光度的波长可改变。退火可任选地在真空条件下执行。退火温度可为约40℃-300℃,任选地约100℃-300℃、任选地约100℃-200℃,以及任选地约110℃-130℃。退火可在合适的温度处进行合适的时间,以在基底上形成钙钛矿材料。退火时间的非限制性示例为约1分钟-60分钟、约5分钟-45分钟、约10分钟-30分钟,或约15分钟-30分钟。在一些实施方案中,较高的退火温度、不同的退火条件或较长的退火时间可形成具有较高波长的最大SWIR吸光度的钙钛矿材料。
在一个非限制性示例中,CsI和PbI2可分别以2∶1的摩尔比溶于DMF(二甲基甲酰胺)中,以形成金属前体溶液。可将金属前体溶液加热至约60℃-80℃并且旋涂约20秒以在玻璃基底上形成薄膜,该玻璃基底在40℃-110℃处预热并且以约2000rpm速率自旋。然后可在40℃-300℃的温度处对薄膜进行退火达合适的时间以获得钙钛矿材料膜。下文所述的实施例1提供了具体实施方案的示例。
图1示出了如实施例1中所制备的玻璃上CsPbI3钙钛矿薄膜的扫描电子显微镜(SEM)图像。图2示出了图1所示钙钛矿的I(绿色)、Cs(红色)和Pb(黄色)的EDS元素分布图(SEM能量色散X射线光谱法)。薄膜的化学组成和原子百分比(At%)进一步示于图3中,其中根据At%,Pb∶Cs∶I=7.9∶20.7∶71.4;因此,这些元素的比率与起始前体溶液中的比率一致。
图4示出了实施例1中制备的CsPbI3钙钛矿薄膜的UV-Vis-NIR吸光度光谱。1520nm处的显著峰显示材料具有1000nm至2500nm宽范围的强SWIR吸光度,同时,可见光范围(接近600nm)中的小峰作为典型的钙钛矿特性得以保持。
图5示出了根据上述方法和在实施例1中在不同基底温度处制备的全无机钙钛矿材料的可调谐特性。随着基底温度升高,SWIR吸光度偏移至更高的波长。1520nm、1372nm和1230nm处的峰分别对应于在100℃、80℃和50℃的基底温度处制造的薄膜。灰色曲线示出无SWIR吸光度,该灰色曲线属于在室温处在相同基底上制造的膜。因此,本文所公开的方法使得能够调谐所得钙钛矿材料的最大吸光度波长。这些全无机材料在高达熔点(其超过460℃过量)时是在组成上稳定的,并且在高达200℃时是热稳定的。
图6示出了CsPbI3钙钛矿薄膜在环境条件下存储8天后的UV-Vis-NIR吸光度光谱,其中虚线光谱显示为与图5所示的时间零光谱相比几乎没有变化。因此,本文所公开的钙钛矿的SWIR特性在8天后几乎保持不变。在图6中,实线曲线(光谱)表示在不同基底温度处制备的新鲜样品的光谱。虚线曲线指示样品在空气中存储8天之后的UV-Vis-NIR特性。如图所示,SWIR吸光度范围和最高峰在新鲜样品与其对应的老化样品之间是一致的,这表明材料在环境条件下具有优异的化学稳定性,并且表明材料具有结晶稳定性。
应当理解的是,本文所公开的钙钛矿晶体结构可指双A2B’B”X6或A+2B’3+B”+X- 6钙钛矿,其中A+为有机或无机阳离子,B’3+为三价有机或无机阳离子,B”+为一价阳离子,并且X-为非金属或卤素阴离子。在一些实施方案中,本文所公开的钙钛矿结构还可采取A+B2+X3的形式或替代A+B2+X3钙钛矿,其中A+表示阳离子,B2+表示二价阳离子(例如,铅),并且X可表示非金属或卤素阴离子。根据一些方面,本文公开了具有通式A+B2+XY2的无机钙钛矿材料,其中:A+X为包含第一一价碱金属阳离子A+和第一一价阴离子X的第一金属盐;并且B2+Y2为包含第二二价碱土金属、重金属或过渡金属阳离子B2+和两种第二一价阴离子Y2的第二金属盐,并且其中第一金属盐与第二金属盐的摩尔比为约2∶1。
根据一些方面,本文所公开的方法和材料提供了全无机杂化半导体材料,该全无机杂化半导体材料包括中间带(IB)策略,其中宽光学间隙被划分成高能量可见光分量和低能量IR(短波)分量,如图4至图6所示。
本文所公开的方法使得能够通过溶液加工或前体溶液在大面积基底上的分散和物理气相传输(例如,退火、基底的温度)两者控制短波IR吸收,来进行钙钛矿材料的薄膜大面积生长(图5)。在一些实施方案中,本文所公开的制造方法可在柔性基底上提供大面积传感器。
根据一些方面,各种溶剂、稳定剂和/或基底可稳定本文所公开的钙钛矿结构。图6中所示的数据展示了稳定的钙钛矿结构的形成,该稳定的钙钛矿结构能够在环境条件下随时间推移保持SWIR光的吸光度。根据所利用的起始材料,所得钙钛矿结构可为未变形的立方体结构、斜方结构、四方结构或三角结构。
本公开还涉及通过本文所公开的方法制备的钙钛矿材料、包含这些钙钛矿的设备、以及使用方法。本文所公开的制备钙钛矿的方法不受本文所公开的示例性实施方案的限制。本文所公开的方法和示例使得能够生产具有稳定晶体形式(多晶型稳定性)并且具有稳定化学组成的钙钛矿。本文所启用的钙钛矿可用于太阳能电池、SWIR光检测器、各种光发射设备、相机、校准设备,以及用于其他设备和应用。
根据一些方面,本文所公开的钙钛矿材料可包含一种或多种金属盐。一种或多种金属盐可包含一种或多种一价阳离子、一种或多种二价阳离子或它们的组合。一价阳离子的非限制性示例包括铯一价阳离子、银一价阳离子、铜一价阳离子和金一价阳离子。二价阳离子的非限制性示例包括碱土金属(例如,铍、镁、钙、锶、钡和镭)阳离子、重金属(例如,汞、镉、砷、铬、铊和铅)阳离子和过渡金属阳离子。根据一些方面,该一种或多种金属盐还可包含一种或多种一价阴离子。一价阴离子的非限制性示例包括Br-、Cl-和I-。
如本文所用,术语“约”被定义为接近本领域的普通技术人员所理解的。在一个非限制性实施方案中,术语“约”被定义为在10%以内,优选地在5%以内,更优选地在1%以内,并且最优选地在0.5%以内。
“惰性气氛”是指几乎不含氧或不含氧并且包含惰性或非反应性气体或在反应之前具有高阈值的气体的气体混合物。惰性气氛可为但不限于分子氮或惰性气体,诸如氩气或它们的混合物。根据本公开可用的惰性气体的示例包括但不限于包含氦(He)、氡(Rd)、氖(Ne)、氩(Ar)、氙(Xe)、氮(N)、以及它们的组合的气体。
“还原剂”是在自身被氧化的同时导致另一种物质还原的物质。还原是指通过化学物质获得电子,而氧化是指通过化学物质损失电子。
“碱金属盐”为这样的金属盐,其中金属离子为碱金属离子,或元素周期表第I族中的金属,诸如锂、钠、钾、铷、铯或钫。
“碱土金属盐”为这样的金属盐,其中金属离子为碱土金属离子或元素周期表第II族中的金属,诸如铍、镁、钙、锶、钡或镭。
“过渡金属盐”为这样的金属盐,其中金属离子为过渡金属离子,或元素周期表的d区中的金属,包括镧系元素和锕系元素。过渡金属盐包括但不限于以下过渡金属的盐:钪、钛、钒、铬、锰、铁、钴、镍、铜、锌、钇、锆、铌、钼、锝、钌、铑、钯、银、镉、镧、铈、镨、钕、钷、钐、铕、钆、铽、镝、钬、铒、铥、镱、镥、铪、钽、钨、铼、锇、铱、铂、金、汞、锕、钍、镤、铀、镎、钚、镅、锔、锫、锎、锿、镄、钔、锘和铹。
“后过渡金属盐”为这样的金属盐,其中金属离子为后过渡金属离子,诸如镓、铟、锡、铊、铅、铋或钋。
如本文所用,术语“均匀的”、“均匀的大小”和“均匀的形状”被定义为在所有情况下和所有时间保持相同;形式或特征不变;前提条件是相同的反应物和相同的反应条件,具有最小或限定的变化。形状的长径比被定义为长度与宽度的比率或长度与高度的比率,球体的长径比为1,该形状与球形形状的偏差由不是1的长径比(长度/宽度或长度/高度)展示。本文所述形状的长径比可为约1±90%、1±80%、1±70%、1±60%、1±50%、1±40%、1±30%、1±20%、1±10%、1±5%、1±2.5或1±1%。
如本文所用,术语“催化剂”是指引导、引发或加速化学反应的组分。
虽然已结合上文概述的示例性方面描述了本文所述的各方面,但是对于本领域的至少普通技术人员而言,无论是已知的还是目前无法预见的各种替代方案、修改、变型、改进和/或基本等同形式均可变得显而易见。因此,如上所述的示例性方面旨在为例示性的而非限制性的。在不脱离本公开的实质和范围的情况下,可作出各种改变。因此,本公开旨在涵盖所有已知的或稍后开发的替代方案、修改、变型、改进和/或基本等同形式。
因此,权利要求书并非旨在限于本文所示的各方面,而是旨在被赋予与权利要求书的语言一致的全部范围,其中对单数形式的要素的引用并非旨在表示“一个(种)且仅一个(种)”(除非特别如此说明),而是指“一个(种)或多个(种)”。本领域的普通技术人员已知的或稍后将知道的贯穿本公开描述的各方面的要素的所有结构和功能等同物明确地以引用方式并入本文,并且旨在由权利要求书所涵盖。此外,本文所公开的任何内容都不旨在奉献给公众,而不管此类公开内容是否在权利要求书中明确陈述。除非使用短语“用于......的装置”明确叙述权利要求元件,否则不应将该元件理解为手段加功能。
此外,词语“示例”在本文中用于意指“用作示例、实例或说明”。本文描述为“示例”的任何方面不一定被理解为比其他方面优选或有利。除非另外特别说明,否则术语“一些”是指一个或多个(一种或多种)。诸如“A、B或C中的至少一者”、“A、B和C中的至少一者”和“A、B、C或它们的任何组合”之类的组合包括A、B和/或C的任何组合,并且可包括A的倍数、B的倍数或C的倍数。具体地,诸如“A、B或C中的至少一者”、“A、B和C中的至少一者”和“A、B、C或它们的任何组合”之类的组合可以为仅A、仅B、仅C、A和B、A和C、B和C,或A和B和C,其中任何此类组合可含有A、B或C中的一个或多个成员。本文所公开的任何内容都不旨在奉献给公众,而不管此类公开内容是否在权利要求书中明确陈述。
提出这些实施例是为了向本领域的普通技术人员提供对如何制备和使用本发明的完整公开和描述,而并非旨在限制本发明人视为其发明的范围,也并非旨在表示下文的实验是所执行的所有或仅有的实验。已努力确保关于所使用的数字(例如,量、尺寸等)的准确性,但应考虑一些实验误差和偏差。
该具体实施方式使用示例来呈现本公开,包括优选方面和变型,并且还使本领域的任何技术人员能够实践所公开的方面,包括制备和使用任何设备或系统并且执行任何结合的方法。本公开的可取得专利权的范围由权利要求书限定,并且可包括本领域技术人员想到的其他示例。如果此类其他示例具有与权利要求书的字面语言无差异的结构元件,或者如果它们包括与权利要求书的字面语言无实质差异的等同结构元件,则此类其他示例旨在落入权利要求书的范围内。所述各种实施方案的各方面以及每个此类方面的其他已知等同物可由本领域的普通技术人员进行混合和匹配,以根据本专利申请的原理构造另外的实施方案和技术。
虽然已结合上文概述的示例性方面描述了本文所述的各方面,但是对于本领域的至少普通技术人员而言,无论是已知的还是目前无法预见的各种替代方案、修改、变型、改进和/或基本等同形式均可变得显而易见。因此,如上所述的示例性方面旨在为例示性的而非限制性的。在不脱离本公开的实质和范围的情况下,可作出各种改变。因此,本公开旨在涵盖所有已知的或稍后开发的替代方案、修改、变型、改进和/或基本等同形式。
对单数形式的要素的提及并不旨在表示“一个(种)且仅一个(种)”,除非特别如此阐明,而是指“一个(种)或多个(种)”。本领域的普通技术人员已知的或稍后将知道的贯穿本公开描述的各方面的要素的所有结构和功能等同物明确地以引用方式并入本文。此外,本文所公开的任何内容都不旨在奉献给公众。
此外,词语“示例”在本文中用于意指“用作示例、实例或说明”。本文描述为“示例”的任何方面不一定被理解为比其他方面优选或有利。除非另外特别说明,否则术语“一些”是指一个或多个(一种或多种)。诸如“A、B或C中的至少一者”、“A、B和C中的至少一者”和“A、B、C或它们的任何组合”之类的组合包括A、B和/或C的任何组合,并且可包括A的倍数、B的倍数或C的倍数。具体地,诸如“A、B或C中的至少一者”、“A、B和C中的至少一者”和“A、B、C或它们的任何组合”之类的组合可以为仅A、仅B、仅C、A和B、A和C、B和C,或A和B和C,其中任何此类组合可含有A、B或C中的一个或多个成员。
如本文所用,术语“高纯的”和“高纯度”被定义为约98%-100%、99%-100%、99.9%-100%、99.99%-100%或99.999%-100%纯。
在本文中,由端点表述的数值范围(例如50mg至600mg、介于约100℃与500℃之间、介于约1分钟与60分钟之间)包括包含在该范围内的所有数值,例如,介于约20分钟与40分钟之间包括21分钟、22分钟、23分钟和24分钟作为该指定范围内的端点。因此,例如,范围22-36、25-32、23-29等也是具有包含在范围20-40内的端点的范围,具体取决于所使用的起始材料、具体应用、具体实施方案或权利要求书的限制(如果需要的话)。本文所公开的实施例和方法展示了所列举的范围包括这些范围内的每一点,因为在改变一个或多个反应参数之后可得到不同的结果或产物。此外,本文所公开的方法和实施例描述了所公开范围的各个方面,以及如果范围单独地或与其他叙述范围组合地改变的情况下的效应。
实施例
碘化铯(99.9%)、碘化铅(99%)和无水DMF(二甲基甲酰胺)购自西格玛奥德里奇公司(Sigma-Aldrich)。1-(3-磺丙基)吡啶鎓氢氧化物内盐(98%,非洗涤剂磺基甜菜碱,NDSB 201)购自TCI(东京化学工业有限公司(Tokyo Chemical Industry Co.,Ltd))。所有化学品均按原样使用而无需进一步纯化。
实施例1:CsPbI3膜形成
在60℃-80℃在搅拌下将PbI2和CsI以0.5M PbI2(231mg/ml)的浓度,CsI/PbI2=2∶1(摩尔比)溶于无水DMF中。将相对于CsPbI3的重量比为0.8%的NDSB 201,即1-(3-磺丙基)吡啶鎓氢氧化物内盐(98%)添加到CsPbI3的黄色溶液中作为稳定剂。溶液在整个工序期间保持在60℃-80℃,并在不同温度(热板上小于110℃)以2000rpm旋涂到热玻璃膜上20秒,之后在真空下在110℃-130℃退火15分钟。
此外,Cs可被任何其他无机或有机一价金属替代,Pb可被任何其他二价金属替代,I可被其他一价非金属诸如Br、Cl等替代。
使用分光光度计(Varian Cary 5000 UV-Vis-NIR光度计)在300nm-2500nm范围内收集紫外吸光度光谱和短波IR吸光度光谱。使用场发射SEM(FEI Quanta 450 FEG)研究膜的表面形态。

Claims (15)

1.一种具有分子式ABXY2的无机钙钛矿材料,其中:
AX为第一金属盐,其包含:第一一价碱金属阳离子A+和第一一价阴离子X-,其中所述第一金属盐为碘化铯;并且
BY2为第二金属盐,其包含:第二二价碱土金属、重金属或过渡金属阳离子B2+和两种第二一价阴离子Y-,其中所述第二金属盐为碘化铅;
其中所述无机钙钛矿材料还包含稳定剂,所述稳定剂为1-(3-磺丙基)吡啶鎓氢氧化物内盐,以及
其中所述第一金属盐与所述第二金属盐的摩尔比为2:1。
2.根据权利要求1所述的无机钙钛矿材料,其中所述稳定剂以与所述第一金属盐和所述第二金属盐的组合重量相比0.8%的重量比存在。
3.根据权利要求1所述的无机钙钛矿材料,所述无机钙钛矿材料还包括为玻璃基底上的层的无机钙钛矿材料;所述玻璃基底用于稳定所述无机钙钛矿材料。
4.根据权利要求3所述的无机钙钛矿材料,其中处于环境温度大于8天时,所述无机钙钛矿材料未改变从1000nm至2800nm的最大吸光度波长。
5.根据权利要求1所述的无机钙钛矿材料,其中所述无机钙钛矿材料在1000nm-2800nm之间具有最高SWIR吸光度。
6.一种制备具有分子式ABXY2的无机钙钛矿材料的方法,所述方法包括:
通过以下步骤制备溶剂中的前体溶液:
将含有第一一价碱金属阳离子A+和第一一价阴离子X-的第一金属盐溶于所述溶剂中;
将含有第二二价碱土金属、重金属或过渡金属阳离子B2+和两种第二一价阴离子Y-的第二金属盐溶于所述溶剂中,
其中所述第一金属盐为碘化铯并且所述第二金属盐为碘化铅,并且其中所述第一金属盐与所述第二金属盐在所述溶剂中的摩尔比为2:1;
将稳定剂添加到所述前体溶液中;
将所述前体溶液分散在基底上;以及
在40℃-300℃的退火温度处对所述基底上的所述分散的前体溶液进行退火,以形成无机钙钛矿材料,
其中所述稳定剂为1-(3-磺丙基)吡啶鎓氢氧化物内盐。
7.根据权利要求6所述的方法,其中退火在真空中完成。
8.根据权利要求6所述的方法,其中在溶剂中制备前体溶液在60℃-80℃的温度处进行,并且其中将所述前体溶液分散在基底上在小于110℃的温度处进行。
9.根据权利要求6所述的方法,其中所述退火温度为50℃,并且其中所述无机钙钛矿材料用于在1200nm处具有最大SWIR吸光度。
10.根据权利要求6所述的方法,其中所述退火温度为80℃,并且其中所述无机钙钛矿材料用于在1400nm处具有最大SWIR吸光度。
11.根据权利要求6所述的方法,其中所述退火温度为100℃,并且其中所述无机钙钛矿材料用于在1500nm处具有最大SWIR吸光度。
12.根据权利要求6所述的方法,所述方法还包括其中所述退火温度用于测定所述无机钙钛矿材料的最大SWIR吸光度的波长。
13.根据权利要求6所述的方法,其中所述溶剂为二甲基甲酰胺。
14.根据权利要求6所述的方法,其中将所述前体溶液分散在基底上通过将所述前体溶液旋涂在所述基底上来完成。
15.根据权利要求6所述的方法,其中所述基底为玻璃,并且所述玻璃用于在环境温度处稳定所述无机钙钛矿材料。
CN202011366679.8A 2019-11-27 2020-11-27 用于短波ir设备的全无机钙钛矿材料 Active CN112960691B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201962941378P 2019-11-27 2019-11-27
US62/941,378 2019-11-27
US17/104,358 US11518688B2 (en) 2019-11-27 2020-11-25 All inorganic perovskite materials for short wave IR devices
US17/104,358 2020-11-25

Publications (2)

Publication Number Publication Date
CN112960691A CN112960691A (zh) 2021-06-15
CN112960691B true CN112960691B (zh) 2023-08-04

Family

ID=75973732

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011366679.8A Active CN112960691B (zh) 2019-11-27 2020-11-27 用于短波ir设备的全无机钙钛矿材料

Country Status (4)

Country Link
US (1) US11518688B2 (zh)
JP (1) JP7061175B2 (zh)
CN (1) CN112960691B (zh)
DE (1) DE102020131568A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114220937B (zh) * 2021-12-01 2023-08-29 浙江大学 双极性分子稳定的钙钛矿材料及光电器件

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104465992A (zh) * 2014-11-30 2015-03-25 浙江大学 一种基于自组装单分子层的钙钛矿平面异质结太阳电池
CN106159087A (zh) * 2016-07-08 2016-11-23 合肥工业大学 一种CsPbI3薄膜的溶液制备方法及其光伏器件的应用
CN106745204A (zh) * 2016-11-28 2017-05-31 湖北大学 一种绿色环保CsPbX3钙钛矿量子点的合成方法
CN107564978A (zh) * 2017-08-30 2018-01-09 合肥工业大学 一种铯铅溴无机钙钛矿薄膜的制备方法及基于其的光伏器件
CN108232014A (zh) * 2017-12-30 2018-06-29 杭州纤纳光电科技有限公司 一种掺杂离子稳定剂的钙钛矿薄膜及其制备方法和应用
CN108336230A (zh) * 2018-02-09 2018-07-27 山东大学 一种高效稳定的纯无机立方相钙钛矿太阳能电池及其制备方法
CN109312464A (zh) * 2016-05-08 2019-02-05 耶达研究及发展有限公司 制备卤化物钙钛矿和钙钛矿相关材料的方法
CN109337674A (zh) * 2018-08-29 2019-02-15 湖北大学 一种二元配体修饰钙钛矿CsPbX3量子点的制备方法
CN110127752A (zh) * 2019-05-20 2019-08-16 上海交通大学 一种稳定的β-CsPbI3钙钛矿薄膜的制备方法
CN110164998A (zh) * 2019-04-11 2019-08-23 北京宏泰创新科技有限公司 一种全无机钙钛矿层及其制备方法和应用

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI474992B (zh) * 2014-04-29 2015-03-01 Univ Nat Central 鈣鈦礦薄膜及太陽能電池的製備方法
KR101724210B1 (ko) * 2014-11-06 2017-04-07 포항공과대학교 산학협력단 페로브스카이트 발광소자용 발광층 및 이의 제조방법과 이를 이용한 페로브스카이트 발광소자
JP6709443B2 (ja) * 2016-08-16 2020-06-17 学校法人上智学院 層状ペロブスカイト構造を有する化合物

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104465992A (zh) * 2014-11-30 2015-03-25 浙江大学 一种基于自组装单分子层的钙钛矿平面异质结太阳电池
CN109312464A (zh) * 2016-05-08 2019-02-05 耶达研究及发展有限公司 制备卤化物钙钛矿和钙钛矿相关材料的方法
CN106159087A (zh) * 2016-07-08 2016-11-23 合肥工业大学 一种CsPbI3薄膜的溶液制备方法及其光伏器件的应用
CN106745204A (zh) * 2016-11-28 2017-05-31 湖北大学 一种绿色环保CsPbX3钙钛矿量子点的合成方法
CN107564978A (zh) * 2017-08-30 2018-01-09 合肥工业大学 一种铯铅溴无机钙钛矿薄膜的制备方法及基于其的光伏器件
CN108232014A (zh) * 2017-12-30 2018-06-29 杭州纤纳光电科技有限公司 一种掺杂离子稳定剂的钙钛矿薄膜及其制备方法和应用
CN108336230A (zh) * 2018-02-09 2018-07-27 山东大学 一种高效稳定的纯无机立方相钙钛矿太阳能电池及其制备方法
CN109337674A (zh) * 2018-08-29 2019-02-15 湖北大学 一种二元配体修饰钙钛矿CsPbX3量子点的制备方法
CN110164998A (zh) * 2019-04-11 2019-08-23 北京宏泰创新科技有限公司 一种全无机钙钛矿层及其制备方法和应用
CN110127752A (zh) * 2019-05-20 2019-08-16 上海交通大学 一种稳定的β-CsPbI3钙钛矿薄膜的制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"All-Vacuum-Deposited Stoichiometrically Balanced Inorganic Cesium Lead Halide Perovskite Solar Cells with Stabilized Efficiency Exceeding 11%";Chien-Yu Chen et al.;《Advanced Materials》;20170120;第29卷;第1、5页 *
"Cesium lead iodide solar cells controlled by annealing temperature";Yu Geun kim et al.;《Phys.Chem.Chem.Phys.》;20170207;第19卷;第6257-6263页 *
Chien-Yu Chen et al.."All-Vacuum-Deposited Stoichiometrically Balanced Inorganic Cesium Lead Halide Perovskite Solar Cells with Stabilized Efficiency Exceeding 11%".《Advanced Materials》.2017,第29卷第1、5页. *

Also Published As

Publication number Publication date
JP2021084857A (ja) 2021-06-03
US11518688B2 (en) 2022-12-06
US20210155496A1 (en) 2021-05-27
DE102020131568A1 (de) 2021-06-17
JP7061175B2 (ja) 2022-04-27
CN112960691A (zh) 2021-06-15

Similar Documents

Publication Publication Date Title
Mali et al. Fully air-processed dynamic hot-air-assisted M: CsPbI2Br (M: Eu2+, In3+) for stable inorganic perovskite solar cells
Yoon et al. Surface engineering of ambient-air-processed cesium lead triiodide layers for efficient solar cells
Li et al. Addictive-assisted construction of all-inorganic CsSnIBr 2 mesoscopic perovskite solar cells with superior thermal stability up to 473 K
EP3199494B1 (en) Carbon-coated vanadium dioxide particles
CN110127752B (zh) 一种稳定的β-CsPbI3钙钛矿薄膜的制备方法
Alharbi et al. Formation of high‐performance multi‐cation halide perovskites photovoltaics by δ‐CsPbI3/δ‐RbPbI3 seed‐assisted heterogeneous nucleation
CN116716104A (zh) A/m/x材料的制备方法和光电器件
US20200185158A1 (en) Broadband and Tunable Organic-Inorganic Hybrid Short-Wave Infrared Materials
CN109819680A (zh) 光吸收层及其制造方法、分散液、光电转换元件和中间带型太阳能电池
CN107304167B (zh) 光吸收材料以及使用该光吸收材料的太阳能电池
WO2016121700A1 (ja) ハロゲン化スズ(ii)系ペロブスカイト薄膜およびその製造方法、ならびにそれを用いた電子デバイスおよび光電変換装置
CN112960691B (zh) 用于短波ir设备的全无机钙钛矿材料
US20210175451A1 (en) Pb-free perovskite materials for short wave ir devices
KR20180105087A (ko) 다공성 금속할로겐화물 막, 이의 제조방법 및 이를 이용한 페로브스카이트 구조의 유기금속할로겐화물의 제조방법
WO2019099657A1 (en) Doped perovskite structures for light-emitting devices and other applications
Dimesso et al. Investigation of cesium tin/lead iodide (CsSn1− xPbxI3) systems
Baek et al. Enhancing the efficiency and scalability of perovskite solar cells through pseudo-halide salt addition
Acchutharaman et al. Improved optoelectronic properties of rutile TiO2 nanorods through strontium doping for the economical and efficient perovskite solar cells
CN112919537A (zh) 用于短波IR装置的无Pb钙钛矿材料
Al Katrib et al. A Way to Reach 10% Efficiency with Carbon‐Based Electrodeposited Mixed Perovskite Solar Cells
CN109786565A (zh) 一种无空穴传输层的无机钙钛矿太阳能电池及其制备方法
KR102411504B1 (ko) 페로브스카이트 화합물용 전구체 및 이를 이용한 페로브스카이트 화합물의 제조방법
CN107464629B (zh) 一种光学透过性可控光电极的制备方法及其光电极
Meng Defect-associated physical mechanism and passivation engineering for perovskite solar cells
Hamdi et al. Some of the Study of the Physical Properties of the Membranes Binary Tin Oxide Sno2 Pure and Tinged with Nickel Ni at Different Rates Distortion

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant