WO2017131209A1 - 分離膜 - Google Patents

分離膜 Download PDF

Info

Publication number
WO2017131209A1
WO2017131209A1 PCT/JP2017/003060 JP2017003060W WO2017131209A1 WO 2017131209 A1 WO2017131209 A1 WO 2017131209A1 JP 2017003060 W JP2017003060 W JP 2017003060W WO 2017131209 A1 WO2017131209 A1 WO 2017131209A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
membrane
separation membrane
layer
hollow fiber
Prior art date
Application number
PCT/JP2017/003060
Other languages
English (en)
French (fr)
Inventor
山村 剛平
皓一 高田
洋樹 富岡
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to KR1020187021441A priority Critical patent/KR102525347B1/ko
Priority to CN201780008628.8A priority patent/CN108602024B/zh
Priority to US16/073,531 priority patent/US10799837B2/en
Priority to EP17744439.5A priority patent/EP3409346A4/en
Priority to JP2017513007A priority patent/JP6763374B2/ja
Publication of WO2017131209A1 publication Critical patent/WO2017131209A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/08Hollow fibre membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0009Organic membrane manufacture by phase separation, sol-gel transition, evaporation or solvent quenching
    • B01D67/0011Casting solutions therefor
    • B01D67/00111Polymer pretreatment in the casting solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0009Organic membrane manufacture by phase separation, sol-gel transition, evaporation or solvent quenching
    • B01D67/0013Casting processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0023Organic membrane manufacture by inducing porosity into non porous precursor membranes
    • B01D67/003Organic membrane manufacture by inducing porosity into non porous precursor membranes by selective elimination of components, e.g. by leaching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/08Hollow fibre membranes
    • B01D69/085Details relating to the spinneret
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/08Hollow fibre membranes
    • B01D69/087Details relating to the spinning process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/1213Laminated layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/15Use of additives
    • B01D2323/20Plasticizers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/15Use of additives
    • B01D2323/218Additive materials
    • B01D2323/2182Organic additives
    • B01D2323/21839Polymeric additives
    • B01D2323/2185Polyethylene glycol
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/15Use of additives
    • B01D2323/218Additive materials
    • B01D2323/2182Organic additives
    • B01D2323/21839Polymeric additives
    • B01D2323/2187Polyvinylpyrolidone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/02Details relating to pores or porosity of the membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/02Details relating to pores or porosity of the membranes
    • B01D2325/022Asymmetric membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/02Details relating to pores or porosity of the membranes
    • B01D2325/022Asymmetric membranes
    • B01D2325/023Dense layer within the membrane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/02Details relating to pores or porosity of the membranes
    • B01D2325/0283Pore size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/02Details relating to pores or porosity of the membranes
    • B01D2325/0283Pore size
    • B01D2325/02831Pore size less than 1 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/04Characteristic thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/20Specific permeability or cut-off range
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/24Mechanical properties, e.g. strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/025Reverse osmosis; Hyperfiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/08Polysaccharides
    • B01D71/12Cellulose derivatives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/48Polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/56Polyamides, e.g. polyester-amides

Definitions

  • the present invention relates to a separation membrane that is excellent in permeation performance and separation performance and has few defects.
  • Separation membrane removes turbidity and ions from rivers, seawater and sewage wastewater, water treatment membrane to produce industrial water and drinking water, medical membranes such as artificial kidney and plasma separation, food concentrate such as fruit juice It is used in a wide range of fields such as membranes for beverage industry and gas separation membranes for separating carbon dioxide and the like.
  • a membrane for water treatment called a reverse osmosis membrane is particularly promising as a means for producing pure water from seawater or brackish water because ions can be removed.
  • conventionally used techniques include an interfacial polymerization method and a non-solvent phase separation method.
  • a porous support is brought into contact with an aqueous amine solution and then brought into contact with a hexane solution of trimesic acid chloride, whereby the surface of the porous support is made of a polyamide polymer thin film.
  • a technique for obtaining a hollow fiber type composite semipermeable membrane formed by coating with a resin is disclosed.
  • Patent Document 2 a solution obtained by mixing N-methyl-2-pyrrolidone, ethylene glycol, and benzoic acid with a cellulose triacetate is discharged from a nozzle, and N-methyl-2-pyrrolidone is used.
  • a technique for obtaining a hollow fiber type semipermeable membrane by immersing in a coagulation bath comprising / ethylene glycol / water and causing phase separation is disclosed.
  • the separation membrane obtained by the techniques described in Patent Document 1 and Patent Document 2 described above can achieve a certain permeation performance and separation performance, but is insufficient in terms of suppressing the occurrence of defects.
  • an object of the present invention is to realize a separation membrane that is excellent in permeation performance and separation performance and has few defects.
  • the present invention is as follows. 1. Having a layer (I) with a thickness of 0.5 to 100 ⁇ m, In the cross section in the thickness direction of the layer (I), a region a having a depth of 50 to 150 nm from the surface (A surface) is a region a, a region having a depth of 50 to 150 nm from the other surface (B surface) is a region b, When a region having a thickness of 100 nm and the same depth from the surface is defined as region c, the average pore diameter Pa of region a and the average pore size Pb of region b are both 0.3 nm to 3.0 nm, and the average of region c The pore diameter Pc is 3.0 nm or less, A separation membrane in which the hole area ratio Ha in the region a, the hole area ratio Hb in the region b, and the hole area ratio Hc in the region c satisfy the following expressions.
  • a separation membrane that is excellent in permeation performance and separation performance and has few defects is provided.
  • the separation membrane of the present invention can be preferably used for applications that require permeation performance, separation performance, and suppression of defects.
  • water treatment membranes for producing industrial water, drinking water, etc. from seawater, brine, sewage, and drainage, medical membranes such as artificial kidneys and plasma separation, food and beverages such as fruit juice concentration It can be used for industrial membranes, gas separation membranes for separating exhaust gas, carbon dioxide gas, etc., and membranes for electronic industries such as fuel cell separators.
  • the water treatment membrane can be preferably used for microfiltration membranes, ultrafiltration membranes, nanofiltration membranes, reverse osmosis membranes, and forward osmosis membranes.
  • FIG. 1 is a view showing a cross section of the separation membrane of the present invention.
  • FIG. 2 is a cross-sectional view of an example of a spinneret discharge portion in the method for producing a hollow fiber membrane of the present invention.
  • Separation membrane (1) Layer (I) The separation membrane of the present invention has a layer (I) having a thickness of 0.5 to 100 ⁇ m.
  • the layer (I) is a layer indicated by reference numeral “1” in FIG.
  • Layer (I) has regions a, b and c in the cross section in the thickness direction.
  • the region a is a region having a depth of 50 to 150 nm from one surface (A surface) 2 of the layer (I).
  • the region b is a region having a depth of 50 to 150 nm from the other surface (B surface) 3 of the layer (I).
  • the region c is a region having a thickness of 100 nm in which the depths from both surfaces, that is, the A surface 2 and the B surface 3 are the same.
  • the region c is a region having a width of 100 nm centered on the bisector of the thickness of the layer (I) in the cross section of the layer (I).
  • the average pore diameter Pa of the region a and the average pore diameter Pb of the region b are both 0.3 nm or more and 3.0 nm or less, and the average pore diameter Pc of the region c is 3.0 nm or less.
  • the hole area ratio Ha in the area a11, the hole area ratio Hb in the area b12, and the hole area ratio Hc in the area c13 satisfy the following expressions. 2Hc ⁇ Ha 2Hc ⁇ Hb
  • the thickness of the layer (I) is 0.5 to 100 ⁇ m.
  • the thickness of the layer (I) is less than 0.5 ⁇ m, defects are likely to occur in the membrane, resulting in insufficient separation performance.
  • the thickness of layer (I) exceeds 100 micrometers, permeation
  • transmission performance will become inadequate.
  • the thickness of the layer (I) is preferably 0.5 to 50 ⁇ m, more preferably 0.5 to 30 ⁇ m, still more preferably 0.5 to 20 ⁇ m, and 0.5 to 10 ⁇ m. Is particularly preferred.
  • the thicknesses of the regions a, b and c are all 100 nm.
  • Pa and Pb are preferably 0.4 nm or more, more preferably 0.5 nm or more, further preferably 0.6 nm or more, and particularly preferably 0.7 nm or more.
  • Pa and Pb are preferably 2.5 nm or less, more preferably 2.0 nm or less, further preferably 1.5 nm or less, and particularly preferably 1.3 nm or less.
  • the average pore diameter Pc of the region c in the layer (I) is 3.0 nm or less. When Pc exceeds 3.0 nm, the separation performance becomes insufficient.
  • Pc is preferably 2.5 nm or less, more preferably 2.0 nm or less, further preferably 1.5 nm or less, and particularly preferably 1.3 nm or less.
  • the opening ratio Ha of the region a, the opening rate Hb of the region b, and the opening rate Hc of the region c satisfy the following expressions.
  • the method for obtaining the open area ratio will be described in detail in Examples. 2Hc ⁇ Ha 2Hc ⁇ Hb If this equation is not satisfied, it is difficult to achieve both permeation performance and separation performance, and the occurrence of defects cannot be suppressed.
  • the open area ratios Ha, Hb and Hc preferably satisfy at least one of 3Hc ⁇ Ha or 3Hc ⁇ Hb, More preferably, at least one of 5Hc ⁇ Ha or 5Hc ⁇ Hb is satisfied, More preferably, at least one of 10Hc ⁇ Ha or 10Hc ⁇ Hb is satisfied.
  • the open area ratio Ha and the open area ratio Hb is 2% or more and 80% or less. It is more preferable that the opening ratio Ha and the opening ratio Hb are both 2% or more and 80% or less. When the hole area ratio Ha and the hole area ratio Hb are within these ranges, both permeation performance and separation performance can be achieved.
  • the hole area ratio Ha and the hole area ratio Hb are each preferably 5% or more, more preferably 7% or more, and particularly preferably 10% or more. Further, each of the hole area ratio Ha and the hole area ratio Hb is more preferably 65% or less, further preferably 45% or less, and particularly preferably 30% or less.
  • the open area ratio Hc is preferably 40% or less. When the open area ratio Hc is in the above range, both permeation performance and separation performance can be satisfied.
  • the porosity Hc is more preferably 30% or less, further preferably 20% or less, still more preferably 10% or less, and particularly preferably 5% or less.
  • Constituent Material (1-5-1) Main Component Resin
  • the main component resin constituting the layer (I) for example, polyolefin, polyacrylonitrile, polyvinyl compound, polycarbonate, poly (meth) acrylate , Polysulfone, polyethersulfone, polyamide, polyester, and cellulose ester.
  • the layer (I) preferably contains at least one selected from the group consisting of polyamide, polyester, and cellulose ester.
  • the “main component” refers to a component whose content in the composition is 50% by weight or more. This content is preferably 70% by weight or more, and more preferably 90% by weight or more. That is, the layer (I) contains 50% by weight or more of the resin as the main component.
  • polyamides include ring-opening polymerization of various lactams, polycondensation of various diamines and various dicarboxylic acids, and various polyamides obtained by polycondensation of various aminocarboxylic acids, or ring-opening polymerization of these. Examples thereof include copolymer polyamides combined with polycondensation.
  • polyamides and copolymerized polyamides examples include nylon 6, nylon 66, nylon 11, nylon 12, nylon 6/12 copolymer (copolymer of ⁇ -caprolactam and laurolactam), and nylon 6/66. And copolymers (copolymers of ⁇ -caprolactam and hexamethylenediamine / adipic acid nylon salt). Also, two or more kinds of these polyamides can be mixed and used.
  • polyester examples include an aromatic polyester composed of an aromatic dicarboxylic acid part and a glycol part, an aliphatic polyester composed of an aliphatic dicarboxylic acid and a glycol part, a polyester composed of a hydroxycarboxylic acid, and a copolymer thereof. Can be mentioned.
  • aromatic dicarboxylic acid examples include terephthalic acid, isophthalic acid, naphthalenedicarboxylic acid, and the like.
  • glycols include ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, and the like.
  • hydroxycarboxylic acid examples include glycolic acid, lactic acid, hydroxypropionic acid, hydroxybutyric acid, hydroxyvaleric acid, hydroxycaproic acid, and hydroxybenzoic acid.
  • Polyester can also be copolymerized within a range that does not greatly change its properties.
  • the copolymer component include 5- (alkali metal) sulfoisophthalic acid such as 5-sodium sulfoisophthalic acid, and polyvalent carboxylic acids other than the above-mentioned aromatic dicarboxylic acids. Two or more of these polyesters can be mixed and used.
  • cellulose ester examples include, for example, cellulose acetate, cellulose propionate, cellulose butyrate, mixed cellulose ester in which three hydroxyl groups present in the glucose unit of cellulose are blocked with two or more acyl groups, and derivatives thereof. Etc.
  • cellulose mixed ester examples include cellulose acetate propionate, cellulose acetate butyrate, cellulose acetate laurate, cellulose acetate oleate, and cellulose acetate stearate. Further, two or more kinds of these cellulose esters can be mixed and used.
  • the separation membrane of the present invention may contain a plasticizer.
  • the plasticizer is not particularly limited as long as it is a compound that thermoplasticizes the main component resin. Moreover, not only one type of plasticizer but also two or more types of plasticizers may be used in combination.
  • plasticizer examples include phthalate esters such as diethyl phthalate, aliphatic dibasic acid esters such as di-1-butyl adipate, phosphate esters such as diphenyl-2-ethylhexyl phosphate, Hydroxy polycarboxylic acid esters such as tributyl acetylcitrate, fatty acid esters such as methyl acetylricinoleate, polyhydric alcohol esters such as glycerin triacetate, polyalkylene glycols such as polyethylene glycol, caprolactone compounds, and the like Derivatives and the like.
  • phthalate esters such as diethyl phthalate
  • aliphatic dibasic acid esters such as di-1-butyl adipate
  • phosphate esters such as diphenyl-2-ethylhexyl phosphate
  • Hydroxy polycarboxylic acid esters such as tributyl acetylcitrate
  • polyalkylene glycol type is preferable.
  • the polyalkylene glycol system exhibits a plasticizing effect when added in a small amount and can suppress a decrease in membrane strength, and the pores after elution become fine so that both separation performance and permeation performance can be achieved.
  • polyalkylene glycol plasticizer examples include polyethylene glycol, polypropylene glycol, and polybutylene glycol having a weight average molecular weight of 400 to 2000, for example.
  • the separation membrane of the present invention may contain a hydrophilic resin.
  • a hydrophilic resin When a hydrophilic resin is contained, the permeation performance can be improved particularly when used as a water treatment membrane.
  • the hydrophilic resin in the present invention is a resin having a high affinity with water, and refers to a resin that dissolves in water or has a smaller contact angle with water than the main component of the separation membrane.
  • hydrophilic resin examples are not particularly limited as long as they have the properties described above.
  • polyalkylene glycol, polyvinyl pyrrolidone, polyvinyl alcohol, and derivatives thereof are preferable examples.
  • the hydrophilic resin remains in the separation membrane, but part or all of the hydrophilic resin may be eluted from the separation membrane into water. When it is eluted in water, the traces from which the hydrophilic resin is removed become pores in the membrane, and the permeation performance is improved.
  • the separation membrane of the present invention may contain additives other than those described above as long as the effects of the present invention are not impaired.
  • additives include, for example, organic lubricants, crystal nucleating agents, organic particles, inorganic particles, end-capping agents, chain extenders, ultraviolet absorbers, infrared absorbers, anti-coloring agents, matting agents, antibacterial agents, control agents. Examples thereof include electric agents, deodorants, flame retardants, weathering agents, antistatic agents, antioxidants, ion exchange agents, antifoaming agents, color pigments, fluorescent whitening agents, and dyes.
  • the separation membrane may further include not only the layer (I) but also a layer (II) that is a porous support membrane.
  • layer (I) may be laminated with layer (II) which is a porous support layer. Since the separation membrane is physically reinforced by providing the layer (II), the layer (I) can be made thin while maintaining the strength of the separation membrane. As a result, the water permeability of the separation membrane is improved.
  • the thickness of the layer (II) is preferably 5 to 500 ⁇ m. When the thickness of the layer (II) is in the above range, sufficient supportability and permeation performance can be well balanced.
  • the thickness of the layer (II) is more preferably from 10 to 400 ⁇ m, further preferably from 20 to 300 ⁇ m, particularly preferably from 30 to 200 ⁇ m.
  • the porous support membrane of the layer (II) physically supports the layer (I) when used as a separation membrane, and the permeation performance in terms of thickness has a layer (I) If it does not fall compared with the case where it is used independently, there will be no restriction
  • the type of material composing the layer (II) is not particularly limited, but it contains the material composing the layer (I) from the viewpoints of film forming properties and interlayer adhesion. Is preferred.
  • the separation membrane may be composed of the layer (I) alone, or may be composed of two layers of the layer (I) and the layer (II), and includes at least the layer (I). If it is, it may be composed of two or more layers including other layers.
  • any layer may be a contact surface with the substance before separation.
  • Layer (I) is preferably a contact surface with the material before separation.
  • Layer (I) is preferably a contact surface with the material before separation.
  • the shape of the separation membrane of the present invention is not particularly limited, but a hollow fiber membrane (hereinafter also referred to as a hollow fiber membrane) or a planar membrane (hereinafter also referred to as a flat membrane).
  • a hollow fiber membrane hereinafter also referred to as a hollow fiber membrane
  • a planar membrane hereinafter also referred to as a flat membrane.
  • the hollow fiber membrane is more preferable because it can be efficiently filled into the module and the effective membrane area per unit volume of the module can be increased.
  • the outer diameter of the hollow fiber is preferably 20 to 200 ⁇ m, more preferably 30 to 180 ⁇ m, from the viewpoint of achieving both an effective membrane area when the module is filled and the membrane strength. More preferably, it is 40 to 160 ⁇ m.
  • the hollow ratio of the hollow fiber is preferably 20 to 55% from the relationship between the pressure loss of the fluid flowing through the hollow part and the buckling pressure. It is more preferably 50%, and further preferably 30 to 45%.
  • the method of setting the outer diameter and hollowness of the hollow fiber membrane in the above range is not particularly limited.
  • it can be adjusted by appropriately changing the shape of the discharge hole of the spinneret for producing the hollow fiber or the draft ratio that can be calculated by the winding speed / discharge speed.
  • the separation membrane of the present invention preferably has a tensile strength in the longitudinal direction of 70 MPa or more in order to suppress the occurrence of defects due to external forces during film formation or module creation.
  • the conditions for measuring the tensile strength will be described in detail in Examples.
  • the tensile strength in the longitudinal direction is more preferably 80 MPa or more, further preferably 100 MPa or more, and particularly preferably 120 MPa or more. A higher tensile strength in the longitudinal direction is preferable, but the practical upper limit is 300 MPa.
  • the method for setting the tensile strength within the above range is not particularly limited.
  • the draft ratio that can be calculated by the winding speed / discharge speed and / or the draw ratio is set to a preferable range described later. Is mentioned.
  • the separation membrane of the present invention is an aqueous solution adjusted to pH 6.5 with a sodium chloride concentration of 500 ppm filtered at 25 ° C. and a pressure of 0.75 MPa in order to exhibit good permeation performance especially when used as a membrane for water treatment.
  • the membrane permeation flux (water permeability) is preferably 2 L / m 2 / day or more. The measurement conditions of the membrane permeation flux will be described in detail in Examples.
  • the membrane permeation flux is more preferably 5 L / m 2 / day or more, still more preferably 10 L / m 2 / day or more, still more preferably 20 L / m 2 / day or more, and 30 L / m It is especially preferable that it is m 2 / day or more. Membrane permeation flux higher is preferred, the upper limit of the balance between the later-described salt-blocking rate is 500L / m 2 / day.
  • the separation membrane of the present invention preferably has a salt rejection of 90% or more in order to exhibit good separation performance particularly when used as a water treatment membrane.
  • the measurement conditions for the salt rejection will be described in detail in Examples.
  • the salt rejection is more preferably 92.5% or more, further preferably 95% or more, still more preferably 96.5% or more, and particularly preferably 98% or more.
  • the salt rejection is preferably 99.9% or less, and more preferably 99.5%.
  • the separation membrane of the present invention is a membrane that can be used particularly for water treatment.
  • Specific examples of the water treatment membrane include microfiltration membranes, ultrafiltration membranes, nanofiltration membranes, reverse osmosis membranes, and forward osmosis membranes.
  • the separation membrane of the present invention is particularly preferably applied to nanofiltration membranes, reverse osmosis membranes, and forward osmosis membranes.
  • the manufacturing method described below is a method of manufacturing a hollow fiber membrane by melt spinning, and roughly includes the following steps.
  • a step of forming a hollow fiber by cooling in air (c) a step of eluting at least a part of the plasticizer and the hydrophilic resin from the obtained hollow fiber
  • (A) Melt-kneading step In this step, the main component resin and at least one of the above-mentioned plasticizer and hydrophilic resin are melt-kneaded. Specifically, in this step, a resin composition (pellet) is produced by melting and kneading the above-described materials.
  • the resin composition (pellet) described below can be applied to the layer (I) and the layer (II).
  • the resin as the main component and other materials are put into a twin-screw kneading extruder and heated and melted.
  • at least one of a plasticizer and a hydrophilic resin is included in the pellet in addition to the resin as the main component.
  • Preferred resins such as plasticizers and hydrophilic resins, plasticizers and hydrophilic resins are as described above.
  • the plasticizer content is preferably 5 to 26% by weight.
  • the content of the plasticizer is 5% by weight or more, the thermoplasticity of the cellulose ester and the permeation performance of the separation membrane are improved.
  • the content of the plasticizer (B) is more preferably 10 to 24% by weight, still more preferably 14 to 22% by weight.
  • the content of the hydrophilic resin is preferably 0.01 to 10% by weight.
  • the permeation performance of the separation membrane is improved.
  • the content of the hydrophilic resin is more preferably 0.05 to 8.0% by weight, still more preferably 0.1 to 6.0% by weight.
  • the input method There are no particular restrictions on the input method. For example, a method of mixing and feeding in advance or a method of feeding using a plurality of feeders each having a discharge amount set can be used. After melt-kneading until they are uniformly mixed, the mixture is discharged into a water tank in a gut shape and cut by a pelletizer to obtain pellets.
  • the obtained pellet is made into a hollow fiber by a melt spinning method.
  • the step of forming the hollow fiber is to extrude the heated and melted resin composition into a hollow fiber shape from the discharge hole of the die, and to solidify the extruded resin composition by cooling in the air. Is provided.
  • the ratio (L / D) of the hole length (L) 16 and the hole gap (D) 17 of the discharge hole portion of the spinneret shown in FIG. preferable.
  • the hole length (L) 16 is the length of a portion having the same gap as the hole gap of the die discharge portion, and is also called a land length.
  • the hole gap (D) 17 is the thickness of the slit of the die discharge part.
  • L / D is more preferably 4 or more, further preferably 8 or more, and particularly preferably 11 or more. Further, L / D is more preferably 18 or less, and further preferably 16 or less. L / D may be 12 or less.
  • the hole length (L) is preferably 0.2 mm or more, 0.5 mm or more, 1 mm or more, or 2 mm or more.
  • the hole length (L) is preferably 10 mm or less, 8 mm or less, 6 mm or less, or 5 mm or less.
  • the cooling is not particularly limited as long as it can be cooled in air to a temperature at which the resin composition is solidified.
  • a cooling device that applies air to the hollow fiber may be used.
  • the winding speed (spinning speed) of the hollow fiber is preferably set larger than the discharge speed.
  • the draft ratio is preferably 200 or more, 300 or more, or 400 or more.
  • the draft ratio is preferably 1,000 or less, 900 or less, or 800 or less.
  • the average pore diameters of the regions a, b, and c are increased. It has been found that the porosity can be within the above-mentioned preferred range.
  • various spinnerets for producing hollow fibers can be used. Specifically, for example, a spinneret of a C-shaped slit and a plurality of arc-shaped (arc-shaped) slit portions (for example, 2 to 5) are used. And a tube-in-orifice type spinneret, which is arranged to form one discharge hole, and the like.
  • the distance from the discharge of the resin composition to the start of cooling is preferably 0 to 50 mm, preferably 0 to 40 mm. More preferably, it is 0 to 30 mm.
  • the present production method may further include a step of drawing the hollow fiber after spinning.
  • the stretching method is not particularly limited.
  • the hollow fiber membrane before stretching is heated to a temperature at which stretching is performed by conveyance on a heated roll or heating in an oven, and the difference in peripheral speed between the rolls is used. Stretching is performed in one or more stages.
  • the preferred range of the temperature of the hollow fiber membrane in the stretching step is 60 to 140 ° C., more preferably 70 to 130 ° C., still more preferably 80 to 120 ° C.
  • the total draw ratio is preferably 1.1 to 2.0 times, more preferably 1.2 to 2.0 times, and further preferably 1.3 to 1.5 times. If necessary, heat setting may be performed during or after stretching.
  • the heat setting temperature is preferably 100 to 220 ° C.
  • the plasticizer and / or the hydrophilic resin may be eluted from the hollow fiber obtained by spinning and winding in this manner.
  • the elution method is not particularly limited, but immersion in a solvent such as water, an aqueous alcohol solution, an aqueous acid solution, or an aqueous alkaline solution is employed.
  • a method for producing a flat membrane type separation membrane will be specifically described in detail in Examples.
  • the trace of the plasticizer or hydrophilic resin being removed becomes pores in the membrane.
  • the plasticizer and the hydrophilic resin may remain in the separation membrane or may be completely eluted from the separation membrane.
  • a resin composition containing a main component resin and at least one of a plasticizer and a hydrophilic resin is used.
  • a die whose relationship between the gap and the pore length is in a specific range is used, and after melt film formation at a draft ratio in a specific range, at least a part of the plasticizer and hydrophilic resin is eluted in water to form pores.
  • the method of forming is suitable, this invention is not limited to this method.
  • the separation membrane of the present invention obtained as described above can be made into a module by filling the case with a conventionally known method.
  • the hollow fiber membrane module includes a plurality of hollow fiber membranes and a cylindrical case. A plurality of hollow fiber membranes are bundled and inserted into a cylindrical case, and then the ends thereof are fixed to the case with a thermosetting resin such as polyurethane or epoxy resin and sealed. An end surface of the hollow fiber membrane cured with the thermosetting resin is cut to obtain an opening surface of the hollow fiber membrane, thereby producing a module.
  • the separation membrane of the present invention can be used for water making for the purpose of removing a solute from a solution after making it into the form of the module.
  • the operation pressure at that time is preferably 0.1 MPa or more, more preferably 0.3 MPa or more, and further preferably 0.6 MPa or more. In general, the greater the operating pressure, the greater the membrane permeation flux and the desalination rate.
  • the operation pressure is preferably 6.0 MPa or less, more preferably less than 3.0 MPa, and more preferably 1.5 MPa, in order to suppress membrane breakage such as radial collapse of the hollow fiber membrane. More preferably, it is less than.
  • the temperature of the liquid to be supplied is preferably 45 ° C. or less and more preferably less than 40 ° C. in order to achieve a high desalting rate. Preferably, it is less than 35 degreeC.
  • the temperature of the feed water is preferably 5 ° C or higher, more preferably 10 ° C or higher.
  • Thickness ( ⁇ m) of each layer of the separation membrane The cross section in the thickness direction of the separation membrane was observed and photographed with a scanning electron microscope, and the thickness ( ⁇ m) of the layer (I) or the layer (II) was calculated. The thickness of each layer was calculated by observing 10 arbitrary locations, and the average value was used.
  • Membrane permeation flux (L / m 2 / day))
  • Membrane filtration was performed by supplying a sodium chloride aqueous solution adjusted to a concentration of 500 ppm, a temperature of 25 ° C., and a pH of 6.5 to a separation membrane immersed in a 10 wt% aqueous solution of isopropyl alcohol for 1 hour for hydrophilization, at an operating pressure of 0.75 MPa.
  • the membrane permeation flux was determined by the following formula based on the amount of permeate obtained.
  • Membrane permeation flux (L / m 2 / day) permeate per day / membrane area
  • thermosetting resin was injected into the pipe, and the ends were cured and sealed.
  • An end surface of the sealed hollow fiber membrane was cut to obtain an opening surface of the hollow fiber membrane, and a small module for evaluation having an outer diameter standard membrane area of about 0.1 m 2 was produced.
  • the membrane filtration process was performed so that layer (I) might become a contact surface with the supply water side.
  • Defect resistance 20 separation membranes (in the case of hollow fiber membranes, 20 of the above-mentioned small modules) were prepared, and the salt rejection was determined by the method described in (6) above. In this case, the difference between the highest numerical value and the lowest numerical value was calculated as the defect parameter. Using the defect parameters, evaluation was performed according to the following criteria. ⁇ : Less than 0.2 ⁇ : 0.2 or more and less than 1 ⁇ : 1 or more and less than 3 ⁇ : 3 or more
  • Tensile strength (MPa) Tensile strength (breaking strength) (MPa) under the conditions of a sample length of 100 mm and a tensile speed of 100 mm / min using a tensile tester (Orientec Tensilon UCT-100) in an environment of temperature 20 ° C. and humidity 65% was measured. The number of measurements was 5 times, and the average value was the tensile strength.
  • a mixed solution of 100 parts by weight of acetic acid and 33 parts by weight of water was added as a reaction terminator over 20 minutes to hydrolyze excess anhydride. Thereafter, 333 parts by weight of acetic acid and 100 parts by weight of water were added, and the mixture was heated and stirred at 80 ° C. for 1 hour. After completion of the reaction, an aqueous solution containing 6 parts by weight of sodium carbonate was added, and the precipitated cellulose acetate propionate was filtered off, subsequently washed with water, and dried at 60 ° C. for 4 hours.
  • the average substitution degree of the acetyl group and propionyl group of the obtained cellulose acetate propionate was 1.9 and 0.7, respectively, and the weight average molecular weight (Mw) was 178,000.
  • the spun hollow fiber is guided to the cooling device so that the distance from the lower surface of the die to the upper end of the cooling device (chimney) is 30 mm, cooled by cooling air at 25 ° C. and a wind speed of 1.5 m / sec, After applying and converging, it was wound up with a winder so that the draft ratio was 50. Then, it was immersed in a 10 wt% aqueous solution of isopropyl alcohol for 1 hour to elute the plasticizer to obtain a hollow fiber membrane. From the weight change before and after the immersion, the entire amount of polyethylene glycol (B1) having a weight average molecular weight of 600 added as a plasticizer during melt spinning was eluted from the hollow fiber membrane into water. Table 1 shows the structure and physical properties of the obtained composite hollow fiber membrane.
  • Example 2 L and L / D were the same as in Example 1, and a hollow fiber membrane was obtained in the same manner as in Example 1, except that a base having a different discharge port diameter was used and the draft ratio was 200. From the weight change before and after the immersion, the entire amount of polyethylene glycol (B1) having a weight average molecular weight of 600 added as a plasticizer during melt spinning was eluted from the hollow fiber membrane into water. The structure and physical properties of the obtained hollow fiber membrane are shown in Table 1.
  • Example 3 A hollow fiber membrane was obtained in the same manner as in Example 2 except that the components of the resin composition were changed as shown in Table 1. From the weight change before and after immersion, the polyethylene glycol (B1) having a weight average molecular weight of 600 and the polyethylene glycol (B2) having a weight average molecular weight of 3400 added as a plasticizer and a hydrophilic resin during melt spinning are all hollow fibers. It eluted from the membrane into the water. The structure and physical properties of the obtained hollow fiber membrane are shown in Table 1.
  • Examples 4 to 6 A hollow fiber membrane was obtained in the same manner as in Example 2 except that the L and L / D of the die were changed as shown in Table 1. From the weight change before and after the immersion, the entire amount of polyethylene glycol (B1) having a weight average molecular weight of 600 added as a plasticizer during melt spinning was eluted from the hollow fiber membrane into water. The structure and physical properties of the obtained hollow fiber membrane are shown in Table 1.
  • Example 1 A hollow fiber membrane was obtained in the same manner as in Example 1 except that the L and L / D of the base were changed as shown in Table 1. From the weight change before and after the immersion, the entire amount of polyethylene glycol (B1) having a weight average molecular weight of 600 added as a plasticizer during melt spinning was eluted from the hollow fiber membrane into water. The structure and physical properties of the obtained hollow fiber membrane are shown in Table 1.
  • Example 2 The components of the resin composition were changed as shown in Table 1, L and L / D were the same as in Example 1, except that a base having a different discharge port diameter was used and the draft ratio was set to 20, the same as in Example 1. Thus, a hollow fiber membrane was obtained. From the weight change before and after immersion, all of polyethylene glycol (B1) and glycerin (B4) having a weight average molecular weight of 600 added as a plasticizer and a hydrophilic resin during melt spinning are eluted from the hollow fiber membrane into water. It was. The structure and physical properties of the obtained hollow fiber membrane are shown in Table 1.
  • Example 7 Melting and kneading 78 wt% of cellulose ester (A1), 18 wt% of polyethylene glycol (B1) having a weight average molecular weight of 600 and 4 wt% of polyethylene glycol (B2) having a weight average molecular weight of 3400 at 240 ° C., After homogenization, the mixture was pelletized to obtain a resin composition for layer (I). The pellets were vacuum dried at 80 ° C. for 8 hours.
  • cellulose ester (A1) 68% by weight of cellulose ester (A1), 22% by weight of polyethylene glycol (B1) having a weight average molecular weight of 600, and 10% by weight of polyethylene glycol (B3) having a weight average molecular weight of 8300 were melt-kneaded at 240 ° C. in a twin screw extruder. And homogenized, and then pelletized to obtain a resin composition for layer (II). The pellets were vacuum dried at 80 ° C. for 8 hours. The dried resin composition pellets for the layer (I) and the resin composition pellets for the layer (II) are respectively fed to separate twin-screw extruders, melted and kneaded at 220 ° C., and then layered by a gear pump.
  • the mixture was introduced into a spinneret having a multi-tube nozzle having a gas flow path at the center so that the outer layer was the layer (I) and the inner layer was the layer (II), and was compounded in the die. Then, it spun down from the nozzle
  • the composite hollow fiber membrane was obtained by immersing in a 10 wt% aqueous solution of isopropyl alcohol for 1 hour to elute the plasticizer and the hydrophilic resin. From the change in weight before and after immersion, a polyethylene glycol (B1) having a weight average molecular weight of 600, a polyethylene glycol (B2) having a weight average molecular weight of 3400, a weight average molecular weight of 8300, added as a plasticizer and a hydrophilic resin during melt spinning. The total amount of polyethylene glycol (B3) was eluted from the composite hollow fiber membrane into water. The structure and physical properties of the obtained composite hollow fiber membrane are shown in Table 2.
  • Example 8 A composite hollow fiber membrane was obtained in the same manner as in Example 7 except that L and L / D of the base hole were changed as shown in Table 2. From the change in weight before and after immersion, a polyethylene glycol (B1) having a weight average molecular weight of 600, a polyethylene glycol (B2) having a weight average molecular weight of 3400, a weight average molecular weight of 8300, added as a plasticizer and a hydrophilic resin during melt spinning. The total amount of polyethylene glycol (B3) was eluted from the composite hollow fiber membrane into water. The structure and physical properties of the obtained composite hollow fiber membrane are shown in Table 2.
  • Example 3 A composite hollow fiber membrane was obtained in the same manner as in Example 7 except that L and L / D were the same as in Example 7 but used different cap diameters and the draft ratio was 10. From the change in weight before and after immersion, a polyethylene glycol (B1) having a weight average molecular weight of 600, a polyethylene glycol (B2) having a weight average molecular weight of 3400, a weight average molecular weight of 8300, added as a plasticizer and a hydrophilic resin during melt spinning. The total amount of polyethylene glycol (B3) was eluted from the composite hollow fiber membrane into water. Table 2 shows the structure and physical properties of the obtained hollow fiber membrane.
  • the average pore diameter Pa of the region a and the average pore diameter Pb of the region b are 0.3 nm or more and 3.0 nm or less, the average pore size Pc of the region c is 3.0 nm or less, and the region a
  • the separation membranes of Examples 1 to 9 in which the hole area ratio Ha, the hole area ratio Hb of the region b, and the hole area ratio Hc of the region c satisfy the expressions 2Hc ⁇ Ha and 2Hc ⁇ Hb are constant membrane permeation fluxes ( It can be seen that it has permeation performance) and salt rejection (separation performance) and is excellent in defect resistance.
  • the present invention is a separation membrane that is excellent in permeation performance and separation performance and has few defects.
  • the separation membrane of the present invention is a membrane for water treatment for producing industrial water, drinking water, etc. from seawater, brine, sewage, drainage, etc., medical membranes such as artificial kidneys and plasma separation, foods such as fruit juice concentrate -It can be used for membranes for beverage industry, gas separation membranes for separating exhaust gas, carbon dioxide gas, etc., and membranes for electronic industry such as fuel cell separators.
  • the water treatment membrane can be preferably used for microfiltration membranes, ultrafiltration membranes, nanofiltration membranes, reverse osmosis membranes, and forward osmosis membranes.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Dispersion Chemistry (AREA)
  • Water Supply & Treatment (AREA)
  • Nanotechnology (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Laminated Bodies (AREA)

Abstract

本発明が解決しようとする課題は、透過性能と分離性能に優れ、かつ欠陥の発生が少ない分離膜を提供することである。本発明は、厚みが0.5~100μmの層(I)を有し、層(I)の厚み方向の断面において、表面(A面)から深さ50~150nmの領域を領域a、もう一方の表面(B面)から深さ50~150nmの領域を領域b、両表面からの深さが同じとなる厚み100nmの領域を領域cとしたときに、領域aの平均孔径Pa、領域bの平均孔径Pbがいずれも0.3nm以上3.0nm以下、領域cの平均孔径Pcが3.0nm以下であり、領域aの開孔率Ha、領域bの開孔率Hb、領域cの開孔率Hcが以下の式を満たす分離膜に関する。 2Hc<Ha 2Hc<Hb

Description

分離膜
 本発明は、透過性能と分離性能に優れ、かつ欠陥の発生が少ない分離膜に関する。
 分離膜は、河川や海水、下廃水から濁質やイオンを取り除き、工業用水や飲料水を製造するための水処理用膜、人工腎臓や血漿分離等の医療用膜、果汁濃縮等の食品・飲料工業用膜、及び炭酸ガス等を分離するガス分離膜等、幅広い分野で使用されている。そのなかでも特に逆浸透膜とよばれる水処理用膜は、イオンの除去が可能であるため、海水やかん水等から純水を製造する手段として有望視されている。
 そのような逆浸透膜の製造方法として、従来から用いられている技術は、界面重合法と、非溶媒相分離法とがある。
 界面重合法は、例えば特許文献1では、多孔質支持体を、アミン水溶液中に接触させ、その後、トリメシン酸クロリドのヘキサン溶液に接触させることで、多孔質支持体の表面をポリアミド系重合体薄膜で被覆してなる中空糸型複合半透膜を得る技術が開示されている。
 非溶媒相分離法は、例えば特許文献2では、セルローストリアセテートに、N-メチル-2-ピロリドン、エチレングリコール、安息香酸を混合して得た溶液をノズルより吐出し、N-メチル-2-ピロリドン/エチレングリコール/水からなる凝固浴に浸漬させて相分離させることで、中空糸型半透膜を得る技術が開示されている。
日本国特開2001-843号公報 日本国特開2012-115835号公報
 前述の特許文献1及び特許文献2に記載の技術で得られる分離膜では、一定の透過性能と分離性能は得られるが、欠陥の発生を抑制する点では不十分であった。
 本発明は、かかる従来技術の背景に鑑み、透過性能と分離性能に優れ、かつ欠陥の発生が少ない分離膜を実現することを目的とする。
 本発明は以下に示す通りである。
1.厚みが0.5~100μmの層(I)を有し、
 前記層(I)の厚み方向の断面において、表面(A面)から深さ50~150nmの領域を領域a、もう一方の表面(B面)から深さ50~150nmの領域を領域b、両表面からの深さが同じとなる厚み100nmの領域を領域cとしたときに、領域aの平均孔径Pa、領域bの平均孔径Pbがいずれも0.3nm以上3.0nm以下、領域cの平均孔径Pcが3.0nm以下であり、
 領域aの開孔率Ha、領域bの開孔率Hb、領域cの開孔率Hcが以下の式を満たす分離膜。
 2Hc<Ha
 2Hc<Hb
2.前記開孔率Ha、及び前記開孔率Hbがいずれも2%以上80%以下、開孔率Hcが40%以下である、前記1に記載の分離膜。
3.前記層(I)が、ポリアミド、ポリエステル、及びセルロースエステルからなる群より選ばれる少なくとも1種を含む、前記1または2に記載の分離膜。
4.さらに厚みが5~500μmの多孔性支持膜からなる層(II)が積層された構造を有する、前記1~3のいずれか1に記載の分離膜。
5.前記分離膜が中空糸形状である、前記1~4のいずれか1に記載の分離膜。
6.長手方向の引張強度が70MPa以上である、前記1~5のいずれか1に記載の分離膜。
7.塩化ナトリウム濃度500ppmのpH6.5に調整した水溶液を、25℃、圧力0.75MPaで濾過した際の透水量が2L/m/dayである、前記1~6のいずれか1に記載の分離膜。
 本発明によれば、透過性能と分離性能に優れ、かつ欠陥の発生が少ない分離膜が提供される。本発明の分離膜は、透過性能と分離性能、及び欠陥の発生の抑制を必要とする用途に好ましく用いることができる。
 具体的には海水、かん水、下水、及び排水などから、工業用水、及び飲料水などを製造するための水処理用膜、人工腎臓や血漿分離などの医療用膜、果汁濃縮などの食品・飲料工業用膜、排気ガス、及び炭酸ガスなどを分離するガス分離膜、及び燃料電池セパレーターなどの電子工業用膜などに用いることができる。上記水処理用膜の種類としては、精密濾過膜、限外濾過膜、ナノ濾過膜、逆浸透膜、及び正浸透膜などに好ましく用いることができる。
図1は、本発明の分離膜の断面を示す図である。 図2は、本発明の中空糸膜の製造方法における紡糸口金の吐出部の一例の断面図である。
 I.分離膜
 (1)層(I)
 本発明の分離膜は、厚みが0.5~100μmの層(I)を有する。層(I)は、図1中に符号「1」で示す層である。
 層(I)は、厚み方向の断面において、領域a、bおよびcを有する。
 (1-1)領域a、bおよびc
 図1に示すように、領域aとは、層(I)の一方の表面(A面)2から深さ50~150nmの領域である。領域bとは、層(I)の他方の表面(B面)3から深さ50~150nmの領域である。領域cは、両表面、すなわちA面2およびB面3からの深さが同じとなる厚み100nmの領域である。言い換えると領域cは、層(I)の断面において、層(I)の厚みの二等分線を中心とする、幅100nmの領域である。
 領域aの平均孔径Pa、領域bの平均孔径Pbは、いずれも0.3nm以上3.0nm以下であり、領域cの平均孔径Pcは3.0nm以下である。
 領域a11の開孔率Ha、領域b12の開孔率Hb、領域c13の開孔率Hcが以下の式を満たす。
 2Hc<Ha
 2Hc<Hb
 (1-2)各部分の厚み
 層(I)の厚みは0.5~100μmであることが重要である。層(I)の厚みが0.5μm未満の場合、膜に欠陥が生じ易くなり、分離性能が不十分となる。また、層(I)の厚みが100μmを超える場合、透過性能が不十分となる。
 層(I)の厚みは0.5~50μmであることが好ましく、0.5~30μmであることがより好ましく、0.5~20μmであることがさらに好ましく、0.5~10μmであることが特に好ましい。
 領域a、bおよびcの厚みはいずれも100nmである。
 (1-3)平均孔径
 層(I)において、領域aの平均孔径Pa、及び、領域bの平均孔径Pbはいずれも0.3nm以上3.0nm以下であることが重要である。Pa及びPbが0.3nm未満の場合、透過性能が不十分となる。また、Pa及びPbが3.0nmを超える場合、分離性能が不十分となる。
 Pa及びPbは0.4nm以上であることが好ましく、0.5nm以上であることがより好ましく、0.6nm以上であることがさらに好ましく、0.7nm以上であることが特に好ましい。
 また、Pa及びPbは2.5nm以下であることが好ましく、2.0nm以下であることがより好ましく、1.5nm以下であることがさらに好ましく、1.3nm以下であることが特に好ましい。
 層(I)における領域cの平均孔径Pcは、3.0nm以下である。Pcが3.0nmを超える場合、分離性能が不十分となる。Pcは2.5nm以下であることが好ましく、2.0nm以下であることがより好ましく、1.5nm以下であることがさらに好ましく、1.3nm以下であることが特に好ましい。
 (1-4)開孔率
 層(I)において、領域aの開孔率Ha、領域bの開孔率Hb、領域cの開孔率Hcが以下の式を満たす。開孔率の求め方は実施例にて詳述する。
 2Hc<Ha
 2Hc<Hb
 この式を満たさない場合、透過性能と分離性能の両立が困難となり、また、欠陥の発生を抑制することができない。
 開孔率Ha、HbおよびHcは、3Hc<Haまたは3Hc<Hbの少なくとも一方を満たすことが好ましく、
 5Hc<Haまたは5Hc<Hbの少なくとも一方を満たすことがより好ましく、
 10Hc<Haまたは10Hc<Hbの少なくとも一方を満たすことがさらに好ましい。
 開孔率Ha及び開孔率Hbの少なくとも一方が2%以上80%以下であることが好ましい。開孔率Ha及び開孔率Hbは、いずれも2%以上80%以下であることがより好ましい。開孔率Ha及び開孔率Hbがこれらの範囲にあることで、透過性能と分離性能が良好な範囲で両立が可能となる。
 開孔率Ha、及び、開孔率Hbは、それぞれ5%以上であることがより好ましく、7%以上であることがさらに好ましく、10%以上であることが特に好ましい。また、開孔率Ha、及び開孔率Hbは、それぞれ65%以下であることがより好ましく、45%以下であることがさらに好ましく、30%以下であることが特に好ましい。
 また、開孔率Hcは40%以下であることが好ましい。開孔率Hcが上記範囲にあることで、透過性能と分離性能とが良好な範囲で両立が可能となる。開孔率Hcは30%以下であることがより好ましく、20%以下であることがさらに好ましく、10%以下であることがさらにより好ましく、5%以下であることが特に好ましい。
 (1-5)構成材料
 (1-5-1)主成分の樹脂
 上記層(I)を構成する主成分の樹脂としては、例えば、ポリオレフィン、ポリアクリロニトリル、ポリビニル化合物、ポリカーボネート、ポリ(メタ)アクリレート、ポリスルホン、ポリエーテルスルホン、ポリアミド、ポリエステル、及びセルロースエステルなどが挙げられる。
 この中でも、ポリアミド、ポリエステル、及びセルロースエステルが好ましい。すなわち、層(I)は、ポリアミド、ポリエステル、及びセルロースエステルからなる群より選ばれる少なくとも1種を含むことが好ましい。
 ここで、「主成分」とは、組成物における含有率が50重量%以上である成分を指す。この含有率は、好ましくは70重量%以上であり、より好ましくは90重量%以上である。つまり、層(I)は、主成分である樹脂を50重量%以上含有する。
 ポリアミドの具体例としては、各種ラクタム類の開環重合、各種ジアミン類と各種ジカルボン酸類との重縮合、及び各種アミノカルボン酸類の重縮合等によって得られる各種ポリアミド類、ないしこれらの開環重合と重縮合とを組み合わせた共重合ポリアミド類等が挙げられる。
 上記ポリアミド類や共重合ポリアミド類としては、例えばナイロン6、ナイロン66、ナイロン11、ナイロン12、ナイロン6/12共重合体(ε-カプロラクタムとラウロラクタムとの共重合体)、及びナイロン6/66共重合体(ε-カプロラクタムとヘキサメチレンジアミン・アジピン酸のナイロン塩との共重合体)などが挙げられる。また、これらのポリアミドを2種類以上混合して使用することもできる。
 ポリエステルの具体例としては、例えば芳香族ジカルボン酸部分とグリコール部分からなる芳香族ポリエステル、脂肪族ジカルボン酸とグリコール部分からなる脂肪族ポリエステル、ヒドロキシカルボン酸からなるポリエステル、及びこれらの共重合体などが挙げられる。
 芳香族ジカルボン酸の具体例としては、例えば、テレフタル酸、イソフタル酸、ナフタレンジカルボン酸などが挙げられる。グリコールの具体例としては、エチレングリコール、1,2-プロピレングリコール、1,3-プロピレングリコール、1,2-ブタンジオール、1,3-ブタンジオール、及び1,4-ブタンジオールなどが挙げられる。
 ヒドロキシカルボン酸の具体例としては、グリコール酸、乳酸、ヒドロキシプロピオン酸、ヒドロキシ酪酸、ヒドロキシ吉草酸、ヒドロキシカプロン酸、及びヒドロキシ安息香酸などが挙げられる。
 またポリエステルは、その特性を大きく変えない範囲で共重合を行うこともできる。共重合成分としては、例えば5-ナトリウムスルホイソフタル酸などの5-(アルカリ金属)スルホイソフタル酸や、前述の芳香族ジカルボン酸以外の多価カルボン酸などが挙げられる。また、これらのポリエステルを2種類以上混合して使用することもできる。
 セルロースエステルの具体例としては、例えばセルロースアセテート、セルロースプロピオネート、セルロースブチレート、セルロースのグルコースユニットに存在する3つの水酸基が2種類以上のアシル基により封鎖されたセルロース混合エステル、及びそれらの誘導体などが挙げられる。
 セルロース混合エステルの具体例としては、例えばセルロースアセテートプロピオネート、セルロースアセテートブチレート、セルロースアセテートラウレート、セルロースアセテートオレート、及びセルロースアセテートステアレートなどが挙げられる。また、これらのセルロースエステルを2種類以上混合して使用することもできる。
 (1-5-2)可塑剤
 本発明の分離膜は、可塑剤を含有していてもよい。
 可塑剤は、主成分の樹脂を熱可塑化する化合物であれば特に限定されない。また、1種類の可塑剤だけでなく、2種類以上の可塑剤が併用されてもよい。
 可塑剤の具体例としては、例えばフタル酸ジエチルなどのフタル酸エステル系、アジピン酸ジ-1-ブチルなどの脂肪族二塩基酸エステル系、リン酸ジフェニル-2-エチルヘキシルなどのリン酸エステル系、アセチルクエン酸トリブチルなどのヒドロキシ多価カルボン酸エステル系、アセチルリシノール酸メチルなどの脂肪酸エステル系、グリセリントリアセテートなどの多価アルコールエステル系、ポリエチレングリコールなどのポリアルキレングリコール系、カプロラクトン系化合物、及びそれらの誘導体などが挙げられる。
 これらの中でも、ポリアルキレングリコール系が好ましい。ポリアルキレングリコール系は、少量添加で可塑化効果を発現して膜強度の低下を抑制でき、また溶出後の細孔が微細なものとなり分離性能と透過性能の両立が可能となる。
 ポリアルキレングリコール系可塑剤の具体的な例としては、例えば重量平均分子量が400~2000である、ポリエチレングリコール、ポリプロピレングリコール、及びポリブチレングリコールなどが挙げられる。
 (1-5-3)親水性樹脂
 本発明の分離膜は、親水性樹脂を含有していてもよい。親水性樹脂を含有している場合、特に水処理用膜として使用する際に透過性能の向上が可能となる。
 本発明における親水性樹脂とは水と親和性が高い樹脂のことであり、水に溶解するか、または、水に対する接触角が分離膜の主成分よりも小さい樹脂を指す。
 親水性樹脂の具体例としては、上記した性質を有するものであれば特に限定されない。例えばポリアルキレングリコール、ポリビニルピロリドン、ポリビニルアルコール、及びそれらの誘導体などが好ましい例として挙げられる。
 親水性樹脂は、分離膜中に残存していることが好ましいが、親水性樹脂の一部または全部が分離膜から水中に溶出してもよい。水中に溶出させた場合、親水性樹脂が抜けた跡が膜中における細孔となり、透過性能が良好となる。
 (1-5-4)添加剤
 本発明の分離膜には、本発明の効果を損なわない範囲で上記した以外の添加剤を含有してもよい。
 添加剤の具体例としては、例えば有機滑剤、結晶核剤、有機粒子、無機粒子、末端封鎖剤、鎖延長剤、紫外線吸収剤、赤外線吸収剤、着色防止剤、艶消し剤、抗菌剤、制電剤、消臭剤、難燃剤、耐候剤、帯電防止剤、抗酸化剤、イオン交換剤、消泡剤、着色顔料、蛍光増白剤、及び染料などが挙げられる。
 (2)層(II)
 分離膜は、層(I)だけでなく、多孔性支持膜である層(II)をさらに備えてもよい。言い換えると、層(I)は多孔性支持層である層(II)と積層されていてもよい。層(II)が設けられることで、分離膜が物理的に補強されるので、分離膜の強度を保ちつつ、層(I)を薄くすることができる。その結果、分離膜の透水性が向上する。
 (2-1)厚み
 層(II)の厚みは5~500μmであることが好ましい。層(II)の厚みが上記範囲にあることで、十分な支持性と、透過性能を良好に両立することができる。
 層(II)の厚みは10~400μmであることがより好ましく、20~300μmであることがさらに好ましく、30~200μmであることが特に好ましい。
 (2-2)孔径、開孔率
 層(II)の多孔性支持膜は、分離膜として使用する際に、層(I)を物理的に支持し、厚み換算した透過性能が層(I)を単独で使用した場合よりも低下しなければ、その孔径、開孔率などに特に制限はない。
 (2-3)構成材料
 層(II)を構成する材料の種類には特に制限はないが、製膜性、及び層間接着性などの観点から、層(I)を構成する材料を含有することが好ましい。
 (3)分離膜の層構成
 分離膜は、層(I)単独でもよいし、層(I)と層(II)の2層で構成されていてもよいし、少なくとも層(I)を含んでいれば、別の層を含んだ2層以上で構成されてもよい。
 分離膜が層(I)と層(II)の2層で構成される場合は、いずれの層が分離前の物質との接触面であっても構わない。層(I)が分離前の物質との接触面であることが好ましい。
 分離膜が3層以上で構成される場合も、その積層順序に特に制限は無い。層(I)が分離前の物質との接触面であることが好ましい。
 (4)分離膜の形状
 本発明の分離膜の形状は特に限定されないが、中空糸形状の膜(以下、中空糸膜ともいう)、または、平面形状の膜(以下、平膜ともいう)が好ましく採用される。このなかでも、中空糸膜は効率良くモジュールに充填することが可能であり、モジュールの単位体積当たりの有効膜面積を大きくとることができるため、より好ましい。
 中空糸膜の場合、モジュールに充填した際の有効膜面積と、膜強度を両立させる観点から、中空糸の外径が20~200μmであることが好ましく、30~180μmであることがより好ましく、40~160μmであることがさらに好ましい。
 また、本発明の分離膜が中空糸形状である場合、中空部を流れる流体の圧損と、座屈圧との関係から、中空糸の中空率が20~55%であることが好ましく、25~50%であることがより好ましく、30~45%であることがさらに好ましい。
 中空糸膜の外径や中空率を上記範囲とする方法は特に限定されない。例えば中空糸を製造する紡糸口金の吐出孔の形状、または巻取速度/吐出速度で算出できるドラフト比を適宜変更することで調整できる。
 (5)引張強度
 本発明の分離膜は、製膜時や、モジュール作成時などにおける外力による欠陥の発生を抑制するために、長手方向の引張強度は70MPa以上であることが好ましい。引張強度の測定条件は実施例にて詳細に説明する。
 長手方向の引張強度は80MPa以上であることがより好ましく、100MPa以上であることがさらに好ましく、120MPa以上であることが特に好ましい。長手方向の引張強度は高い方が好ましいが、実用上の上限は300MPaである。
 引張強度を上記範囲とする方法は特に限定されないが、例えば、分離膜を製造する際の、巻取速度/吐出速度で算出できるドラフト比、および/または、延伸倍率を後述する好ましい範囲とすることが挙げられる。
 (6)膜透過流束(透水量)
 本発明の分離膜は、特に水処理用膜として使用する際に良好な透過性能を発現するために、塩化ナトリウム濃度500ppmのpH6.5に調整した水溶液を、25℃、圧力0.75MPaで濾過した際の膜透過流束(透水量)は2L/m/day以上であることが好ましい。膜透過流束の測定条件は実施例にて詳細に説明する。
 膜透過流束は5L/m/day以上であることがより好ましく、10L/m/day以上であることがさらに好ましく、20L/m/day以上であることがさらにより好ましく、30L/m/day以上であることが特に好ましい。膜透過流束は高い方が好ましいが、後述する塩阻止率とのバランスから上限は500L/m/dayである。
 (7)塩阻止率
 本発明の分離膜は、特に水処理用膜として使用する際に良好な分離性能を発現するために、塩阻止率は90%以上であることが好ましい。塩阻止率の測定条件は実施例にて詳細に説明する。
 塩阻止率は92.5%以上であることがより好ましく、95%以上であることがさらに好ましく、96.5%以上であることがさらにより好ましく、98%以上であることが特に好ましい。また、塩阻止率は99.9%以下であることが好ましく、99.5%であることがより好ましい。
 (8)膜の種類
 本発明の分離膜は、特に水処理に利用可能な膜である。水処理用膜としては、具体的には、例えば、精密濾過膜、限外濾過膜、ナノ濾過膜、逆浸透膜、及び正浸透膜などが挙げられる。本発明の分離膜は特に、ナノ濾過膜、逆浸透膜、及び正浸透膜に好ましく適用される。
 II.製造方法
 次に、本発明の分離膜を製造する方法について、分離膜が中空糸膜の場合を例に具体的に説明するが、これに限定されるものではない。
 以下に説明する製造方法は、溶融紡糸によって中空糸膜を製造する方法であり、大まかに、下記の工程を備える。
(a)主成分の樹脂と上述の可塑剤および親水性樹脂の少なくとも一方とを溶融混練し、樹脂組成物を作製する工程
(b)溶融混練し得られた上記樹脂組成物を口金から吐出し、空気中で冷却することで中空糸を形成する工程
(c)得られた中空糸から上記可塑剤および親水性樹脂の少なくとも一部を溶出させる工程
 (a)溶融混練工程
 本工程では、主成分の樹脂と上述の可塑剤および親水性樹脂の少なくとも一方とを溶融混練する。具体的には、本工程では、上述の材料を溶融混練することで樹脂組成物(ペレット)を作製する。
 以下記載の樹脂組成物(ペレット)は上記層(I)用にも層(II)用にも適用できる。主成分となる樹脂及び他の材料を二軸混練押出機に投入し、加熱溶融する。このとき、主成分となる樹脂の他に、少なくとも可塑剤および親水性樹脂の少なくとも一方をペレットに含める。可塑剤、親水性樹脂等の好ましい樹脂、可塑剤および親水性樹脂については、上述したとおりである。
 ペレットを構成する樹脂組成物100重量%において、可塑剤の含有量は、5~26重量%であることが好ましい。可塑剤の含有量が5重量%以上であることで、セルロースエステルの熱可塑性および分離膜の透過性能が良好なものとなる。可塑剤の含有量を26重量%以下とすることで、分離膜の分離性能および膜強度が良好なものとなる。可塑剤(B)の含有量は、より好ましくは10~24重量%、さらに好ましくは14~22重量%である。
 ペレットを構成する樹脂組成物100重量%において、親水性樹脂の含有量は、0.01~10重量%であることが好ましい。親水性樹脂の含有量を0.01重量%以上とすることで、分離膜の透過性能が良好なものとなる。親水性樹脂の含有量を10重量%以下とすることで、分離膜の分離性能と膜強度が良好なものとなる。親水性樹脂の含有量は、より好ましくは0.05~8.0重量%、さらに好ましくは0.1~6.0重量%である。
 投入方法に特に制限はない。例えば、事前に混ぜ合わせて投入する方法、またはそれぞれ吐出量が設定された複数台のフィーダーを用いて投入する方法等が挙げられる。均一に混ざるまで溶融混練を行った後、ガット状に水槽に吐出して、ペレタイザーによりカットすることによりペレットを得る。
 (b)中空糸の形成
 次に、得られたペレットを溶融紡糸法により中空糸化する。中空糸を形成する工程は、具体的には、加熱溶融された樹脂組成物を口金の吐出孔から中空糸状に押し出すこと、押し出された樹脂組成物を空気中で冷却することで固化させること、を備える。
 ここで、本発明では、図2に示す、紡糸口金の吐出孔部の孔長(L)16と孔間隙(D)17の比(L/D)を2以上20以下の範囲とすることが好ましい。ここで、孔長(L)16とは、口金吐出部の孔間隙と同一の間隙を有する部分の長さのことであり、ランド長とも呼ばれる。また、孔間隙(D)17とは、口金吐出部のスリットの厚みのことである。
 L/Dは、4以上であることがより好ましく、8以上であることがさらに好ましく、11以上であることが特に好ましい。また、L/Dは、18以下であることがより好ましく、16以下であることがさらに好ましい。L/Dは12以下であってもよい。
 孔長(L)は0.2mm以上、0.5mm以上、1mm以上、または2mm以上であることが好ましい。また、孔長(L)は10mm以下、8mm以下、6mm以下、または5mm以下であることが好ましい。
 冷却は、空気中で、樹脂組成物を固化する温度まで冷却することができればよく、他の条件は特に限定されない。冷却には、中空糸に風を当てる冷却装置を用いてもよい。
 中空糸の巻き取り速度(紡糸速度)は吐出速度よりも大きく設定されることが好ましい。ドラフト比は200以上、300以上、または400以上であることが好ましい。また、ドラフト比は、1,000以下、900以下、または800以下であることが好ましい。
 本発明では、口金の孔長(L)と、孔長と孔間隙の比(L/D)、及びドラフト比を上記範囲とすることで、領域a、領域b、領域cの平均孔径、開孔率を上記した好ましい範囲にできることを見出した。
 その理由は明確には分かっていないが、吐出孔内部において、層(I)の樹脂組成物の厚み方向の各領域に与えるせん断と、厚み方向で生じる流速差、吐出後において、ドラフトにより層(I)の樹脂組成物の厚み方向の各領域に与えるせん断、これらによって、層(I)の厚み方向における可塑剤や親水性樹脂の分散状態が変化するためと考えられる。
 本発明では、中空糸を製造する各種の紡糸口金を使用することができ、具体的には、例えば、C型スリットの紡糸口金、弧状(アーク状)のスリット部が複数個(例えば2~5個)配置されて1個の吐出孔を形成する紡糸口金、及びチューブインオリフィス型の紡糸口金等を用いて製造することができる。
 樹脂組成物が吐出されてから冷却が始まるまでの間の距離、具体的には紡糸口金の下面から冷却装置(チムニー)上端までの距離は、0~50mmであることが好ましく、0~40mmであることがより好ましく、0~30mmであることがさらに好ましい。
 本製造方法は、紡糸後に、中空糸を延伸する工程をさらに備えてもよい。延伸方法は特に限定されないが、例えば、延伸前の中空糸膜を加熱ロール上での搬送、または、オーブン中での加熱によって延伸を行う温度まで昇温し、ロール間の周速差を用いて1段もしくは2段以上の多段で延伸を行う。
 例えば、主成分の樹脂がセルロースエステルの場合、延伸工程における中空糸膜の温度の好ましい範囲は60~140℃であり、より好ましくは70~130℃、さらに好ましくは80~120℃である。
 合計の延伸倍率は1.1~2.0倍が好ましく、1.2~2.0倍がより好ましく、1.3~1.5倍がさらに好ましい。また必要に応じ、延伸中あるいは延伸後に熱固定を施してもよい。熱固定温度は100~220℃であることが好ましい。
 なお、上記層(I)及び層(II)を積層させて中空糸を作製する方法は、具体的に実施例にて詳細に説明する。
 (c)溶出工程
 このようにして紡糸し、巻き取って得られた中空糸から、可塑剤および/または親水性樹脂を溶出してもよい。溶出方法は特に限定されないが、水、アルコール水溶液、酸水溶液、及びアルカリ水溶液などの溶媒に浸漬することが採用される。なお、平膜型の分離膜を作製する方法は、具体的に実施例にて詳細に説明する。
 可塑剤または親水性樹脂が抜けた跡が膜における細孔となる。なお、可塑剤および親水性樹脂は、分離膜中に残存してもよいし、分離膜から完全に溶出してもよい。
 平均孔径Pa、Pb、Pcおよび開孔率を上記の範囲とする手段として、上述のとおり、主成分の樹脂と、可塑剤および親水性樹脂の少なくとも一方とを含有する樹脂組成物を、孔長および間隙と孔長の関係が特定の範囲にある口金を用いると共に、特定の範囲のドラフト比で溶融製膜した後、可塑剤および親水性樹脂の少なくとも一部を水中に溶出させて細孔を形成する方法は好適であるが、本発明はこの方法に限定されるものではない。
 III.モジュール
 上記のようにして得られた本発明の分離膜は、従来公知の方法によりケースに充填することで、モジュールとすることが可能である。例えば、中空糸膜モジュールは、複数の中空糸膜と、筒状のケースと、を備える。複数の中空糸膜は、束ねて、筒状のケースに挿入した後、その端部をポリウレタンやエポキシ樹脂等の熱硬化性樹脂で上記ケースに固定して封止する。熱硬化性樹脂で硬化させた中空糸膜の端部を切断することで中空糸膜の開口面を得て、モジュールを作製する。
 また、平膜であれば、支持体に固定されるか、膜同士が貼り合わせられることで封筒状膜を形成し、さらに必要に応じて集水管等に装着されることでモジュール化される。
 IV.造水方法
 本発明の分離膜は、上記モジュールの形態としたのち、溶液から溶質を除去することを目的とする造水に用いることができる。その際の操作圧力は0.1MPa以上であると好ましく、0.3MPa以上であるとより好ましく、0.6MPa以上であるとさらに好ましい。一般に、操作圧力が大きいほど膜透過流束、脱塩率ともに大きくなる。
 一方で、中空糸膜の径方向への潰れ等、膜の破損を抑制するために、操作圧力は6.0MPa以下であることが好ましく、3.0MPa未満であることがより好ましく、1.5MPa未満であることがさらに好ましい。
 本発明の分離膜を液体の脱塩に使用する場合には、供給する液体の温度は高い脱塩率を実現するために、45℃以下であることが好ましく、40℃未満であることがより好ましく、35℃未満であることがさらに好ましい。その一方で、高い膜透過流束を得るために、供給水の温度は5℃以上であることが好ましく、10℃以上であることがより好ましい。
 また、供給する液体のpHは、高くなると海水等の高塩濃度の供給水の場合、マグネシウム等のスケールが発生する恐れがあり、また、高pH運転による膜の劣化が懸念されるため、中性領域での運転が好ましい。
 以上に記した数値範囲の上限及び下限は、任意に組み合わせることができる。
 以下に実施例を示して本発明をさらに具体的に説明するが、本発明はこれにより何ら制限を受けるものではない。
 [測定及び評価方法]
 以下、実施例により本発明をより詳細に説明する。なお実施例中の各特性値は次の方法で求めたものである。
 なお、以下の(1)、(2)、及び(8)においては、分離膜を25℃で8時間、真空乾燥させた状態で測定及び評価をした。
 (1)分離膜の各層の厚み(μm)
 分離膜の厚み方向の断面を走査型電子顕微鏡により観察、撮影し、層(I)または層(II)の厚み(μm)を算出した。各層の厚みは、任意の10箇所を観察して算出し、その平均値とした。
 (2)中空糸膜の中空率(%)、外径(μm)
 中空糸膜の長手方向と垂直な方向(繊維径方向)と、膜の厚み方向の断面を光学顕微鏡により観察、撮影し、断面の中空部を合わせた全面積Sa(μm)と中空部の面積Sb(μm)を測定し、下式を用いて算出した。なお、中空率、及び外径は中空糸10本を用いて算出し、その平均値とした。
 中空率(%)=(Sb/Sa)×100
 外径(μm)=(4×Sa/π)1/2
 (3)平均孔径Pa、Pb、Pc(nm)
 湿潤状態の分離膜を凍結乾燥した後、RuO染色超薄切片法にて分離膜の長手方向の断面の観察資料を作製し、透過型電子顕微鏡(日立製H-7100FA)にて、領域a、領域b、及び領域cについて、それぞれ、加速電圧100kV、倍率10万倍で観察、撮影した。得られた断面写真の20nmが5cmになるように印刷した拡大写真の上に、透明なフィルムやシートを重ねて、細孔に該当する部分を油性インキ等で塗りつぶした。ここで、細孔に該当する部分とは、RuOガスが沈着してできた黒色の微粒子と見なした。次いで、イメージアナライザーを用いて、当該部分の孔径を求めた。この測定を各領域について、任意の30個の細孔で行い、数平均することで平均孔径(nm)を求めた。
 (4)開孔率Ha、Hb、Hc(%)
 領域a、領域b、及び領域cについて、それぞれ、上記(3)で平均孔径を算出した拡大写真の中の20nm四方あたりの細孔数を数えて、1m当たりの細孔数に換算した。この計算を各領域について、任意の5箇所の20nm四方で行い、数平均することで、各領域の細孔密度(個/m)を算出した。開孔率は、上記(3)で求めた平均孔径(nm)と細孔密度(個/m)から次式により計算して求めた。
 開孔率(%)=(π×((平均孔径)/2))×(細孔密度)×10-16
 (5)透過性能(膜透過流束(L/m/day))
 イソプロピルアルコールの10wt%水溶液に1時間浸漬して親水化を行った分離膜に、濃度500ppm、温度25℃、pH6.5に調整した塩化ナトリウム水溶液を操作圧力0.75MPaで供給して、膜ろ過処理を行い、得られた透過水量に基づいて、下記式により膜透過流束を求めた。
 膜透過流束(L/m/day)=1日あたりの透過水量/膜面積
 (6)分離性能(塩阻止率(%))
 膜透過流束と同条件で膜ろ過処理を行い、得られた透過水の塩濃度を測定した。得られた透過水の塩濃度及び供給水の塩濃度から、下記式に基づいて塩阻止率を求めた。なお、透過水の塩濃度は、電気伝導度の測定値より求めた。
 塩阻止率(%)=100×{1-(透過水中の塩化ナトリウム濃度/供給水中の塩化ナトリウム濃度)}
 なお、上記(5)、及び(6)において、分離膜が中空糸膜の場合は、以下のように小型モジュールを作成して膜ろ過処理を行った。
 中空糸膜を束ねて、プラスチック製パイプに挿入した後、熱硬化性樹脂をパイプに注入し、末端を硬化させて封止した。封止させた中空糸膜の端部を切断することで中空糸膜の開口面を得て、外径基準の膜面積が約0.1mの評価用小型モジュールを作製した。
 また、上記(5)、及び(6)においては、層(I)が供給水側との接触面となるように膜ろ過処理を行った。
 (7)耐欠陥性
 分離膜を20枚(中空糸膜の場合は上記小型モジュールを20本)準備し、上記(6)に記載の方法で塩阻止率を求め、20枚(中空糸膜の場合は20本)の中で、最も高い数値と、最も低い数値の差を欠陥パラメータとして算出した。その欠陥パラメータを用いて、以下の基準にて評価した。
◎:0.2未満
○:0.2以上1未満
△:1以上3未満
×:3以上
 (8)引張強度(MPa)
 温度20℃、湿度65%の環境下において、引張試験機(オリエンテック社製テンシロン UCT-100)を用い、試料長100mm、引張速度100mm/minの条件にて引張強度(破断強度)(MPa)を測定した。なお測定回数は5回とし、その平均値を引張強度とした。
 [樹脂(A)]
(A1)
 セルロース(コットンリンター)100重量部に、酢酸240重量部とプロピオン酸67重量部を加え、50℃で30分間混合した。混合物を室温まで冷却した後、氷浴中で冷却した無水酢酸172重量部と無水プロピオン酸168重量部をエステル化剤として、硫酸4重量部をエステル化触媒として加えて、150分間撹拌を行い、エステル化反応を行った。エステル化反応において、40℃を越える時は、水浴で冷却した。反応後、反応停止剤として酢酸100重量部と水33重量部の混合溶液を20分間かけて添加して、過剰の無水物を加水分解した。その後、酢酸333重量部と水100重量部を加えて、80℃で1時間加熱撹拌した。反応終了後、炭酸ナトリウム6重量部を含む水溶液を加えて、析出したセルロースアセテートプロピオネートを濾別し、続いて水で洗浄した後、60℃で4時間乾燥した。得られたセルロースアセテートプロピオネートのアセチル基及びプロピオニル基の平均置換度は各々1.9、0.7であり、重量平均分子量(Mw)は17.8万であった。
(A2)
 株式会社ダイセル製セルロースアセテート(LT35)、置換度2.90
 [可塑剤、親水性樹脂(B)]
(B1)
 重量平均分子量600のポリエチレングリコール
(B2)
 重量平均分子量3400のポリエチレングリコール
(B3)
 重量平均分子量8300のポリエチレングリコール
(B4)
 グリセリン
 [分離膜の製造]
 (実施例1)
 セルロースエステル(A1)78重量%、重量平均分子量600のポリエチレングリコール(B1)22重量%を二軸押出機にて240℃で溶融混練し、均質化した後にペレット化して樹脂組成物を得た。このペレットを80℃で8時間真空乾燥を行った。
 乾燥させた樹脂組成物のペレットを二軸押出機に供給し230℃で溶融混練したのち、ギヤポンプにて押出量を調整し、中央部に気体の流路を配した2重管口金(L=2mm、L/D=4)より下方に紡出した。
 この紡出した中空糸を、口金の下面から冷却装置(チムニー)上端までの距離が30mmとなるように冷却装置へ導き、25℃、風速1.5m/秒の冷却風によって冷却し、油剤を付与して収束させた後、ドラフト比が50となるようにワインダーで巻き取った。その後、イソプロピルアルコールの10wt%水溶液に1時間浸漬して可塑剤を溶出させて中空糸膜を得た。なお、浸漬前後における重量変化から、溶融紡糸する際に可塑剤として添加した重量平均分子量600のポリエチレングリコール(B1)は、全量が中空糸膜から水中に溶出していた。得られた複合中空糸膜の構造、物性を表1に示した。
 (実施例2)
 LとL/Dは実施例1と同じで、吐出口径が異なる口金を用い、ドラフト比を200とした以外は、実施例1と同様にして中空糸膜を得た。なお、浸漬前後における重量変化から、溶融紡糸する際に可塑剤として添加した重量平均分子量600のポリエチレングリコール(B1)は、全量が中空糸膜から水中に溶出していた。得られた中空糸膜の構造、物性を表1に示した。
 (実施例3)
 樹脂組成物の成分を表1のように変更した以外は、実施例2と同様にして中空糸膜を得た。なお、浸漬前後における重量変化から、溶融紡糸する際に可塑剤、親水性樹脂として添加した重量平均分子量600のポリエチレングリコール(B1)、重量平均分子量3400のポリエチレングリコール(B2)は、全量が中空糸膜から水中に溶出していた。得られた中空糸膜の構造、物性を表1に示した。
 (実施例4~6)
 口金のLとL/Dを表1のように変更した以外は、実施例2と同様にして中空糸膜を得た。なお、浸漬前後における重量変化から、溶融紡糸する際に可塑剤として添加した重量平均分子量600のポリエチレングリコール(B1)は、全量が中空糸膜から水中に溶出していた。得られた中空糸膜の構造、物性を表1に示した。
 (比較例1)
 口金のLとL/Dを表1のように変更した以外は、実施例1と同様にして中空糸膜を得た。なお、浸漬前後における重量変化から、溶融紡糸する際に可塑剤として添加した重量平均分子量600のポリエチレングリコール(B1)は、全量が中空糸膜から水中に溶出していた。得られた中空糸膜の構造、物性を表1に示した。
 (比較例2)
 樹脂組成物の成分を表1のように変更し、LとL/Dは実施例1と同じで、吐出口径が異なる口金を用い、ドラフト比を20とした以外は、実施例1と同様にして中空糸膜を得た。なお、浸漬前後における重量変化から、溶融紡糸する際に可塑剤、親水性樹脂として添加した重量平均分子量600のポリエチレングリコール(B1)、グリセリン(B4)は、全量が中空糸膜から水中に溶出していた。得られた中空糸膜の構造、物性を表1に示した。
 (実施例7)
 セルロースエステル(A1)78重量%、重量平均分子量600のポリエチレングリコール(B1)18重量%、重量平均分子量3400のポリエチレングリコール(B2)4重量%を二軸押出機にて240℃で溶融混練し、均質化した後にペレット化して層(I)用の樹脂組成物を得た。このペレットを80℃で8時間真空乾燥を行った。
 また、セルロースエステル(A1)68重量%、重量平均分子量600のポリエチレングリコール(B1)22重量%、重量平均分子量8300のポリエチレングリコール(B3)10重量%を二軸押出機にて240℃で溶融混練し、均質化した後にペレット化して、層(II)用の樹脂組成物を得た。このペレットを80℃で8時間真空乾燥を行った。
 乾燥させた層(I)用の樹脂組成物のペレット及び層(II)用の樹脂組成物のペレットを、それぞれ別々の二軸押出機に供給し220℃で溶融混練したのち、ギヤポンプにて層(I)側:層(II)側=1:5となるように押出量を調整した。続いて外層が層(I)、内層が層(II)となるように、中央部に気体の流路を配した多重管ノズルを有する紡糸口金内に導入し、口金内で複合化させた。その後、口金孔(L=2mm、L/D=4)より下方に紡出した。この紡出した中空糸を、口金の下面から冷却装置(チムニー)上端までの距離が30mmとなるように冷却装置へ導き、25℃、風速1.5m/秒の冷却風によって冷却し、油剤を付与して収束させた後、ドラフト比が200となるようにワインダーで巻き取った。その後、イソプロピルアルコールの10wt%水溶液に1時間浸漬して可塑剤、親水性樹脂を溶出させて複合中空糸膜を得た。なお、浸漬前後における重量変化から、溶融紡糸する際に可塑剤、親水性樹脂として添加した重量平均分子量600のポリエチレングリコール(B1)、重量平均分子量3400のポリエチレングリコール(B2)、重量平均分子量8300のポリエチレングリコール(B3)は、それぞれ全量が複合中空糸膜から水中に溶出していた。得られた複合中空糸膜の構造、物性を表2に示した。
 (実施例8)
 口金孔のLとL/Dを表2のように変更した以外は、実施例7と同様にして複合中空糸膜を得た。なお、浸漬前後における重量変化から、溶融紡糸する際に可塑剤、親水性樹脂として添加した重量平均分子量600のポリエチレングリコール(B1)、重量平均分子量3400のポリエチレングリコール(B2)、重量平均分子量8300のポリエチレングリコール(B3)は、それぞれ全量が複合中空糸膜から水中に溶出していた。得られた複合中空糸膜の構造、物性を表2に示した。
 (実施例9)
 ギヤポンプにて押出量を調整する際に、層(I)側:層(II)側=1:10となるように押出量を調整した以外は、実施例8と同様にして複合中空糸膜を得た。なお、浸漬前後における重量変化から、溶融紡糸する際に可塑剤、親水性樹脂として添加した重量平均分子量600のポリエチレングリコール(B1)、重量平均分子量3400のポリエチレングリコール(B2)、重量平均分子量8300のポリエチレングリコール(B3)は、それぞれ全量が複合中空糸膜から水中に溶出していた。得られた複合中空糸膜の構造、物性を表2に示した。
 (比較例3)
 LとL/Dは実施例7と同じで吐出口径が異なる口金を用い、ドラフト比を10とした以外は、実施例7と同様にして複合中空糸膜を得た。なお、浸漬前後における重量変化から、溶融紡糸する際に可塑剤、親水性樹脂として添加した重量平均分子量600のポリエチレングリコール(B1)、重量平均分子量3400のポリエチレングリコール(B2)、重量平均分子量8300のポリエチレングリコール(B3)は、それぞれ全量が複合中空糸膜から水中に溶出していた。得られた中空糸膜の構造、物性を表2に示した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表1、及び表2の結果から、領域aの平均孔径Pa及び領域bの平均孔径Pbが0.3nm以上3.0nm以下、領域cの平均孔径Pcが3.0nm以下であり、かつ領域aの開孔率Ha、領域bの開孔率Hb、領域cの開孔率Hcが2Hc<Ha及び2Hc<Hbの式を満たす実施例1~9の分離膜は、一定の膜透過流束(透過性能)と塩阻止率(分離性能)を有し、かつ耐欠陥性に優れることがわかる。
 一方、領域aの開孔率Ha、領域bの開孔率Hb、領域cの開孔率Hcが2Hc<Ha及び2Hc<Hbの式を満たさない比較例1~3の分離膜、さらに領域aの平均孔径Pa及び領域bの平均孔径Pbが0.3~3.0nmの範囲内にない比較例2の分離膜は、塩阻止率(分離性能)、及び耐欠陥性に劣ることがわかる。
 本発明を特定の態様を用いて詳細に説明したが、本発明の意図と範囲を離れることなく様々な変更及び変形が可能であることは、当業者にとって明らかである。なお本出願は、2016年1月29日付で出願された日本特許出願(特願2016-016423)に基づいており、その全体が引用により援用される。
 本発明は、透過性能と分離性能に優れ、かつ欠陥の発生が少ない分離膜である。本発明の分離膜は、海水、かん水、下水、及び排水などから工業用水、及び飲料水などを製造するための水処理用膜、人工腎臓や血漿分離などの医療用膜、果汁濃縮などの食品・飲料工業用膜、排気ガス、炭酸ガスなどを分離するガス分離膜、及び燃料電池セパレーターなどの電子工業用膜などに用いることができる。上記水処理用膜の種類としては、精密濾過膜、限外濾過膜、ナノ濾過膜、逆浸透膜、及び正浸透膜などに好ましく用いることができる。
1 層(I)
2 A面
3 B面
4 A面から領域aの上面までの距離(50nm)
5 A面から領域aの下面までの距離(150nm)
6 B面から領域bの下面までの距離(50nm)
7 B面から領域bの上面までの距離(150nm)
8 A面から領域cの上面までの距離
9 B面から領域cの下面までの距離
10 領域cの厚み100nm
11 領域a
12 領域b
13 領域c
14 樹脂組成物の流路
15 気体の流路
16 孔長(L)
17 孔間隙(D)

Claims (7)

  1.  厚みが0.5~100μmの層(I)を有し、
     前記層(I)の厚み方向の断面において、表面(A面)から深さ50~150nmの領域を領域a、もう一方の表面(B面)から深さ50~150nmの領域を領域b、両表面からの深さが同じとなる厚み100nmの領域を領域cとしたときに、領域aの平均孔径Pa、領域bの平均孔径Pbがいずれも0.3nm以上3.0nm以下、領域cの平均孔径Pcが3.0nm以下であり、
     領域aの開孔率Ha、領域bの開孔率Hb、領域cの開孔率Hcが以下の式を満たす分離膜。
     2Hc<Ha
     2Hc<Hb
  2.  前記開孔率Ha、及び前記開孔率Hbがいずれも2%以上80%以下、開孔率Hcが40%以下である、請求項1に記載の分離膜。
  3.  前記層(I)が、ポリアミド、ポリエステル、及びセルロースエステルからなる群より選ばれる少なくとも1種を含む、請求項1または2に記載の分離膜。
  4.  さらに厚みが5~500μmの多孔性支持膜からなる層(II)が積層された構造を有する、請求項1~3のいずれか1項に記載の分離膜。
  5.  前記分離膜が中空糸形状である、請求項1~4のいずれか1項に記載の分離膜。
  6.  長手方向の引張強度が70MPa以上である、請求項1~5のいずれか1項に記載の分離膜。
  7.  塩化ナトリウム濃度500ppmのpH6.5に調整した水溶液を、25℃、圧力0.75MPaで濾過した際の透水量が2L/m/dayである、請求項1~6のいずれか1項に記載の分離膜。
PCT/JP2017/003060 2016-01-29 2017-01-27 分離膜 WO2017131209A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020187021441A KR102525347B1 (ko) 2016-01-29 2017-01-27 분리막
CN201780008628.8A CN108602024B (zh) 2016-01-29 2017-01-27 分离膜
US16/073,531 US10799837B2 (en) 2016-01-29 2017-01-27 Separation membrane
EP17744439.5A EP3409346A4 (en) 2016-01-29 2017-01-27 SEPARATION MEMBRANE
JP2017513007A JP6763374B2 (ja) 2016-01-29 2017-01-27 分離膜

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-016423 2016-01-29
JP2016016423 2016-01-29

Publications (1)

Publication Number Publication Date
WO2017131209A1 true WO2017131209A1 (ja) 2017-08-03

Family

ID=59398285

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/003060 WO2017131209A1 (ja) 2016-01-29 2017-01-27 分離膜

Country Status (6)

Country Link
US (1) US10799837B2 (ja)
EP (1) EP3409346A4 (ja)
JP (1) JP6763374B2 (ja)
KR (1) KR102525347B1 (ja)
CN (1) CN108602024B (ja)
WO (1) WO2017131209A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018021545A1 (ja) * 2016-07-29 2018-02-01 東レ株式会社 分離膜およびその製造方法
WO2021132399A1 (ja) * 2019-12-23 2021-07-01 東レ株式会社 分離膜及び分離膜の製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018159642A1 (ja) * 2017-02-28 2018-09-07 東レ株式会社 複合中空糸膜およびその製造方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001000843A (ja) 1999-06-18 2001-01-09 Toyobo Co Ltd 複合半透膜および複合半透膜モジュ−ル
WO2004043666A1 (ja) * 2002-11-12 2004-05-27 Daicel Chemical Industries, Ltd. 多孔性フィルムの製造方法、及び多孔性フィルム
JP2007289886A (ja) * 2006-04-26 2007-11-08 Toyobo Co Ltd 高分子多孔質中空糸膜
JP2008272636A (ja) * 2007-04-26 2008-11-13 Asahi Kasei Corp 多層微多孔膜
WO2010035754A1 (ja) * 2008-09-26 2010-04-01 旭化成ケミカルズ株式会社 多孔質膜、多孔質膜の製造方法、清澄化された液体の製造方法及び多孔質膜モジュール
JP2012115835A (ja) 2010-08-27 2012-06-21 Toyobo Co Ltd 中空糸型逆浸透膜
JP2014073487A (ja) * 2012-09-11 2014-04-24 Toray Ind Inc 多孔質膜、多孔質膜を内蔵する浄水器および多孔質膜の製造方法
WO2014156644A1 (ja) * 2013-03-28 2014-10-02 東レ株式会社 多孔質膜および浄水器
WO2015041286A1 (ja) * 2013-09-18 2015-03-26 三菱レイヨン株式会社 多孔質中空糸膜及びその製造方法

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4808315A (en) * 1986-04-28 1989-02-28 Asahi Kasei Kogyo Kabushiki Kaisha Porous hollow fiber membrane and a method for the removal of a virus by using the same
JP3266351B2 (ja) * 1993-01-20 2002-03-18 株式会社日立製作所 データベース管理システムおよび問合せの処理方法
JP3681219B2 (ja) * 1996-05-23 2005-08-10 日東電工株式会社 ポリスルホン多孔質分離膜
US6666969B1 (en) * 1998-10-01 2003-12-23 Tonen Chemical Corporation Microporous polyolefin film and process for producing the same
US7229665B2 (en) * 2001-05-22 2007-06-12 Millipore Corporation Process of forming multilayered structures
EP1413350B1 (en) * 2001-08-01 2011-12-14 Asahi Kasei Medical Co., Ltd. Multilayer microporous film
CN1705505B (zh) 2002-10-18 2010-04-28 旭化成医疗株式会社 亲水微孔膜
EP1666129B1 (en) * 2003-08-07 2017-06-21 Asahi Kasei Medical Co., Ltd. Composite porous membrane
US20080004205A1 (en) * 2006-06-30 2008-01-03 Millipore Corporation Ultrafiltration membranes and methods of making
NL1030288C2 (nl) 2004-10-29 2006-10-09 Toray Industries Semipermeabel composietmembraan, productiewerkwijze daarvan, en element, fluïdumscheidingsinstallatie en werkwijze voor behandeling van water onder toepassing van hetzelfde.
WO2007125943A1 (ja) 2006-04-26 2007-11-08 Toyo Boseki Kabushiki Kaisha 高分子多孔質中空糸膜
EP2060315A3 (en) * 2007-11-15 2009-08-12 DSMIP Assets B.V. High performance membrane
EP2696963B1 (de) * 2011-04-13 2021-03-24 3M Innovative Properties Company Makroporöse filtrationsmembran
US9005496B2 (en) * 2012-02-01 2015-04-14 Pall Corporation Asymmetric membranes
WO2014168584A1 (en) * 2013-04-10 2014-10-16 Nanyang Technological University Nanofiltration membrane and method of manufacturing a nanofiltration membrane
KR102265728B1 (ko) * 2013-12-13 2021-06-16 도레이 카부시키가이샤 다층 분리막
US10702834B2 (en) 2014-07-07 2020-07-07 Toray Industries, Inc. Separation membrane and method for producing same
JP6699172B2 (ja) * 2014-09-30 2020-05-27 東レ株式会社 分離膜
EP3278867B1 (en) 2015-03-31 2021-09-08 Toray Industries, Inc. Separation membrane
CN107530645B (zh) * 2015-04-28 2020-10-27 东丽株式会社 复合中空纤维膜及其制造方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001000843A (ja) 1999-06-18 2001-01-09 Toyobo Co Ltd 複合半透膜および複合半透膜モジュ−ル
WO2004043666A1 (ja) * 2002-11-12 2004-05-27 Daicel Chemical Industries, Ltd. 多孔性フィルムの製造方法、及び多孔性フィルム
JP2007289886A (ja) * 2006-04-26 2007-11-08 Toyobo Co Ltd 高分子多孔質中空糸膜
JP2008272636A (ja) * 2007-04-26 2008-11-13 Asahi Kasei Corp 多層微多孔膜
WO2010035754A1 (ja) * 2008-09-26 2010-04-01 旭化成ケミカルズ株式会社 多孔質膜、多孔質膜の製造方法、清澄化された液体の製造方法及び多孔質膜モジュール
JP2012115835A (ja) 2010-08-27 2012-06-21 Toyobo Co Ltd 中空糸型逆浸透膜
JP2014073487A (ja) * 2012-09-11 2014-04-24 Toray Ind Inc 多孔質膜、多孔質膜を内蔵する浄水器および多孔質膜の製造方法
WO2014156644A1 (ja) * 2013-03-28 2014-10-02 東レ株式会社 多孔質膜および浄水器
WO2015041286A1 (ja) * 2013-09-18 2015-03-26 三菱レイヨン株式会社 多孔質中空糸膜及びその製造方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018021545A1 (ja) * 2016-07-29 2018-02-01 東レ株式会社 分離膜およびその製造方法
WO2021132399A1 (ja) * 2019-12-23 2021-07-01 東レ株式会社 分離膜及び分離膜の製造方法
JPWO2021132399A1 (ja) * 2019-12-23 2021-07-01
JP7078171B2 (ja) 2019-12-23 2022-05-31 東レ株式会社 分離膜及び分離膜の製造方法
US11794150B2 (en) 2019-12-23 2023-10-24 Toray Industries, Inc. Separation membrane and method for producing separation membrane

Also Published As

Publication number Publication date
US20190046931A1 (en) 2019-02-14
CN108602024B (zh) 2021-06-22
KR102525347B1 (ko) 2023-04-25
US10799837B2 (en) 2020-10-13
KR20180104630A (ko) 2018-09-21
JPWO2017131209A1 (ja) 2018-11-29
EP3409346A4 (en) 2019-09-25
EP3409346A1 (en) 2018-12-05
CN108602024A (zh) 2018-09-28
JP6763374B2 (ja) 2020-09-30

Similar Documents

Publication Publication Date Title
US11103836B2 (en) Separation membrane
CN107530645B (zh) 复合中空纤维膜及其制造方法
JP6699172B2 (ja) 分離膜
US20080078718A1 (en) Porous Membrane for Water Treatment and Method of Manufacturing the Same
WO2017131209A1 (ja) 分離膜
JP2017177040A (ja) セルロースエステル系中空糸膜およびその製造方法
JP2017136587A (ja) 分離膜
WO2018021545A1 (ja) 分離膜およびその製造方法
JP2010082509A (ja) 多孔質膜
CN113490542A (zh) 复合中空纤维膜以及复合中空纤维膜的制造方法
KR102407778B1 (ko) 복합 중공사막 및 그 제조 방법
KR20130040625A (ko) 이차저지층을 갖는 수처리용 폴리불화비닐리덴 중공사막 및 그 제조방법
JPH01288302A (ja) 微多孔性中空糸膜及びその製造方法
JPH0670155B2 (ja) ポリテトラフルオロエチレン系樹脂多孔性膜の製法
JP2016193427A (ja) 中空糸膜およびその製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017513007

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17744439

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20187021441

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017744439

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017744439

Country of ref document: EP

Effective date: 20180829