WO2017141796A1 - シロキサン及びその製造方法 - Google Patents

シロキサン及びその製造方法 Download PDF

Info

Publication number
WO2017141796A1
WO2017141796A1 PCT/JP2017/004637 JP2017004637W WO2017141796A1 WO 2017141796 A1 WO2017141796 A1 WO 2017141796A1 JP 2017004637 W JP2017004637 W JP 2017004637W WO 2017141796 A1 WO2017141796 A1 WO 2017141796A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
unsubstituted
mmol
substituted
siloxane
Prior art date
Application number
PCT/JP2017/004637
Other languages
English (en)
French (fr)
Inventor
靖 佐藤
島田 茂
佐藤 一彦
Original Assignee
国立研究開発法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人産業技術総合研究所 filed Critical 国立研究開発法人産業技術総合研究所
Priority to JP2018500065A priority Critical patent/JP6621226B2/ja
Publication of WO2017141796A1 publication Critical patent/WO2017141796A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/18Compounds having one or more C—Si linkages as well as one or more C—O—Si linkages
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/21Cyclic compounds having at least one ring containing silicon, but no carbon in the ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods

Definitions

  • the present invention relates to siloxane and a method for producing the same, and relates to a method for producing siloxane by reaction of silanol and hydrosilane and the produced siloxane.
  • Siloxane bonds Si-O-Si
  • CC carbon-carbon bonds
  • CO carbon-oxygen bonds
  • a hydrolysis reaction of a silane compound As a method for synthesizing a siloxane bond, a hydrolysis reaction of a silane compound has been known for a long time.
  • Halogenated silane such as chlorosilane is a typical silane compound as a silane precursor to be used. It is also known that a siloxane bond can be formed by utilizing a condensation reaction between silane compounds.
  • silanol (SiOH) is used as a precursor, and silanol (SiOH), halogenated silane (SiX), alkoxysilane (SiOR), or the like is used as a reactant to form a siloxane bond.
  • the first is that the target compound cannot be selectively synthesized because the main siloxane bond formation reaction cannot be controlled.
  • the second is to produce water, hydrogen halide, alcohol, etc. that can react with siloxane as by-products. In recent years, methods for synthesizing siloxane with high efficiency have been actively developed.
  • a reaction for forming a siloxane bond a reaction of alkoxysilane and hydrosilane using tris (pentafluorophenyl) borane or the like as a catalyst (see, for example, Non-Patent Document 1), an alkoxysilane using trichlorobismuth or the like as a catalyst, Reactions of chlorosilane (for example, see Non-Patent Document 2), reactions of benzyloxysilane and halosilane using a palladium catalyst (for example, see Patent Document 1), and the like have been reported.
  • the present invention provides an efficient method for producing a siloxane compound derived from the reaction between silanol and hydrosilane.
  • the present inventors have conducted a condensation reaction of silanol and hydrosilane in the presence of a gold complex, and siloxane in which silicon-hydrogen bonds (Si—H) remain. was obtained efficiently, and the present invention was completed. That is, the present invention is as follows.
  • a silanol having a structure represented by the following formula (a) is reacted with a hydrosilane having a structure represented by the following formula (b) to form a silicon-hydrogen bond (Si—H).
  • the manufacturing method of the siloxane characterized by including the reaction process which produces
  • each R independently represents an unsubstituted or substituted hydrocarbon group having 1 to 20 carbon atoms, an unsubstituted or substituted carbon atom having 1 carbon atom. Represents an alkoxy group of ⁇ 20 or an unsubstituted or substituted aryloxy group of 6 to 20 carbon atoms.
  • each R independently represents an unsubstituted or substituted hydrocarbon group having 1 to 20 carbon atoms, an unsubstituted or substituted carbon atom having 1 carbon atom.
  • l, m and n each independently represents an integer of 0 to 2000.
  • R ′ is independently an unsubstituted or substituted hydrocarbon group having 1 to 20 carbon atoms, an unsubstituted or substituted carbon atom number. Represents an alkoxy group having 1 to 20 or an aryloxy group having 6 to 20 carbon atoms which is unsubstituted or substituted.) ⁇ 5> Siloxanes represented by any of the following formulas (C-1) to (C-12).
  • each R ′′ is independently an unsubstituted or substituted hydrocarbon group having 1 to 20 carbon atoms, or an unsubstituted or substituted carbon atom number.
  • Siloxanes represented by any of the following formulas (E-1) to (E-12).
  • R ′′ is independently an unsubstituted or substituted hydrocarbon group having 1 to 20 carbon atoms, an unsubstituted or substituted carbon atom number.
  • 1 to 20 alkoxy groups or unsubstituted or substituted aryloxy groups having 6 to 20 carbon atoms, l, m and n each independently represents an integer of 0 to 2000.
  • siloxane can be efficiently produced from the reaction between silanol and hydrosilane.
  • siloxane having a silicon-hydrogen bond (Si—H) remaining or a siloxane having an asymmetric structure.
  • FIG. 6 is a graph showing the relationship between the amount of phenylsilane used in Examples 15 to 18 and the yield of a product (siloxane).
  • a method for producing a siloxane which is one embodiment of the present invention includes silanol having a structure represented by the following formula (a) in the presence of a gold complex:
  • siloxane As a result of repeated investigations on the production method of siloxane, the present inventors proceeded with a condensation reaction between silanol and hydrosilane in the presence of a gold complex, and a highly reactive silicon-hydrogen bond (Si—H) remained. It was found that the obtained siloxane can be obtained efficiently.
  • the production method of the present invention can efficiently produce various siloxanes by selecting silanol, hydrosilane, reaction conditions, etc., and the resulting siloxane compound has a dihydrosilane (SiH 2 ) or hydrosilane (SiH) skeleton. This is the biggest feature.
  • the “structure represented by the formula (a)” means that it has at least one hydroxyl group bonded to a silicon atom, and means that the structure at the end of the wavy line is arbitrary. .
  • the structure represented by the formula (b) indicates that it has at least two hydrogen atoms bonded to silicon atoms (silicon-hydrogen bonds (Si—H)), and the tip of the wavy line This means that the structure of is arbitrary.
  • “Structure represented by formula (c)” represents that at least one silicon-hydrogen bond (Si—H) derived from hydrosilane having the structure represented by formula (b) remains.
  • the tip of the wavy line is a structure derived from silanol having the structure represented by the formula (a) and hydrosilane having the structure represented by the formula (b).
  • the reaction step is a step of reacting silanol having a structure represented by formula (a), but the specific kind of silanol having a structure represented by formula (a) is not particularly limited, and is intended. It should be selected appropriately according to the siloxane.
  • Examples of the silanol having the structure represented by the formula (a) include the following silanol 1, silanol 2 and the like.
  • Silanol 1 Silanol represented by any one of the following formulas (A-1) to (A-4). (In the formulas (A-1) to (A-3), each R independently represents an unsubstituted or substituted hydrocarbon group having 1 to 20 carbon atoms, an unsubstituted or substituted carbon atom having 1 carbon atom.
  • Silanol 2 Silanol represented by any of the following formulas (D-1) to (D-6). (In the formulas (D-1) to (A-6), each R independently represents an unsubstituted or substituted hydrocarbon group having 1 to 20 carbon atoms, an unsubstituted or substituted carbon atom having 1 carbon atom.
  • the number of carbon atoms of R in the formulas (A-1) to (A-3) is preferably 15 or less, more preferably 10 or less.
  • Specific examples of R include methyl group, ethyl group, n-propyl group, isopropyl group, cyclopropyl group, n-butyl group, isobutyl group, t-butyl group, sec-butyl group, cyclobutyl group, and n-pentyl group.
  • R is a part or all of these various hydrocarbon groups selected from hetero atoms such as oxygen atom, sulfur atom, nitrogen atom, phosphorus atom and boron atom, and halogen atoms such as fluorine atom, chlorine atom and bromine atom. It may be partially substituted with a substituent.
  • silanol 1 examples include those represented by the following formula.
  • R in the formulas (D-1) to (D-6) are the same as those for silanol 1.
  • l, m, and n each independently represent an integer of 0 to 2000, preferably 1500 or less, more preferably 1000 or less, and even more preferably 500. Hereinafter, it is particularly preferably 250 or less.
  • silanol 2 examples include those represented by the following formula.
  • the reaction step is a step of reacting hydrosilane having a structure represented by the formula (b), but the specific type of hydrosilane having a structure represented by the formula (b) is not particularly limited, and is intended. It should be selected appropriately according to the siloxane.
  • Examples of the hydrosilane having a structure represented by the formula (b) include hydrosilanes represented by any of the following formulas (B-1) to (B-2). (In the formulas (B-1) to (B-2), R ′ is independently an unsubstituted or substituted hydrocarbon group having 1 to 20 carbon atoms, an unsubstituted or substituted carbon atom number.
  • R ′ Represents an alkoxy group having 1 to 20 or an aryloxy group having 6 to 20 carbon atoms which is unsubstituted or substituted.
  • the number of carbon atoms of R ′ in formulas (B-1) to (B-2) is preferably 15 or less, more preferably 10 or less.
  • Specific examples of R ′ include methyl group, ethyl group, n-propyl group, isopropyl group, cyclopropyl group, n-butyl group, isobutyl group, t-butyl group, sec-butyl group, cyclobutyl group, n-pentyl.
  • R ′ in the present invention examples thereof include substituted aryl groups, methoxy groups, ethoxy groups, propoxy groups, isopropoxy groups, butoxy groups, t-butoxy groups, alkoxy groups such as benzyloxy groups, and aryloxy groups such as phenoxy groups.
  • R ′ in the present invention some or all of these various hydrocarbon groups are oxygen atoms, sulfur atoms, nitrogen atoms, phosphorus atoms, boron atoms and other hetero atoms, fluorine atoms, chlorine atoms, bromine atoms, etc. It may be partially substituted with a substituent selected from halogen atoms.
  • hydrosilane what is represented, for example by a following formula is mentioned.
  • the amount of use (charge amount) of silanol and hydrosilane in the reaction step is not particularly limited and should be appropriately selected according to the target siloxane.
  • the amount of the hydrosilane / the amount of silanol is usually 0.5 or more, preferably 0.7 or more, more preferably 1 or more, and usually 20 or less, preferably 10 or less, more preferably 5 or less.
  • the specific kind of the gold complex in the reaction step is not particularly limited, and should be appropriately selected according to the target siloxane.
  • an additive such as phosphine.
  • the gold complex is composed of a gold atom and a ligand, and the oxidation number of the gold atom of the gold complex is not particularly limited, but is usually 1.
  • ligands include neutral ligands such as phosphine ligands, amine ligands, carbene ligands, halogens such as chlorine and bromine, carboxylates such as acetate, and p-toluene.
  • Examples include anionic ligands such as sulfonates such as sulfonate and trifluoromethanesulfonate.
  • the gold complex may have a combination of these ligands.
  • the phosphine-based ligand is a phosphine compound in which a hydrocarbon group is bonded to a phosphorus atom, the number of carbon atoms of the hydrocarbon group is 1 or more, usually 20 or less, preferably 15 or less, more preferably 10 It is as follows.
  • trimethylphosphine triethylphosphine, tripropylphosphine, tri -n- butyl phosphine (P n Bu 3), tricyclo hexyl phosphine (PCy 3), triphenylphosphine (PPh 3), 4,5-bis (Diphenylphosphino) -9,9-dimethylxanthene (Xantphos), and the like.
  • Examples of the gold complex include chloro (tri-n-butylphosphine) gold, chloro (tricyclohexylphosphine) gold, chloro (triphenylphosphine) gold, bis (tri-n-butylphosphine) gold, and bis (tricyclohexene).
  • Examples of the additive include phosphine compounds and amine compounds.
  • phosphine compound such as trimethyl phosphine, triethyl phosphine, tripropyl phosphine, tri -n- butyl phosphine (P n Bu 3), hexyl phosphine to tricyclo (PCy 3), triphenylphosphine (PPh 3), 4, 5 -Bis (diphenylphosphino) -9,9-dimethylxanthene (Xantphos), and the like.
  • the amine compound include triethylamine, triphenylamine, and tetramethylethylenediamine.
  • the amount of use of the gold complex in the reaction step is not particularly limited and should be appropriately selected according to the target siloxane, but is usually 0.001 mol% or more with respect to the amount of silanol substance, Preferably it is 0.01 mol% or more, More preferably, it is 0.05 mol% or more, Usually, 30 mol% or less, Preferably it is 10 mol% or less.
  • the reaction step can be performed without a solvent if the reaction substrate is a liquid, but a reaction solvent can also be used.
  • the type of reaction solvent is not particularly limited, and is a saturated hydrocarbon (eg, pentane, hexane), aromatic hydrocarbon (eg, benzene, toluene), halogenated hydrocarbon (eg, dichloromethane, chloroform, 1,2-dichloroethane).
  • Ethers eg, diethyl ether, tetrahydrofuran, 1,4-dioxane, cyclopentyl methyl ether
  • ketones eg, acetone
  • esters eg, ethyl acetate
  • nitriles eg, benzonitrile, acetonitrile
  • polar aprotic solvents for example, N, N-dimethylsulfoxide (DMSO), N, N-dimethylformamide (DMF), dimethylacetamide (DMAc), etc.
  • Saturated hydrocarbons can be used Aromatic hydrocarbons, halogenated hydrocarbons, ethers, nitriles, polar aprotic solvents are preferred, ethers Among the more preferred.
  • the reaction temperature in the reaction step is usually ⁇ 80 ° C. or higher, preferably 0 ° C. or higher, usually 200 ° C. or lower, preferably 100 ° C. or lower.
  • the atmosphere gas may be air or an inert gas such as nitrogen or argon.
  • Siloxane 1 Siloxane represented by any one of the following formulas (C-1) to (C-12).
  • each R ′′ is independently an unsubstituted or substituted hydrocarbon group having 1 to 20 carbon atoms, or an unsubstituted or substituted carbon atom number.
  • Siloxane 2 Siloxane represented by any of the following formulas (E-1) to (E-12).
  • R ′′ is independently an unsubstituted or substituted hydrocarbon group having 1 to 20 carbon atoms, an unsubstituted or substituted carbon atom number. 1 to 20 alkoxy groups or unsubstituted or substituted aryloxy groups having 6 to 20 carbon atoms, l, m and n each independently represents an integer of 0 to 2000.
  • R ′′ is preferably 15 or less, more preferably 10 or less.
  • R ′′ include methyl, ethyl, n-propyl, isopropyl, cyclopropyl, n-butyl, isobutyl, t-butyl, sec-butyl, cyclobutyl, n-pentyl.
  • R ′′ in the present invention examples thereof include substituted aryl groups, methoxy groups, ethoxy groups, propoxy groups, isopropoxy groups, butoxy groups, t-butoxy groups, alkoxy groups such as benzyloxy groups, and aryloxy groups such as phenoxy groups.
  • R ′′ in the present invention some or all of these various hydrocarbon groups are oxygen atoms, sulfur atoms, nitrogen atoms, phosphorus atoms, boron atoms and other hetero atoms, fluorine atoms, chlorine atoms, bromine atoms, etc. It may be partially substituted with a substituent selected from halogen atoms.
  • R ′′ is the same as R ′′ of siloxane 1.
  • l, m, and n each independently represent an integer of 0 to 2000, preferably 1500 or less, more preferably 1000 or less, and even more preferably 500. Hereinafter, it is particularly preferably 250 or less.
  • each R ′′ is independently an unsubstituted or substituted hydrocarbon group having 1 to 20 carbon atoms, or an unsubstituted or substituted carbon atom number. Represents an alkoxy group having 1 to 20 or an aryloxy group having 6 to 20 carbon atoms which is unsubstituted or substituted.
  • a siloxane represented by any one of the following formulas (E-1) to (E-12) can be produced by the production method of the present invention, but the following formulas (E-1) to (E The siloxane represented by any one of -12) is also an embodiment of the present invention.
  • R ′′ is independently an unsubstituted or substituted hydrocarbon group having 1 to 20 carbon atoms, an unsubstituted or substituted carbon atom number. 1 to 20 alkoxy groups or unsubstituted or substituted aryloxy groups having 6 to 20 carbon atoms, l, m and n each independently represents an integer of 0 to 2000.
  • Example 1 In a reaction vessel, triethylsilanol (66.1 mg, 0.5 mmol), phenylsilane (54.1 mg, 0.5 mmol), chloro (triphenylphosphine) gold (6.2 mg, 2.5 mol%), THF (1 mL) were added. In addition, the mixture was reacted for 4 hours under an argon atmosphere. The yield of the following product 3 was 15%. The yield of the product was determined by 29 Si-NMR using phenyltrimethylsilane (60.1 mg, 0.4 mmol) as an internal standard. The results are shown in Table 1.
  • Example 2 The reaction was performed in the same manner as in Example 1 except that triphenylphosphine (3.3 mg, 0.0125 mmol) was additionally added. The results are shown in Table 1.
  • Example 3 The reaction was performed in the same manner as in Example 2 except that the reaction time was changed to 13 hours. The results are shown in Table 1.
  • Example 4 A reaction vessel was charged with trimethylsilanol (45.1 mg, 0.5 mmol), phenylsilane (108.2 mg, 1.0 mmol), chloro (triphenylphosphine) gold (6.2 mg, 2.5 mol%), THF (1 mL). In addition, the mixture was reacted for 13 hours under an argon atmosphere. The yield of the following product 8 was 52%, and the yield of the product 9 was 44%. The yield of the product was determined by 29 Si-NMR using phenyltrimethylsilane (60.1 mg, 0.4 mmol) as an internal standard. The results are shown in Table 2.
  • Example 5 The reaction was performed in the same manner as in Example 4 except that triphenylphosphine (3.3 mg, 0.0125 mmol) was additionally added. The results are shown in Table 2.
  • Example 6 The reaction was performed in the same manner as in Example 4 except that tricyclohexylphosphine (3.5 mg, 0.0125 mmol) was additionally added. The results are shown in Table 2.
  • Example 7 The reaction was performed in the same manner as in Example 6 except that THF was changed to toluene. The results are shown in Table 2.
  • Example 8 The reaction was performed in the same manner as in Example 6 except that THF was changed to dimethylacetamide (DMAc). The results are shown in Table 2.
  • Example 9 The reaction was performed in the same manner as in Example 6 except that THF was changed to dimethyl sulfoxide (DMSO). The results are shown in Table 2.
  • Example 10 The reaction was performed in the same manner as in Example 4 except that tri-n-butylphosphine (2.5 mg, 2.5 mol%) was additionally added. The results are shown in Table 2.
  • Example 11 The reaction was performed in the same manner as in Example 10 except that the addition amount of tri-n-butylphosphine was changed to (7.6 mg, 7.5 mol%). The results are shown in Table 2.
  • Example 13 The reaction was performed in the same manner as in Example 12 except that the reaction temperature was changed to 40 ° C. The results are shown in Table 3.
  • Example 14 The reaction was performed in the same manner as in Example 12 except that the reaction temperature was changed to 70 ° C. The results are shown in Table 3.
  • Example 15 to 18 Diphenylsilanediol (108.2 mg, 0.5 mmol), phenylsilane, chloro (triphenylphosphine) gold (6.2 mg, 2.5 mol%), tricyclohexylphosphine (3.5 mg, 0.0125 mmol) in a reaction vessel , THF (1 mL) was added, and the mixture was reacted for 21 hours under an argon atmosphere.
  • the usage-amount (preparation amount) of phenylsilane is 4 of 0.25 mmol (Example 15), 0.5 mmol (Example 16), 1.0 mmol (Example 17), 3.0 mmol (Example 18).
  • Each yield was calculated, and a graph showing the relationship between the amount of phenylsilane used and the yield of the product (siloxane) was obtained. The graph is shown in FIG.
  • Example 19 In a reaction vessel, phenylsilanetriol (108.2 mg, 0.5 mmol), phenylsilane (541.1 mg, 5.0 mmol), chloro (triphenylphosphine) gold (6.2 mg, 2.5 mol%), triphenylphosphine ( 3.3 mg, 0.0125 mmol) and THF (1 mL) were added and reacted under an argon atmosphere for 13 hours. The yield of the following product 11 was 59%. The yield of the product was determined by 29 Si-NMR using phenyltrimethylsilane (60.1 mg, 0.4 mmol) as an internal standard. The results are shown in Table 4.
  • Example 20 The reaction was performed in the same manner as in Example 16 except that triphenylphosphine was changed to tricyclohexylphosphine. The results are shown in Table 4.
  • Example 21 The reaction was performed in the same manner as in Example 16 except that triphenylphosphine was changed to tri-n-butylphosphine. The results are shown in Table 4.
  • the yield of ⁇ 3,3-diphenyldisiloxane was 97% and the yield of hexaethyldisiloxane was 3%
  • the product yield was phenyltrimethylsilane (60.1 mg, 0.4 mmol) as an internal standard. It was determined by 29 Si-NMR used as.
  • Example 25 Tri-i-propylsilanol (523.1 mg, 3.0 mmol), phenylsilane (324.7 mg, 3.0 mmol), chloro (triphenylphosphine) gold (35.6 mg, 0.075 mmol), triphenylphosphine (19 0.7 mg, 0.075 mmol) and THF (6 mL) were added, and the mixture was reacted at 25 ° C. for 13 hours under an argon atmosphere. After completion of the reaction, the solvent was removed with an evaporator, the product was purified by distillation with a Kugelrohr, and the compound was identified using 1 H-NMR, 13 C-NMR, 29 Si-NMR and GC-MS. .
  • Example 28 Triphenylsilanol (829.2 mg, 3.0 mmol), n-hexylsilane (348.8 mg, 3.0 mmol), chloro (triphenylphosphine) gold (14.8 mg, 0.03 mmol), tri-n-butylphosphine (18.2 mg, 0.09 mmol) and THF (6 mL) were added and reacted under argon atmosphere at 25 ° C. for 13 hours. After completion of the reaction, the solvent was removed with an evaporator, the product was purified by distillation with a Kugelrohr, and the compound was identified using 1 H-NMR, 13 C-NMR, 29 Si-NMR and GC-MS. .
  • Example 30 1,1,3,3-tetraphenyl-1,3-disiloxanediol (829.2 mg, 2.0 mmol), n-hexylsilane (1.39 g, 12 mmol), chloro (triphenylphosphine) gold (24. 7 mg, 0.05 mmol), tri-n-butylphosphine (30.3 mg, 0.15 mmol), and THF (6 mL) were added, and the mixture was reacted at room temperature for 13 hours under an argon atmosphere.
  • 1,1,3,3-tetraphenyl-1,3-disiloxanediol 829.2 mg, 2.0 mmol
  • n-hexylsilane 1.39 g, 12 mmol
  • chloro (triphenylphosphine) gold 24. 7 mg, 0.05 mmol
  • tri-n-butylphosphine 30.3 mg, 0.15 mmol
  • THF 6 mL
  • Example 33 Diphenylsilanediol (432 mg, 2 mmol), n-hexylsilane (1.39 g, 12 mmol), gold chloride (11.6 mg, 0.05 mmol), tri-n-butylphosphine (30.3 mg, 0.15 mmol), THF (4 mL) was added and allowed to react for 13 hours at room temperature under an argon atmosphere. After completion of the reaction, the solvent was removed with an evaporator, unreacted substances and the like were distilled with Kugelrohr, the remaining metal was filtered through celite, the product was purified, and the compound was identified by 1 H-NMR, 13 C. -NMR, 29 Si-NMR and GC-MS were used.
  • tert-butyldimethylsilanol (396.8 mg, 3.0 mmol), phenylmethylsilane (366.3 mg, 3.0 mmol), chloro (triphenylphosphine) gold (35.6 mg, 0.075 mmol), 4,5-bis (Diphenylphosphino) -9,9-dimethylxanthene (43.4 mg, 0.075 mmol) and THF (6 mL) were added, and the mixture was reacted at 25 ° C. for 13 hours under an argon atmosphere.
  • the siloxane produced by the production method of the present invention can be used as a raw material for silicone oil, silicone rubber, organic-inorganic hybrid material and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

金錯体の存在下、下記式(a)で表される構造を有するシラノールと下記式(b)で表される構造を有するヒドロシランとを反応させることによって、ケイ素-水素結合(Si-H)が残存したシロキサンを効率良く製造することができる。

Description

シロキサン及びその製造方法
 本発明は、シロキサン及びその製造方法に関し、シラノールとヒドロシランとの反応によるシロキサンの製造方法及び製造されるシロキサンに関する。
 シロキサン結合(Si-O-Si)は、有機骨格である炭素-炭素結合(C-C)や炭素-酸素結合(C-O)に比べて結合エネルギーが大きく、シロキサン結合を骨格とする有機ケイ素化合物は、耐久性、耐候性等に優れることが知られている。そのため、有機ケイ素化合物は、シリコーンオイルやシリコーンゴムとして幅広く利用されており、また近年では有機無機ハイブリット素材の原料としても注目されている。
 シロキサン結合の合成手法として、古くから知られているのがシラン化合物の加水分解反応である。使用するシラン前駆体としてクロロシランなどのハロゲン化シランが代表的なシラン化合物の例である。またシラン化合物間の縮合反応を利用し、シロキサン結合が形成できることも知られている。例えば、シラノール(SiOH)を前駆体に使用し、反応剤としてシラノール(SiOH)、ハロゲン化シラン(SiX)やアルコキシシラン(SiOR)などを使用しシロキサン結合を形成している。
 ・SiOH + SiOH → SiOSi + H
 ・SiOH + SiX  → SiOSi + HX
 ・SiOH + SiOR → SiOSi + ROH
 この従来法には問題点が存在する。一つ目は、主とするシロキサン結合形成反応の反応制御ができないため、目的化合物を選択的に合成できていないこと。二つ目は、シロキサンと反応可能な水やハロゲン化水素やアルコールなどを副生成物として産出することである。
 また近年ではシロキサンを高効率で合成する手法の開発も盛んにされている。例えば、シロキサン結合を形成する反応としては、トリス(ペンタフルオロフェニル)ボラン等を触媒としたアルコキシシランとヒドロシランの反応(例えば、非特許文献1参照。)、トリクロロビスマス等を触媒としたアルコキシシランとクロロシランの反応(例えば、非特許文献2参照。)、パラジウム触媒を利用したベンジルオキシシランとハロシランの反応(例えば、特許文献1参照。)等が報告されている。
特開2014-218449号公報
W.E.Piers,et al.,J.Org.Chem.2000,65,3090. R.Wakabayashi,et al.,Angew.Chem.Int.Ed.2010,49,5273.
 本発明は、シラノールとヒドロシランとの反応から誘導されるシロキサン化合物の効率的な製造方法を提供する。
 本発明者らは、前記課題を解決すべく鋭意検討を重ねた結果、金錯体の存在下で、シラノールとヒドロシランの縮合反応が進行して、ケイ素-水素結合(Si-H)が残存したシロキサンが効率良く得られることを見出し、本発明を完成させた。
 即ち、本発明は以下の通りである。
<1> 金錯体の存在下、下記式(a)で表される構造を有するシラノールと下記式(b)で表される構造を有するヒドロシランとを反応させてケイ素-水素結合(Si-H)が残存した下記式(c)で表される構造を有するシロキサンを生成する反応工程を含むことを特徴とするシロキサンの製造方法。
Figure JPOXMLDOC01-appb-C000007
<2> 前記シラノールが、下記式(A-1)~(A-4)の何れかで表されるシラノールである、<1>に記載のシロキサンの製造方法。
Figure JPOXMLDOC01-appb-C000008
(式(A-1)~(A-3)中、Rはそれぞれ独立して無置換もしくは置換基を有する炭素原子数1~20の炭化水素基、無置換もしくは置換基を有する炭素原子数1~20のアルコキシ基、又は無置換もしくは置換基を有する炭素原子数6~20のアリールオキシ基を表す。)
<3> 前記シラノールが、下記式(D-1)~(D-6)の何れかで表されるシラノールである、<1>に記載のシロキサンの製造方法。
Figure JPOXMLDOC01-appb-C000009
(式(D-1)~(D-6)中、Rはそれぞれ独立して無置換もしくは置換基を有する炭素原子数1~20の炭化水素基、無置換もしくは置換基を有する炭素原子数1~20のアルコキシ基、又は無置換もしくは置換基を有する炭素原子数6~20のアリールオキシ基を、l、m、nはそれぞれ独立して0~2000の整数を表す。)
<4> 前記ヒドロシランが、下記式(B-1)~(B-2)の何れかで表されるヒドロシランである、<1>~<3>の何れかに記載のシロキサンの製造方法。
Figure JPOXMLDOC01-appb-C000010
(式(B-1)~(B-2)中、R’はそれぞれ独立して無置換もしくは置換基を有する炭素原子数1~20の炭化水素基、無置換もしくは置換基を有する炭素原子数1~20のアルコキシ基、又は無置換もしくは置換基を有する炭素原子数6~20のアリールオキシ基を表す。)
<5> 下記式(C-1)~(C-12)の何れかで表されるシロキサン。
Figure JPOXMLDOC01-appb-C000011
(式(C-1)~(C-12)中、R”はそれぞれ独立して無置換もしくは置換基を有する炭素原子数1~20の炭化水素基、無置換もしくは置換基を有する炭素原子数1~20のアルコキシ基、又は無置換もしくは置換基を有する炭素原子数6~20のアリールオキシ基を表す。)
<6> 下記式(E-1)~(E-12)の何れかで表されるシロキサン。
Figure JPOXMLDOC01-appb-C000012
(式(E-1)~(E-12)中、R”はそれぞれ独立して無置換もしくは置換基を有する炭素原子数1~20の炭化水素基、無置換もしくは置換基を有する炭素原子数1~20のアルコキシ基、又は無置換もしくは置換基を有する炭素原子数6~20のアリールオキシ基を、l、m、nはそれぞれ独立して0~2000の整数を表す。)
 本発明によれば、シラノールとヒドロシランとの反応からシロキサンを効率良く製造することができる。特にケイ素-水素結合(Si-H)が残存したシロキサンや非対称な構造を有するシロキサンを効率良く選択的に製造することもできる。
実施例15~18において得られたフェニルシランの使用量と生成物(シロキサン)の収率の関係を表したグラフである。
 本発明の詳細を説明するに当たり、具体例を挙げて説明するが、本発明の趣旨を逸脱しない限り以下の内容に限定されるものではなく、適宜変更して実施することができる。
<シロキサンの製造方法>
 本発明の一態様であるシロキサンの製造方法(以下、「本発明の製造方法」と略す場合がある。)は、金錯体の存在下、下記式(a)で表される構造を有するシラノールと下記式(b)で表される構造を有するヒドロシランとを反応させてケイ素-水素結合(Si-H)が残存した下記式(c)で表される構造を有するシロキサンを生成する反応工程を含むことを特徴とする。
Figure JPOXMLDOC01-appb-C000013
 本発明者らは、シロキサンの製造方法について検討を重ねた結果、金錯体の存在下で、シラノールとヒドロシランの縮合反応が進行して、反応性の高いケイ素-水素結合(Si-H)が残存したシロキサンが効率良く得られることを見出したのである。本発明の製造方法は、シラノール、ヒドロシラン、反応条件等の選択により、様々なシロキサンを効率良く製造することができ、得られるシロキサン化合物中にジヒドロシラン(SiH)やヒドロシラン(SiH)骨格を有していることが最大の特長である。
 なお、「式(a)で表される構造」は、ケイ素原子に結合したヒドロキシル基を少なくとも1つ有していることを表しており、さらに波線の先の構造は任意であることを意味する。
 「式(b)で表される構造」も同様に、ケイ素原子に結合した水素原子(ケイ素-水素結合(Si-H))を少なくとも2つ有していることを表しており、波線の先の構造は任意であることを意味する。
 「式(c)で表される構造」は、式(b)で表される構造を有するヒドロシランに由来するケイ素-水素結合(Si-H)が少なくとも1つ残存していることを表しており、波線の先は式(a)で表される構造を有するシラノールと式(b)で表される構造を有するヒドロシランに由来する構造となる。
 以下、本発明の製造方法について詳細に説明する。
 反応工程は、式(a)で表される構造を有するシラノールを反応させる工程であるが、式(a)で表される構造を有するシラノールの具体的種類は、特に限定されず、目的とするシロキサンに応じて適宜選択されるべきである。
 式(a)で表される構造を有するシラノールとしては、下記のシラノール1、シラノール2等が挙げられる。
・シラノール1:下記式(A-1)~(A-4)の何れかで表されるシラノール。
Figure JPOXMLDOC01-appb-C000014
(式(A-1)~(A-3)中、Rはそれぞれ独立して無置換もしくは置換基を有する炭素原子数1~20の炭化水素基、無置換もしくは置換基を有する炭素原子数1~20のアルコキシ基、又は無置換もしくは置換基を有する炭素原子数6~20のアリールオキシ基を表す。)
・シラノール2:下記式(D-1)~(D-6)の何れかで表されるシラノール。
Figure JPOXMLDOC01-appb-C000015
(式(D-1)~(A-6)中、Rはそれぞれ独立して無置換もしくは置換基を有する炭素原子数1~20の炭化水素基、無置換もしくは置換基を有する炭素原子数1~20のアルコキシ基、又は無置換もしくは置換基を有する炭素原子数6~20のアリールオキシ基を、l、m、nはそれぞれ独立して0~2000の整数を表す。)
 以下、「シラノール1」、「シラノール2」等について詳細に説明する。
(シラノール1)
 式(A-1)~(A-3)中のRの炭素原子数は、好ましくは15以下、より好ましくは10以下である。
 Rの具体例としては、メチル基、エチル基、n-プロピル基、イソプロピル基、シクロプロピル基、n-ブチル基、イソブチル基、t-ブチル基、sec-ブチル基、シクロブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、シクロペンチル基、n-ヘキシル基、イソヘキシル基、シクロヘキシル基、n-ヘプチル基、イソヘプチル基、シクロヘプチル基、n-オクチル基、イソオクチル基、t-オクチル基、シクロオクチル基、n-ノニル基、イソノニル基、シクロノニル基、n-デシル基、イソデシル基、シクロデキル基、n-ウンデシル基、イソウンデシル基、シクロウンデシル基等の直鎖状、分岐状、環状のアルキル基、ビニル基、プロペニル基、イソプロペニル基、ブテニル基、ペンテニル基、ヘキセニル基、シクロヘキセニル基、ヘプテニル基、シクロヘプテニル基、オクテニル基、シクロオクテニル基、スチレニル基、ナフテニル基等の非環状及び環状アルケニル基、ベンジル基、フェネチル基、2-メチルベンジル基等のアラルキル基、スチリル基等のアラアルケニル基、フェニル基、1-ナフチル基等のアリール基、p-トリル基、メシチル基、4-ブロモフェニル基、4-トリフルオロメチルフェニル基、ペンタフルオロフェニル基、4-アセチルフェニル基、4-シアノフェニル基、4-ニトロフェニル基、4-アミノフェニル基、4-メトキシフェニル基、4-ビニルフェニル基等の置換アリール基、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、ブトキシ基、t-ブトキシ基、ベンジルオキシ基等のアルコキシ基、フェノキシ基等のアリールオキシ基などが挙げられる。
 またRは、これら各種の炭化水素基の一部又は全部が酸素原子、硫黄原子、窒素原子、リン原子、ホウ素原子等のヘテロ原子、フッ素原子、塩素原子、臭素原子等のハロゲン原子から選ばれる置換基で部分置換されていてもよい。
 シラノール1としては、例えば下記式で表されるものが挙げられる。
Figure JPOXMLDOC01-appb-C000016
(シラノール2)
 式(D-1)~(D-6)中のRは、シラノール1のRと同様のものが挙げられる。
 式(D-1)~(D-6)中のl、m、nはそれぞれ独立して0~2000の整数を表しているが、好ましくは1500以下、より好ましくは1000以下、さらに好ましくは500以下、特に好ましくは250以下である。
 シラノール2としては、例えば下記式で表されるものが挙げられる。
Figure JPOXMLDOC01-appb-C000017
 反応工程は、式(b)で表される構造を有するヒドロシランを反応させる工程であるが、式(b)で表される構造を有するヒドロシランの具体的種類は、特に限定されず、目的とするシロキサンに応じて適宜選択されるべきである。
 式(b)で表される構造を有するヒドロシランとしては、下記式(B-1)~(B-2)の何れかで表されるヒドロシランが挙げられる。
Figure JPOXMLDOC01-appb-C000018
(式(B-1)~(B-2)中、R’はそれぞれ独立して無置換もしくは置換基を有する炭素原子数1~20の炭化水素基、無置換もしくは置換基を有する炭素原子数1~20のアルコキシ基、又は無置換もしくは置換基を有する炭素原子数6~20のアリールオキシ基を表す。)
 式(B-1)~(B-2)中のR’の炭素原子数は、好ましくは15以下、より好ましくは10以下である。
 R’の具体例としては、メチル基、エチル基、n-プロピル基、イソプロピル基、シクロプロピル基、n-ブチル基、イソブチル基、t-ブチル基、sec-ブチル基、シクロブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、シクロペンチル基、n-ヘキシル基、イソヘキシル基、シクロヘキシル基、n-ヘプチル基、イソヘプチル基、シクロヘプチル基、n-オクチル基、イソオクチル基、t-オクチル基、シクロオクチル基、n-ノニル基、イソノニル基、シクロノニル基、n-デシル基、イソデシル基、シクロデキル基、n-ウンデシル基、イソウンデシル基、シクロウンデシル基等の直鎖状、分岐状、環状のアルキル基、ビニル基、プロペニル基、ブテニル基、ペンテニル基、ヘキセニル基、シクロヘキセニル基、基、ベンジル基、フェネチル基、2-メチルベンジル基等のアラルキル基、スチリル基等のアラアルケニル基、フェニル基、1-ナフチル基等のアリール基、p-トリル基、メシチル基、4-ブロモフェニル基、4-トリフルオロメチルフェニル基、ペンタフルオロフェニル基、4-アセチルフェニル基、4-シアノフェニル基、4-ニトロフェニル基、4-アミノフェニル基、4-メトキシフェニル基、4-ビニルフェニル基等の置換アリール基、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、ブトキシ基、t-ブトキシ基、ベンジルオキシ基等のアルコキシ基、フェノキシ基等のアリールオキシ基などが挙げられる。
 また本発明におけるR’としては、これら各種の炭化水素基の一部又は全部が酸素原子、硫黄原子、窒素原子、リン原子、ホウ素原子等のヘテロ原子、フッ素原子、塩素原子、臭素原子等のハロゲン原子から選ばれる置換基で部分置換されていてもよい。
 ヒドロシランとしては、例えば下記式で表されるものが挙げられる。
Figure JPOXMLDOC01-appb-C000019
 反応工程におけるシラノールとヒドロシランの使用量(仕込量)は、特に限定されず、目的とするシロキサンに応じて適宜選択されるべきである。ヒドロシランの物質量/シラノールの物質量として、通常0.5以上、好ましくは0.7以上、より好ましくは1以上であり、通常20以下、好ましくは10以下、より好ましくは5以下である。
 反応工程における金錯体の具体的種類も、特に限定されず、目的とするシロキサンに応じて適宜選択されるべきである。また、本反応においては、ホスフィン等の添加剤を加えることも好ましい一態様である。
 金錯体は、金原子と配位子から構成され、金錯体の金原子の酸化数は、特に限定されないが、通常1である。
 配位子としては、ホスフィン系配位子、アミン系配位子、カルベン系配位子等の中性配位子、及び塩素、臭素等のハロゲン系、アセテート等のカルボキシラート系、p-トルエンスフホナート、トリフルオロメタンスルホナート等のスルホナート系等のアニオン系配位子が挙げられる。金錯体はこれらの配位子を複数組み合わせて有するものであってもよい。
 ホスフィン系配位子は、炭化水素基がリン原子に結合したホスフィン化合物である場合、その炭化水素基の炭素原子数は、1以上であり、通常20以下、好ましくは15以下、より好ましくは10以下である。具体例としては、トリメチルホスフィン、トリエチルホスフィン、トリプロピルホスフィン、トリ-n-ブチルホスフィン(PBu)、トリシクロへキシルホスフィン(PCy)、トリフェニルホスフィン(PPh)、4,5-ビス(ジフェニルホスフィノ)-9,9-ジメチルキサンテン(Xantphos)、等が挙げられる。
 金錯体としては、例えば、クロロ(トリ-n-ブチルホスフィン)金、クロロ(トリシクロへキシルホスフィン)金、クロロ(トリフェニルホスフィン)金、ビス(トリ-n-ブチルホスフィン)金、ビス(トリシクロへキシルホスフィン)金、ビス(トリフェニルホスフィン)金、塩化金等が挙げられる。
 添加剤としては、ホスフィン系化合物、アミン系化合物等が挙げられる。ホスフィン系化合物としては、例えばトリメチルホスフィン、トリエチルホスフィン、トリプロピルホスフィン、トリ-n-ブチルホスフィン(PBu)、トリシクロへキシルホスフィン(PCy)、トリフェニルホスフィン(PPh)、4,5-ビス(ジフェニルホスフィノ)-9,9-ジメチルキサンテン(Xantphos)、等が挙げられる。アミン系化合物としては、例えばとるトリエチルアミン、トリフェニルアミン、テトラメチルエチレンジアミンが挙げられる。
 反応工程における金錯体の使用量(仕込量)は、特に限定されず、目的とするシロキサンに応じて適宜選択されるべきであるが、シラノールの物質量に対して、通常0.001mol%以上、好ましくは0.01mol%以上、より好ましくは0.05mol%以上であり、通常30mol%以下、好ましくは10mol%以下である。
 反応工程は、反応基質が液体であれば無溶媒で行うことができるが、反応溶媒を使用することもできる。反応溶媒の種類は特に限定されず、飽和炭化水素(例えば、ペンタン、ヘキサン)、芳香族炭化水素(例えば、ベンゼン、トルエン)、ハロゲン化炭化水素(例えば、ジクロロメタン、クロロホルム、1,2-ジクロロエタン)、エーテル類(例えば、ジエチルエーテル、テトラヒドロフラン、1,4-ジオキサン、シクロペンチルメチルエーテル)、ケトン類(例えば、アセトン)、エステル類(例えば、酢酸エチル)、ニトリル類(例えば、ベンゾニトリル、アセトニトリル)、または極性非プロトン性溶媒(例えば、N,N-ジメチルスルホキシド(DMSO)、N,N-ジメチルホルムアミド(DMF)、ジメチルアセトアミド(DMAc)等が挙げられ、それぞれ単独でまたは2種以上を混合して用いることができる。飽和炭化水素、芳香族炭化水素、ハロゲン化炭化水素、エーテル類、ニトリル類、極性非プロトン性溶媒が好ましく、この中でもエーテル類がより好ましい。
 反応工程の反応温度は、通常-80℃以上、好ましくは0℃以上であり、通常200℃以下、好ましくは100℃以下である。
 雰囲気ガスは、空気があっても、或いは窒素、アルゴン等の不活性ガスであってもよい。
 本発明の製造方法によって製造されるシロキサンの具体的種類は、特に限定されないが、下記のシロキサン1、シロキサン2等が挙げられる。
・シロキサン1:下記式(C-1)~(C-12)の何れかで表されるシロキサン。
Figure JPOXMLDOC01-appb-C000020
(式(C-1)~(C-12)中、R”はそれぞれ独立して無置換もしくは置換基を有する炭素原子数1~20の炭化水素基、無置換もしくは置換基を有する炭素原子数1~20のアルコキシ基、又は無置換もしくは置換基を有する炭素原子数6~20のアリールオキシ基を表す。)
・シロキサン2:下記式(E-1)~(E-12)の何れかで表されるシロキサン。
Figure JPOXMLDOC01-appb-C000021
(式(E-1)~(E-12)中、R”はそれぞれ独立して無置換もしくは置換基を有する炭素原子数1~20の炭化水素基、無置換もしくは置換基を有する炭素原子数1~20のアルコキシ基、又は無置換もしくは置換基を有する炭素原子数6~20のアリールオキシ基を、l、m、nはそれぞれ独立して0~2000の整数を表す。)
 以下、「シロキサン1」、「シロキサン2」等について詳細に説明する。
(シロキサン1)
 式(C-1)~(C-12)中のR”の炭素原子数は、好ましくは15以下、より好ましくは10以下である。
 R”の具体例としては、メチル基、エチル基、n-プロピル基、イソプロピル基、シクロプロピル基、n-ブチル基、イソブチル基、t-ブチル基、sec-ブチル基、シクロブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、シクロペンチル基、n-ヘキシル基、イソヘキシル基、シクロヘキシル基、n-ヘプチル基、イソヘプチル基、シクロヘプチル基、n-オクチル基、イソオクチル基、t-オクチル基、シクロオクチル基、n-ノニル基、イソノニル基、シクロノニル基、n-デシル基、イソデシル基、シクロデキル基、n-ウンデシル基、イソウンデシル基、シクロウンデシル基等の直鎖状、分岐状、環状のアルキル基、ビニル基、プロペニル基、ブテニル基、ペンテニル基、ヘキセニル基、シクロヘキセニル基、基、ベンジル基、フェネチル基、2-メチルベンジル基等のアラルキル基、スチリル基等のアラアルケニル基、フェニル基、1-ナフチル基等のアリール基、p-トリル基、メシチル基、4-ブロモフェニル基、4-トリフルオロメチルフェニル基、ペンタフルオロフェニル基、4-アセチルフェニル基、4-シアノフェニル基、4-ニトロフェニル基、4-アミノフェニル基、4-メトキシフェニル基、4-ビニルフェニル基等の置換アリール基、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、ブトキシ基、t-ブトキシ基、ベンジルオキシ基等のアルコキシ基、フェノキシ基等のアリールオキシ基などが挙げられる。
 また本発明におけるR”としては、これら各種の炭化水素基の一部又は全部が酸素原子、硫黄原子、窒素原子、リン原子、ホウ素原子等のヘテロ原子、フッ素原子、塩素原子、臭素原子等のハロゲン原子から選ばれる置換基で部分置換されていてもよい。
(シロキサン2)
 式(E-1)~(E-12)中のR”は、シロキサン1のR”と同様のものが挙げられる。
 式(E-1)~(E-12)中のl、m、nはそれぞれ独立して0~2000の整数を表しているが、好ましくは1500以下、より好ましくは1000以下、さらに好ましくは500以下、特に好ましくは250以下である。
<シロキサン>
 本発明の製造方法によって式(C-1)~(C-12)の何れかで表されるシロキサンを製造することができることを前述したが、下記式(C-1)~(C-12)の何れかで表されるシロキサンも本発明の一態様である。
Figure JPOXMLDOC01-appb-C000022
(式(C-1)~(C-12)中、R”はそれぞれ独立して無置換もしくは置換基を有する炭素原子数1~20の炭化水素基、無置換もしくは置換基を有する炭素原子数1~20のアルコキシ基、又は無置換もしくは置換基を有する炭素原子数6~20のアリールオキシ基を表す。)
 また、本発明の製造方法によって下記式(E-1)~(E-12)の何れかで表されるシロキサンを製造することができることを前述したが、下記式(E-1)~(E-12)の何れかで表されるシロキサンも本発明の一態様である。
Figure JPOXMLDOC01-appb-C000023
(式(E-1)~(E-12)中、R”はそれぞれ独立して無置換もしくは置換基を有する炭素原子数1~20の炭化水素基、無置換もしくは置換基を有する炭素原子数1~20のアルコキシ基、又は無置換もしくは置換基を有する炭素原子数6~20のアリールオキシ基を、l、m、nはそれぞれ独立して0~2000の整数を表す。)
 以下に実施例及び比較例を挙げて本発明をさらに具体的に説明するが、本発明の趣旨を逸脱しない限り適宜変更することができる。従って、本発明の範囲は以下に示す具体例により限定的に解釈されるべきものではない。化合物の確認は、各種分光学的分析の解析により行った。具体的には、プロトン、炭素13およびケイ素29核磁気共鳴スペクトル(H-NMR、13C-NMR、29Si-NMR)、質量スペクトル(MS)の解析により行った。核磁気共鳴スペクトルには、トリメチルフェニルシランを内部標準として用いた。
<実施例1>
 反応容器にトリエチルシラノール(66.1mg、0.5mmol)、フェニルシラン(54.1mg、0.5mmol)、クロロ(トリフェニルホスフィン)金(6.2mg、2.5mol%)、THF(1mL)を加え、アルゴン雰囲気下で4時間反応させた。
下記生成物3の収率は15%であった。
 生成物の収率はフェニルトリメチルシラン(60.1mg、0.4mmol)を内部標準として用いた29Si-NMRで求めた。結果を表1に示す。
<実施例2>
 トリフェニルホスフィン(3.3mg、0.0125mmol)を追加で添加した以外、実施例1と同様の方法によって反応を行った。結果を表1に示す。
<実施例3>
 反応時間を13時間に変更した以外、実施例2と同様の方法によって反応を行った。結果を表1に示す。
<比較例1>
 クロロ(トリフェニルホスフィン)金をクロロトリス(トリフェニルホスフィン)ロジウムに変更した以外、実施例1と同様の方法によって反応を行った。結果を表1に示す。
<比較例2>
 クロロ(トリフェニルホスフィン)金をクロロ(p-シメン)ルテニウムダイマーに変更した以外、実施例2と同様の方法によって反応を行った。結果を表1に示す。
<比較例3>
 クロロ(トリフェニルホスフィン)金をトリス(ペンタフルオロフェニル)ボランに変更した以外、実施例1と同様の方法によって反応を行った。結果を表1に示す。
<比較例4>
 クロロ(トリフェニルホスフィン)金をトリフェニルホスフィンに変更した以外、実施例1と同様の方法によって反応を行った。結果を表1に示す。
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-T000025
<実施例4>
 反応容器にトリメチルシラノール(45.1mg、0.5mmol)、フェニルシラン(108.2mg、1.0mmol)、クロロ(トリフェニルホスフィン)金(6.2mg、2.5mol%)、THF(1mL)を加え、アルゴン雰囲気下で13時間反応させた。下記生成物8の収率は52%、生成物9の収率は44%であった。生成物の収率はフェニルトリメチルシラン(60.1mg、0.4mmol)を内部標準として用いた29Si-NMRで求めた。結果を表2に示す。
<実施例5>
 トリフェニルホスフィン(3.3mg、0.0125mmol)を追加で添加した以外、実施例4と同様の方法によって反応を行った。結果を表2に示す。
<実施例6>
 トリシクロへキシルホスフィン(3.5mg、0.0125mmol)を追加で添加した以外、実施例4と同様の方法によって反応を行った。結果を表2に示す。
<実施例7>
 THFをトルエンに変更した以外、実施例6と同様の方法によって反応を行った。結果を表2に示す。
<実施例8>
 THFをジメチルアセトアミド(DMAc)に変更した以外、実施例6と同様の方法によって反応を行った。結果を表2に示す。
<実施例9>
 THFをジメチルスルホキシド(DMSO)に変更した以外、実施例6と同様の方法によって反応を行った。結果を表2に示す。
<実施例10>
 トリ-n-ブチルホスフィン(2.5mg、2.5mol%)を追加で添加した以外、実施例4と同様の方法によって反応を行った。結果を表2に示す。
<実施例11>
 トリ-n-ブチルホスフィンの添加量を(7.6mg、7.5mol%)に変更した以外、実施例10と同様の方法によって反応を行った。結果を表2に示す。
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-T000027
<実施例12>
 反応容器にトリエチルシラノール(132.3mg、1.0mmol)、フェニルシラン(108.2mg、1.0mmol)、クロロ(トリフェニルホスフィン)金(0.2mg、0.05mol%)、トリ-n-ブチルホスフィン(0.01mg、0.15mol%)、THF(1mL)を加え、アルゴン雰囲気下(反応温度:25℃)で48時間反応させた。下記生成物3の収率は39%であった。生成物の収率はフェニルトリメチルシラン(60.1mg、0.4mmol)を内部標準として用いた29Si-NMRで求めた。結果を表3に示す。
<実施例13>
 反応温度の室温を40℃に変更した以外、実施例12と同様の方法によって反応を行った。結果を表3に示す。
<実施例14>
 反応温度の室温を70℃に変更した以外、実施例12と同様の方法によって反応を行った。結果を表3に示す。
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-T000029
<実施例15~18>
 反応容器にジフェニルシランジオール(108.2mg、0.5mmol)、フェニルシラン、クロロ(トリフェニルホスフィン)金(6.2mg、2.5mol%)、トリシクロへキシルホスフィン(3.5mg、0.0125mmol)、THF(1mL)を加え、アルゴン雰囲気下で21時間反応させた。なお、フェニルシランの使用量(仕込量)は、0.25mmol(実施例15)、0.5mmol(実施例16)、1.0mmol(実施例17)、3.0mmol(実施例18)の4通りで行い、それぞれの収率を算出し、フェニルシランの使用量と生成物(シロキサン)の収率の関係を表したグラフとした。グラフを図1に示す。
Figure JPOXMLDOC01-appb-C000030
<実施例19>
 反応容器にフェニルシラントリオール(108.2mg、0.5mmol)、フェニルシラン(541.1mg、5.0mmol)、クロロ(トリフェニルホスフィン)金(6.2mg、2.5mol%)、トリフェニルホスフィン(3.3mg、0.0125mmol)、THF(1mL)を加え、アルゴン雰囲気下で13時間反応させた。下記生成物11の収率は59%であった。生成物の収率はフェニルトリメチルシラン(60.1mg、0.4mmol)を内部標準として用いた29Si-NMRで求めた。結果を表4に示す。
<実施例20>
 トリフェニルホスフィンをトリシクロへキシルホスフィンに変更した以外、実施例16と同様の方法によって反応を行った。結果を表4に示す。
<実施例21>
 トリフェニルホスフィンをトリ-n-ブチルホスフィンに変更した以外、実施例16と同様の方法によって反応を行った。結果を表4に示す。
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-T000032
<実施例22>
 反応容器にトリエチルシラノール(66.1mg、0.5mmol)、ジフェニルシラン(92.2mg、0.5mmol)、クロロ(トリフェニルホスフィン)金(6.2mg、2.5mol%)、4,5-ビス(ジフェニルホスフィノ)-9,9-ジメチルキサンテン(Xantphos)(7.2mg(2.5mol%)、THF(1mL)を加え、アルゴン雰囲気下で13時間反応させた。1,1,1-トリエチル-3,3-ジフェニルジシロキサンの収率は97%でヘキサエチルジシロキサンの収率が3%であった。生成物の収率はフェニルトリメチルシラン(60.1mg、0.4mmol)を内部標準として用いた29Si-NMRで求めた。
Figure JPOXMLDOC01-appb-C000033
<実施例23>
Figure JPOXMLDOC01-appb-C000034
 トリエチルシラノール(396.8mg、3.0mmol)、フェニルシラン(324.7mg、3.0mmol)、クロロ(トリフェニルホスフィン)金(35.6mg、0.075mmol)、トリフェニルホスフィン(19.7mg、0.075mmol)、THF(6mL)を加え、アルゴン雰囲気下、25℃、13時間反応させた。反応終了後、エヴァポレイターで溶媒を除去し、クーゲルロールで生成物を蒸留精製し、化合物の同定をH-NMR、13C-NMR、29Si-NMRおよびGC-MSを用いて行った。化合物(3)の単離収率84%であった。
δ(600 MHz; d-THF) 
7.36-7.64 (m, 5H), 5.12 (s, 2H), 0.95 (t, 9H), 0.60 (q, 6H)
δ(150 MHz; d-THF)
135.8 (C), 134.6 (CH), 131.1 (CH), 
128.8 (CH), 6.9 (CH3), 6.6 (CH)
δSi (119 MHz; d-THF)
14.97, -30.0
<実施例24>
Figure JPOXMLDOC01-appb-C000035
 トリメチルシラノール(270.6mg、3.0mmol)、フェニルシラン(649.3mg、6.0mmol)、クロロ(トリフェニルホスフィン)金(14.8mg、0.03mmol)、トリ-n-ブチルホスフィン(18.2mg、0.09mmol)、THF(6mL)を加え、アルゴン雰囲気下、25℃、13時間反応させた。反応終了後、エヴァポレイターで溶媒を除去し、クーゲルロールで生成物を蒸留精製し、化合物の同定をH-NMR、13C-NMR、29Si-NMRおよびGC-MSを用いて行った。化合物(8)の単離収率76%であった。
δ(600 MHz; d-THF)
7.36-7.60 (m, 5H, Ph-H), 5.05 (s, 2H, SiH2), 0.12 (s, 9H, CH3)
δ(150 MHz; d-THF)
135.8 (C), 134.8 (CH), 131.3 (CH), 129.0 (CH),1.5 (CH3)
δSi (119 MHz; d-THF)
12.9, -30.9
<実施例25>
Figure JPOXMLDOC01-appb-C000036
 トリ-i-プロピルシラノール(523.1mg、3.0mmol)、フェニルシラン(324.7mg、3.0mmol)、クロロ(トリフェニルホスフィン)金(35.6mg、0.075mmol)、トリフェニルホスフィン(19.7mg、0.075mmol)、THF(6mL)を加え、アルゴン雰囲気下、25℃、13時間反応させた。反応終了後、エヴァポレイターで溶媒を除去し、クーゲルロールで生成物を蒸留精製し、化合物の同定をH-NMR、13C-NMR、29Si-NMRおよびGC-MSを用いて行った。化合物(12)の単離収率76%であった。
δ(600 MHz; d-THF)
7.37-7.64 (m, 5H), 5.20 (s, 2H), 1.05-1.06 (m, 21H)
δ(150 MHz; d-THF)
136.0 (C), 134.9 (CH), 131.3 (CH), 129.0 (CH), 18.3 (CH3), 13.7 (CH)
δSi (119 MHz; d-THF)
14.9, -29.6
<実施例26>
Figure JPOXMLDOC01-appb-C000037
 tert-ブチルジメチルシラノール(270.6mgmg、3.0mmol)、フェニルシラン(324.7mg、3.0mmol)、クロロ(トリフェニルホスフィン)金(35.6mg、0.075mmol)、トリフェニルホスフィン(19.7mg、0.075mmol)、THF(6mL)を加え、アルゴン雰囲気下、25℃、13時間反応させた。反応終了後、エヴァポレイターで溶媒を除去し、クーゲルロールで生成物を蒸留精製し、化合物の同定をH-NMR、13C-NMR、29Si-NMRおよびGC-MSを用いて行った。化合物(13)の単離収率85%であった。
δ(600 MHz; d-THF)
7.36-7.61 (m, 5H), 5.10 (s, 2H), 0.90 (s, 9H), 0.08 (s, 6H)
δ(150 MHz; d-THF)
135.8 (C), 134.8 (CH), 131.13 (CH), 129.0 (CH), 26.1 (CH3), 19.2 (C), -3.2 (CH3)
δSi (119 MHz; d-THF)
13.5, -32.0
<実施例27>
Figure JPOXMLDOC01-appb-C000038
 トリフェニルシラノール(829.2mg、3.0mmol)、フェニルシラン(324.7mg、3.0mmol)、クロロ(トリフェニルホスフィン)金(14.8mg、0.03mmol)、トリ-n-ブチルホスフィン(18.2mg、0.09mmol)、THF(6mL)を加え、アルゴン雰囲気下、25℃、13時間反応させた。反応終了後、エヴァポレイターで溶媒を除去し、クーゲルロールで生成物を蒸留精製し、化合物の同定をH-NMR、13C-NMR、29Si-NMRおよびGC-MSを用いて行った。化合物(14)の単離収率89%であった。
δ(600 MHz; d-THF)
7.30-7.56 (m, 20H), 5.26 (s, 2H)
δ(150 MHz; d-THF)
136.1 (C), 136.0 (C), 135.09 (CH), 135.06 (CH), 131.4 (CH), 131.0 (CH), 129.0 (CH), 128.8 (CH)
δSi (119 MHz; d-THF)
-17.0, -27.9
<実施例28>
Figure JPOXMLDOC01-appb-C000039
 トリフェニルシラノール(829.2mg、3.0mmol)、n-ヘキシルシラン(348.8mg、3.0mmol)、クロロ(トリフェニルホスフィン)金(14.8mg、0.03mmol)、トリ-n-ブチルホスフィン(18.2mg、0.09mmol)、THF(6mL)を加え、アルゴン雰囲気下、25℃、13時間反応させた。反応終了後、エヴァポレイターで溶媒を除去し、クーゲルロールで生成物を蒸留精製し、化合物の同定をH-NMR、13C-NMR、29Si-NMRおよびGC-MSを用いて行った。化合物(15)の単離収率76%であった。
δ(600 MHz; d-THF)
7.17-7.73 (m, 15H), 5.07 (t, 2H), 1.13-1.35 (m, 2H), 1.15-1.21 (m, 4H), 1.09-1.12 (m, 2H), 0.84 (t, 3H, J = 7.3 Hz), 0.68-0.72 (m, 2H, nHex(CH2))
δ(150 MHz; d-THF)
135.4 (C), 135.1 (CH), 130.6 (CH), 127.9 (CH), 32.3 (CH2), 31.4 (CH2), 22.9 (CH2), 22.5 (CH2), 14.8 (CH2), 13.9 (CH3)
δSi (119 MHz; d-THF)
-17.6, -18.7
<実施例29>
Figure JPOXMLDOC01-appb-C000040
 トリス(tert-ブトキシ)シラノール(793.3mg、3.0mmol)、フェニルシラン(324.7mg、3.0mmol)、クロロ(トリフェニルホスフィン)金(37.1mg、0.075mmol)、トリ-n-ブチルホスフィン(45.5mg、0.225mmol)、THF(6mL)を加え、アルゴン雰囲気下、70℃、13時間反応させた。反応終了後、エヴァポレイターで溶媒を除去し、クーゲルロールで生成物を蒸留精製し、化合物の同定をH-NMR、13C-NMR、29Si-NMRおよびGC-MSを用いて行った。化合物(16)の単離収率80%であった。
δ(600 MHz; d-THF)
7.36-7.69 (m, 5H), 5.10 (s, 2H), 1.30 (s, 27H)
δ(150 MHz; d-THF)
135.3 (C), 135.1 (CH), 131.2 (CH), 128.8 (CH), 73.7 (C), 31.9 (CH3)
δSi (119 MHz; d-THF)
-33.0, -101.4
<実施例30>
Figure JPOXMLDOC01-appb-C000041
 1,1,3,3-テトラフェニル-1,3-ジシロキサンジオール(829.2mg、2.0mmol)、n-ヘキシルシラン(1.39g、12mmol)、クロロ(トリフェニルホスフィン)金(24.7mg、0.05mmol)、トリ-n-ブチルホスフィン(30.3mg、0.15mmol)、THF(6mL)を加え、アルゴン雰囲気下、室温、13時間反応させた。反応終了後、エヴァポレイターで溶媒を除去し、未反応物等をクーゲルロールで蒸留し、残留した金属はセライト濾過を行い、生成物を精製し、化合物の同定をH-NMR、13C-NMR、29Si-NMRおよびGC-MSを用いて行った。化合物(17)の単離収率96%であった。
δ(600 MHz; d-THF)
7.28-7.58 (m, 20H), 4.66 (t, 4H), 0.66-1.41 (m, 26H)
δ(150 MHz; d-THF)
135.8 (C), 135.2 (CH), 131.1 (CH), 128.7 (CH), 33.4 (CH2), 32.6 (CH2), 23.9 (CH2), 23.5 (CH2), 15.5 (CH2), 14.6 (CH3)
δSi (119 MHz; d-THF)
-19.6, -44.1
<実施例31>
Figure JPOXMLDOC01-appb-C000042
 Gelest社DMS-S12 ヒドロキシ末端ポリ(ジメチルシロキサン)(200mg)、フェニルシラン(324.66mg、3mmol)、クロロ(トリフェニルホスフィン)金(6.3mg、0.0125mmol)、トリ-n-ブチルホスフィン(7.6mg、0.0375mmol)、THF(1mL)を加え、アルゴン雰囲気下、室温、13時間反応させた。反応終了後、エヴァポレイターで溶媒を除去し、クーゲルロールで生成物を蒸留精製し、化合物の同定を29Si-NMR用いて行いジヒドロシラン(PhSiHO部位)に相当するシグナルが観測された。化合物の収率は原料のヒドロキシ末端ポリ(ジメチルシロキサン)が混合物であったため求めていない。
δSi (119 MHz; d-THF)
-18.8, -30.9
<実施例32>
Figure JPOXMLDOC01-appb-C000043
 イソブチルトリシラノール-POSS(1.58g、2mmol)、フェニルシラン(2.16、20mmol)、塩化金(11.6mg、0.05mmol)、トリ-n-ブチルホスフィン(30.3mg、0.15mmol)、THF(4mL)を加え、アルゴン雰囲気下、室温、13時間反応させた。反応終了後、エヴァポレイターで溶媒を除去し、未反応物等をクーゲルロールで蒸留し、残留した金属はセライト濾過を行い、生成物を精製し、化合物の同定を29Si-NMRおよびGC-MSを用いて行った。化合物(19)の単離収率93%であった。
δSi (119 MHz; d-THF)
-29.2, -66.7, -66.8, -67.7, 
<実施例33>
Figure JPOXMLDOC01-appb-C000044
 ジフェニルシランジオール(432mg、2mmol)、n-ヘキシルシラン(1.39g、12mmol)、塩化金(11.6mg、0.05mmol)、トリ-n-ブチルホスフィン(30.3mg、0.15mmol)、THF(4mL)を加え、アルゴン雰囲気下、室温、13時間反応させた。反応終了後、エヴァポレイターで溶媒を除去し、未反応物等をクーゲルロールで蒸留し、残留した金属はセライト濾過を行い、生成物を精製し、化合物の同定をH-NMR、13C-NMR、29Si-NMRおよびGC-MSを用いて行った。化合物(20)の単離収率90%であった。
δ(600 MHz; d-THF)
7.33-7.58 (m, 10H), 4.75 (t, 4H, SiH2), 1.13-1.35 (m, 26H)
δ(150 MHz; d-THF)
135.8 (C), 135.0 (CH), 131.2 (CH), 128.8 (CH), 33.4 (CH2), 32.6 (CH2), 24.0 (CH2), 23.6 (CH2), 15.6(CH2), 14.6(CH3)
δSi (119 MHz; d-THF)
-21.4, -44.4
<実施例34>
Figure JPOXMLDOC01-appb-C000045
 フェニルシラントリオール(312mg、2mmol)、n-ヘキシルシラン(2.32g、20mmol)、塩化金(11.6mg、0.05mmol)、トリ-n-ブチルホスフィン(30.3mg、0.15mmol)、THF(4mL)を加え、アルゴン雰囲気下、室温、13時間反応させた。反応終了後、エヴァポレイターで溶媒を除去し、未反応物等をクーゲルロールで蒸留し、残留した金属はセライト濾過を行い、生成物を精製し、化合物の同定をH-NMR、13C-NMR、29Si-NMRおよびGC-MSを用いて行った。化合物(21)の単離収率95%であった。
δ(600 MHz; d-THF)
7.32-7.56 (m, 5H), 4.68 (t, 6H, SiH2), 0.80-1.45 (m, 39H)
δ(150 MHz; d-THF)
134.6 (CH), 133.3 (C), 131.2 (CH), 128.7 (CH), 33.4 (CH2), 32.5 (CH2), 23.9 (CH2), 23.5 (CH2), 15.4 (CH2), 14.5 (CH3)
δSi (119 MHz; d-THF)
-21.6, -75.9
<実施例35>
Figure JPOXMLDOC01-appb-C000046
 トリエチルシラノール(396.8mg、3.0mmol)、ジフェニルシラン(368.2mg、3.0mmol)、クロロ(トリフェニルホスフィン)金(35.6mg、0.075mmol)、4,5-ビス(ジフェニルホスフィノ)-9,9-ジメチルキサンテン(43.4mg、0.075mmol)、THF(6mL)を加え、アルゴン雰囲気下、25℃、13時間反応させた。反応終了後、エヴァポレイターで溶媒を除去し、クーゲルロールで生成物を蒸留精製し、化合物の同定をH-NMR、13C-NMR、29Si-NMRおよびGC-MSを用いて行った。化合物(22)の単離収率82%であった。
H NMR (600 MHz, d-THF)
7.33-7.58 (m, 10H, Ph-H), 5.52 (s, 1H, SiH), 0.90 (t, 9H, J = 8.0 Hz, SiCH2CH3),  0.60 (q, 6H, J = 7.9 Hz, SiCH2CH3); 
C NMR (150 MHz, d-THF)
137.1 (C), 135.0 (CH), 131.0 (CH), 128.9 (CH), 7.2 (CH2), 7.0 (CH3);
Si NMR (119 MHz, d-THF) 
12.3, -24.1
<実施例36>
Figure JPOXMLDOC01-appb-C000047
 トリイソプロピルシラノール(522.3mg、3.0mmol)、ジエチルシラン(264.3mg、3.0mmol)、クロロ(トリフェニルホスフィン)金(35.6mg、0.075mmol)、4,5-ビス(ジフェニルホスフィノ)-9,9-ジメチルキサンテン(43.4mg、0.075mmol)、THF(6mL)を加え、アルゴン雰囲気下、25℃、13時間反応させた。反応終了後、エヴァポレイターで溶媒を除去し、クーゲルロールで生成物を蒸留精製し、化合物の同定をH-NMR、13C-NMR、29Si-NMRおよびGC-MSを用いて行った。化合物(23)の単離収率93%であった。
H NMR (600 MHz, d-THF)
4.63 (quin, 1H, J = 2.2 Hz, SiH), 1.05-1.06 (m, 21H, Si(iPr3)), 1.00 (t, 6H, J = 7.9 Hz, SiCH2CH3), 0.65-0.70 (m, 4H, SiCH2CH3)
C NMR (150 MHz, d-THF)
18.4 (CH3), 13.9 (CH), 8.1 (CH2), 7.1 (CH3)
Si NMR (119 MHz, d-THF)
7.8, -0.9
<実施例37>
Figure JPOXMLDOC01-appb-C000048
 tert-ブチルジメチルシラノール(396.8mg、3.0mmol)、フェニルメチルシラン(366.3mg、3.0mmol)、クロロ(トリフェニルホスフィン)金(35.6mg、0.075mmol)、4,5-ビス(ジフェニルホスフィノ)-9,9-ジメチルキサンテン(43.4mg、0.075mmol)、THF(6mL)を加え、アルゴン雰囲気下、25℃、13時間反応させた。反応終了後、エヴァポレイターで溶媒を除去し、クーゲルロールで生成物を蒸留精製し、化合物の同定をH-NMR、13C-NMR、29Si-NMRおよびGC-MSを用いて行った。化合物(24)の単離収率95%であった。
H NMR (600 MHz, d-THF)
7.33-7.57 (m, 5H, Ph-H), 5.12 (q, 1H, J = 2.8 Hz, SiH), 0.90 (s, 9H, tBu), 0.40 (d, 3H, J = 2.8 Hz, HSiMePh), 0.06 (s, 6H, tBuSiMe2)
C NMR (150 MHz, d-THF)
138.7 (C), 134.2 (CH), 130.7 (CH), 128.8 (CH), 26.3 (CH3), 19.0 (C), 0.1 (CH3), -2.88 (CH3)
Si NMR (119 MHz, d-THF)
13.4, -14.3
 本発明の製造方法によって製造されたシロキサンは、シリコーンオイル、シリコーンゴム、有機無機ハイブリット素材等の原料として利用することができる。

Claims (6)

  1.  金錯体の存在下、下記式(a)で表される構造を有するシラノールと下記式(b)で表される構造を有するヒドロシランとを反応させてケイ素-水素結合(Si-H)が残存した下記式(c)で表される構造を有するシロキサンを生成する反応工程を含むことを特徴とするシロキサンの製造方法。
    Figure JPOXMLDOC01-appb-C000001
  2.  前記シラノールが、下記式(A-1)~(A-4)の何れかで表されるシラノールである、請求項1に記載のシロキサンの製造方法。
    Figure JPOXMLDOC01-appb-C000002
    (式(A-1)~(A-3)中、Rはそれぞれ独立して無置換もしくは置換基を有する炭素原子数1~20の炭化水素基、無置換もしくは置換基を有する炭素原子数1~20のアルコキシ基、又は無置換もしくは置換基を有する炭素原子数6~20のアリールオキシ基を表す。)
  3.  前記シラノールが、下記式(D-1)~(D-6)の何れかで表されるシラノールである、請求項1に記載のシロキサンの製造方法。
    Figure JPOXMLDOC01-appb-C000003
    (式(D-1)~(D-6)中、Rはそれぞれ独立して無置換もしくは置換基を有する炭素原子数1~20の炭化水素基、無置換もしくは置換基を有する炭素原子数1~20のアルコキシ基、又は無置換もしくは置換基を有する炭素原子数6~20のアリールオキシ基を、l、m、nはそれぞれ独立して0~2000の整数を表す。)
  4.  前記ヒドロシランが、下記式(B-1)~(B-2)の何れかで表されるヒドロシランである、請求項1~3の何れか1項に記載のシロキサンの製造方法。
    Figure JPOXMLDOC01-appb-C000004
    (式(B-1)~(B-2)中、R’はそれぞれ独立して無置換もしくは置換基を有する炭素原子数1~20の炭化水素基、無置換もしくは置換基を有する炭素原子数1~20のアルコキシ基、又は無置換もしくは置換基を有する炭素原子数6~20のアリールオキシ基を表す。)
  5.  下記式(C-1)~(C-12)の何れかで表されるシロキサン。
    Figure JPOXMLDOC01-appb-C000005
    (式(C-1)~(C-12)中、R”はそれぞれ独立して無置換もしくは置換基を有する炭素原子数1~20の炭化水素基、無置換もしくは置換基を有する炭素原子数1~20のアルコキシ基、又は無置換もしくは置換基を有する炭素原子数6~20のアリールオキシ基を表す。)
  6.  下記式(E-1)~(E-12)の何れかで表されるシロキサン。
    Figure JPOXMLDOC01-appb-C000006
    (式(E-1)~(E-12)中、R”はそれぞれ独立して無置換もしくは置換基を有する炭素原子数1~20の炭化水素基、無置換もしくは置換基を有する炭素原子数1~20のアルコキシ基、又は無置換もしくは置換基を有する炭素原子数6~20のアリールオキシ基を、l、m、nはそれぞれ独立して0~2000の整数を表す。)
PCT/JP2017/004637 2016-02-15 2017-02-08 シロキサン及びその製造方法 WO2017141796A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018500065A JP6621226B2 (ja) 2016-02-15 2017-02-08 シロキサン及びその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-026090 2016-02-15
JP2016026090 2016-02-15

Publications (1)

Publication Number Publication Date
WO2017141796A1 true WO2017141796A1 (ja) 2017-08-24

Family

ID=59626090

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/004637 WO2017141796A1 (ja) 2016-02-15 2017-02-08 シロキサン及びその製造方法

Country Status (2)

Country Link
JP (1) JP6621226B2 (ja)
WO (1) WO2017141796A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017145229A (ja) * 2016-02-19 2017-08-24 国立大学法人群馬大学 ルイス酸を用いた環状シロキサンの製造方法
JP2017145231A (ja) * 2016-02-19 2017-08-24 国立大学法人群馬大学 長鎖炭化水素基とヒドロシリル基を有する環状シロキサン及びその製造方法
WO2019054498A1 (ja) * 2017-09-15 2019-03-21 国立研究開発法人産業技術総合研究所 オルガノシロキサン及びオルガノシロキサンの製造方法
JP2019099507A (ja) * 2017-12-04 2019-06-24 国立研究開発法人産業技術総合研究所 シロキサンの製造方法
JP2022025139A (ja) * 2017-12-04 2022-02-09 国立研究開発法人産業技術総合研究所 シロキサンの製造方法
JP7489711B2 (ja) 2020-10-20 2024-05-24 国立研究開発法人産業技術総合研究所 ジメチルシリル基を有する有機ケイ素化合物の製造方法

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3444225A (en) * 1964-05-20 1969-05-13 Rhone Poulenc Sa Organopolysiloxanes,their preparation and their uses
JPH0390089A (ja) * 1989-08-31 1991-04-16 Kao Corp 新規な環状オルガノポリシロキサン及びその製造法
JPH06792B2 (ja) * 1989-12-27 1994-01-05 信越化学工業株式会社 水素シロキサンの製造方法
JPH07258416A (ja) * 1994-03-23 1995-10-09 Dow Corning Kk 両末端官能性ジフェニルシロキサンオリゴマー化合物およびその製造方法
JPH08208839A (ja) * 1994-11-14 1996-08-13 Dow Corning Corp アルキルヒドリドシロキサンの製造方法
WO2004026883A1 (ja) * 2002-09-17 2004-04-01 Chisso Corporation ケイ素化合物
JP2005015738A (ja) * 2002-09-13 2005-01-20 Chisso Corp 官能基を有するシルセスキオキサン誘導体の製造方法およびシルセスキオキサン誘導体
JP2005255552A (ja) * 2004-03-09 2005-09-22 Japan Science & Technology Agency 水酸基のシリル化方法
JP2006516302A (ja) * 2002-09-18 2006-06-29 フジフィルム・エレクトロニック・マテリアルズ・ユーエスエイ・インコーポレイテッド アルキル−水素シロキサンの分解を防止する添加剤
JP2013007007A (ja) * 2011-06-27 2013-01-10 Tohoku Univ 新規シルセスキオキサン誘導体及びそれから構成されるプロトン伝導膜
KR20130068021A (ko) * 2011-12-15 2013-06-25 한국과학기술연구원 가열 경화성 실록산 봉지재 조성물
JP2014053097A (ja) * 2012-09-05 2014-03-20 Toyota Motor Corp リチウム二次電池およびその製造方法
US20140249326A1 (en) * 2011-06-14 2014-09-04 Silecs Oy Method of Synthesizing Siloxane Monomers and Use Thereof
JP2014167091A (ja) * 2013-01-29 2014-09-11 Shin Etsu Chem Co Ltd ポリオルガノシロキサンの製造方法及び新規オルガノポリシロキサン
US20140275598A1 (en) * 2013-03-14 2014-09-18 Nanosys, Inc. Polyhedral oligomeric silsesquioxane nanocrystal stabilization ligands
CN104610546A (zh) * 2013-11-04 2015-05-13 上海华明高技术(集团)有限公司 环形网状硅树脂的制备方法
JP2016008176A (ja) * 2014-06-20 2016-01-18 国立研究開発法人産業技術総合研究所 シロキサン化合物の製造方法

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3444225A (en) * 1964-05-20 1969-05-13 Rhone Poulenc Sa Organopolysiloxanes,their preparation and their uses
JPH0390089A (ja) * 1989-08-31 1991-04-16 Kao Corp 新規な環状オルガノポリシロキサン及びその製造法
JPH06792B2 (ja) * 1989-12-27 1994-01-05 信越化学工業株式会社 水素シロキサンの製造方法
JPH07258416A (ja) * 1994-03-23 1995-10-09 Dow Corning Kk 両末端官能性ジフェニルシロキサンオリゴマー化合物およびその製造方法
JPH08208839A (ja) * 1994-11-14 1996-08-13 Dow Corning Corp アルキルヒドリドシロキサンの製造方法
JP2005015738A (ja) * 2002-09-13 2005-01-20 Chisso Corp 官能基を有するシルセスキオキサン誘導体の製造方法およびシルセスキオキサン誘導体
WO2004026883A1 (ja) * 2002-09-17 2004-04-01 Chisso Corporation ケイ素化合物
JP2006516302A (ja) * 2002-09-18 2006-06-29 フジフィルム・エレクトロニック・マテリアルズ・ユーエスエイ・インコーポレイテッド アルキル−水素シロキサンの分解を防止する添加剤
JP2005255552A (ja) * 2004-03-09 2005-09-22 Japan Science & Technology Agency 水酸基のシリル化方法
US20140249326A1 (en) * 2011-06-14 2014-09-04 Silecs Oy Method of Synthesizing Siloxane Monomers and Use Thereof
JP2013007007A (ja) * 2011-06-27 2013-01-10 Tohoku Univ 新規シルセスキオキサン誘導体及びそれから構成されるプロトン伝導膜
KR20130068021A (ko) * 2011-12-15 2013-06-25 한국과학기술연구원 가열 경화성 실록산 봉지재 조성물
JP2014053097A (ja) * 2012-09-05 2014-03-20 Toyota Motor Corp リチウム二次電池およびその製造方法
JP2014167091A (ja) * 2013-01-29 2014-09-11 Shin Etsu Chem Co Ltd ポリオルガノシロキサンの製造方法及び新規オルガノポリシロキサン
US20140275598A1 (en) * 2013-03-14 2014-09-18 Nanosys, Inc. Polyhedral oligomeric silsesquioxane nanocrystal stabilization ligands
CN104610546A (zh) * 2013-11-04 2015-05-13 上海华明高技术(集团)有限公司 环形网状硅树脂的制备方法
JP2016008176A (ja) * 2014-06-20 2016-01-18 国立研究開発法人産業技術総合研究所 シロキサン化合物の製造方法

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
BEDARD, T.C. ET AL.: "Conversion of hydrosilanes to alkoxysilanes catalyzed by Cp2TiCl2/nBuLi", JOURNAL OF ORGANOMETALLIC CHEMISTRY, vol. 428, 1992, pages 315 - 333, XP055408719, ISSN: 0022-328X *
ITO HAJIME ET AL.: "Gold(I)-phosphine catalyst for the highly chemoselective dihydrogenative silylation of alcohols", ORGANIC LETTERS, vol. 7, no. 14, 2005, pages 3001 - 3004, XP055408761 *
M IRAVET,J.F. ET AL.: "New Hyperbranched Poly(Siloxysilanes): Variation of the Branching Pattern and End-Functionalization", MACROMOLECULES, vol. 31, no. 11, 1998, pages 3461 - 3468, XP000754277, ISSN: 0024-9297 *
MANGETTE,J.E. ET AL.: "Oxadisilacyclopropane Reactivity with Stilbene Oxides", ORGANOMETALLICS, vol. 14, no. 9, 1995, pages 4064 - 4073, XP055408747, ISSN: 0276-7333 *
MICHALSKA, ZOFIA M.: "Reactions of organosilicon hydrides with organosilanols catalyzed by homogeneous and silica-supported rhodium(I) complexes", TRANSITION METAL CHEMISTRY, vol. 5, no. 3, 1980, pages 125 - 129, XP002218446, ISSN: 0340-4285 *
SATOH,Y. ET AL.: "Highly selective synthesis of hydrosiloxanes by Au-catalyzed dehydrogenative cross-coupling reaction of silanols with hydrosilanes", ACS CATALYSIS, vol. 7, no. 3, 27 January 2017 (2017-01-27), pages 1836 - 1840, XP055408769 *
SUZUKI,H. ET AL.: "Preparations, structures, and photolyses of peralkyldisilagermirane and peralkylgermadisilaoxetane", JOURNAL OF ORGANOMETALLIC CHEMISTRY, vol. 509, no. 2, 1996, pages 177 - 188, XP004036188, ISSN: 0022-328X *
XUE,W. ET AL.: "Rational synthesis of asymmetric bicyclic siloxane", CHEMICAL COMMUNICATIONS, vol. 16, 2005, Cambridge, United Kingdom, pages 2164 - 2166, XP055408717, ISSN: 1359-7345 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017145229A (ja) * 2016-02-19 2017-08-24 国立大学法人群馬大学 ルイス酸を用いた環状シロキサンの製造方法
JP2017145231A (ja) * 2016-02-19 2017-08-24 国立大学法人群馬大学 長鎖炭化水素基とヒドロシリル基を有する環状シロキサン及びその製造方法
WO2019054498A1 (ja) * 2017-09-15 2019-03-21 国立研究開発法人産業技術総合研究所 オルガノシロキサン及びオルガノシロキサンの製造方法
JPWO2019054498A1 (ja) * 2017-09-15 2020-11-05 国立研究開発法人産業技術総合研究所 オルガノシロキサン及びオルガノシロキサンの製造方法
JP7178105B2 (ja) 2017-09-15 2022-11-25 国立研究開発法人産業技術総合研究所 オルガノシロキサン及びオルガノシロキサンの製造方法
JP2019099507A (ja) * 2017-12-04 2019-06-24 国立研究開発法人産業技術総合研究所 シロキサンの製造方法
JP7016149B2 (ja) 2017-12-04 2022-02-04 国立研究開発法人産業技術総合研究所 シロキサンの製造方法
JP2022025139A (ja) * 2017-12-04 2022-02-09 国立研究開発法人産業技術総合研究所 シロキサンの製造方法
JP7190770B2 (ja) 2017-12-04 2022-12-16 国立研究開発法人産業技術総合研究所 シロキサンの製造方法
JP7489711B2 (ja) 2020-10-20 2024-05-24 国立研究開発法人産業技術総合研究所 ジメチルシリル基を有する有機ケイ素化合物の製造方法

Also Published As

Publication number Publication date
JP6621226B2 (ja) 2019-12-18
JPWO2017141796A1 (ja) 2019-05-30

Similar Documents

Publication Publication Date Title
JP6621226B2 (ja) シロキサン及びその製造方法
KR101450080B1 (ko) 하이드로실릴화 촉매
KR101896423B1 (ko) 폴리불포화 화합물의 금속-촉매 모노-하이드로실릴화
KR101710043B1 (ko) 하이드로실릴화 촉매
TWI614063B (zh) 顯示改良的選擇性之以非貴金屬為主的矽氫化催化劑
JP5572798B2 (ja) ヒドロシリル化反応用触媒、及び同触媒を用いた有機ケイ素化合物の製造方法
KR102448206B1 (ko) 신규 비스(알콕시실릴-비닐렌)기 함유 규소 화합물 및 그의 제조 방법
JP2020012007A (ja) オリゴシロキサン、及びシリルアセタールからのオリゴシロキサンの製造方法
JP5429745B2 (ja) 脱水素シリル化反応用触媒、及び有機ケイ素化合物の製造方法
KR20200067204A (ko) 촉매로서 규소(iv) 모이어티에 의한 히드로실릴화
JP2007077136A (ja) 1−(アルコキシシリル)エチル−1,1,3,3−テトラメチルジシロキサンの製造方法
JP6264309B2 (ja) シロキシ基を有するビスシリルエタン化合物及びその製造方法
JP4344936B2 (ja) 両末端アミノ基含有有機ケイ素化合物の製造方法
CN104470935B (zh) 氧杂环硅烷及其制备方法
JP2003327659A (ja) エポキシ基含有有機ケイ素化合物の製造方法
JP7178105B2 (ja) オルガノシロキサン及びオルガノシロキサンの製造方法
JP7190770B2 (ja) シロキサンの製造方法
JP6844384B2 (ja) 液状ケイ素化合物及びその製造方法
JP2014065701A (ja) 新規フルオレン化合物及びその製造方法
JP7350253B2 (ja) ビスハロアルキルシロキサン化合物及びその製造方法、並びに、両末端官能性のシロキサン化合物の製造方法
PL235670B1 (pl) Nowe trójpodstawione trisiloksysilseskwioksany o strukturze niedomkniętej klatki oraz sposób otrzymywania trójpodstawionych trisiloksysilseskwioksanów o strukturze niedomkniętej klatki
JP7016149B2 (ja) シロキサンの製造方法
JP7126088B2 (ja) ハロシラン類を原料に用いる有機ケイ素化合物の製造方法
JP4172342B2 (ja) 環状有機ケイ素化合物及びその製造方法
JP2016204287A (ja) 加水分解性シリル基含有環状オルガノハイドロジェンシロキサン

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17753054

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2018500065

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17753054

Country of ref document: EP

Kind code of ref document: A1