WO2017141473A1 - 導電性ペースト及びこれを用いて形成された導電性膜 - Google Patents
導電性ペースト及びこれを用いて形成された導電性膜 Download PDFInfo
- Publication number
- WO2017141473A1 WO2017141473A1 PCT/JP2016/077031 JP2016077031W WO2017141473A1 WO 2017141473 A1 WO2017141473 A1 WO 2017141473A1 JP 2016077031 W JP2016077031 W JP 2016077031W WO 2017141473 A1 WO2017141473 A1 WO 2017141473A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- silver
- conductive paste
- particles
- resin
- conductive
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/20—Conductive material dispersed in non-conductive organic material
- H01B1/22—Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D11/00—Inks
- C09D11/52—Electrically conductive inks
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D201/00—Coating compositions based on unspecified macromolecular compounds
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D5/00—Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
- C09D5/24—Electrically-conducting paints
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D7/00—Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
- C09D7/40—Additives
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B5/00—Non-insulated conductors or conductive bodies characterised by their form
- H01B5/14—Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
Definitions
- the present invention relates to a conductive paste capable of forming a conductive film excellent in stretchability and conductivity, such as wiring, actuator electrode, skin sensor, etc., which requires flex resistance to a flexible substrate, and the conductive paste.
- the present invention relates to a conductive film formed using the same.
- the resin (A) is an aqueous dispersion (A1) of a conjugated double bond polymer containing a polyanion based on a sulfonated or sulfated rubber as a dopant.
- macromolecule which contains the high molecular polyanion containing the aromatic group which shows high electroconductivity in the range which does not impair this as a dopant can be further contained.
- the conductive filler (B) is a metal powder (B1) having an average particle size of 0.5 to 10 ⁇ m, and the blending amounts of the resin (A) and the conductive filler (B) in the solid content of the conductive paste.
- the metal powder (B1) include noble metal powders such as silver powder, gold powder, platinum powder and palladium powder, and base metal powders such as copper powder, nickel powder, aluminum powder and brass powder.
- the conductive filler preferably contains metal nanoparticles (B3) having an average particle diameter of 2 to 100 nm.
- the metal nanoparticles (B3) include silver, bismuth, platinum, gold, nickel, tin, copper, and zinc. From the viewpoint of conductivity, copper, silver, platinum, and gold can be used. It is particularly preferable to use either one or both as the main component (50% by mass or more).
- the metal powder (B1) is uniformly dispersed in the stretchable and conductive resin (A). Therefore, the conductive paste formed using this conductive paste.
- the film has high conductivity by forming an effective conductive network, and can maintain the high conductivity even when the conductive film is stretched.
- metal powder (B1) when either or both of silver powder and copper powder are made into a main component (50 mass% or more), while being able to obtain the coating film which shows high electroconductivity, it becomes advantageous in terms of price.
- metal nanoparticles (B3) as a conductive filler into the conductive paste, the conductivity can be improved and the printability can be improved.
- the metal nanoparticles (B3) have a function of imparting conductivity between the conductive networks, an improvement in the conductivity of the conductive film can be expected.
- a conjugated polymer containing a polymer polyanion containing an aromatic group exhibiting high conductivity as long as the resin (A) does not impair extensibility as a dopant.
- This conductive paste contains an aqueous dispersion (A2) of a heavy bond polymer, but a polymer containing such a conjugated double bond is likely to be oxidized or deteriorated by heat, light, stress, etc.
- the conductive film formed using the material has poor reliability in long-term use and cannot satisfy all of high conductivity, high stretchability and high reliability at the same time.
- a first object of the present invention is to provide a conductive paste that is capable of forming a conductive film that is excellent in reliability over a long period of use and is excellent in stretchability and conductivity.
- a second object of the present invention is to provide a conductive film that can be formed with relatively few man-hours, has excellent reliability in long-term use, and has excellent stretchability and conductivity.
- a first aspect of the present invention includes a solvent, a binder resin that does not contain an unsaturated bond in the molecule, and silver-coated resin particles dispersed in the binder resin as a conductive filler. It has resin core particles made of silicone rubber particles and a silver coating layer covering the surface of the resin core particles, the silver coated resin particles have an average particle size of 0.5 to 20 ⁇ m, and the silver coated resin particles are electrically conductive.
- the conductive paste contains 30 to 75% by volume with respect to 100% by volume of the solid content of the conductive paste.
- a second aspect of the present invention is a conductive film formed using the conductive paste described in the first aspect.
- the silver-coated resin particles as the conductive filler include resin core particles made of silicone rubber particles, and a silver coating layer that covers the surface of the resin core particles,
- the average particle diameter of the silver-coated resin particles is 0.5 to 20 ⁇ m, and the silver-coated resin particles are contained in an amount of 30 to 75% by volume with respect to 100% by volume of the solid content of the conductive paste.
- the conductive film is elongated, contact between the silver-coated resin particles in the conductive film is maintained, so that a conductive film excellent in stretchability and conductivity can be obtained.
- the above characteristics can be obtained without using a polymer containing an unsaturated bond such as a conjugated double bond that is likely to be oxidized or deteriorated by light or stress.
- a conductive film satisfying all of the reliability in use can be obtained.
- the conductive film according to the second aspect of the present invention since the conductive film is formed using the conductive paste, the conductive film can provide the same effects as described above.
- the conductive paste of the present invention includes a solvent, a binder resin that does not contain an unsaturated bond in the molecule, and silver-coated resin particles dispersed in the binder resin as a conductive filler.
- the silver-coated resin particles have resin core particles made of silicone rubber particles and a silver coating layer that covers the surface of the resin core particles.
- the average particle diameter of the silver-coated resin particles is 0.5 to 20 ⁇ m, preferably 1.0 to 10 ⁇ m.
- the average particle diameter of the silver-coated resin particles is limited to the range of 0.5 to 20 ⁇ m.
- the average particle diameter of the silver-coated resin particles is a magnification using a scanning electron microscope (manufactured by Hitachi High-Technologies Corporation, model name: SU-1500) by software (product name: PC SEM).
- the diameter of 300 silver-coated resin particles is measured at a magnification of 5000 times, and the average value calculated is referred to.
- the values other than the true sphere mean the average of the long sides.
- the silver-coated resin particles may be spherical particles, and may have a different shape such as a flat shape, a plate shape, or a needle shape instead of a spherical shape.
- the average thickness of the silver coating layer of the silver-coated resin particles is preferably 0.05 to 5.0 ⁇ m.
- the average particle diameter of the resin core particles of the silver-coated resin particles is preferably 0.45 to 15 ⁇ m by subtracting the thickness of the silver coating layer from the average particle diameter of the silver-coated resin particles, and is preferably 0.9 to More preferably, it is 9.0 ⁇ m.
- the resin core particles are preferably single particles without aggregation.
- the average thickness of the silver coating layer of the silver-coated resin particles is limited to the range of 0.05 to 5.0 ⁇ m when the silver-coated resin particles are dispersed as a conductive filler below 0.05 ⁇ m.
- the average particle diameter of the resin core particles is limited to the range of 0.45 to 15 ⁇ m. If the resin core particles are less than 0.45 ⁇ m, the resin core particles are likely to aggregate, and the surface area of the resin core particles is increased. This is because it is necessary to increase the amount of silver for obtaining the necessary conductivity as a filler, and it is difficult to form a good silver coating layer. When the average particle size exceeds 15 ⁇ m, the surface smoothness of the resin core particles is increased.
- the average particle size of the resin core particles is measured by the same method as the method for measuring the average particle size of the silver-coated resin particles.
- the average thickness of the silver coating layer is obtained by observing the cross section of 20 silver-coated resin particles with a transmission electron microscope (TEM) and measuring the thickness of the silver coating layer of the silver-coated resin particles. It is a value obtained by arithmetically averaging the measured values.
- the silver-coated resin particles of this embodiment are produced by the following method. First, the resin core particles are added to an aqueous solution of a tin compound kept at 25 to 45 ° C. to form a tin adsorption layer on the surface of the resin core particles.
- an electroless silver plating solution containing no reducing agent is brought into contact with the tin adsorption layer formed on the surface of the resin core particles, so that the tin adsorption layer formed on the surface of the resin core particles and the silver in the electroless plating solution
- a silver substitution layer is formed on the surface of the resin core particles by a substitution reaction with
- a reducing agent is added to the electroless silver plating solution to form a silver coating layer on the surface of the silver replacement layer of the resin core particles.
- a silver coating layer is provided on the surface of the resin core particles.
- a treatment for providing a tin adsorption layer on the surface of the resin core particles is performed as a catalyst treatment, and then an electroless silver plating treatment is performed to form a silver coating layer.
- the silver coating layer of this embodiment is manufactured by the following method. First, the resin core particles are added to an aqueous solution of a tin compound kept at 25 to 45 ° C.
- an electroless silver plating solution not included in the tin adsorption layer is brought into contact with the surface of the resin core particles by a substitution reaction between the tin adsorption layer formed on the surface of the resin core particles and silver in the electroless plating solution. A substitution layer is formed.
- a reducing agent is added to the electroless silver plating solution to form a silver coating layer on the surface of the silver replacement layer of the resin core particles.
- resin core particles are added to an aqueous solution of a tin compound and stirred, and then the resin core particles are separated by filtration or centrifuged and washed with water.
- the stirring time is appropriately determined depending on the temperature of the aqueous tin compound solution and the content of the tin compound, and is preferably 0.5 to 24 hours.
- the temperature of the aqueous solution of the tin compound is 25 to 45 ° C, preferably 25 to 35 ° C, and more preferably 27 to 35 ° C.
- the temperature of the aqueous solution of the tin compound is less than 25 ° C., the temperature is too low and the activity of the aqueous solution becomes low, and the tin compound does not sufficiently adhere to the resin core particles.
- the temperature of the aqueous solution of the tin compound exceeds 45 ° C., the tin compound is oxidized, so that the aqueous solution becomes unstable and the tin compound does not sufficiently adhere to the resin core particles.
- this treatment is carried out in an aqueous solution at 25 to 45 ° C., divalent ions of tin adhere to the surface of the resin core particles, and a tin adsorption layer is formed.
- the tin compound examples include stannous chloride, stannous fluoride, stannous bromide, stannous iodide, and the like.
- the content of stannous chloride in the tin compound aqueous solution is preferably 30 to 100 g / dm 3 . If the content of stannous chloride is 30 g / dm 3 or more, a uniform tin adsorption layer can be formed. When the stannous chloride content is 100 g / dm 3 or less, the amount of inevitable impurities in stannous chloride is suppressed. Note that stannous chloride can be contained in an aqueous solution of a tin compound until saturation.
- an electroless plating solution not containing a reducing agent is brought into contact with the tin adsorption layer, and a silver substitution layer is formed on the surface of the resin core particle by a substitution reaction of tin and silver.
- a reducing agent is added to the electroless silver plating solution to perform electroless plating, thereby forming a silver coating layer on the surface of the resin core particles to produce silver coated resin particles.
- (1) a method in which resin core particles having a silver substitution layer formed on the surface are immersed in an aqueous solution containing a complexing agent, a reducing agent, etc., and an aqueous silver salt solution is dropped, (2) A method of immersing resin core particles having a silver-substituted layer on the surface thereof in an aqueous solution containing a silver salt and a complexing agent, and dropping a reducing agent aqueous solution, (3) including a silver salt, a complexing agent, a reducing agent, etc. A method in which resin core particles having a silver substitution layer formed on the surface is immersed in an aqueous solution and a caustic aqueous solution is dropped.
- silver salt silver nitrate or silver nitrate dissolved in nitric acid
- Complexing agents include salts such as ammonia, ethylenediaminetetraacetic acid, tetrasodium ethylenediaminetetraacetic acid, nitrotriacetic acid, triethylenetetraamminehexaacetic acid, sodium thiosulfate, succinate, succinimide, citrate or iodide salt can be used.
- formalin, glucose, imidazole, Rochelle salt (sodium potassium tartrate), hydrazine and its derivatives, hydroquinone, L-ascorbic acid or formic acid can be used.
- formaldehyde is preferable because of its strong reducing power, a mixture of two or more reducing agents containing at least formaldehyde is more preferable, and a mixture of reducing agent containing formaldehyde and glucose is most preferable.
- tin in the tin adsorption layer elutes by releasing electrons by coming into contact with silver ions in the solution, while silver ions receive electrons from tin and are resin as metals.
- Substitutional deposition is performed on the core particles where the tin is adsorbed. Thereafter, when all the tin is dissolved in the aqueous solution, the substitution reaction of tin and silver is completed.
- a reducing agent is added to the electroless plating solution, and a silver coating layer is formed on the surface of the resin core particles by a reduction reaction with the reducing agent, thereby producing silver-coated resin particles.
- the conductive paste of this embodiment includes a solvent, a binder resin that does not contain an unsaturated bond in the molecule, and silver-coated resin particles that are dispersed in the binder resin and serve as a conductive filler.
- the silver-coated resin particles are contained in an amount of 30 to 75% by volume, preferably 40 to 60% by volume, based on 100% by volume of the solid content of the conductive paste.
- the content ratio of the silver-coated resin particles is limited to the range of 30 to 75% by volume with respect to the solid content of 100% by volume of the conductive paste.
- Binder resin in conductive paste As the binder resin to be included in the conductive resin paste, a resin having a high expansion / contraction ratio and containing no unsaturated bond inside (inside the molecule) can be used. Specifically, urethane resin, urethane rubber, acrylic resin , Acrylic rubber, butyl rubber, chlorosulfonated rubber, fluororubber, and silicone. The urethane resin and the urethane rubber can be used either as a solvent evaporation type or as a thermosetting type in which a main agent and a curing agent are mixed.
- examples of the main agent include polyester polyol, polycaprolactam polyol, polyether polyol, polycarbonate polyol, and urethane acrylate
- examples of the curing agent include isocyanate and block isocyanate.
- acrylic resin commonly used thermosetting type, photopolymerization type and solvent evaporation type can be used.
- Acrylic-melamine resin, polymethyl methacrylate resin, acrylic-styrene copolymer, silicon modified An acrylic resin, an epoxy-modified acrylic resin, etc. are mentioned, These can be used individually or in combination.
- a thermosetting agent such as isocyanate, an alkylphenone photopolymerization initiator, or the like can be used as the curing agent.
- silicone rubber examples include silicone rubber and silicone resin, and these may be either addition polymerization type or condensation polymerization type.
- silicone rubber the one having an expansion / contraction ratio at break of 500% or more is called silicone rubber, and the one having less than 500% is called silicone resin.
- silicone resin the one having less than 500% is called silicone resin.
- silicone rubber which is the same material as the resin core particles of the silver-coated resin particles.
- Solvents for dissolving the binder resin include ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol mono-n-butyl ether, diethylene glycol monoethyl ether, diethylene glycol monobutyl ether, diethylene glycol Ether alcohol solvents such as propylene glycol monomethyl ether, dipropylene glycol monobutyl ether and tripropylene glycol monomethyl ether and their acetate solvents, aromatic hydrocarbon solvents such as ethylene glycol, propylene glycol, terpineol, mineral spirit, toluene, etc.
- Aliphatic hydrocarbon solvents such as dodecane, dimethylform Amides, N- methyl-2-pyrrolidone, dimethyl sulfoxide, diacetone alcohol, dimethylacetamide, .gamma.-butyrolactone.
- the conductive paste is prepared by first mixing the binder resin with the solvent and dissolving the binder resin in the solvent at a temperature of preferably 50 to 70 ° C., more preferably 60 ° C. At this time, the ratio of the binder resin is preferably 20 to 60% by volume, more preferably 35 to 50% by volume with respect to 100% by volume of the solvent. Next, the conductive filler (silver-coated resin particles) is added, and stirring and desorption are performed by two centrifugal forces of rotation and revolution, for example, Awatori Netaro (trade name of a mixer manufactured by Shinky).
- a conductive paste is prepared by kneading, preferably by kneading for 0.1 to 1 hour using a kneader such as a three-roll mill or a reiki machine. .
- a kneader such as a three-roll mill or a reiki machine.
- the conductive filler occupies 30 to 75% by volume as described above.
- the usage-amount of binder resin is adjusted so that the volume ratio with a conductive filler may become the above-mentioned ratio from the reason mentioned above.
- the viscosity is preferably adjusted to 10 to 300 Pa ⁇ s. By adjusting the viscosity within this range, the printability of the conductive paste is improved and the printed pattern shape after printing is also kept good.
- the conductive paste thus prepared is applied onto a base material such as a stretched PET (polyethylene terephthalate) film, a glass substrate, an ITO (Indium TinideOxide) substrate, etc., and dried, fired, etc. at a predetermined temperature. By doing so, a conductive film is formed on the substrate.
- the calcination is performed, for example, by using an apparatus such as a hot-air circulating furnace, preferably by holding at a temperature of 150 to 250 ° C. for 0.5 to 1 hour, but this is not limited to the case where room temperature curing is preferable.
- the silver-coated resin particles when this conductive film is stretched, the silver-coated resin particles also stretch in the stretch direction following the stretch of the conductive film. As a result, even if the conductive film is elongated, contact between the silver-coated resin particles in the conductive film is maintained, so that a conductive film excellent in stretchability and conductivity can be obtained.
- the binder resin is silicone rubber or silicone resin, a conductive film is formed using this conductive paste, and when the conductive film is stretched, the conductive film and the silver coating in the conductive film are covered. The elongation ratio of the resin particles is substantially the same.
- a conductive film excellent in stretchability and conductivity can be obtained without requiring a complicated process and without using a polymer containing an unsaturated bond such as a conjugated double bond as a binder.
- the conductive film does not include an unsaturated bond such as a conjugated double bond in the molecule, it is difficult to be oxidized or deteriorated by heat, light, stress, or the like.
- the conductive film has excellent resistance to heat, light, stress, and the like, and thus has excellent reliability in long-term use.
- Example 1 First, 15 g of stannous chloride and 15 cm 3 of hydrochloric acid having a concentration of 35% were diluted to 1 dm 3 with water using a 1 dm 3 volumetric flask and kept at 25 ° C. To this aqueous solution, 30 g of resin core particles made of silicone rubber having an average particle size of 3 ⁇ m were added and stirred for 1 hour, and then the resin core particles were filtered and washed with water. This completed the pretreatment of the resin core particles.
- one-part silicone rubber “KE-45” manufactured by Shin-Etsu Silicone as a binder resin, 5.0 g of mineral spirit as a solvent, and KD-4 (manufactured by Croda Japan) as a dispersant 0 0.1 g was mixed with Awatori Nertaro (Sinky Co., Ltd.) to prepare a binder varnish. Then, 15.0 g of the conductive filler made of the silver-coated resin particles is added to 10 g of the binder varnish, mixed by Awatori Nertaro (Sinky), and then kneaded using a three-roll mill (EXAKT). Thus, a conductive paste was obtained. This conductive paste was referred to as Example 1. In addition, the content rate of the silver covering resin particle in an electrically conductive paste was 50 volume% with respect to 100 volume% of solid content of an electrically conductive paste.
- Example 2 3.6 g of urethane resin “Adeka New Ace # 50” (manufactured by ADEKA) is used as the binder resin in the conductive paste of Example 1, and block isocyanate “Bernock DN-992” (manufactured by DIC) is used as the curing agent.
- a conductive paste was prepared in the same manner as in Example 1 except that 4 g was used and 6.0 g of ethylene glycol monobutyl ether was used as a solvent. This conductive paste was referred to as Example 2.
- Example 3 Two-part silicone resin “SE1700” (manufactured by Toray Dow Corning Co., Ltd.) is used as the binder resin in the conductive paste of Example 1 in an amount of 5.0 g, and the average particle diameter of the silver-coated resin particles is 0.00.
- Example 1 except that the conductive paste was prepared such that the content ratio of the silver-coated resin particles in the conductive paste was 50% by volume with respect to 100% by volume of the solid content of the conductive paste.
- a conductive paste was prepared in the same manner. This conductive paste was referred to as Example 3.
- Example 4 As a binder resin in the conductive paste of Example 1, 5.0 g of one-component silicone rubber “KE-1820” (manufactured by Shin-Etsu Silicone) is used, and the average particle diameter of the silver-coated resin particles is 1.0 ⁇ m (preferable range). Except that the conductive paste was prepared so that the content of the silver-coated resin particles in the conductive paste was 50% by volume with respect to 100% by volume of the solid content of the conductive paste. A conductive paste was prepared in the same manner as in Example 1. This conductive paste was referred to as Example 4.
- Example 5 The average particle diameter of the silver-coated resin particles in the conductive paste of Example 1 was 10 ⁇ m (the upper limit of the preferred range), and the content ratio of the silver-coated resin particles in the conductive paste was set to 100% by volume of the solid content of the conductive paste.
- a conductive paste was prepared in the same manner as in Example 1 except that the conductive paste was prepared so as to be 50% by volume. This conductive paste was taken as Example 5.
- Example 6 The average particle diameter of the silver-coated resin particles is 4.5 g of acrylic rubber “Nipol AR51” (manufactured by Nippon Zeon Co., Ltd.) as the binder resin in the conductive paste of Example 1, and 8.5 g of ethylene glycol monoethyl ether as the solvent. Except that the conductive paste was prepared such that the diameter was 20 ⁇ m and the content ratio of the silver-coated resin particles in the conductive paste was 50% by volume with respect to 100% by volume of the solid content of the conductive paste. A conductive paste was prepared in the same manner as in 1. This conductive paste was referred to as Example 6.
- Example 7 The two-part silicone resin “SE1700” (manufactured by Toray Dow Corning) is used as the binder resin in the conductive paste of Example 1, and 5.0 g is used, and the average particle diameter of the silver-coated resin particles is 10 ⁇ m.
- the conductive paste was prepared so that the content ratio of the silver-coated resin particles in the conductive paste was 30% by volume with respect to 100% by volume of the solid content of the conductive paste.
- a conductive paste was prepared. This conductive paste was taken as Example 7.
- Example 8 The two-part silicone resin “SE1700” (manufactured by Toray Dow Corning) is used as the binder resin in the conductive paste of Example 1, and 5.0 g is used, and the average particle diameter of the silver-coated resin particles is 10 ⁇ m. Except that the conductive paste was prepared so that the content of the silver-coated resin particles in the conductive paste was 40% by volume (the lower limit of the preferred range) with respect to 100% by volume of the solid content of the conductive paste. Prepared a conductive paste in the same manner as in Example 1. This conductive paste was referred to as Example 8.
- Example 9 The average particle size of the silver-coated resin particles in the conductive paste of Example 1 was 10 ⁇ m, and the content ratio of the silver-coated resin particles in the conductive paste was 60% by volume with respect to 100% by volume of the solid content of the conductive paste ( A conductive paste was prepared in the same manner as in Example 1 except that the conductive paste was prepared so that the upper limit of the preferred range was reached. This conductive paste was taken as Example 9.
- Example 10 Average particle diameter of silver-coated resin particles using 4.5 g of acrylic rubber “Nipol AR51” (manufactured by Nippon Zeon Co., Ltd.) as binder resin in the conductive paste of Example 1 and 10.0 g of propylene glycol monoethyl ether as solvent. Except that the conductive paste was prepared such that the diameter was 10 ⁇ m and the content ratio of the silver-coated resin particles in the conductive paste was 75% by volume with respect to 100% by volume of the solid content of the conductive paste. A conductive paste was prepared in the same manner as in 1. This conductive paste was taken as Example 10.
- ⁇ Comparative Example 1> In place of the conductive filler of Example 1, silver particles having an average particle size of 3.6 ⁇ m were used, and 35.0 g of the conductive filler made of the above silver particles was added to 10 g of the binder varnish of Example 1, After mixing by Shinkey Co., Ltd., the mixture was kneaded using a three roll mill (EXAKT Co.) to obtain a conductive paste. This conductive paste was referred to as Comparative Example 1. In addition, the content rate of the silver particle in an electrically conductive paste was 50 volume% with respect to 100 volume% of solid content of an electrically conductive paste.
- a conductive paste was prepared in the same manner as in Example 1 except that the conductive paste was prepared so as to be 50% by volume. This conductive paste was designated as Comparative Example 3.
- ⁇ Comparative Example 4> The two-part silicone resin “SE1700” (manufactured by Toray Dow Corning) is used as the binder resin in the conductive paste of Example 1, and 5.0 g is used, and the average particle diameter of the silver-coated resin particles is 10 ⁇ m. As in Example 1, except that the conductive paste was prepared so that the content ratio of the silver-coated resin particles in the conductive paste was 28% by volume with respect to 100% by volume of the solid content of the conductive paste. Thus, a conductive paste was prepared. This conductive paste was referred to as Comparative Example 4.
- Example 5 The average particle diameter of the silver-coated resin particles in the conductive paste of Example 1 was 10 ⁇ m, and the content ratio of the silver-coated resin particles in the conductive paste was 77% by volume with respect to 100% by volume of the solid content of the conductive paste.
- the conductive paste was prepared in the same manner as in Example 1 except that the conductive paste was prepared. This conductive paste was referred to as Comparative Example 5.
- binder resin 2.5 g of acrylic rubber “Nipol AR51” (manufactured by Nippon Zeon Co., Ltd.) and 10 g of rubber-type solvent-type adhesive “TB1521” (manufactured by ThreeBond Co., Ltd., chloroprene rubber) having unsaturated bonds are used as solvents. Using 2.5 g of mineral spirits, these were mixed to prepare a binder varnish. To 12.5 g of the adjusted binder varnish, 15.0 g of the conductive filler made of the silver-coated resin particles of Example 1 was added and mixed by Awatori Kentaro (Sinky Corp.). EXAKT) was used for kneading to obtain a conductive paste. This conductive paste was referred to as Comparative Example 6.
- the test pieces of Examples 1 to 10 and Comparative Examples 1 to 6 were subjected to volume resistivity measurement before and after stretching and a reliability test, respectively.
- the volume resistivity before and after stretching was measured by Loresta-GP MCP-T610 (Mitsubishi Chemical Analytech Co., Ltd.), and the average of the volume resistivity of the four test pieces before stretching (0% elongation). The value was calculated and used as the volume resistivity of the test piece before stretching.
- the volume resistivity of the four test pieces after elongation at an elongation rate of 50% was measured by Loresta-GP MCP-T610 (manufactured by Mitsubishi Chemical Analytech Co., Ltd.), and the average value thereof was calculated.
- stretching by 50% of elongation rate was set as the volume resistivity of the test piece after extending
- volume resistivity of the four test pieces after elongation at an elongation rate of 80% was measured by Loresta-GP MCP-T610 (manufactured by Mitsubishi Chemical Analytech Co., Ltd.), and the average value of them was calculated for elongation.
- the volume resistivity of the test piece after elongation at a rate of 80% was used. The results are shown in Table 1. Moreover, after extending
- test pieces of Examples 1 to 10 and Comparative Examples 1 to 6 were placed in a high-temperature and high-humidity tank maintained at 85 ° C. and 85%, respectively, and allowed to stand for 500 hours. After the taken out test piece was stretched at an elongation rate of 0%, 50%, and 80%, whether or not a crack occurred in the test piece (presence of cracks) was visually observed. The results are shown in Table 1 as the presence or absence of cracks after the reliability test.
- the volume resistivity of the conductive film before elongation is 5.0 ⁇ 10 ⁇
- the volume resistivity of the conductive film became as extremely large as 3060 ⁇ 10 ⁇ 4 ⁇ ⁇ cm when the elongation was increased to 80%.
- the volume resistivity of the conductive film before stretching is 8.5 ⁇ 10 ⁇ 4.
- the volume resistivity of the conductive film became extremely large as 4020 ⁇ 10 ⁇ 4 ⁇ ⁇ cm when elongated to 80%, and silver coated resin particles having a large average particle size of 22 ⁇ m were used.
- the volume resistivity of the conductive film before stretching is relatively large as 10.4 ⁇ 10 ⁇ 4 ⁇ ⁇ cm, and the conductive film when stretched to 80% elongation rate. Volume resistivity increased to 18.2 ⁇ 10 ⁇ 4 ⁇ ⁇ cm.
- the volume resistance of the conductive film before elongation (elongation rate 0%) was obtained.
- the volume resistivity of the conductive film is 1.5 ⁇ 10 ⁇ 4 to 9.times.9 even when the elongation is as small as 1.2 ⁇ 10 ⁇ 4 to 8.9 ⁇ 10 ⁇ 4 ⁇ ⁇ cm and the elongation is 80%. Only slightly increased to 8 ⁇ 10 ⁇ 4 ⁇ ⁇ cm.
- Example 6 did not generate cracks in the conductive film regardless of before and after stretching, and the flexibility was maintained.
- the binder resin is the same kind and the same content as the silicone rubber particles of the conductive filler. Therefore, urethane rubber is used as the binder resin. Even when compared with Example 2, the volume resistivity value of the conductive film was excellent at any elongation, and the best characteristics were exhibited.
- the volume resistivity of the conductive film before elongation (elongation rate 0%) is 12.0 ⁇ 10 ⁇ 4 ⁇ ⁇ cm.
- the volume resistivity of the conductive film increases to 30.0 ⁇ 10 ⁇ 4 ⁇ ⁇ cm, and the silver coated resin particle content is as high as 77% by volume.
- the volume resistivity of the conductive film before elongation (elongation rate 0%) was as small as 2.5 ⁇ 10 ⁇ 4 ⁇ ⁇ cm.
- the resistivity was as extremely high as 4340 ⁇ 10 ⁇ 4 ⁇ ⁇ cm.
- the volume resistivity of the conductive film before elongation (elongation rate 0%). Is as small as 1.2 ⁇ 10 ⁇ 4 to 8.9 ⁇ 10 ⁇ 4 ⁇ ⁇ cm, and the volume resistivity of the conductive film is 1.5 ⁇ 10 ⁇ 4 ⁇ ⁇ cm It increased only slightly to 9.8 ⁇ 10 ⁇ 4 .
- the conductivity before stretching (elongation rate 0%)
- the volume resistivity of the film is 1.2 ⁇ 10 ⁇ 4 to 3.2 ⁇ 10 ⁇ 4 ⁇ ⁇ cm, which is even smaller, and the volume resistivity of the conductive film is 1.5 ⁇ 10 10 even when the elongation is expanded to 80%. Only slightly increased from ⁇ 4 ⁇ ⁇ cm to 3.5 ⁇ 10 ⁇ 4 .
- the conductive paste of the present invention can be used to form a conductive film excellent in stretchability and conductivity, such as wiring, actuator electrode, skin sensor, etc., which is required to be flexible to a flexible substrate.
Landscapes
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Wood Science & Technology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Physics & Mathematics (AREA)
- Dispersion Chemistry (AREA)
- Conductive Materials (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Paints Or Removers (AREA)
- Inks, Pencil-Leads, Or Crayons (AREA)
- Non-Insulated Conductors (AREA)
Abstract
Description
本実施形態の銀被覆樹脂粒子は次の方法により製造される。先ず樹脂コア粒子を25~45℃に保温された錫化合物の水溶液に添加してこの樹脂コア粒子の表面に錫吸着層を形成する。次いでこの樹脂コア粒子の表面に形成された錫吸着層に還元剤を含まない無電解銀めっき液を接触させて、樹脂コア粒子の表面に形成された錫吸着層と無電解めっき液中の銀との置換反応により樹脂コア粒子の表面に銀置換層を形成する。次に無電解銀めっき液に還元剤を添加することにより、樹脂コア粒子の銀置換層の表面に銀被覆層を形成する。
樹脂コア粒子の表面には、銀被覆層が設けられる。一般に、有機質材料や無機質材料などの不導体の表面に無電解めっきを実施する際には、予め不導体の表面に対して触媒化処理を行う必要がある。本実施形態では、触媒化処理として樹脂コア粒子の表面に錫吸着層を設ける処理を行い、その後で無電解銀めっき処理を行って銀被覆層を形成する。具体的には、本実施形態の銀被覆層は、次の方法により製造される。先ず樹脂コア粒子を25~45℃に保温された錫化合物の水溶液に添加してこの樹脂コア粒子の表面に錫吸着層を形成する。次いでこの錫吸着層に含まない無電解銀めっき液を接触させて、樹脂コア粒子の表面に形成された錫吸着層と無電解めっき液中の銀との置換反応により樹脂コア粒子の表面に銀置換層を形成する。次に無電解銀めっき液に還元剤を添加することにより、樹脂コア粒子の銀置換層の表面に銀被覆層を形成する。
本実施形態の導電性ペーストは、上述したように、溶剤と、不飽和結合を分子内に含まないバインダ樹脂と、このバインダ樹脂に分散され導電性フィラーとしての銀被覆樹脂粒子とを含む。銀被覆樹脂粒子は、導電性ペーストの固形分100体積%に対して30~75体積%、好ましくは40~60体積%含有する。ここで、銀被覆樹脂粒子の含有割合を導電性ペーストの固形分100体積%に対して30~75体積%の範囲内に限定したのは、30体積%未満では導電性フィラーとして銀被覆樹脂粒子が分散したときに銀同士の接点が取り難く十分な導電性を付与できず、75体積%を超えると銀被覆樹脂粒子の比重が大きくなりコストも高くなるとともに導電性が飽和してしまうからである。
導電性樹脂ペーストに含ませるバインダ樹脂としては、伸縮率が高く、不飽和結合を内部(分子内)に含まない樹脂を使用することができ、具体的には、ウレタン樹脂、ウレタンゴム、アクリル樹脂、アクリルゴム、ブチルゴム、クロロスルフォン化ゴム、フッ素ゴム、シリコーンが挙げられる。ウレタン樹脂及びウレタンゴムは、溶媒蒸発型、或いは主剤と硬化剤を混合した熱硬化型のどちらでも使用できる。ここで、主剤としては、ポリエステルポリオール、ポリカプロラクタムポリオール、ポリエーテルポリオール、ポリカーボネートポリオール、ウレタンアクリレート等が挙げられ、硬化剤としては、イソシアネート、ブロックイソシアネート等が挙げられる。また、アクリル樹脂は、一般に用いられている熱硬化型、光重合型、溶媒蒸発型のものが使用可能であり、アクリル-メラミン樹脂、ポリメタクリル酸メチル樹脂、アクリル-スチレン共重合体、シリコン変性アクリル樹脂、エポキシ変性アクリル樹脂などが挙げられ、これらを単独又は組合せて使用することができる。ここで、必要に応じてイソシアネート等の熱硬化剤、アルキルフェノン系光重合開始剤などを硬化剤として使用できる。更に、アクリルゴム、ブチルゴム、クロロスルフォン化ゴム、フッ素ゴムは、主として溶媒蒸発型のものを用いることができる。一方、シリコーンは、具体的には、シリコーンゴム、シリコーン樹脂が挙げられ、これらは付加重合型又は縮合重合型のいずれを用いてもよい。ここで、シリコーンゴムとシリコーン樹脂の差異に関する定義は明確でないが、本明細書では、破断時の伸縮率が500%以上であるものをシリコーンゴムといい、500%未満であるものをシリコーン樹脂というものとする。また、これらのバインダ樹脂から複数種を組合せて用いてもよい。これらのバインダ樹脂の中で、銀被覆樹脂粒子の樹脂コア粒子と同一材料であるシリコーンゴムを用いることが好ましい。これは、バインダ樹脂を樹脂コア粒子と同一材料にすることにより、導電性膜の伸縮率が略同じになるとともに、熱膨張率の値が近くなるため、熱硬化時や熱的環境において熱応力が生じ難いという利点があるためである。また、バインダ樹脂を溶かす溶剤としては、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノ-n-ブチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノブチルエーテル、トリプロピレングリコールモノメチルエーテル等のエーテルアルコール系溶剤及びそれらの酢酸エステル系溶剤、エチレングリコール、プロピレングリコール、テルピネオール、ミネラルスピリット、トルエン等の芳香族炭化水素系溶剤、ドデカン等の脂肪族炭化水素系溶剤、ジメチルホルムアミド、N-メチル-2-ピロリドン、ジメチルスルホキシド、ジアセトンアルコール、ジメチルアセトアミド、γ-ブチロラクトン等が挙げられる。
導電性ペーストの調製方法は、先ず、好ましくは温度50~70℃、更に好ましくは60℃の条件で、上記溶剤に上記バインダ樹脂を混合してバインダ樹脂を溶剤に溶かす。このとき、バインダ樹脂の割合は、溶剤100体積%に対して20~60体積%とするのが好ましく、35~50体積%とするのが更に好ましい。次に、上記導電性フィラー(銀被覆樹脂粒子)を添加して、例えば、あわとり練太郎(シンキー社製のミキサの商品名)のように、自転と公転の2つの遠心力で撹拌と脱泡の同時処理を行う混合機により混合した後に、3本ロールミル又はライカイ機等の混練機を用いて、好ましくは0.1~1時間混練し、ペースト化することにより導電性ペーストが調製される。このとき、調製される導電性ペーストに適性な粘度及び必要な流動性を持たせるため、また、上述の理由から、導電性ペースト中に占める導電性フィラーが上述の30~75体積%となるように混合する。また、バインダ樹脂の使用量は、上述の理由から、導電性フィラーとの体積比が上述の割合になるよう調整する。その結果、粘度が好ましくは10~300Pa・sに調整される。粘度がこの範囲に調整されることで導電性ペーストの印刷性が向上するとともに、印刷後の印刷パターン形状も良好に保たれる。
先ず、塩化第一錫15gと、濃度35%の塩酸15cm3とを、容量1dm3のメスフラスコを用いて、水で1dm3に希釈(メスアップ)し、25℃に保温した。この水溶液に、平均粒径3μmのシリコーンゴムからなる樹脂コア粒子30gを添加し、1時間撹拌した後に、樹脂コア粒子を濾別して水洗した。これにより樹脂コア粒子の前処理が完了した。次いで、水2dm3に、エチレンジアミン四酢酸四ナトリウム(錯化剤)100gと、水酸化ナトリウム25gと、ホルマリン(還元剤:ホルムアルデヒド濃度37質量%)100cm3とを溶解し、錯化剤及び還元剤を含む水溶液を調製した。また、硝酸銀190gと、濃度25%のアンモニア水100cm3と、水400cm3とを混合し、硝酸銀を含む水溶液を調製した。次に、上記錯化剤及び還元剤を含む水溶液1000cm3中に、前処理済みの樹脂コア粒子15gを浸漬させた後に、この水溶液を撹拌しながら、この水溶液に硝酸銀を含む水溶液を300cm3滴下して、樹脂コア粒子の外周面を銀により被覆した。更に、この銀で被覆された樹脂コア粒子を水洗し乾燥して平均粒径3.8μmの銀被覆樹脂粒子を得た。
実施例1の導電性ペースト中のバインダ樹脂としてウレタン樹脂『アデカニューエース♯50』(ADEKA社製)3.6gを用い、硬化剤としてブロックイソシアネート『バーノックDN-992』(DIC社製)1.4gを用い、溶剤としてエチレングリコールモノブチルエーテル6.0gを用いたこと以外は、実施例1と同様にして導電性ペーストを調製した。この導電性ペーストを実施例2とした。
実施例1の導電性ペースト中のバインダ樹脂として二液性のシリコーン樹脂『SE1700』(東レ・ダウコーニング社製)を二液合せて5.0g用い、銀被覆樹脂粒子の平均粒径が0.5μmとなり、導電性ペースト中の銀被覆樹脂粒子の含有割合を導電性ペーストの固形分100体積%に対して50体積%となるように、導電性ペーストを調製したこと以外は、実施例1と同様にして導電性ペーストを調製した。この導電性ペーストを実施例3とした。
実施例1の導電性ペースト中のバインダ樹脂として一液性のシリコーンゴム『KE-1820』(信越シリコーン社製)5.0gを用い、銀被覆樹脂粒子の平均粒径が1.0μm(好ましい範囲の下限値)となり、導電性ペースト中の銀被覆樹脂粒子の含有割合を導電性ペーストの固形分100体積%に対して50体積%となるように、導電性ペーストを調製したこと以外は、実施例1と同様にして導電性ペーストを調製した。この導電性ペーストを実施例4とした。
実施例1の導電性ペースト中の銀被覆樹脂粒子の平均粒径が10μm(好ましい範囲の上限値)となり、導電性ペースト中の銀被覆樹脂粒子の含有割合を導電性ペーストの固形分100体積%に対して50体積%となるように、導電性ペーストを調製したこと以外は、実施例1と同様にして導電性ペーストを調製した。この導電性ペーストを実施例5とした。
実施例1の導電性ペースト中のバインダ樹脂としてアクリルゴム『Nipol AR51』(日本ゼオン社製)4.5gを用い、溶剤としてエチレングリコールモノエチルエーテル8.5gを用い、銀被覆樹脂粒子の平均粒径が20μmとなり、導電性ペースト中の銀被覆樹脂粒子の含有割合を導電性ペーストの固形分100体積%に対して50体積%となるように、導電性ペーストを調製したこと以外は、実施例1と同様にして導電性ペーストを調製した。この導電性ペーストを実施例6とした。
実施例1の導電性ペースト中のバインダ樹脂として二液性のシリコーン樹脂『SE1700』(東レ・ダウコーニング社製)を二液合せて5.0gを用い、銀被覆樹脂粒子の平均粒径が10μmとなり、導電性ペースト中の銀被覆樹脂粒子の含有割合を導電性ペーストの固形分100体積%に対して30体積%となるように、導電性ペーストを調製したこと以外は、実施例1と同様にして導電性ペーストを調製した。この導電性ペーストを実施例7とした。
実施例1の導電性ペースト中のバインダ樹脂として二液性のシリコーン樹脂『SE1700』(東レ・ダウコーニング社製)を二液合せて5.0gを用い、銀被覆樹脂粒子の平均粒径が10μmとなり、導電性ペースト中の銀被覆樹脂粒子の含有割合を導電性ペーストの固形分100体積%に対して40体積%(好ましい範囲の下限値)となるように、導電性ペーストを調製したこと以外は、実施例1と同様にして導電性ペーストを調製した。この導電性ペーストを実施例8とした。
実施例1の導電性ペースト中の銀被覆樹脂粒子の平均粒径が10μmとなり、導電性ペースト中の銀被覆樹脂粒子の含有割合を導電性ペーストの固形分100体積%に対して60体積%(好ましい範囲の上限値)となるように、導電性ペーストを調製したこと以外は、実施例1と同様にして導電性ペーストを調製した。この導電性ペーストを実施例9とした。
実施例1の導電性ペースト中のバインダ樹脂としてアクリルゴム『Nipol AR51』(日本ゼオン社製)4.5gを用い、溶剤としてプロピレングリコールモノエチルエーテル10.0gを用い、銀被覆樹脂粒子の平均粒径が10μmとなり、導電性ペースト中の銀被覆樹脂粒子の含有割合を導電性ペーストの固形分100体積%に対して75体積%となるように、導電性ペーストを調製したこと以外は、実施例1と同様にして導電性ペーストを調製した。この導電性ペーストを実施例10とした。
実施例1の導電性フィラーに替えて平均粒径3.6μmの銀粒子を用い、実施例1のバインダワニス10gに上記銀粒子からなる導電性フィラー35.0gを添加し、あわとり練太郎(シンキー社製)により混合した後、3本ロールミル(EXAKT社製)を用いて混練して、導電性ペーストを得た。この導電性ペーストを比較例1とした。なお、導電性ペースト中の銀粒子の含有割合は、導電性ペーストの固形分100体積%に対して50体積%であった。
実施例1の導電性ペースト中のバインダ樹脂として二液性のシリコーン樹脂『SE1700』(東レ・ダウコーニング社製)を二液合せて5.0gを用い、銀被覆樹脂粒子の平均粒径が0.4μmとなり、導電性ペースト中の銀被覆樹脂粒子の含有割合を導電性ペーストの固形分100体積%に対して50体積%となるように、導電性ペーストを調製したこと以外は、実施例1と同様にして導電性ペーストを調製した。この導電性ペーストを比較例2とした。
実施例1の導電性ペースト中のバインダ樹脂としてウレタン樹脂『アデカニューエース♯50』(ADEKA社製)3.6gを用い、硬化剤としてブロックイソシアネート『バーノックDN-992』(DIC社製)1.4gを用い、溶剤としてエチレングリコールモノブチルエーテル4.0gを用い、銀被覆樹脂粒子の平均粒径が22μmとなり、導電性ペースト中の銀被覆樹脂粒子の含有割合を導電性ペーストの固形分100体積%に対して50体積%となるように、導電性ペーストを調製したこと以外は、実施例1と同様にして導電性ペーストを調製した。この導電性ペーストを比較例3とした。
実施例1の導電性ペースト中のバインダ樹脂として二液性のシリコーン樹脂『SE1700』(東レ・ダウコーニング社製)を二液合せて5.0gを用い、銀被覆樹脂粒子の平均粒径が10μmとなり、導電性ペースト中の銀被覆樹脂粒子の含有割合を導電性ペーストの固形分100体積%に対して28体積%となるように、導電性ペーストを調製したこと以外は、実施例1と同様にして導電性ペーストを調製した。この導電性ペーストを比較例4とした。
実施例1の導電性ペースト中の銀被覆樹脂粒子の平均粒径が10μmとなり、導電性ペースト中の銀被覆樹脂粒子の含有割合を導電性ペーストの固形分100体積%に対して77体積%となるように、導電性ペーストを調製したこと以外は、実施例1と同様にして導電性ペーストを調製した。この導電性ペーストを比較例5とした。
バインダ樹脂として、アクリルゴム『Nipol AR51』(日本ゼオン社製)2.5gと、不飽和結合を持つゴム形溶剤形接着剤『TB1521』(スリーボンド社製、クロロプレンゴム)10gとを用い、溶剤としてミネラルスピリット 2.5gを用い、これらを混合して、バインダワニスを調整した。この調整したバインダワニス12.5gに対して、実施例1の銀被覆樹脂粒子からなる導電性フィラー15.0gを添加し、あわとり練太郎(シンキー社製)により混合した後、3本ロールミル(EXAKT社製)を用いて混練して、導電性ペーストを得た。この導電性ペーストを比較例6とした。
実施例1~10及び比較例1~6の導電性ペーストをバーコーターによりA4サイズの延伸PETフィルム上に、150μmの厚さで塗布した後に、この導電性ペーストを塗布したフィルムを焼成炉に入れて50℃に12時間保持し、導電性ペーストから揮発分を蒸発させて導電性ペーストを乾燥させることにより、導電性膜を得た。この導電性膜中の導電性フィラーの含有割合は、導電性膜全体を100体積%とするとき55体積%であった。上記導電性膜を縦及び横がそれぞれ50mm及び10mmである長方形状に切り出した後に、延伸PETフィルムから剥がすことにより、12枚の導電性膜の試験片をそれぞれ作製した。
Claims (2)
- 溶剤と、不飽和結合を分子内に含まないバインダ樹脂と、このバインダ樹脂に分散され導電性フィラーとしての銀被覆樹脂粒子とを含み、
前記銀被覆樹脂粒子が、シリコーンゴム粒子からなる樹脂コア粒子と、この樹脂コア粒子の表面を被覆する銀被覆層とを有し、
前記銀被覆樹脂粒子の平均粒径が0.5~20μmであり、
前記銀被覆樹脂粒子が前記導電性ペーストの固形分100体積%に対して30~75体積%含有する導電性ペースト。 - 請求項1記載の導電性ペーストを用いて形成された導電性膜。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/075,326 US10573425B2 (en) | 2016-02-19 | 2016-09-14 | Electrically conductive paste and electrically conductive film formed by using same |
KR1020187025769A KR20180114100A (ko) | 2016-02-19 | 2016-09-14 | 도전성 페이스트 및 이것을 사용하여 형성된 도전성 막 |
EP16890610.5A EP3419027A4 (en) | 2016-02-19 | 2016-09-14 | ELECTROCONDUCTIVE PULP AND ELECTROCONDUCTIVE FILM FORMED USING THE SAME ELECTROCONDUCTIVE PULP |
CN201680080320.XA CN108604473B (zh) | 2016-02-19 | 2016-09-14 | 导电膏及使用该导电膏形成的导电膜 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016-029460 | 2016-02-19 | ||
JP2016029460A JP2017147163A (ja) | 2016-02-19 | 2016-02-19 | 導電性ペースト及びこれを用いて形成された導電性膜 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017141473A1 true WO2017141473A1 (ja) | 2017-08-24 |
Family
ID=59624971
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/077031 WO2017141473A1 (ja) | 2016-02-19 | 2016-09-14 | 導電性ペースト及びこれを用いて形成された導電性膜 |
Country Status (7)
Country | Link |
---|---|
US (1) | US10573425B2 (ja) |
EP (1) | EP3419027A4 (ja) |
JP (1) | JP2017147163A (ja) |
KR (1) | KR20180114100A (ja) |
CN (1) | CN108604473B (ja) |
TW (1) | TWI712661B (ja) |
WO (1) | WO2017141473A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018159374A1 (ja) * | 2017-03-02 | 2018-09-07 | 東洋紡株式会社 | 導電性ペーストおよびそれを用いた伸縮性配線、伸縮性配線を有する衣服型電子機器 |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6801466B2 (ja) * | 2017-01-17 | 2020-12-16 | 三菱マテリアル株式会社 | 銀被覆シリコーンゴム粒子及びこの粒子の製造方法、この粒子を含有する導電性ペースト及びこのペーストの製造方法、並びにこの導電性ペーストを用いた導電膜の製造方法 |
KR102355283B1 (ko) * | 2017-02-22 | 2022-01-25 | 후지필름 가부시키가이샤 | 도전성 필름, 3차원 형상을 갖는 도전성 필름 및 그 제조 방법, 연신 필름의 제조 방법, 터치 센서 필름 |
JP7378029B2 (ja) * | 2019-03-15 | 2023-11-13 | パナソニックIpマネジメント株式会社 | 電子機器 |
JP7223946B2 (ja) * | 2019-03-15 | 2023-02-17 | パナソニックIpマネジメント株式会社 | 電子機器およびその製造方法 |
KR102266093B1 (ko) * | 2019-09-06 | 2021-06-18 | (주)바이오니아 | 코어-쉘 구조의 은 코팅 구리 나노와이어를 포함하는 전도성 페이스트 조성물 및 이를 포함하는 전도성 필름 |
DE102020106131A1 (de) | 2020-03-06 | 2021-09-09 | Carl Freudenberg Kg | Elektrisch leitfähige Paste |
CN111234657A (zh) * | 2020-04-05 | 2020-06-05 | 台州天舒新材料科技有限公司 | 一种轻质高导电性涂料及其制备方法和应用 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004221006A (ja) * | 2003-01-17 | 2004-08-05 | Toyobo Co Ltd | 導電性ペースト |
JP2011233452A (ja) * | 2010-04-30 | 2011-11-17 | Namics Corp | 外部電極用導電性ペースト、及びそれを用いて形成した外部電極を備えた積層セラミック電子部品 |
JP2015199970A (ja) * | 2014-04-04 | 2015-11-12 | 三菱マテリアル電子化成株式会社 | 銀被覆球状樹脂粒子及びその製造方法並びに銀被覆球状樹脂粒子を用いた導電性組成物 |
WO2016114189A1 (ja) * | 2015-01-13 | 2016-07-21 | 三菱マテリアル電子化成株式会社 | 銀被覆樹脂粒子及びその製造方法並びにそれを用いた導電性ペースト |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3724559B2 (ja) * | 2000-12-01 | 2005-12-07 | 信越化学工業株式会社 | 導電性シリコーンゴム組成物 |
JP4038672B2 (ja) * | 2003-02-10 | 2008-01-30 | 信越化学工業株式会社 | 導電性シリコーンゴム粒子、その製造方法及び導電材料 |
JP2005093145A (ja) | 2003-09-16 | 2005-04-07 | Kyocera Chemical Corp | 導電性ペースト及び電池、電気二重層コンデンサならびにその製造方法。 |
JP2005166322A (ja) * | 2003-11-28 | 2005-06-23 | Kyocera Chemical Corp | 導電性ペースト及び圧電振動子 |
CN101107678B (zh) * | 2005-01-25 | 2012-03-07 | 藤仓化成株式会社 | 导电浆料 |
JP5034206B2 (ja) * | 2005-10-03 | 2012-09-26 | 株式会社デンソー | 導電性接着剤 |
JP2010539706A (ja) * | 2007-09-11 | 2010-12-16 | ダウ コーニング コーポレーション | 放熱材料、該放熱材料を含む電子デバイス、ならびにそれらの調製方法および使用方法 |
JP2010232394A (ja) * | 2009-03-26 | 2010-10-14 | Seiko Epson Corp | 接合方法および接合体 |
US9093192B2 (en) * | 2010-08-20 | 2015-07-28 | Mitsubishi Materials Corporation | Silver-coated spherical resin, method for producing same, anisotropically conductive adhesive containing silver-coated spherical resin, anisotropically conductive film containing silver-coated spherical resin, and conductive spacer containing silver-coated spherical resin |
CN103329217B (zh) * | 2011-01-25 | 2016-06-29 | 株式会社日本触媒 | 导电性微粒和树脂粒子以及使用了它们的各向异性导电材料 |
WO2013085039A1 (ja) * | 2011-12-08 | 2013-06-13 | 株式会社日本触媒 | 導電性微粒子及びそれを含む異方性導電材料 |
WO2013191760A1 (en) * | 2012-06-22 | 2013-12-27 | Dow Corning Corporation | Silver-loaded silicone particles and their silver-containing polymer composites |
WO2014088095A1 (ja) * | 2012-12-06 | 2014-06-12 | 積水化学工業株式会社 | 導電材料、接続構造体及び接続構造体の製造方法 |
CN104684970B (zh) * | 2013-01-24 | 2018-01-30 | 积水化学工业株式会社 | 基材粒子、导电性粒子、导电材料及连接结构体 |
JP2015065139A (ja) | 2013-08-28 | 2015-04-09 | 東洋紡株式会社 | 導電性ペースト |
JP6235952B2 (ja) * | 2014-03-28 | 2017-11-22 | 三菱マテリアル株式会社 | 導電性ペースト |
-
2016
- 2016-02-19 JP JP2016029460A patent/JP2017147163A/ja active Pending
- 2016-09-14 CN CN201680080320.XA patent/CN108604473B/zh active Active
- 2016-09-14 KR KR1020187025769A patent/KR20180114100A/ko not_active Application Discontinuation
- 2016-09-14 WO PCT/JP2016/077031 patent/WO2017141473A1/ja active Application Filing
- 2016-09-14 US US16/075,326 patent/US10573425B2/en active Active
- 2016-09-14 EP EP16890610.5A patent/EP3419027A4/en not_active Withdrawn
- 2016-09-30 TW TW105131709A patent/TWI712661B/zh active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004221006A (ja) * | 2003-01-17 | 2004-08-05 | Toyobo Co Ltd | 導電性ペースト |
JP2011233452A (ja) * | 2010-04-30 | 2011-11-17 | Namics Corp | 外部電極用導電性ペースト、及びそれを用いて形成した外部電極を備えた積層セラミック電子部品 |
JP2015199970A (ja) * | 2014-04-04 | 2015-11-12 | 三菱マテリアル電子化成株式会社 | 銀被覆球状樹脂粒子及びその製造方法並びに銀被覆球状樹脂粒子を用いた導電性組成物 |
WO2016114189A1 (ja) * | 2015-01-13 | 2016-07-21 | 三菱マテリアル電子化成株式会社 | 銀被覆樹脂粒子及びその製造方法並びにそれを用いた導電性ペースト |
Non-Patent Citations (1)
Title |
---|
See also references of EP3419027A4 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018159374A1 (ja) * | 2017-03-02 | 2018-09-07 | 東洋紡株式会社 | 導電性ペーストおよびそれを用いた伸縮性配線、伸縮性配線を有する衣服型電子機器 |
Also Published As
Publication number | Publication date |
---|---|
TW201800510A (zh) | 2018-01-01 |
TWI712661B (zh) | 2020-12-11 |
EP3419027A4 (en) | 2019-10-23 |
US20190043638A1 (en) | 2019-02-07 |
CN108604473B (zh) | 2020-11-27 |
US10573425B2 (en) | 2020-02-25 |
EP3419027A1 (en) | 2018-12-26 |
JP2017147163A (ja) | 2017-08-24 |
CN108604473A (zh) | 2018-09-28 |
KR20180114100A (ko) | 2018-10-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017141473A1 (ja) | 導電性ペースト及びこれを用いて形成された導電性膜 | |
EP2607520B1 (en) | Silver-coated spherical resin, method for producing same, anisotropically conductive adhesive containing silver-coated spherical resin, anisotropically conductive film containing silver-coated spherical resin, and conductive spacer containing silver-coated spherical resin | |
US9676947B2 (en) | Thermosetting conductive paste | |
EP3125254B1 (en) | Conductive paste | |
TWI713705B (zh) | 金屬奈米線油墨、透明導電基板及透明防帶電用基板 | |
EP3369781B1 (en) | Resin composition, bonded body and semiconductor device | |
JP5608501B2 (ja) | 導電パターン形成用ペースト組成物、導電パターン及びその形成方法 | |
JP2019056104A (ja) | 導電性組成物及びそれを用いた配線板 | |
KR102498131B1 (ko) | 은 피복 실리콘 고무 입자 및 이 입자를 함유하는 도전성 페이스트 그리고 이 도전성 페이스트를 사용한 도전막의 제조 방법 | |
JP6488156B2 (ja) | 導電性ペースト | |
JP2018080069A (ja) | 金属被覆粒子及び樹脂組成物 | |
JPWO2019026829A1 (ja) | 導電フィルムの製造方法、導電フィルム及び金属ナノワイヤインク | |
JP2018002916A (ja) | 導電性樹脂組成物 | |
WO2019155829A1 (ja) | 導電性ペースト、硬化物、導電性パターン、衣服及びストレッチャブルペースト | |
JP4466289B2 (ja) | 透明導電性微粒子分散液及び透明導電膜形成用塗布液 | |
EP4020499A1 (en) | Conductive paste composition comprising silver-coated copper nanowire with core-shell structure and conductive film comprising same | |
JP2016139506A (ja) | 銀被覆樹脂粒子及び該粒子を含有する導電性材料 | |
JP6512048B2 (ja) | 導電性樹脂組成物 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16890610 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1020187025769 Country of ref document: KR |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2016890610 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2016890610 Country of ref document: EP Effective date: 20180919 |