WO2017133362A1 - 高导通透明玻璃基电路板 - Google Patents

高导通透明玻璃基电路板 Download PDF

Info

Publication number
WO2017133362A1
WO2017133362A1 PCT/CN2016/113186 CN2016113186W WO2017133362A1 WO 2017133362 A1 WO2017133362 A1 WO 2017133362A1 CN 2016113186 W CN2016113186 W CN 2016113186W WO 2017133362 A1 WO2017133362 A1 WO 2017133362A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass substrate
conductive
powder
circuit board
tempered glass
Prior art date
Application number
PCT/CN2016/113186
Other languages
English (en)
French (fr)
Inventor
刘联家
盖庆亮
尤晓江
Original Assignee
武汉华尚绿能科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华尚绿能科技股份有限公司 filed Critical 武汉华尚绿能科技股份有限公司
Priority to EP16889168.7A priority Critical patent/EP3413693B1/en
Priority to US16/073,459 priority patent/US10512170B2/en
Publication of WO2017133362A1 publication Critical patent/WO2017133362A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • H05K3/381Improvement of the adhesion between the insulating substrate and the metal by special treatment of the substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0306Inorganic insulating substrates, e.g. ceramic, glass
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • H05K1/092Dispersed materials, e.g. conductive pastes or inks
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/11Printed elements for providing electric connections to or between printed circuits
    • H05K1/111Pads for surface mounting, e.g. lay-out
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/12Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns
    • H05K3/1283After-treatment of the printed patterns, e.g. sintering or curing methods
    • H05K3/1291Firing or sintering at relative high temperatures for patterns on inorganic boards, e.g. co-firing of circuits on green ceramic sheets
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4644Manufacturing multilayer circuits by building the multilayer layer by layer, i.e. build-up multilayer circuits
    • H05K3/4664Adding a circuit layer by thick film methods, e.g. printing techniques or by other techniques for making conductive patterns by using pastes, inks or powders
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0104Properties and characteristics in general
    • H05K2201/0108Transparent
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0137Materials
    • H05K2201/0175Inorganic, non-metallic layer, e.g. resist or dielectric for printed capacitor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/03Conductive materials
    • H05K2201/032Materials
    • H05K2201/0323Carbon
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/05Patterning and lithography; Masks; Details of resist
    • H05K2203/0502Patterning and lithography
    • H05K2203/0511Diffusion patterning
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/11Treatments characterised by their effect, e.g. heating, cooling, roughening
    • H05K2203/1126Firing, i.e. heating a powder or paste above the melting temperature of at least one of its constituents
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/11Treatments characterised by their effect, e.g. heating, cooling, roughening
    • H05K2203/1194Thermal treatment leading to a different chemical state of a material, e.g. annealing for stress-relief, aging

Definitions

  • the invention relates to a high-conductivity transparent glass-based circuit board, belonging to the field of electronic device manufacturing.
  • Conventional glass-based boards are fabricated using a coating etch process or a low temperature silver paste process.
  • the coating etching process is to coat a surface of a glass plate with a conductive paste, and an electric circuit is formed by etching.
  • the electronic circuit of the glass-based circuit board is bonded to the glass plate through an adhesive, because the glass molecules are free of any elements other than fluorine. Chemical reaction cannot occur, so this coating process is basically a spraying process, which is a bonding process of organic materials mixed with conductive metal particles.
  • the binder reduces the purity of the conductive paste, making the conductivity very poor, the best material. It is also only 1 ⁇ 10 -4 ⁇ , it is difficult to solder electronic components, and it is difficult to implement a functional circuit.
  • the low-temperature silver paste process is a screen printing low-temperature silver paste circuit on the surface of the glass plate, which is realized by a baking curing method within 200 ° C. This method cannot achieve high conductivity because the silver paste also contains a large amount of organic bonding materials. The conductivity is only 3 ⁇ 10 -5 ⁇ , and the electronic components are still difficult to solder and have poor adhesion. Due to the limitation of the process, the conventional glass-based circuit board has a poor connection between the glass plate and the conductive line, and the conductive line floats on the surface of the glass plate, and the surface of the entire glass-based circuit board is not smooth. The conductive lines are easily damaged and fall off, resulting in poor conduction capability.
  • the present invention provides a high-conductivity transparent glass-based circuit board in which a molten relationship between a glass substrate and a conductive line is closely related, and the surface of the glass substrate is flush with the upper surface of the conductive line.
  • the surface of the entire highly conductive transparent glass-based circuit board is smooth, the conductive line is not easily damaged, and the conduction capability is strong.
  • the technical solution adopted by the present invention to solve the technical problem thereof is to provide a highly conductive transparent glass-based circuit board, comprising a glass substrate, wherein the glass substrate is a tempered glass substrate, and the surface of the tempered glass substrate is provided by a conductive line printed on the air surface of the tempered glass substrate after being baked, heated, and cooled, and the conductive line is a graphene layer, or a graphene layer and a bottom layer a conductive layer composed of a molten metal layer of the glass substrate, and a contact surface between the graphene layer and the metal layer is mutually fused; the conductive line
  • the portion of the road surface other than the pad on which the component to be soldered is removed is covered with the PCB organic solder resist paint.
  • the surface of the tempered glass substrate is flush with the upper surface of the conductive line.
  • the conductive paste is composed of a conductive powder having a mass ratio of 65 to 75:3:5 to 10:10 to 20:1 to 3, a low-temperature glass powder, ethyl cellulose, terpineol, and dibutyl maleate.
  • the composition of the ester, wherein the conductive powder is graphene powder or a mixture of metal powder and graphene powder; if the conductive powder is a mixture of metal powder and graphene powder, the graphene powder accounts for 2% to 5% by mass of the conductive paste. .
  • the surface of the tempered glass substrate is provided with a conductive paste printed on the air surface of the tempered glass substrate, baked at a temperature of 120 to 150 ° C for 100 to 200 seconds, and then placed at a temperature of 550 to 600 ° C for 300 ⁇ . After 360 seconds, it was placed in a temperature environment of 710 to 730 ° C for 120 to 220 seconds, and finally cooled and then fused with the surface of the tempered glass substrate.
  • the glass substrate of the present invention has a molten relationship with the conductive line, is closely connected, has superconducting ability, and has a conductive impedance of less than 5 ⁇ 10 -8 ⁇ ;
  • the glass substrate of the present invention is in a molten relationship with the conductive line, and has no dielectric bonding, so that the circuit layer has good thermal conductivity in high-power applications, and the circuit layer and the glass substrate molecules are tightly fused, and SMD electronic components can be performed. Patch and the component is not easy to peel off;
  • the graphene content in the conductive paste of the present invention is small, only the mass percentage of the conductive paste is 2 ⁇ to 5%, but the molecular arrangement is extremely dense, light in weight, and can float on the surface of the metal molecule due to its It is more wear-resistant than metal and has high conductivity. Therefore, the conductive line finally formed can still ensure its high conductivity; the graphene is almost completely transparent, so the glass-based circuit board can ensure high transmittance and light transmittance. More than 90%;
  • the surface of the glass substrate of the present invention is flush with the upper surface of the conductive line, the surface of the entire highly conductive transparent glass-based circuit board is smooth, and the conductive line is not easily damaged;
  • the conductive circuit of the present invention can be twice covered with a PCB organic solder resist paint, which leaves the pad of the component to be soldered on the conductive line, can protect the circuit layer, prevent oxidation of the surface of the conductive line, and maintain superconductivity. .
  • Figure 1 is a schematic view showing the structure of a highly conductive transparent glass-based circuit board of the present invention.
  • Fig. 2 is a cross-sectional view taken along line AA of Fig. 1;
  • FIG 3 is a cross-sectional view of a highly conductive transparent glass-based circuit board covered with a PCB organic solder resist.
  • the present invention provides a highly conductive transparent glass-based circuit board comprising a glass substrate 1 having a surface provided with a conductive paste printed on the air surface of the glass substrate.
  • a conductive line 2 which is fused to the surface of the glass substrate after baking, heating and cooling, and the conductive line 2 is a graphene layer or a conductive layer composed of a graphene layer 5 of the surface layer and a metal layer 6 fused with the glass substrate of the bottom layer.
  • the contact faces between the graphene layer 5 and the metal layer 6 are mutually melted, and the surface of the glass substrate 1 is flush with the upper surface of the conductive line 2.
  • the conductive paste is composed of a conductive powder having a mass ratio of 65 to 75:3:5 to 10:10 to 20:1 to 3, a low-temperature glass powder, ethyl cellulose, terpineol, and dibutyl maleate.
  • the composition of the ester, wherein the conductive powder is graphene powder or a mixture of metal powder and graphene powder; if the conductive powder is a mixture of metal powder and graphene powder, the graphene powder accounts for 2% to 5% by mass of the conductive paste. ;
  • the surface of the tempered glass substrate is provided with a conductive paste printed on the air surface of the tempered glass substrate, baked at a temperature of 120 to 150 ° C for 100 to 200 seconds, and then placed at a temperature of 550 to 600 ° C for 300 ⁇ . After 360 seconds, it was placed in a temperature environment of 710 to 730 ° C for 120 to 220 seconds, and finally cooled and then fused with the surface of the tempered glass substrate.
  • the glass substrate is a tempered glass substrate.
  • the portion of the conductive wiring surface other than the pad 3 of the component to be soldered may be covered with the PCB organic solder resist 4.
  • the manufacturing process of the high-conductivity transparent glass-based circuit board of the present invention is as follows:
  • the conductive paste is made of a conductive powder having a mass ratio of 65 to 75:3:5 to 10:10 to 20:1 to 3, low-temperature glass powder, and B.
  • Base cellulose, terpineol and dibutyl maleate wherein the conductive powder is graphene powder or a mixture of metal powder and graphene powder; if the conductive powder is a mixture of metal powder and graphene powder, graphite
  • the olefin powder accounts for 2% to 5% by mass of the conductive paste;
  • the glass plate is placed in a temperature environment of 550 to 600 ° C for 300 to 360 seconds, and then placed in a temperature environment of 710 to 730 ° C for 120 to 220 seconds, and finally cooled to a normal temperature, at which time the conductive paste forms a conductive line. Distributed on the surface of the glass sheet and fused with the glass sheet, the conductive line becomes part of the glass sheet;
  • the colorless PCB organic solder resist paint is secondarily covered on the circuit layer by screen printing technology, so that all the portions of the circuit layer except the pads to be soldered are covered by the PCB organic solder resist.
  • the conductive paste is specially proportioned, wherein the conductive paste and the glass substrate are baked through the step (2) During the melting of step (3), the glass begins to soften at 500 ° C, and the surface molecules of the glass have begun to be active at 550 ° C. At this time, terpineol and dibutyl maleate in the conductive paste are in Volatilized at high temperature, the low-temperature glass powder has melted and the conductive powder is fused with the glass molecules whose glass surface is active. In this process, the glass molecules are not active at temperatures below 550 ° C. If the temperature is higher than 600 ° C, the glass is not active.
  • the board is easy to burst - after fusing in about five or six minutes, it melts into a high temperature around 720 °C.
  • the conductive powder molecules are also active and deeply fused with more active glass molecules. This process takes 2 to 4 minutes to complete - In this stage, the temperature should not be lower than 710 ° C or higher than 730 ° C to prevent excessive deformation of the final glass - the glass surface has been fully melted with the molecules of the conductive powder, the fusion is molecular level, and in the traditional process It has stronger bonding force than the adhesive, and the glass surface and the circuit layer surface can be integrated, making the entire glass-based circuit board smooth, suitable for various application fields. .
  • Step (3) The tempering process can be carried out during the fusion process.
  • the rapid cooling of the glass at high temperature can make the glass tempering, and the rapid cooling makes the conductive powder and the glass molecules which are fused together generate a negative tension and is more firmly combined, and the tempering process can be hidden.
  • the broken glass breaks, so that the quality glass is intact, the quality of the finished product is improved, and the glass-based circuit board is made stronger.
  • the metal particles in the conductive paste can be processed into a spherical, cubic or irregular polyhedron, wherein the particles are arranged neatly after being processed into a cube, which is particularly advantageous for electrical conductivity; although the graphene in the conductive paste is small, only the conductive paste is occupied.
  • the mass percentage is 2 ⁇ 5%, but its molecular arrangement is extremely dense, light in weight, and can float on the surface of metal molecules. Because it is more wear resistant than metal and has high conductivity, the resulting conductive line can still ensure its high conductivity.
  • the pass rate; the graphene is almost completely transparent, so the glass-based circuit board produced can ensure high light transmittance.
  • the secondary covering can protect the circuit layer and prevent the metal surface from being oxidized; the traditional process is the covering process of the material surface, or the bonding process (including sintering, coating, etc.), the secondary covering combines the material with the material, and the intermolecular interaction Penetration, so that the two materials can not be peeled off, the combination is firm, the surface of the entire glass-based circuit board is still a smooth surface after the secondary coverage, and the reserved pads can be used for later soldering of electronic components.
  • the high-conductivity transparent glass-based circuit board has a light transmittance of more than 90%, has superconductivity, and has a conductive impedance of less than 5 ⁇ 10 -8 ⁇ , and is made of a conductive film and glass in a highly conductive transparent glass-based circuit board.
  • the board has no dielectric bonding, so that the circuit layer has good thermal conductivity in high-power applications, and the circuit layer and the glass substrate molecules are tightly fused, and the SMD electronic component patch can be performed and the components are not easily peeled off.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Dispersion Chemistry (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)
  • Surface Treatment Of Glass (AREA)
  • Non-Metallic Protective Coatings For Printed Circuits (AREA)

Abstract

提供一种高导通透明玻璃基电路板,包括玻璃基板(1),玻璃基板(1)为钢化玻璃基板,钢化玻璃基板的表面设有由印刷于钢化玻璃基板空气面的导电浆料在烘烤、加热和冷却后与钢化玻璃基板表面熔融的导电线路(2),钢化玻璃基板的表面与导电线路(2)的上表面平齐;导电线路(2)表面除去待焊接元件的焊盘(3)以外的部分覆盖有PCB有机阻焊漆(4)。该高导通透明玻璃基电路板中玻璃基板(1)与导电线路(2)之间为熔融关系,联系紧密,且玻璃基板(1)的表面与导电线路(2)上表面平齐,整个高导通透明玻璃基电路板的表面平滑,导电线路(2)不易损坏,导通能力强。

Description

高导通透明玻璃基电路板 技术领域
本发明涉及一种高导通透明玻璃基电路板,属于电子器件制作领域。
背景技术
电子产业作为国民支柱行业,近年来的发展日新月异,特别是以轻、薄、短、小为发展趋势的终端产品,对其基础产业——印制线路板行业,提出了高密度、小体积、高导电性等更高要求。线路板技术在这种背景下迅速发展壮大,而各个弱电领域的行业,如电脑及周边辅助系统、医疗器械、手机、数码(摄)像机、通讯器材、精密仪器、航空航天等,都对印制线路板的工艺及品质提出了许多具体而明确的技术规范。
传统的玻璃基电路板利用镀膜蚀刻工艺或低温银浆工艺制作。镀膜蚀刻工艺是在玻璃板表面镀一层导电浆,用蚀刻法制作电路,这种玻璃基电路板的电子线路通过粘合剂与玻璃板结合,由于玻璃分子除了与氟元素以外的任何元素都无法发生化学反应,所以这种镀膜工艺基本是一种喷涂工艺,是混合了导电金属颗粒的有机材料粘接过程,粘合剂使导电浆的纯度下降,使导电能力非常差,最好的材料也只有1×10-4Ω,难以焊接电子元件,也很难实现功能电路。而低温银浆工艺是在玻璃板表面丝印低温银浆电路,通过在200℃以内的烘烤固化方法实现,此方法由于银浆中还含有大量的有机粘接材料而无法达到高导能力,其导电能力只能达到3×10-5Ω,电子元件依然难以焊接,附着力差。上述传统玻璃基电路板由于其工艺限制,所制成的玻璃基电路板中,玻璃板和导电线路之间联系不紧密,导电线路浮于玻璃板表面,整个玻璃基电路板的表面不平滑,导电线路易损坏脱落,最终导致导通能力差。
发明内容
为了解决现有技术的不足,本发明提供了一种高导通透明玻璃基电路板,玻璃基板与导电线路之间为熔融关系,联系紧密,且玻璃基板的表面与导电线路上表面平齐,整个高导通透明玻璃基电路板的表面平滑,导电线路不易损坏,导通能力强。
本发明为解决其技术问题所采用的技术方案是:提供了一种高导通透明玻璃基电路板,包括玻璃基板,所述玻璃基板为钢化玻璃基板,所述钢化玻璃基板的表面设有由印刷于钢化玻璃基板空气面的导电浆料在烘烤、加热和冷却后与钢化玻璃基板表面熔融的导电线路,所述导电线路为石墨烯层,或者为由表层的石墨烯层和底层的与玻璃基板熔融的金属层构成的导电层,且石墨烯层与金属层之间的接触面相互熔融;所述导电线 路表面除去待焊接元件的焊盘以外的部分覆盖有PCB有机阻焊漆。
所述钢化玻璃基板的表面与导电线路的上表面平齐。
所述导电浆料由质量比为65~75:3:5~10:10~20:1~3的导电粉、低温玻璃粉、乙基纤维素、松油醇以及顺丁烯二酸二丁酯组成,其中导电粉为石墨烯粉或者金属粉与石墨烯粉的混合物;若导电粉为金属粉与石墨烯粉的混合物,则石墨烯粉占导电浆料的质量百分比为2‰~5%。
所述钢化玻璃基板的表面设有由印刷于钢化玻璃基板空气面的导电浆料在在120~150℃的温度下烘烤100~200秒后、再置于550~600℃温度环境中300~360秒、然后置于710~730℃温度环境中维持120~220秒、最后冷却后与钢化玻璃基板表面熔融的导电线路。
本发明基于其技术方案所具有的有益效果在于:
(1)本发明的玻璃基板与导电线路之间为熔融关系,联系紧密,具有超导电能力,导电阻抗低于5×10-8Ω;
(2)本发明的玻璃基板与导电线路之间为熔融关系,无介质结合,使电路层在大功率应用时具有良好的导热能力,并且电路层与玻璃基板分子紧密熔合,可进行SMD电子元件贴片且元件不易剥落;
(3)本发明的导电浆料中石墨烯虽然含量少,仅占导电浆料的质量百分比为2‰~5%,但其分子排列极其致密,质量轻,能够浮于金属分子表面,由于其比金属耐磨且导电率高,因此最终形成的导电线路仍能保证其高导通率;石墨烯几乎是完全透明的,所以制作出来的玻璃基电路板能保证高透光率,透光率超过90%;
(4)本发明的玻璃基板的表面与导电线路上表面平齐,整个高导通透明玻璃基电路板的表面平滑,导电线路不易损坏;
(5)本发明的导电线路可二次覆盖有PCB有机阻焊漆,其将导电线路上待焊接元件的焊盘留出,可以对电路层进行保护,防止导电线路表面氧化,维持超导电能力。
附图说明
图1是本发明的高导通透明玻璃基电路板的结构示意图。
图2是图1的AA向剖视图。
图3是覆盖有PCB有机阻焊漆的高导通透明玻璃基电路板的剖视图。
图中:1-玻璃基板,2-导电线路,3-焊盘,4-PCB有机阻焊漆,5-石墨烯层,6-金属层。
具体实施方式
下面结合附图和实施例对本发明作进一步说明。
参照图1和图2,本发明提供了提供了一种高导通透明玻璃基电路板,包括玻璃基板1,所述玻璃基板的表面设有由印刷于玻璃基板空气面的导电浆料在烘烤、加热和冷却后与玻璃基板表面熔融的导电线路2,所述导电线路2为石墨烯层,或者为由表层的石墨烯层5和底层的与玻璃基板熔融的金属层6构成的导电层,且石墨烯层5与金属层6之间的接触面相互熔融,所述玻璃基板1的表面与导电线路2的上表面平齐。
所述导电浆料由质量比为65~75:3:5~10:10~20:1~3的导电粉、低温玻璃粉、乙基纤维素、松油醇以及顺丁烯二酸二丁酯组成,其中导电粉为石墨烯粉或者金属粉与石墨烯粉的混合物;若导电粉为金属粉与石墨烯粉的混合物,则石墨烯粉占导电浆料的质量百分比为2‰~5%;
所述钢化玻璃基板的表面设有由印刷于钢化玻璃基板空气面的导电浆料在在120~150℃的温度下烘烤100~200秒后、再置于550~600℃温度环境中300~360秒、然后置于710~730℃温度环境中维持120~220秒、最后冷却后与钢化玻璃基板表面熔融的导电线路。
所述玻璃基板为钢化玻璃基板。
参照图3,所述导电线路表面除去待焊接元件的焊盘3以外的部分可以覆盖有PCB有机阻焊漆4。
本发明的高导通透明玻璃基电路板制作工艺如下:
(1)将导电浆料印刷在玻璃板的空气面;所述导电浆料由质量比为65~75:3:5~10:10~20:1~3的导电粉、低温玻璃粉、乙基纤维素、松油醇以及顺丁烯二酸二丁酯组成,其中导电粉为石墨烯粉或者金属粉与石墨烯粉的混合物;若导电粉为金属粉与石墨烯粉的混合物,则石墨烯粉占导电浆料的质量百分比为2‰~5%;
(2)将覆盖有导电浆料的玻璃基板在120~150℃的温度下烘烤100~200秒;
(3)将玻璃板置于550~600℃温度环境中300~360秒,然后置于710~730℃温度环境中维持120~220秒,最后冷却至常温,则此时导电浆料形成导电线路分布于玻璃板的表面且与玻璃板熔融,导电线路成为玻璃板的一部分;
(4)利用丝网印刷技术将无色PCB有机阻焊漆在电路层上进行二次覆盖,使电路层中除去待焊接元件的焊盘以外的部分全部被PCB有机阻焊漆覆盖。
其中,导电浆料经过特殊配比,其中导电浆料与玻璃基板经过步骤(2)的烘烤和 步骤(3)的熔融过程中,玻璃在500℃时开始软化,550℃时玻璃表面分子已开始处于活跃状态,此时导电浆料中的松油醇及顺丁烯二酸二丁酯都在高温下挥发,低温玻璃粉已经融化并带着导电粉与玻璃表面处于活跃状态的玻璃分子进行熔合——这一过程中温度低于550℃则玻璃分子还不活跃,若高于600℃则玻璃板易炸裂——通过五六分钟左右的熔合后进入720℃左右高温熔合,此时导电粉分子也开始活跃,并与更加活跃的玻璃分子进行深入熔合,此过程需2至4分钟完成——这一阶段中温度不宜低于710℃或高于730℃以防止最终玻璃变形过度——此时玻璃表面已与导电粉的分子充分熔合成为一体,这种熔合是分子级的,与传统工艺中利用粘合剂相比具有更强的结合力,并且玻璃表面与电路层表面能够成为一个整体,使整个玻璃基电路板光滑,适用于多种应用场合。
步骤(3)熔合过程中可以进行钢化过程,玻璃在高温时迅速冷却能够使玻璃钢化,快速冷却使融合在一起的导电粉与玻璃分子产生负张力而结合更加牢固,钢化的过程可使有隐伤的玻璃破裂,使优质的玻璃完好,提高成品的品质,同时让玻璃基电路板更结实。
导电浆料中的金属颗粒可以加工打磨为球形、立方体或不规则多面体,其中加工为立方体后颗粒排列整齐,尤其有利于导电性;导电浆料中的石墨烯虽然含量少,仅占导电浆料的质量百分比为2‰~5%,但其分子排列极其致密,质量轻,能够浮于金属分子表面,由于其比金属耐磨且导电率高,因此最终形成的导电线路仍能保证其高导通率;石墨烯几乎是完全透明的,所以制作出来的玻璃基电路板能保证高透光率。
二次覆盖可以对电路层进行保护,防止金属表面氧化;传统的工艺都是材料表面的覆盖工艺,或粘接工艺(包括烧结、镀膜等),二次覆盖使材料与材料结合,分子间互相渗透,因此实现了两种材料无法剥落,结合牢固,二次覆盖后整个玻璃基电路板的表面仍然为一个平滑表面,预留的焊盘可以用于后期焊接电子元件。
制成的高导通透明玻璃基电路板透光率超过90%,具有超导电能力,导电阻抗低于5×10-8Ω,制成的高导通透明玻璃基电路板中导电线路和玻璃板无介质结合,使电路层在大功率应用时具有良好的导热能力,并且电路层与玻璃基板分子紧密熔合,可进行SMD电子元件贴片且元件不易剥落。

Claims (3)

  1. 一种高导通透明玻璃基电路板,包括玻璃基板,其特征在于:所述玻璃基板为钢化玻璃基板,所述钢化玻璃基板的表面设有由印刷于钢化玻璃基板空气面的导电浆料在烘烤、加热和冷却后与钢化玻璃基板表面熔融的导电线路,所述导电线路为石墨烯层,或者为由表层的石墨烯层和底层的与玻璃基板熔融的金属层构成的导电层,且石墨烯层与金属层之间的接触面相互熔融;所述导电线路表面除去待焊接元件的焊盘以外的部分覆盖有PCB有机阻焊漆,所述导电浆料由质量比为65~75:3:5~10:10~20:1~3的导电粉、低温玻璃粉、乙基纤维素、松油醇以及顺丁烯二酸二丁酯组成,其中导电粉为石墨烯粉或者金属粉与石墨烯粉的混合物;若导电粉为金属粉与石墨烯粉的混合物,则石墨烯粉占导电浆料的质量百分比为2‰~5%。
  2. 根据权利要求1所述的高导通透明玻璃基电路板,其特征在于:所述钢化玻璃基板的表面与导电线路的上表面平齐。
  3. 根据权利要求1所述的高导通透明玻璃基电路板,其特征在于:所述钢化玻璃基板的表面设有由印刷于钢化玻璃基板空气面的导电浆料在在120~150℃的温度下烘烤100~200秒后、再置于550~600℃温度环境中300~360秒、然后置于710~730℃温度环境中维持120~220秒、最后冷却后与钢化玻璃基板表面熔融的导电线路。
PCT/CN2016/113186 2016-02-03 2016-12-29 高导通透明玻璃基电路板 WO2017133362A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP16889168.7A EP3413693B1 (en) 2016-02-03 2016-12-29 Highly conductive transparent glass-based circuit board
US16/073,459 US10512170B2 (en) 2016-02-03 2016-12-29 Highly conductive transparent glass-based circuit board

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610076820.8 2016-02-03
CN201610076820.8A CN105555023B (zh) 2016-02-03 2016-02-03 高导通透明玻璃基电路板

Publications (1)

Publication Number Publication Date
WO2017133362A1 true WO2017133362A1 (zh) 2017-08-10

Family

ID=55833878

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/113186 WO2017133362A1 (zh) 2016-02-03 2016-12-29 高导通透明玻璃基电路板

Country Status (4)

Country Link
US (1) US10512170B2 (zh)
EP (1) EP3413693B1 (zh)
CN (1) CN105555023B (zh)
WO (1) WO2017133362A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115637428A (zh) * 2022-10-28 2023-01-24 东莞仁海科技股份有限公司 玻璃基pcb板制备工艺

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105555023B (zh) * 2016-02-03 2016-11-09 武汉华尚绿能科技股份有限公司 高导通透明玻璃基电路板
CN107492528A (zh) * 2016-06-13 2017-12-19 恩智浦美国有限公司 具有石墨烯条带的柔性半导体装置
CN106304623B (zh) * 2016-08-18 2018-04-17 武汉华尚绿能科技股份有限公司 一种透明玻璃基双层电路板
CN106097913A (zh) * 2016-08-18 2016-11-09 武汉华尚绿能科技股份有限公司 一种透明玻璃基显示屏及其制备工艺
CN108541135B (zh) * 2018-04-11 2019-08-27 重庆市中光电显示技术有限公司 耐腐蚀高导电的铜基导电线路及其成型工艺
CN109982516A (zh) * 2019-03-15 2019-07-05 广东石油化工学院 真空烧结沉淀分离玻璃基板电路板及其制备方法
CN111613709A (zh) * 2020-05-27 2020-09-01 深圳市华星光电半导体显示技术有限公司 迷你发光二极管背光模组、其制作方法及显示装置
CN112908200B (zh) * 2021-04-13 2023-05-09 珠海华萃科技有限公司 柔性透明led显示屏制作工艺
CN113594340A (zh) * 2021-07-30 2021-11-02 巨晶(广东)新材料科技有限公司 一种灯珠焊盘与玻璃屏的电性连接工艺
CN113873788A (zh) * 2021-10-09 2021-12-31 深圳市百柔新材料技术有限公司 一种多层玻璃基板的制备方法、玻璃基板及Mini-LED玻璃基板
CN114716158A (zh) * 2022-02-22 2022-07-08 上海沚明电子材料有限公司 导电玻璃基板及其制备方法、玻璃显示装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030174273A1 (en) * 2002-03-13 2003-09-18 Takashi Matsui Liquid crystal display device and the manufacturing method thereof
CN203149521U (zh) * 2013-03-01 2013-08-21 南昌欧菲光科技有限公司 导电玻璃基板
CN105047255A (zh) * 2015-07-30 2015-11-11 江苏泓源光电科技股份有限公司 一种含高分散石墨烯的晶硅太阳能电池铝浆及其制备方法
CN105555023A (zh) * 2016-02-03 2016-05-04 武汉华尚绿能科技股份有限公司 高导通透明玻璃基电路板
CN205430773U (zh) * 2016-02-03 2016-08-03 武汉华尚绿能科技股份有限公司 一种高导通透明玻璃基电路板

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101330088A (zh) * 2007-06-21 2008-12-24 精材科技股份有限公司 集成电路封装体及其制作方法
JP2009135388A (ja) * 2007-10-30 2009-06-18 Hitachi Chem Co Ltd 回路接続方法
CN202514157U (zh) * 2012-03-28 2012-10-31 成都多吉昌新材料有限公司 一种环保led软灯条线路板结构
CN103508759B (zh) * 2012-06-26 2015-04-22 比亚迪股份有限公司 一种大功率led底座的制备方法和大功率led底座
CN102760934B (zh) * 2012-07-26 2015-08-05 深圳市圣龙特电子有限公司 厚膜电路用导体浆料、应用该浆料的厚膜电路板及其制造方法
WO2016012753A1 (en) * 2014-07-22 2016-01-28 Alpha Metals, Inc. Stretchable interconnects for flexible electronic surfaces
CN104464883B (zh) * 2014-12-26 2017-02-22 苏州格瑞丰纳米科技有限公司 表面吸附分散剂的石墨烯导电浆料、其制备方法及应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030174273A1 (en) * 2002-03-13 2003-09-18 Takashi Matsui Liquid crystal display device and the manufacturing method thereof
CN203149521U (zh) * 2013-03-01 2013-08-21 南昌欧菲光科技有限公司 导电玻璃基板
CN105047255A (zh) * 2015-07-30 2015-11-11 江苏泓源光电科技股份有限公司 一种含高分散石墨烯的晶硅太阳能电池铝浆及其制备方法
CN105555023A (zh) * 2016-02-03 2016-05-04 武汉华尚绿能科技股份有限公司 高导通透明玻璃基电路板
CN205430773U (zh) * 2016-02-03 2016-08-03 武汉华尚绿能科技股份有限公司 一种高导通透明玻璃基电路板

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3413693A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115637428A (zh) * 2022-10-28 2023-01-24 东莞仁海科技股份有限公司 玻璃基pcb板制备工艺

Also Published As

Publication number Publication date
US10512170B2 (en) 2019-12-17
CN105555023B (zh) 2016-11-09
EP3413693B1 (en) 2022-03-16
CN105555023A (zh) 2016-05-04
US20190327839A1 (en) 2019-10-24
EP3413693A1 (en) 2018-12-12
EP3413693A4 (en) 2019-10-16

Similar Documents

Publication Publication Date Title
WO2017133362A1 (zh) 高导通透明玻璃基电路板
CN106231819B (zh) 一种透明玻璃基双层电路板的制备方法
WO2010134734A2 (ko) 기판 표면 실장용 도전성 접촉 단자
CN105682346A (zh) 高导通透明玻璃基电路板制作工艺
TW201509257A (zh) 軟性電路板及其製作方法
KR101796452B1 (ko) 연성인쇄회로기판 및 그 제조 방법
CN113793718B (zh) 一种薄膜电极及其制备方法和应用
WO2017133622A1 (zh) 高导通高电压太阳能光电玻璃板
WO2017133613A1 (zh) 高导通夹胶透明玻璃
CN205430773U (zh) 一种高导通透明玻璃基电路板
CN205421632U (zh) 一种高导通透明中空光电玻璃幕墙
JPH06283225A (ja) 三層構造異方性導電膜部材の製造方法
CN205388972U (zh) 一种高导通高电压太阳能光电玻璃板
CN105419674A (zh) 一种漂浮式全方位导电胶膜
CN217405124U (zh) 新型异方性导电膜
CN105720133B (zh) 高导通高电压太阳能光电玻璃板制作工艺
CN205546183U (zh) 一种高导通夹胶透明玻璃
JP3505321B2 (ja) 導電性微粒子及び基板
CN114927257A (zh) 一种玻璃基板专用导电浆料及其制备方法
JPH03105802A (ja) 異方性導電膜
JPH08235999A (ja) チップ型電流保護素子およびその製造法
JP2017175088A (ja) プリント配線板、及びプリント配線板の製造方法
JP2003272445A (ja) 導電性粒子及びこの導電粒子を用いた接続部材
JPH04370998A (ja) 多層回路基板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16889168

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016889168

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016889168

Country of ref document: EP

Effective date: 20180903