WO2017128549A1 - 一种分层结构填充物及其制备方法 - Google Patents

一种分层结构填充物及其制备方法 Download PDF

Info

Publication number
WO2017128549A1
WO2017128549A1 PCT/CN2016/080959 CN2016080959W WO2017128549A1 WO 2017128549 A1 WO2017128549 A1 WO 2017128549A1 CN 2016080959 W CN2016080959 W CN 2016080959W WO 2017128549 A1 WO2017128549 A1 WO 2017128549A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
fibers
mixed
flakes
polyester
Prior art date
Application number
PCT/CN2016/080959
Other languages
English (en)
French (fr)
Inventor
戴宝福
Original Assignee
浙江大彩绗缝制品有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江大彩绗缝制品有限公司 filed Critical 浙江大彩绗缝制品有限公司
Priority to US15/541,306 priority Critical patent/US20180044824A1/en
Publication of WO2017128549A1 publication Critical patent/WO2017128549A1/zh

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/02Cotton wool; Wadding
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4326Condensation or reaction polymers
    • D04H1/435Polyesters
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4374Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece using different kinds of webs, e.g. by layering webs
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4382Stretched reticular film fibres; Composite fibres; Mixed fibres; Ultrafine fibres; Fibres for artificial leather
    • D04H1/43825Composite fibres
    • D04H1/43828Composite fibres sheath-core
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4382Stretched reticular film fibres; Composite fibres; Mixed fibres; Ultrafine fibres; Fibres for artificial leather
    • D04H1/43835Mixed fibres, e.g. at least two chemically different fibres or fibre blends
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4391Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece characterised by the shape of the fibres
    • D04H1/43914Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece characterised by the shape of the fibres hollow fibres
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • D04H1/541Composite fibres, e.g. sheath-core, sea-island or side-by-side; Mixed fibres
    • D04H1/5412Composite fibres, e.g. sheath-core, sea-island or side-by-side; Mixed fibres sheath-core
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • D04H1/541Composite fibres, e.g. sheath-core, sea-island or side-by-side; Mixed fibres
    • D04H1/5418Mixed fibres, e.g. at least two chemically different fibres or fibre blends
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/44Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling
    • D04H1/46Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres
    • D04H1/498Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres entanglement of layered webs

Definitions

  • the invention belongs to the technical field of fillers, and in particular relates to a layered structure filler and a preparation method thereof.
  • the traditional non-woven line production process is a mixed cotton-pre-opening-main opening-carding-laying-drying-winding.
  • the preparation process of the above-mentioned non-woven thread can only form a plurality of fibers by single-line carding and laying.
  • the filling of the single-layer block structure cannot stratify different fibers, and there are defects in the bulkiness and warmth retention and the independent delamination of different fibers.
  • the technical problem to be solved by the present invention is to provide a layered structure filler, a preparation method and application thereof, and the layered structure filler provided by the invention has good bulkiness and warmth, and can realize different compositions. Fiber independent flexible layering and diverse combinations.
  • the present invention provides a layered structure filler comprising: a first fiber flake (1) and a second fiber flake (2) composited to the first fiber flake.
  • a third fiber flake (3) composited to the second fiber flakes is further included.
  • the first fiber flakes are natural fiber flakes, rayon flakes or mixed fiber flakes formed by one or more of natural fibers and rayon fibers;
  • the second fiber flakes are selected from the group consisting of natural fiber flakes, rayon flakes, or mixed fiber flakes formed from one or more of natural fibers and rayon fibers.
  • the third fiber flakes are selected from the group consisting of natural fiber flakes, rayon flakes, or mixed fiber flakes formed from one or more of natural fibers and rayon fibers.
  • the natural fiber flakes are selected from the group consisting of tencel flakes, wool fiber flakes or bamboo fiber flakes;
  • the rayon flakes are selected from the group consisting of polyester fiber, coolmax fiber, polyester microfiber, polyester fiber, viscose fiber, acrylic fiber, milk protein fiber, AMICOR fiber, INVISTA fiber or low melting fiber. ;
  • the mixed fiber flake formed by one or more of the natural fiber and the rayon is selected from the group consisting of wool One or more of fiber, bamboo fiber, polyester fiber, coolmax fiber, tencel, polyester microfiber, polyester coarse fiber, viscose fiber, acrylic fiber, milk protein fiber, AMICOR fiber, INVISTA fiber and low melting point fiber Mixing to obtain a mixed fiber flake.
  • the first fiber flakes comprise:
  • low melting point fiber 5 wt% to 20 wt% of a low melting point fiber, wherein the low melting point fiber is a polypropylene/polyethylene sheath core type composite fiber;
  • polyester fiber 0% by weight to 75% by weight of polyester fiber
  • 20wt% to 90wt% of other fibers selected from the group consisting of wool fiber, bamboo fiber, coolmax fiber, tencel, polyester microfiber, polyester coarse fiber, viscose fiber, acrylic fiber, milk protein fiber, AMICOR fiber and One or more of INVISTA fibers;
  • the second fiber flakes include:
  • low melting point fibers are low melting point fibers are polypropylene/polyethylene sheath core type composite fibers
  • the third fiber flakes include:
  • low melting point fiber 5 wt% to 20 wt% of a low melting point fiber, wherein the low melting point fiber is a polypropylene/polyethylene sheath core type composite fiber;
  • polyester fiber 0% by weight to 75% by weight of polyester fiber
  • 20wt% to 90wt% of other fibers selected from the group consisting of wool fiber, bamboo fiber, coolmax fiber, tencel, polyester microfiber, polyester coarse fiber, viscose fiber, acrylic fiber, milk protein fiber, AMICOR fiber and One or more of INVISTA fibers.
  • the fibers in the first fiber flakes, the second fiber flakes and the third fiber flakes have a thickness of 0.7D to 15D, and the fibers have a length of 20 to 76 mm.
  • the invention also provides a preparation method of a layered structure filler, comprising the following steps:
  • the first mixed fiber is sequentially subjected to main opening, carding and laying to obtain a first fiber flake precursor
  • the second mixed fiber is sequentially subjected to main opening, carding and laying to obtain a second fiber flake precursor, and is laid on the first fiber flake precursor to obtain a layered structure filler precursor;
  • the invention also provides a preparation method of a layered structure filler, comprising the following steps:
  • the first mixed fiber is sequentially subjected to main opening, carding and laying to obtain a first fiber flake precursor
  • the second mixed fiber is sequentially subjected to main opening, carding and laying to obtain a second fiber flake precursor, and is laid on the first fiber flake precursor;
  • the third mixed fiber is sequentially subjected to main opening, carding and laying to obtain a third fiber flake precursor, and is laid on the second fiber flake precursor to obtain a layered structure filler precursor;
  • the layered structure filler precursor is sequentially subjected to drawing, drying, ironing and cooling to obtain a layered structure filler.
  • the first mixed fiber comprises wool fiber, bamboo fiber, polyester fiber, coolmax fiber, tencel, polyester microfiber, polyester crude fiber, viscose fiber, acrylic fiber, milk protein fiber, AMICOR fiber, INVISTA One or more of a fiber and a low melting point fiber;
  • the second mixed fiber comprises wool fiber, bamboo fiber, polyester fiber, coolmax fiber, tencel, polyester microfiber, polyester coarse fiber, viscose fiber, acrylic fiber, milk protein fiber, AMICOR fiber, INVISTA fiber and low One or more of the melting point fibers;
  • the third mixed fiber includes wool fiber, bamboo fiber, polyester fiber, coolmax fiber, tencel, polyester microfiber, polyester coarse fiber, viscose fiber, acrylic fiber, milk protein fiber, AMICOR fiber, INVISTA fiber and low One or more of the melting point fibers.
  • the present invention provides a layered structured packing comprising: a first fiber flake (1) and a second fiber flake (2) composited to the first fiber flake.
  • a layered structured packing comprising: a first fiber flake (1) and a second fiber flake (2) composited to the first fiber flake.
  • the layered structure filler provided by the invention has a thickness of 1 to 10 cm and a Crowe value of ⁇ 5.0.
  • FIG. 1 is a schematic structural view of a layered structure filler provided by the present invention.
  • FIG. 2 is a schematic structural view of a layered structure filler provided by the present invention.
  • FIG. 3 is a flow chart of a process for preparing a layered structure filler provided by the present invention.
  • FIG. 4 is a flow chart of a process for preparing a layered structure filler provided by the present invention.
  • the present invention provides a layered structure filler comprising: a first fiber flake (1) and a second fiber flake (2) composited to the first fiber flake.
  • FIG. 1 is a schematic structural view of a layered structure filler provided by the present invention.
  • 1 is a first fiber flake and 2 is a second fiber flake.
  • the layered structure filler comprises a first fiber flake, the first fiber flake being formed of one or more of natural fiber flakes, rayon flakes or natural fibers and rayon fibers. Mixed fiber flakes.
  • the natural fiber flakes are selected from the group consisting of tencel flakes, wool fiber flakes or bamboo fiber flakes;
  • the rayon flakes are selected from the group consisting of polyester fiber, coolmax fiber, polyester microfiber, polyester fiber, viscose fiber, acrylic fiber, milk protein fiber, AMICOR fiber, INVISTA fiber or low melting fiber. ;
  • the mixed fiber flake formed by one or more of the natural fiber and the rayon fiber is selected from the group consisting of wool fiber, bamboo fiber, polyester fiber, coolmax fiber, tencel, polyester microfiber, polyester coarse fiber, viscose fiber, One or more of acrylic fiber, milk protein fiber, AMICOR fiber, INVISTA fiber and low melting point fiber are mixed to obtain a mixed fiber flake.
  • the first fiber flakes are preferably mixed fiber flakes formed from one or more of natural fibers and rayon fibers. More preferably, the first fiber flakes comprise:
  • low melting point fiber 5 wt% to 20 wt% of a low melting point fiber, wherein the low melting point fiber is a polypropylene/polyethylene sheath core type composite fiber;
  • polyester fiber 0% by weight to 75% by weight of polyester fiber
  • fibers selected from the group consisting of wool fiber, bamboo fiber, coolmax fiber, tencel, polyester microfiber, polyester coarse fiber, viscose fiber, acrylic fiber, milk protein fiber, AMICOR fiber and One or more of INVISTA fibers;
  • the first fiber flakes are polypropylene/polyethylene sheath-core composite fibers, polyester having a mass ratio of (5-20): (10-75): (20-80).
  • Mixed fiber flakes formed of fibers and coolmax fibers in some embodiments of the invention, the first fiber flakes are polypropylene/polyethylene sheath core composite fibers, polyester having a mass ratio of 5:75:20 Fiber and coolmax fiber Dimensional composite fiber flakes; in other specific embodiments of the invention, the first fiber flakes are polypropylene/polyethylene sheath core type composite fibers, polyester fibers and having a mass ratio of 10:40:50 Mixed fiber flake formed by coolmax fiber; in other specific embodiments of the present invention, the first fiber flake is a polypropylene/polyethylene sheath core type composite fiber, polyester fiber having a mass ratio of 15:5:80 Mixed fiber flakes formed with coolmax fibers.
  • the first fiber flakes are polypropylene/polyethylene sheath core type composite fibers having a mass ratio of (5-20): (10-75): (20-80), a mixed fiber flake formed of polyester fiber and tencel; in some embodiments of the present invention, the first fiber flake is a polypropylene/polyethylene sheath core type composite fiber having a mass ratio of 5:75:20, a mixed fiber flake formed of polyester fiber and tencel; in other specific embodiments of the present invention, the first fiber flake is a polypropylene/polyethylene sheath core type composite fiber having a mass ratio of 10:40:50 a mixed fiber flake formed of polyester fiber and tencel; in other specific embodiments of the present invention, the first fiber flake is a polypropylene/polyethylene sheath core type composite having a mass ratio of 15:5:80 Mixed fiber flakes formed from fibers, polyester fibers and Tencel.
  • the first fiber flakes are polypropylene/polyethylene sheath core type composite fibers having a mass ratio of (5-20): (10-75): (20-80), a mixed fiber flake formed of a polyester fiber and a viscose fiber; in some embodiments of the present invention, the first fiber flake is a polypropylene/polyethylene sheath core type composite fiber having a mass ratio of 5:75:20 a mixed fiber flake formed of a polyester fiber and a viscose fiber; in other specific embodiments of the present invention, the first fiber flake is a polypropylene/polyethylene sheath core type having a mass ratio of 10:40:50 A hybrid fiber flake formed of a composite fiber, a polyester fiber, and a viscose fiber; in other specific embodiments of the present invention, the first fiber flake is a polypropylene/polyethylene skin having a mass ratio of 15:5:80 Mixed fiber flakes formed from core composite fibers, polyester fibers
  • the first fiber flakes are polypropylene/polyethylene sheath core type composite fibers having a mass ratio of (5-20): (10-75): (20-80), a mixed fiber flake formed of a polyester fiber and a wool fiber; in some embodiments of the present invention, the first fiber flake is a polypropylene/polyethylene sheath core type composite fiber having a mass ratio of 5:75:20, a mixed fiber flake formed of a polyester fiber and a wool fiber; in other specific embodiments of the present invention, the first fiber flake is a polypropylene/polyethylene sheath core type composite fiber having a mass ratio of 10:40:50 a mixed fiber flake formed of a polyester fiber and a wool fiber; in other specific embodiments of the present invention, the first fiber flake is a polypropylene/polyethylene sheath core type composite having a mass ratio of 15:5:80 Mixed fiber flakes of fibers, polyester fibers and wool fibers.
  • the first fiber flakes are polypropylene/polyethylene sheath core type composite fibers having a mass ratio of (5-20): (10-70): (20-80), a mixed fiber flake formed of a polyester fiber and a bamboo fiber; in some embodiments of the present invention, the first fiber flake is a polypropylene/polyethylene sheath core type composite fiber having a mass ratio of 5:75:20, a mixed fiber flake formed of a polyester fiber and a bamboo fiber; in other specific embodiments of the present invention, the first fiber flake is a polypropylene/polyethylene sheath core type composite fiber having a mass ratio of 10:40:50 a mixed fiber flake formed of a polyester fiber and a bamboo fiber; in other specific embodiments of the present invention, the first fiber flake is a polypropylene/polyethylene sheath core type composite having a mass ratio of 15:5:80 Mixed fiber flakes of fibers, polyester fibers and bamboo fibers.
  • the first fiber flakes are polypropylene/polyethylene sheath core type composite fibers having a mass ratio of (5-20): (10-75): (20-80), a mixed fiber flake formed of a polyester fiber and an acrylic fiber; in some embodiments of the present invention, the first fiber flake is a polypropylene/polyethylene sheath core type composite fiber having a mass ratio of 5:75:20, a mixed fiber flake formed of a polyester fiber and an acrylic fiber; in other specific embodiments of the present invention, the first fiber flake is a polypropylene/polyethylene sheath core type composite fiber having a mass ratio of 10:40:50 a mixed fiber flake formed of a polyester fiber and an acrylic fiber; in other specific embodiments of the present invention, the first fiber flake is a polypropylene/polyethylene sheath core type composite having a mass ratio of 15:5:80 Mixed fiber flakes of fibers, polyester fibers and acrylic fibers.
  • the first fiber flakes are polypropylene/polyethylene sheath core type composite fibers having a mass ratio of (5-20): (10-75): (20-80), a mixed fiber flake formed of a polyester fiber and a milk protein fiber; in some embodiments of the present invention, the first fiber flake is a polypropylene/polyethylene sheath core type composite fiber having a mass ratio of 5:75:20 a mixed fiber flake formed of a polyester fiber and a milk protein fiber; in other specific embodiments of the present invention, the first fiber flake is a polypropylene/polyethylene sheath core type having a mass ratio of 10:40:50 A hybrid fiber flake formed of a composite fiber, a polyester fiber, and a milk protein fiber; in other specific embodiments of the present invention, the first fiber flake is a polypropylene/polyethylene skin having a mass ratio of 15:5:80 Mixed fiber flakes formed from core composite fibers, polyester fibers and milk protein fibers.
  • the first fiber flakes are polypropylene/polyethylene sheath core type composite fibers having a mass ratio of (5-20): (10-75): (20-80), a mixed fiber flake formed of a polyester fiber and an AMICOR fiber; in some embodiments of the present invention, the first fiber flake is a polypropylene/polyethylene sheath core type composite fiber having a mass ratio of 5:75:20, a hybrid fiber flake formed of a polyester fiber and an AMICOR fiber; in other specific embodiments of the present invention, the first fiber batt The sheet is a mixed fiber flake formed of a polypropylene/polyethylene sheath core type composite fiber, a polyester fiber and an AMICOR fiber having a mass ratio of 10:40:50; in other specific embodiments of the invention, the first fiber The flakes are mixed fiber flakes formed of polypropylene/polyethylene sheath-core composite fiber, polyester fiber and AMICOR fiber with a mass ratio of 15:5:80.
  • the first fiber flakes are polypropylene/polyethylene sheath core type composite fibers having a mass ratio of (5-20): (10-75): (20-80), Polyester fiber and INVISTA fiber; in some embodiments of the invention, the first fiber flake is a polypropylene/polyethylene sheath core type composite fiber, polyester fiber and INVISTA in a mass ratio of 5:75:20 a fiber-forming mixed fiber flake; in other specific embodiments of the present invention, the first fiber flake is a polypropylene/polyethylene sheath core type composite fiber, polyester fiber and having a mass ratio of 10:40:50 Mixed fiber flake formed by INVISTA fiber; in other specific embodiments of the present invention, the first fiber flake is a polypropylene/polyethylene sheath core type composite fiber, polyester having a mass ratio of 15:5:80 Mixed fiber flakes formed from fibers and INVISTA fibers.
  • the first fiber flakes are polypropylene/polyethylene sheath core type composite fibers having a mass ratio of (5-20): (10-75): (20-80), Polyester fiber and polyester microfiber; in some embodiments of the invention, the first fiber flake is a polypropylene/polyethylene sheath core type composite fiber, polyester fiber and polyester having a mass ratio of 5:75:20 Mixed fiber flakes formed of microfibers. In some embodiments of the present invention, the first fiber flakes are a mixed fiber of polypropylene/polyethylene sheath-core composite fiber, polyester fiber and polyester microfiber with a mass ratio of 10:70:20. sheet.
  • the layered structure filler provided by the present invention further comprises a second fiber flake (2) composited to the first fiber flake.
  • the second fiber flakes are selected from the group consisting of natural fiber flakes, rayon flakes, or mixed fiber flakes formed from one or more of natural fibers and rayon fibers.
  • the natural fiber flakes are selected from the group consisting of tencel flakes, wool fiber flakes or bamboo fiber flakes;
  • the rayon flakes are selected from the group consisting of polyester fiber, coolmax fiber, polyester microfiber, polyester fiber, viscose fiber, acrylic fiber, milk protein fiber, AMICOR fiber, INVISTA fiber or low melting fiber. ;
  • the mixed fiber flake formed by one or more of the natural fiber and the rayon fiber is selected from the group consisting of wool fiber, bamboo fiber, polyester fiber, coolmax fiber, tencel, polyester microfiber, polyester coarse fiber, viscose fiber, One or more of acrylic fiber, milk protein fiber, AMICOR fiber, INVISTA fiber and low melting point fiber are mixed to obtain a mixed fiber flake.
  • the second fiber flakes are selected from the group consisting of one or more of natural fibers and rayon fibers; and more preferably, the second fiber flakes comprise:
  • low melting point fibers are low melting point fibers are polypropylene/polyethylene sheath core type composite fibers
  • the second fiber flakes are mixed fiber flakes formed of a polyester fiber and a low melting point fiber having a mass ratio of 95:5; in other embodiments of the present invention, The second fiber flake is a mixed fiber flake formed of a polyester fiber and a low melting point fiber having a mass ratio of 90:10; in other embodiments of the present invention, the second fiber flake has a mass ratio of 85 a mixed fiber flake formed of a polyester fiber of 15 and a low melting point fiber. In other embodiments of the present invention, the second fiber flake is formed of a polyester fiber having a mass ratio of 10:90 and a low melting point fiber. Mixed fiber flakes.
  • the thickness of the first fiber flakes is preferably from 1.0 to 5.0 cm, more preferably from 1.1 to 4.5 cm.
  • the grammage of the first flakes is preferably from 50 to 200 g/m 2 , more preferably from 50 to 150 g/m 2 ;
  • the thickness of the second fiber flakes is preferably from 1.0 to 5.0 cm, more preferably from 1.5 to 4.5 cm, and the second flakes preferably have a basis weight of from 50 to 200 g/m 2 , more preferably from 50 to 150 g/m. 2 .
  • the thickness of the layered structure filler is preferably from 1.0 to 10.0 cm, more preferably from 6.0 to 8.0 cm, and the basis weight of the layered structure filler is preferably from 40 to 600 g/m 2 , more preferably from 50 to 450 g / m 2 .
  • the layered structure filler may also have a three-layer structure, that is, further include a third fiber flake (3) composited to the second fiber flake.
  • FIG. 2 is a schematic structural view of a layered structure filler provided by the present invention.
  • 1 is a first fiber flake
  • 2 is a second fiber flake
  • 3 is a third fiber flake.
  • the third fiber flakes are natural fiber flakes, rayon flakes or mixed fiber flakes formed from one or more of natural fibers and rayon fibers.
  • the natural fiber flakes are selected from the group consisting of tencel flakes, wool fiber flakes or bamboo fiber flakes;
  • the rayon flakes are selected from the group consisting of polyester fiber, coolmax fiber, polyester microfiber, polyester fiber, viscose fiber, acrylic fiber, milk protein fiber, AMICOR fiber, INVISTA fiber or low melting fiber. ;
  • the mixed fiber flake formed by one or more of the natural fiber and the rayon fiber is selected from the group consisting of wool fiber, bamboo fiber, polyester fiber, coolmax fiber, tencel, polyester microfiber, polyester coarse fiber, One or more of viscose fiber, acrylic fiber, milk protein fiber, AMICOR fiber, INVISTA fiber and low melting point fiber are mixed to obtain a mixed fiber flake.
  • the third fiber flakes are preferably mixed fiber flakes formed from one or more of natural fibers and rayon fibers. More preferably, the third fiber flakes comprise:
  • low melting point fiber 5 wt% to 20 wt% of a low melting point fiber, wherein the low melting point fiber is a polypropylene/polyethylene sheath core type composite fiber;
  • polyester fiber 0% by weight to 75% by weight of polyester fiber
  • 20wt% to 90wt% of other fibers selected from the group consisting of wool fiber, bamboo fiber, coolmax fiber, tencel, polyester microfiber, polyester coarse fiber, viscose fiber, acrylic fiber, milk protein fiber, AMICOR fiber and One or more of INVISTA fibers;
  • the third fiber flakes are polypropylene/polyethylene sheath-core composite fibers, polyester having a mass ratio of (5-20): (10-75): (20-80). Mixed fiber flakes formed of fibers and coolmax fibers; in some embodiments of the invention, the third fiber flakes are polypropylene/polyethylene sheath core composite fibers, polyester having a mass ratio of 5:75:20 a mixed fiber flake formed of a fiber and a coolmax fiber; in other specific embodiments of the present invention, the third fiber flake is a polypropylene/polyethylene sheath core type composite fiber having a mass ratio of 10:40:50, a mixed fiber flake formed of a polyester fiber and a coolmax fiber; in other specific embodiments of the present invention, the third fiber flake is a polypropylene/polyethylene sheath core type composite fiber having a mass ratio of 15:5:80 Mixed fiber flakes formed from polyester fibers and coolmax fibers.
  • the third fiber flakes are polypropylene/polyethylene sheath core type composite fibers having a mass ratio of (5-20): (10-75): (20-80), a mixed fiber flake formed of polyester fiber and tencel; in some embodiments of the present invention, the third fiber flake is a polypropylene/polyethylene sheath core type composite fiber having a mass ratio of 5:75:20, a mixed fiber flake formed of polyester fiber and tencel; in other specific embodiments of the present invention, the third fiber flake is a polypropylene/polyethylene sheath core type composite fiber having a mass ratio of 10:40:50 a mixed fiber flake formed of polyester fiber and tencel; in other specific embodiments of the present invention, the third fiber flake is a polypropylene/polyethylene sheath core type composite having a mass ratio of 15:5:80 Mixed fiber flakes formed from fibers, polyester fibers and Tencel.
  • the third fiber flakes are polypropylene/polyethylene sheath core type composite fibers having a mass ratio of (5-20): (10-75): (20-80), a mixed fiber flake formed of a polyester fiber and a viscose fiber; in some embodiments of the present invention, the third fiber flake is a polypropylene/polyethylene sheath core type composite fiber having a mass ratio of 5:75:20 Made of polyester fiber and viscose fiber Mixed fiber flakes; in other specific embodiments of the present invention, the third fiber flakes are polypropylene/polyethylene sheath core type composite fibers, polyester fibers and viscose fibers having a mass ratio of 10:40:50 The mixed fiber flake formed; in other specific embodiments of the present invention, the third fiber flake is a polypropylene/polyethylene sheath core type composite fiber, polyester fiber and sticky having a mass ratio of 15:5:80 Mixed fiber flakes formed from gum fibers.
  • the third fiber flakes are polypropylene/polyethylene sheath core type composite fibers having a mass ratio of (5-20): (10-75): (20-80), a mixed fiber flake formed of a polyester fiber and a wool fiber; in some embodiments of the present invention, the third fiber flake is a polypropylene/polyethylene sheath core type composite fiber having a mass ratio of 5:75:20, a mixed fiber flake formed of a polyester fiber and a wool fiber; in other specific embodiments of the present invention, the third fiber flake is a polypropylene/polyethylene sheath core type composite fiber having a mass ratio of 10:40:50 a mixed fiber flake formed of a polyester fiber and a wool fiber; in other specific embodiments of the present invention, the third fiber flake is a polypropylene/polyethylene sheath core type composite having a mass ratio of 15:5:80 Mixed fiber flakes of fibers, polyester fibers and wool fibers.
  • the third fiber flakes are polypropylene/polyethylene sheath core type composite fibers having a mass ratio of (5-20): (10-70): (20-80), a mixed fiber flake formed of a polyester fiber and a bamboo fiber; in some embodiments of the present invention, the third fiber flake is a polypropylene/polyethylene sheath core type composite fiber having a mass ratio of 5:75:20, a mixed fiber flake formed of a polyester fiber and a bamboo fiber; in other specific embodiments of the present invention, the third fiber flake is a polypropylene/polyethylene sheath core type composite fiber having a mass ratio of 10:40:50 a mixed fiber flake formed of a polyester fiber and a bamboo fiber; in other specific embodiments of the present invention, the third fiber flake is a polypropylene/polyethylene sheath core type composite having a mass ratio of 15:5:80 Mixed fiber flakes of fibers, polyester fibers and bamboo fibers.
  • the third fiber flakes are polypropylene/polyethylene sheath core type composite fibers having a mass ratio of (5-20): (10-75): (20-80), a mixed fiber flake formed of a polyester fiber and an acrylic fiber; in some embodiments of the present invention, the third fiber flake is a polypropylene/polyethylene sheath core type composite fiber having a mass ratio of 5:75:20, a mixed fiber flake formed of a polyester fiber and an acrylic fiber; in other specific embodiments of the present invention, the third fiber flake is a polypropylene/polyethylene sheath core type composite fiber having a mass ratio of 10:40:50 a mixed fiber flake formed of a polyester fiber and an acrylic fiber; in other specific embodiments of the present invention, the third fiber flake is a polypropylene/polyethylene sheath core type composite having a mass ratio of 15:5:80 Mixed fiber flakes of fibers, polyester fibers and acrylic fibers.
  • the third fiber flakes are polypropylene/polyethylene sheath core type composite fibers having a mass ratio of (5-20): (10-75): (20-80), a mixed fiber flake formed of a polyester fiber and a milk protein fiber; in some embodiments of the present invention, the third fiber flake is a polypropylene/polyethylene sheath core type composite fiber having a mass ratio of 5:75:20 a mixed fiber flake formed of a polyester fiber and a milk protein fiber; in other specific embodiments of the present invention, the third fiber flake is a polypropylene/polyethylene sheath core type having a mass ratio of 10:40:50 A hybrid fiber flake formed of a composite fiber, a polyester fiber, and a milk protein fiber; in other specific embodiments of the present invention, the third fiber flake is a polypropylene/polyethylene skin having a mass ratio of 15:5:80 Mixed fiber flakes formed from core composite fibers, polyester fibers and milk protein fibers.
  • the third fiber flakes are polypropylene/polyethylene sheath core type composite fibers having a mass ratio of (5-20): (10-75): (20-80), a mixed fiber flake formed of a polyester fiber and an AMICOR fiber; in some embodiments of the present invention, the third fiber flake is a polypropylene/polyethylene sheath core type composite fiber having a mass ratio of 5:75:20, a mixed fiber flake formed of a polyester fiber and an AMICOR fiber; in other specific embodiments of the present invention, the third fiber flake is a polypropylene/polyethylene sheath core type composite fiber having a mass ratio of 10:40:50 a mixed fiber flake formed of a polyester fiber and an AMICOR fiber; in other specific embodiments of the present invention, the third fiber flake is a polypropylene/polyethylene sheath core type composite having a mass ratio of 15:5:80 Mixed fiber flakes of fibers, polyester fibers and AMICOR fibers
  • the third fiber flakes are polypropylene/polyethylene sheath core type composite fibers having a mass ratio of (5-20): (10-75): (20-80), Polyester fiber and INVISTA fiber; in some embodiments of the invention, the third fiber flake is a polypropylene/polyethylene sheath core type composite fiber, polyester fiber and INVISTA in a mass ratio of 5:75:20 Mixed fiber flake formed by fiber; in other specific embodiments of the present invention, the third fiber flake is a polypropylene/polyethylene sheath core type composite fiber, polyester fiber and a mass ratio of 10:40:50 Mixed fiber flake formed by INVISTA fiber; in other specific embodiments of the present invention, the third fiber flake is a polypropylene/polyethylene sheath core type composite fiber, polyester having a mass ratio of 15:5:80 Mixed fiber flakes formed from fibers and INVISTA fibers.
  • the third fiber flakes are polypropylene/polyethylene sheath core type composite fibers having a mass ratio of (5-20): (10-75): (20-80), Polyester fiber and polyester microfiber; in some embodiments of the invention, the third fiber flake is a polypropylene/polyethylene sheath core type composite fiber, polyester fiber and polyester having a mass ratio of 10:70:20 Mixed fiber flakes formed of microfibers.
  • the thickness of the first fiber flakes is preferably from 1.0 to 5.0 cm, more preferably from 1.1 to 4.5 cm.
  • the grammage of the first fiber flakes is preferably from 50 to 200 g/m 2 , more preferably from 50 to 150 g/m 2 ;
  • the thickness of the second fiber flakes is preferably from 1.0 to 5.0 cm, more preferably from 1.5 to 4.5 cm, and the second fiber flakes preferably have a basis weight of from 50 to 200 g/m 2 , more preferably from 50 to 150 g / m 2 ;
  • the thickness of the third fiber flakes is preferably from 1.0 to 5.0 cm, more preferably from 1.5 to 4.5 cm, and the third fiber flakes preferably have a basis weight of from 50 to 200 g/m 2 , more preferably from 50 to 150 g / m 2 ;
  • the thickness of the layered structure filler of the three-layer structure is preferably 5.0 to 9.0 cm, more preferably 6.0 to 8.0 cm, and the basis weight of the layered structure filler is preferably 40 to 600 g/m 2 , more preferably 50 to 450 g/m 2 .
  • the fiber length of all of the fiber raw materials used in the layered structure filler provided by the present invention is preferably from 20 to 76 mm.
  • the fiber raw material may be a long fiber or a short fiber, or a mixed fiber of a long fiber and a short fiber, wherein the long fiber has a length of more than 30 mm, preferably 32 to 76 mm.
  • the staple fibers have a length of less than 30 mm, preferably 20 to 28 mm.
  • the thickness of all the fibrous raw materials used in the layered structured packing provided by the present invention is preferably from 0.7D to 15D, more preferably from 1D to 12D.
  • the invention also provides a preparation method of the above layered structure filler, comprising the following steps:
  • the first mixed fiber is sequentially subjected to main opening, carding and laying to obtain a first fiber flake precursor
  • the second mixed fiber is sequentially subjected to main opening, carding and laying to obtain a second fiber flake precursor, and is laid on the first fiber flake precursor to obtain a layered structure filler precursor;
  • the layered structure filler precursor is sequentially subjected to drawing, drying, ironing and cooling to obtain a layered structure filler.
  • FIG. 3 is a flow chart of a process for preparing a layered structure filler provided by the present invention. Specifically, the present invention firstly mixes and pre-opens the fibers to obtain a first mixed fiber.
  • the mixing and agitation is preferably carried out in a cotton mixing box, that is, various kinds of bundled fibers of different specifications are uniformly stirred and mixed in a mixing box at a set ratio to obtain a mixed raw material.
  • the pre-opening is performed in the opening machine, and the pre-opening performs preliminary decomposition on the mixed raw material to obtain a first mixed fiber. After pre-opening, the first mixed fiber is in a fluffy state and no longer becomes The group is transported to the next process by a cotton fan.
  • the fibers are also subjected to mixing and pre-opening to obtain a second mixed fiber.
  • the mixing and agitation is preferably carried out in a cotton mixing box, that is, various kinds of bundled fibers of different specifications are uniformly stirred and mixed in a mixing box at a set ratio to obtain a mixed raw material.
  • the pre-opening is performed in the opening machine, and the pre-opening performs preliminary decomposition of the mixed raw material to obtain a second mixed fiber.
  • the second mixed fiber is in a fluffy state, no longer in agglomerate, and is transported to the next process by a cotton blower.
  • the order in which the first mixed fiber is prepared and the second mixed fiber are prepared is not particularly limited.
  • the first mixed fiber After obtaining the first mixed fiber, the first mixed fiber is sequentially subjected to main opening, carding and laying to obtain a first fiber flake precursor;
  • the first fiber flake precursor is prepared as follows:
  • the first mixed fiber is further opened in the main opening opener, the first mixed fiber is completely opened, and the raw material is in a fluffy state.
  • the first mixed fiber after the main opening is formed into a dense first cotton in the high cotton collecting box, and the raw material is hoarded to ensure uniform supply during the combing, and the weight stability is ensured.
  • the first crepe cotton is combed into a net by feeding the cotton machine into a carding machine, and the first rammed cotton is straightened and formed by fine decomposition, and processed into a quantitative fiber web consisting essentially of single fibers, and then conveyed to a subsequent process.
  • the carding machine is preferably a twin cylinder carding machine.
  • a laying operation is performed to obtain a first fiber flake precursor.
  • the door width and the weight adjustment are carried out according to the process requirements to ensure the product quality, and the fiber web output from the carding machine is evenly folded and laid to the required width and thickness.
  • the invention also sequentially performs the main opening, carding and laying of the second mixed fiber to obtain the second fiber flake precursor, and is laid on the first fiber flake precursor to obtain the layered structure filler. body;
  • the layered filler precursor is prepared as follows:
  • the second mixed fiber is further opened in the main opening opener, the second mixed fiber is completely opened, the raw material is decomposed more clearly and uniformly, and is transported to the cotton storage bunker of the cotton machine through the cotton conveying fan.
  • the second mixed fiber after the main opening is formed into a dense second quilt in the high cotton collecting box, and the raw material is hoarded to ensure uniform supply during the combing, and the gram weight is stabilized.
  • the second quilted cotton is combed into the net by feeding the cotton machine into the carding machine, and the second squeezing cotton is straightened and formed by fine decomposition, and processed into a quantitative fiber web consisting essentially of single fibers, and then conveyed to the subsequent process.
  • the carding machine is preferably a twin cylinder carding machine.
  • a laying operation is performed to obtain a second fiber flake precursor. Specifically, when the second fiber flake precursor is laid, the second fiber flake precursor is laid on the first fiber flake precursor.
  • the door width and weight adjustment are carried out according to the process requirements to ensure the quality of the product, and the fiber web output from the carding machine is evenly folded and laid to the required width and thickness.
  • a layered structured filler precursor obtained by combining a first fiber flake precursor/second fiber flake precursor is obtained.
  • the layered structure filler precursor is sequentially subjected to traction, drying, ironing and cooling to obtain a layered structure filler.
  • the traction is preferably a five-roller tractor to ensure the flatness of the product.
  • the rate of pulling is preferably 1200 to 1300 rpm.
  • the drying is to volatilize the moisture of the laid product, to ensure the drying of the product, and then to dissolve and solidify the sticky yarn in the product to ensure the tensile force and shape of the product.
  • the drying temperature is preferably from 170 to 180 °C.
  • the product is baked to increase the adhesion and fastness of the product, ensuring that the hand wash does not separate and run.
  • the temperature of the scalding is preferably from 180 to 200 ° C
  • the rotation speed of the glazing machine is from 40 to 50 Hz.
  • the tempered layered structure filler precursor is cooled to obtain a layered structure filler.
  • the cooling is preferably carried out using a wind cooler.
  • the layered structure filler is obtained for winding and trimming, and is quantified according to the requirements of each product for stacking and handling.
  • the invention also provides a preparation method of a layered structure filler, comprising the following steps:
  • the first mixed fiber is sequentially subjected to main opening, carding and laying to obtain a first fiber flake precursor
  • the second mixed fiber is sequentially subjected to main opening, carding and laying to obtain a second fiber flake precursor, and is laid on the first fiber flake precursor;
  • the third mixed fiber is sequentially subjected to main opening, carding and laying to obtain a third fiber flake precursor, and is laid on the second fiber flake precursor to obtain a layered structure filler precursor;
  • FIG. 4 is a flow chart of a process for preparing a layered structure filler provided by the present invention.
  • a three-layer structure filler was prepared by the above preparation method. specific,
  • the fibers are first mixed and pre-opened to obtain a first mixed fiber.
  • the mixing and agitation is preferably carried out in a cotton mixing box, that is, various kinds of bundled fibers of different specifications are uniformly stirred and mixed in a mixing box at a set ratio to obtain a mixed raw material.
  • the pre-opening is performed in the opening machine, and the pre-opening performs preliminary decomposition on the mixed raw material to obtain a first mixed fiber.
  • the first mixed fiber is in a fluffy state, no longer in a group, and is transported to the next process by a cotton fan.
  • the fibers are also subjected to mixing and pre-opening to obtain a second mixed fiber.
  • the mixing and agitation is preferably carried out in a cotton mixing box, that is, various kinds of bundled fibers of different specifications are uniformly stirred and mixed in a mixing box at a set ratio to obtain a mixed raw material.
  • the pre-opening is performed in the opening machine, and the pre-opening performs preliminary decomposition of the mixed raw material to obtain a second mixed fiber.
  • the second mixed fiber is in a fluffy state, no longer in agglomerate, and is transported to the next process by a cotton blower.
  • the fibers are first mixed and stirred and pre-opened to obtain a third mixed fiber.
  • the mixing and agitation is preferably carried out in a cotton mixing box, that is, various kinds of bundled fibers of different specifications are uniformly stirred and mixed in a mixing box at a set ratio to obtain a mixed raw material.
  • the pre-opening is performed in the opening machine, and the pre-opening performs preliminary decomposition on the mixed raw material to obtain a third mixed fiber.
  • the third mixed fiber is in a fluffy state, no longer agglomerated, and is transported to the next process by a cotton blower.
  • the order of preparing the first mixed fiber, the second mixed fiber, and the third mixed fiber is not particularly limited.
  • the first mixed fiber After obtaining the first mixed fiber, the first mixed fiber is sequentially subjected to main opening, carding and laying to obtain a first fiber flake precursor;
  • the first fiber flake precursor is prepared as follows:
  • the first mixed fiber is further opened in the main opening opener, the first mixed fiber is completely opened, and the raw material is in a fluffy state.
  • the first mixed fiber after the main opening is formed into a dense first cotton in the high cotton collecting box, and the raw material is hoarded to ensure uniform supply during the combing, and the weight stability is ensured.
  • the first quilt is combed into the net by feeding the cotton machine into the carding machine, and the fine decomposition is performed.
  • the cotton is straightened and formed into a quantitative web consisting essentially of a single fiber, which is conveyed to a subsequent process.
  • the carding machine is preferably a double cylinder carding machine. .
  • a laying operation is performed to obtain a first fiber flake precursor.
  • the door width and the weight adjustment are carried out according to the process requirements to ensure the product quality, and the fiber web output from the carding machine is evenly folded and laid to the required width and thickness.
  • the second mixed fiber is sequentially subjected to main opening, carding and laying, to obtain a second fiber flake precursor, and laid on the first fiber flake precursor;
  • the second mixed fiber is further opened in the main opening opener, the second mixed fiber is completely opened, the raw material is decomposed more clearly and uniformly, and is transported to the cotton storage machine through the cotton conveying fan. warehouse.
  • the second mixed fiber after the main opening is formed into a dense second quilt in the high cotton collecting box, and the raw material is hoarded to ensure uniform supply during the combing, and the gram weight is stabilized.
  • the second quilted cotton is combed into the net by feeding the cotton machine into the carding machine, and the second squeezing cotton is straightened and formed by fine decomposition, and processed into a quantitative fiber web consisting essentially of single fibers, and then conveyed to the subsequent process.
  • the carding machine is preferably a twin cylinder carding machine.
  • a laying operation is performed to obtain a second fiber flake precursor. Specifically, when the second fiber flake precursor is laid, the second fiber flake precursor is laid on the first fiber flake precursor.
  • the door width and weight adjustment are carried out according to the process requirements to ensure the quality of the product, and the fiber web output from the carding machine is evenly folded and laid to the required width and thickness.
  • the invention will also carry out main opening, carding and laying of the third mixed fiber in sequence to obtain a third fiber flake precursor, and laying on the second fiber flake precursor to obtain a layered structure filler.
  • the layered filler precursor is prepared as follows:
  • the third mixed fiber is further opened in the main opening opener, the third mixed fiber is completely opened, the raw material is decomposed more clearly and uniformly, and is transported to the cotton storage bunker of the cotton machine through the cotton conveying fan.
  • the third mixed fiber after the main opening is formed into a dense third cotton in the high cotton collecting box, and the raw materials are hoarded to ensure uniform supply during the carding, and the weight stability is ensured.
  • the carding machine is preferably a double cylinder carding machine.
  • a laying operation is performed to obtain a third fiber flake precursor. Specifically, when the third fiber flake precursor is laid, the third fiber flake precursor is laid on the second fiber flake precursor. on. At the same time, according to the customer's requirements, according to the process requirements, the width and weight adjustment are carried out to ensure the quality of the product.
  • the fiber web output from the carding machine is evenly folded and laid to the required width and thickness to obtain the first fiber flake precursor.
  • a layered structured filler precursor composed of a second fiber flake precursor/third fiber flake precursor.
  • the layered structure filler precursor is sequentially subjected to traction, drying, ironing and cooling to obtain a layered structure filler.
  • the traction is preferably a five-roller tractor to ensure the flatness of the product.
  • the rate of traction is preferably 1200 to 1300 rpm.
  • the drying is to volatilize the moisture of the laid product, to ensure the drying of the product, and then to dissolve and solidify the sticky yarn in the product to ensure the tensile force and shape of the product.
  • the drying temperature is preferably from 170 to 180 °C.
  • the product is baked to increase the adhesion and fastness of the product, ensuring that the hand wash does not separate and run.
  • the temperature of the scalding is preferably from 180 to 200 ° C
  • the rotation speed of the glazing machine is from 40 to 50 Hz.
  • the tempered layered structure filler precursor is cooled to obtain a layered structure filler.
  • the cooling is preferably carried out using a wind cooler.
  • the layered structure filler is obtained for winding and trimming, and is quantified according to the requirements of each product for stacking and handling.
  • the first mixed fiber comprises wool fiber, bamboo fiber, polyester fiber, coolmax fiber, tencel, polyester microfiber, polyester coarse fiber, viscose fiber, acrylic fiber, milk protein fiber, AMICOR fiber.
  • the second mixed fiber comprises wool fiber, bamboo fiber, polyester fiber, coolmax fiber, tencel, polyester microfiber, polyester coarse fiber, viscose fiber, acrylic fiber, milk protein fiber, AMICOR fiber, INVISTA fiber and low One or more of the melting point fibers;
  • the third mixed fiber includes wool fiber, bamboo fiber, polyester fiber, coolmax fiber, tencel, polyester microfiber, polyester coarse fiber, viscose fiber, acrylic fiber, milk protein fiber, AMICOR fiber, INVISTA fiber and low One or more of the melting point fibers.
  • the filler of the present invention can be used for articles that can be used for filling, such as clothing, bedding, accessories, car accessories, and the like.
  • the invention provides a good bulkiness and warmth retention by layering the fiber flakes.
  • the layered structure filler provided by the invention has a thickness of 6.5 to 9 cm and a gram value of ⁇ 5.15.
  • Polyester fiber includes: 3D*64MM three-dimensional hollow silicon-containing small chemical fiber, 7D*64MM three-dimensional hollow silicon-containing small chemical fiber and polyester fiber 6D*64MM two-dimensional hollow small chemical fiber;
  • Low melting point fiber 4D*51MM polypropylene/polyethylene sheath core type composite fiber
  • Coolmax fiber 1.6D*38MM coolmax fiber
  • Tencel fiber 6.7D*60MM silicon-containing tencel fiber
  • Viscose fiber 1.67D*38MM viscose fiber
  • Acrylic fiber 3D*60MM acrylic fiber
  • Milk protein fiber 1.5D*51MM milk protein fiber
  • AMICOR fiber 6D*64MM AMICOR fiber
  • INVISTA fiber 4.2D*76MM silicon-containing DS4 INVISTA fiber
  • Polyester microfibers include: polyester fine denier fiber 1.2D*51MM two-dimensional silicon-containing small chemical fiber;
  • Polyester crude fiber 12D*64MM two-dimensional hollow silicon-containing small chemical fiber.
  • Examples 1-28 are a method for preparing a two-layer structure filler, specifically:
  • the obtained mixed raw material is preliminarily decomposed in the opening machine, the mixed raw material is in a fluffy state, no longer agglomerates, the first mixed fiber is formed, and the first mixed fiber is conveyed to the next process through the cotton conveying fan. .
  • the obtained mixed raw materials were initially decomposed in an opener, and the opening speed of the opening machine was 1440 Y/min.
  • the mixed raw material is in a fluffy state, no longer agglomerates, a second mixed fiber is formed, and the second mixed fiber is conveyed to the next process through a cotton conveying fan.
  • the obtained first mixed fiber and the second mixed fiber are respectively sent to two openers for main opening, so that the mixed fibers are completely opened.
  • the opening speed is 1440Y/min.
  • the first mixed fiber forms a dense first quilt in a high cotton box (high cotton box size: 200cm*280cm*170cm), and the raw material is hoarded to ensure uniformity during combing. Supply, to ensure the stability of weight.
  • the first quilted cotton is combed into the net by entering the double cylinder carding machine at a speed of 750 rpm by the cotton feeding machine. Specifically, the opened raw material is put into the cylinder of the speed of 1200 r/min, and the 48 Hz doffer is combed and formed. The first twisted cotton is straightened and formed into a quantitative web consisting essentially of single fibers, which is conveyed to a subsequent process.
  • a laying operation is performed to obtain a first fiber flake precursor.
  • the width of the door and the weight are adjusted according to the process requirements to ensure the quality of the product, and the fiber web output from the card is evenly folded and laid to the required width and thickness.
  • the second mixed fiber forms a dense second quilt in a high cotton box (high cotton box size: 200cm*280cm*170cm), and the raw material is hoarded to ensure uniformity during combing. Supply, to ensure the stability of weight.
  • the second quilted cotton is combed into the net by entering the double cylinder carding machine at a speed of 750 rpm by the cotton feeding machine. Specifically, the opened raw material is put into the cylinder of the speed of 1200 r/min, and the 48 Hz doffer is combed and formed. The second twisted cotton is straightened and formed into a quantitative web consisting essentially of single fibers, which is conveyed to a subsequent process.
  • the width of the door and the weight are adjusted according to the process requirements to ensure the quality of the product, and the fiber web output from the card is evenly folded and laid to the required width and thickness.
  • the layered filler precursor was pulled in a five-roll tractor with a traction rate of 1250 rpm to ensure flatness of the product.
  • the netted product is volatilized to ensure the drying of the product, and then the dispersing and solidifying of the sticky yarn in the product ensures the tension and shape of the product.
  • the drying temperature is preferably 170 °C.
  • the product After drying, the product is baked to increase the adhesion and fastness of the product, ensuring hand washing Do not separate and run hair.
  • the temperature of the ironing is 200 ° C
  • the rotation speed of the ironing machine is 45 Hz.
  • the tempered layered structure filler precursor is cooled by a fan with a rotation speed of 1430 Y/min to be cooled and shaped to obtain a layered structure filler.
  • the polyester fibers in the first fiber flakes described in Examples 2, 5, 6, 9, 10, 15, 16, 21, 22, 24 and 25 are selected as 6D*64MM two-dimensional hollow small chemical fibers.
  • the polyester in the first fiber flakes described in Example 3 is selected from the model of 7D*64MM three-dimensional hollow silicon-containing small chemical fiber, and the polyester in the first fiber flakes except the above-mentioned embodiment is selected as a 3D*64MM three-dimensional hollow silicon-containing silicon.
  • polyester fiber in the second fiber flakes described in Examples 1, 4, 8, 11, 14, 17, 20, 23 and 26 is selected from the type 7D*64MM three-dimensional hollow silicon-containing small chemical fiber; in addition to the other embodiments described above
  • polyester fiber in the second fiber flakes described in the examples is selected as a 6D*64MM two-dimensional hollow small chemical fiber.
  • Examples 29-56 are methods for preparing a two-layer structure filler, specifically:
  • the obtained mixed raw material is preliminarily decomposed in the opening machine, the mixed raw material is in a fluffy state, no longer agglomerates, the first mixed fiber is formed, and the first mixed fiber is conveyed to the next process through the cotton conveying fan. .
  • the obtained mixed raw materials were initially decomposed in an opener, and the opening speed of the opening machine was 1440 Y/min.
  • the mixed raw material is in a fluffy state, no longer agglomerates, a second mixed fiber is formed, and the second mixed fiber is conveyed to the next process through a cotton conveying fan.
  • the obtained mixed raw materials were initially decomposed in an opener, and the opening speed of the opening machine was 1440 Y/min.
  • the mixed raw material is in a fluffy state, no longer agglomerates, a third mixed fiber is formed, and the third mixed fiber is conveyed to the next process through a cotton conveying fan.
  • the obtained first mixed fiber, the second mixed fiber and the third mixed fiber are respectively sent to three openers for main opening, so that the mixed fibers are completely opened.
  • the opening speed is 1440Y/min.
  • the first mixed fiber forms a dense first quilt in a high cotton box (high cotton box size: 200cm*280cm*170cm), and the raw material is hoarded to ensure uniformity during combing. Supply, to ensure the stability of weight.
  • the first quilted cotton is combed into the net by entering the double cylinder carding machine at a speed of 750 rpm by the cotton feeding machine. Specifically, the opened raw material is put into the cylinder of the speed of 1200 r/min, and the 48 Hz doffer is combed and formed. The first twisted cotton is straightened and formed into a quantitative web consisting essentially of single fibers, which is conveyed to a subsequent process.
  • a laying operation is performed to obtain a first fiber flake precursor.
  • the width of the door and the weight are adjusted according to the process requirements to ensure the quality of the product, and the fiber web output from the card is evenly folded and laid to the required width and thickness.
  • the second mixed fiber forms a dense second quilt in a high cotton box (high cotton box size: 200cm*280cm*170cm), and the raw material is hoarded to ensure uniformity during combing. Supply, to ensure the stability of weight.
  • the second quilted cotton is combed into the net by entering the double cylinder carding machine at a speed of 750 rpm by the cotton feeding machine. Specifically, the opened raw material is put into the cylinder of the speed of 1200 r/min, and the 48 Hz doffer is combed and formed. The second twisted cotton is straightened and formed into a quantitative web consisting essentially of single fibers, which is conveyed to a subsequent process.
  • a laying operation is performed to obtain a second fiber flake precursor.
  • the width of the door and the weight are adjusted according to the process requirements to ensure the quality of the product, and the fiber web output from the card is evenly folded and laid to the required width and thickness.
  • the third mixed fiber forms a dense third cotton in a high cotton box (high cotton box size: 200cm*280cm*170cm), and the raw material is hoarded to ensure uniformity during combing. Supply, to ensure the stability of weight.
  • the third quilted cotton is combed into the net by entering the double cylinder carding machine at a speed of 750 rpm by the cotton feeding machine. Specifically, the opened raw material is put into the cylinder of the speed of 1200 r/min, and the 48 Hz doffer is combed and formed. Fine decomposition is carried out to straighten the third quilt, and process it into a quantitative web consisting essentially of single fibers, which is conveyed to the subsequent process.
  • the width of the door and the weight are adjusted according to the process requirements to ensure the quality of the product, and the fiber web output from the card is evenly folded and laid to the required width and thickness.
  • the layered filler precursor was pulled in a five-roll tractor with a traction rate of 1250 rpm to ensure flatness of the product.
  • the netted product is volatilized to ensure the drying of the product, and then the dispersing and solidifying of the sticky yarn in the product ensures the tension and shape of the product.
  • the drying temperature is preferably 170 °C.
  • the product is baked to increase the adhesion and fastness of the product, ensuring that the hand wash does not separate and run.
  • the temperature of the ironing is 200 ° C
  • the rotation speed of the ironing machine is 45 Hz.
  • the tempered layered structure filler precursor is cooled by a fan with a rotation speed of 1430 Y/min to be cooled and shaped to obtain a layered structure filler.
  • the first fiber flakes and the third fiber flakes described in Examples 29 to 56 are made of the same raw material of the same mass ratio, wherein the polyester is selected as a 3D*64MM three-dimensional hollow silicon-containing small chemical fiber, and the embodiment 8 ⁇
  • the polyester in the second fiber flakes according to 10 and 14-19 is selected from the type 6D*64MM two-dimensional hollow silicon-containing small chemical fiber, and the second fiber floc as described in Examples 1-7, 11-13 and 20-28.
  • the polyester in the film is selected as a 7D*64MM three-dimensional hollow silicon-containing small chemical fiber.

Abstract

一种分层结构填充物,包括:第一纤维絮片(1)以及复合于所述第一纤维絮片的第二纤维絮片(2)。通过将纤维絮片分层设置,使得到的填充物具有良好的蓬松度和保暖度,并可以实现不同成分纤维独立灵活分层及多样化组合。该分层结构填充物的厚度为1~10cm,克罗值≥5.0。

Description

一种分层结构填充物及其制备方法
本申请要求于2016年01月26日提交中国专利局、申请号为201610052601.6、发明名称为“一种分层结构填充物及其制备方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明属于填充物技术领域,具体涉及一种分层结构填充物及其制备方法。
背景技术
传统无纺线生产工艺为混棉-预开松-主开松-梳理-铺网-烘干-收卷,采用上述无纺线的制备工艺只能将多种纤维通过单线梳理和铺网形成单层的块状结构的填充物,无法将不同纤维进行分层处理,其蓬松度和保暖度及不同纤维独立分层上存在缺陷。
发明内容
有鉴于此,本发明要解决的技术问题在于提供一种分层结构填充物及其制备方法和应用,本发明提供的分层结构填充物具有良好的蓬松度和保暖度,并可以实现不同成分纤维独立灵活分层及多样化组合。
本发明提供了一种分层结构填充物,包括:第一纤维絮片(1)以及复合于所述第一纤维絮片的第二纤维絮片(2)。
优选的,还包括复合于所述第二纤维絮片的第三纤维絮片(3)。
优选的,所述第一纤维絮片为天然纤维絮片、人造纤维絮片或天然纤维和人造纤维中的一种或多种形成的混合纤维絮片;
所述第二纤维絮片选自天然纤维絮片、人造纤维絮片或天然纤维和人造纤维中的一种或多种形成的混合纤维絮片。
优选的,所述第三纤维絮片选自天然纤维絮片、人造纤维絮片或天然纤维和人造纤维中的一种或多种形成的混合纤维絮片。
优选的,所述天然纤维絮片选自天丝絮片、羊毛纤维絮片或竹纤维絮片;
所述人造纤维絮片选自涤纶纤维、coolmax纤维、涤纶超细纤维、涤纶粗纤维、粘胶纤维、晴纶纤维、牛奶蛋白纤维、AMICOR纤维、英威达纤维或低熔点纤维形成的人造纤维絮片;
所述天然纤维和人造纤维中的一种或多种形成的混合纤维絮片选自羊毛 纤维、竹纤维、涤纶纤维、coolmax纤维、天丝、涤纶超细纤维、涤纶粗纤维、粘胶纤维、晴纶纤维、牛奶蛋白纤维、AMICOR纤维、英威达纤维和低熔点纤维中的一种或多种混合得到混合纤维絮片。
优选的,所述第一纤维絮片包括:
5wt%~20wt%的低熔点纤维,所述低熔点纤维为低熔点纤维为聚丙烯/聚乙烯皮芯型复合纤维;
0wt%~75wt%的涤纶纤维;
20wt%~90wt%的其他纤维,所述其他纤维选自羊毛纤维、竹纤维、coolmax纤维、天丝、涤纶超细纤维、涤纶粗纤维、粘胶纤维、晴纶纤维、牛奶蛋白纤维、AMICOR纤维和英威达纤维中的一种或多种;
所述第二纤维絮片包括:
5wt%~95wt%的低熔点纤维,所述低熔点纤维为低熔点纤维为聚丙烯/聚乙烯皮芯型复合纤维;
5wt%~95wt%的涤纶纤维或涤纶粗纤维;
所述第三纤维絮片包括:
5wt%~20wt%的低熔点纤维,所述低熔点纤维为低熔点纤维为聚丙烯/聚乙烯皮芯型复合纤维;
0wt%~75wt%的涤纶纤维;
20wt%~90wt%的其他纤维,所述其他纤维选自羊毛纤维、竹纤维、coolmax纤维、天丝、涤纶超细纤维、涤纶粗纤维、粘胶纤维、晴纶纤维、牛奶蛋白纤维、AMICOR纤维和英威达纤维中的一种或多种。
优选的,所述第一纤维絮片、第二纤维絮片和第三纤维絮片中纤维的粗细为0.7D~15D,纤维的长度为20~76mm。
本发明还提供了一种分层结构填充物的制备方法,包括以下步骤:
A)将纤维进行混合搅拌和预开松,得到第一混合纤维;
将纤维进行混合搅拌和预开松,得到第二混合纤维;
B)将第一混合纤维依次进行主开松、梳理和铺网,得到第一纤维絮片前体;
将第二混合纤维依次进行主开松、梳理和铺网,得到第二纤维絮片前体,并铺设于所述第一纤维絮片前体之上,得到分层结构填充物前体;
C)将所述分层结构填充物前体依次经过牵引、烘干、烫光和冷却得到分 层结构填充物。
本发明还提供了一种分层结构填充物的制备方法,包括以下步骤:
A)将纤维进行混合搅拌和预开松,得到第一混合纤维;
将纤维进行混合搅拌和预开松,得到第二混合纤维;
将纤维进行混合搅拌和预开松,得到第三混合纤维;
B)将第一混合纤维依次进行主开松、梳理和铺网,得到第一纤维絮片前体;
将第二混合纤维依次进行主开松、梳理和铺网,得到第二纤维絮片前体,并铺设于所述第一纤维絮片前体之上;
将第三混合纤维依次进行主开松、梳理和铺网,得到第三纤维絮片前体,并铺设于所述第二纤维絮片前体之上,得到分层结构填充物前体;
C)将所述分层结构填充物前体依次经过牵引、烘干、烫光和冷却得到分层结构填充物。
优选的,所述第一混合纤维包括羊毛纤维、竹纤维、涤纶纤维、coolmax纤维、天丝、涤纶超细纤维、涤纶粗纤维、粘胶纤维、晴纶纤维、牛奶蛋白纤维、AMICOR纤维、英威达纤维和低熔点纤维中的一种或多种;
所述第二混合纤维包括羊毛纤维、竹纤维、涤纶纤维、coolmax纤维、天丝、涤纶超细纤维、涤纶粗纤维、粘胶纤维、晴纶纤维、牛奶蛋白纤维、AMICOR纤维、英威达纤维和低熔点纤维中的一种或多种;
所述第三混合纤维包括羊毛纤维、竹纤维、涤纶纤维、coolmax纤维、天丝、涤纶超细纤维、涤纶粗纤维、粘胶纤维、晴纶纤维、牛奶蛋白纤维、AMICOR纤维、英威达纤维和低熔点纤维中的一种或多种。
与现有技术相比,本发明提供了一种分层结构填充物,包括:第一纤维絮片(1)以及复合于所述第一纤维絮片的第二纤维絮片(2)。本发明通过将纤维絮片分层设置,使得到的填充物具有良好的蓬松度和保暖度,并可以实现不同成分纤维独立灵活分层及多样化组合。
结果表明,本发明提供的分层结构填充物的厚度为1~10cm,克罗值≥5.0。
附图说明
图1为本发明提供的分层结构填充物的结构示意图;
图2为本发明提供的分层结构填充物的结构示意图;
图3为本发明提供的分层结构填充物的制备工艺流程图;
图4为本发明提供的分层结构填充物的制备工艺流程图。
具体实施方式
本发明提供了一种分层结构填充物,包括:第一纤维絮片(1)以及复合于所述第一纤维絮片的第二纤维絮片(2)。
参见图1,图1为本发明提供的分层结构填充物的结构示意图,图1中1为第一纤维絮片,2为第二纤维絮片。
在本发明中,所述分层结构填充物包括第一纤维絮片,所述第一纤维絮片为天然纤维絮片、人造纤维絮片或天然纤维和人造纤维中的一种或多种形成的混合纤维絮片。
所述天然纤维絮片选自天丝絮片、羊毛纤维絮片或竹纤维絮片;
所述人造纤维絮片选自涤纶纤维、coolmax纤维、涤纶超细纤维、涤纶粗纤维、粘胶纤维、晴纶纤维、牛奶蛋白纤维、AMICOR纤维、英威达纤维或低熔点纤维形成的人造纤维絮片;
所述天然纤维和人造纤维中的一种或多种形成的混合纤维絮片选自羊毛纤维、竹纤维、涤纶纤维、coolmax纤维、天丝、涤纶超细纤维、涤纶粗纤维、粘胶纤维、晴纶纤维、牛奶蛋白纤维、AMICOR纤维、英威达纤维和低熔点纤维中的一种或多种混合得到混合纤维絮片。
在本发明中,所述第一纤维絮片优选为天然纤维和人造纤维中的一种或多种形成的混合纤维絮片。更有选的,所述第一纤维絮片包括:
5wt%~20wt%的低熔点纤维,所述低熔点纤维为低熔点纤维为聚丙烯/聚乙烯皮芯型复合纤维;
0wt%~75wt%的涤纶纤维;
20wt%~95wt%的其他纤维,所述其他纤维选自羊毛纤维、竹纤维、coolmax纤维、天丝、涤纶超细纤维、涤纶粗纤维、粘胶纤维、晴纶纤维、牛奶蛋白纤维、AMICOR纤维和英威达纤维中的一种或多种;
在本发明的一些实施例中,所述第一纤维絮片为质量比为(5~20):(10~75):(20~80)的聚丙烯/聚乙烯皮芯型复合纤维、涤纶纤维和coolmax纤维形成的混合纤维絮片;在本发明的一些具体实施例中,所述第一纤维絮片为质量比为5:75:20的聚丙烯/聚乙烯皮芯型复合纤维、涤纶纤维和coolmax纤 维形成的混合纤维絮片;在本发明的另一些具体实施例中,所述第一纤维絮片为质量比为10:40:50的聚丙烯/聚乙烯皮芯型复合纤维、涤纶纤维和coolmax纤维形成的混合纤维絮片;在本发明的另一些具体实施例中,所述第一纤维絮片为质量比为15:5:80的聚丙烯/聚乙烯皮芯型复合纤维、涤纶纤维和coolmax纤维形成的混合纤维絮片。
在本发明的另一些实施例中,所述第一纤维絮片为质量比为(5~20):(10~75):(20~80)的聚丙烯/聚乙烯皮芯型复合纤维、涤纶纤维和天丝形成的混合纤维絮片;在本发明的一些具体实施例中,所述第一纤维絮片为质量比为5:75:20的聚丙烯/聚乙烯皮芯型复合纤维、涤纶纤维和天丝形成的混合纤维絮片;在本发明的另一些具体实施例中,所述第一纤维絮片为质量比为10:40:50的聚丙烯/聚乙烯皮芯型复合纤维、涤纶纤维和天丝形成的混合纤维絮片;在本发明的另一些具体实施例中,所述第一纤维絮片为质量比为15:5:80的聚丙烯/聚乙烯皮芯型复合纤维、涤纶纤维和天丝形成的混合纤维絮片。
在本发明的另一些实施例中,所述第一纤维絮片为质量比为(5~20):(10~75):(20~80)的聚丙烯/聚乙烯皮芯型复合纤维、涤纶纤维和粘胶纤维形成的混合纤维絮片;在本发明的一些具体实施例中,所述第一纤维絮片为质量比为5:75:20的聚丙烯/聚乙烯皮芯型复合纤维、涤纶纤维和粘胶纤维形成的混合纤维絮片;在本发明的另一些具体实施例中,所述第一纤维絮片为质量比为10:40:50的聚丙烯/聚乙烯皮芯型复合纤维、涤纶纤维和粘胶纤维形成的混合纤维絮片;在本发明的另一些具体实施例中,所述第一纤维絮片为质量比为15:5:80的聚丙烯/聚乙烯皮芯型复合纤维、涤纶纤维和粘胶纤维形成的混合纤维絮片。
在本发明的另一些实施例中,所述第一纤维絮片为质量比为(5~20):(10~75):(20~80)的聚丙烯/聚乙烯皮芯型复合纤维、涤纶纤维和羊毛纤维形成的混合纤维絮片;在本发明的一些具体实施例中,所述第一纤维絮片为质量比为5:75:20的聚丙烯/聚乙烯皮芯型复合纤维、涤纶纤维和羊毛纤维形成的混合纤维絮片;在本发明的另一些具体实施例中,所述第一纤维絮片为质量比为10:40:50的聚丙烯/聚乙烯皮芯型复合纤维、涤纶纤维和羊毛纤维形成的混合纤维絮片;在本发明的另一些具体实施例中,所述第一纤维絮片为质量比为15:5:80的聚丙烯/聚乙烯皮芯型复合纤维、涤纶纤维和羊毛纤维形成的混合纤维絮片。
在本发明的另一些实施例中,所述第一纤维絮片为质量比为(5~20):(10~70):(20~80)的聚丙烯/聚乙烯皮芯型复合纤维、涤纶纤维和竹纤维形成的混合纤维絮片;在本发明的一些具体实施例中,所述第一纤维絮片为质量比为5:75:20的聚丙烯/聚乙烯皮芯型复合纤维、涤纶纤维和竹纤维形成的混合纤维絮片;在本发明的另一些具体实施例中,所述第一纤维絮片为质量比为10:40:50的聚丙烯/聚乙烯皮芯型复合纤维、涤纶纤维和竹纤维形成的混合纤维絮片;在本发明的另一些具体实施例中,所述第一纤维絮片为质量比为15:5:80的聚丙烯/聚乙烯皮芯型复合纤维、涤纶纤维和竹纤维形成的混合纤维絮片。
在本发明的另一些实施例中,所述第一纤维絮片为质量比为(5~20):(10~75):(20~80)的聚丙烯/聚乙烯皮芯型复合纤维、涤纶纤维和腈纶纤维形成的混合纤维絮片;在本发明的一些具体实施例中,所述第一纤维絮片为质量比为5:75:20的聚丙烯/聚乙烯皮芯型复合纤维、涤纶纤维和腈纶纤维形成的混合纤维絮片;在本发明的另一些具体实施例中,所述第一纤维絮片为质量比为10:40:50的聚丙烯/聚乙烯皮芯型复合纤维、涤纶纤维和腈纶纤维形成的混合纤维絮片;在本发明的另一些具体实施例中,所述第一纤维絮片为质量比为15:5:80的聚丙烯/聚乙烯皮芯型复合纤维、涤纶纤维和腈纶纤维形成的混合纤维絮片。
在本发明的另一些实施例中,所述第一纤维絮片为质量比为(5~20):(10~75):(20~80)的聚丙烯/聚乙烯皮芯型复合纤维、涤纶纤维和牛奶蛋白纤维形成的混合纤维絮片;在本发明的一些具体实施例中,所述第一纤维絮片为质量比为5:75:20的聚丙烯/聚乙烯皮芯型复合纤维、涤纶纤维和牛奶蛋白纤维形成的混合纤维絮片;在本发明的另一些具体实施例中,所述第一纤维絮片为质量比为10:40:50的聚丙烯/聚乙烯皮芯型复合纤维、涤纶纤维和牛奶蛋白纤维形成的混合纤维絮片;在本发明的另一些具体实施例中,所述第一纤维絮片为质量比为15:5:80的聚丙烯/聚乙烯皮芯型复合纤维、涤纶纤维和牛奶蛋白纤维形成的混合纤维絮片。
在本发明的另一些实施例中,所述第一纤维絮片为质量比为(5~20):(10~75):(20~80)的聚丙烯/聚乙烯皮芯型复合纤维、涤纶纤维和AMICOR纤维形成的混合纤维絮片;在本发明的一些具体实施例中,所述第一纤维絮片为质量比为5:75:20的聚丙烯/聚乙烯皮芯型复合纤维、涤纶纤维和AMICOR纤维形成的混合纤维絮片;在本发明的另一些具体实施例中,所述第一纤维絮 片为质量比为10:40:50的聚丙烯/聚乙烯皮芯型复合纤维、涤纶纤维和AMICOR纤维形成的混合纤维絮片;在本发明的另一些具体实施例中,所述第一纤维絮片为质量比为15:5:80的聚丙烯/聚乙烯皮芯型复合纤维、涤纶纤维和AMICOR纤维形成的混合纤维絮片。
在本发明的另一些实施例中,所述第一纤维絮片为质量比为(5~20):(10~75):(20~80)的聚丙烯/聚乙烯皮芯型复合纤维、涤纶纤维和英威达纤维;在本发明的一些具体实施例中,所述第一纤维絮片为质量比为5:75:20的聚丙烯/聚乙烯皮芯型复合纤维、涤纶纤维和英威达纤维形成的混合纤维絮片;在本发明的另一些具体实施例中,所述第一纤维絮片为质量比为10:40:50的聚丙烯/聚乙烯皮芯型复合纤维、涤纶纤维和英威达纤维形成的混合纤维絮片;在本发明的另一些具体实施例中,所述第一纤维絮片为质量比为15:5:80的聚丙烯/聚乙烯皮芯型复合纤维、涤纶纤维和英威达纤维形成的混合纤维絮片。
在本发明的另一些实施例中,所述第一纤维絮片为质量比为(5~20):(10~75):(20~80)的聚丙烯/聚乙烯皮芯型复合纤维、涤纶纤维和涤纶超细纤维;在本发明的一些具体实施例中,所述第一纤维絮片为质量比为5:75:20的聚丙烯/聚乙烯皮芯型复合纤维、涤纶纤维和涤纶超细纤维形成的混合纤维絮片。在本发明的一些具体实施例中,所述第一纤维絮片为质量比为10:70:20的聚丙烯/聚乙烯皮芯型复合纤维、涤纶纤维和涤纶超细纤维形成的混合纤维絮片。
本发明提供的分层结构填充物还包括复合于所述第一纤维絮片的第二纤维絮片(2)。
在本发明中,所述第二纤维絮片选自天然纤维絮片、人造纤维絮片或天然纤维和人造纤维中的一种或多种形成的混合纤维絮片。
所述天然纤维絮片选自天丝絮片、羊毛纤维絮片或竹纤维絮片;
所述人造纤维絮片选自涤纶纤维、coolmax纤维、涤纶超细纤维、涤纶粗纤维、粘胶纤维、晴纶纤维、牛奶蛋白纤维、AMICOR纤维、英威达纤维或低熔点纤维形成的人造纤维絮片;
所述天然纤维和人造纤维中的一种或多种形成的混合纤维絮片选自羊毛纤维、竹纤维、涤纶纤维、coolmax纤维、天丝、涤纶超细纤维、涤纶粗纤维、粘胶纤维、晴纶纤维、牛奶蛋白纤维、AMICOR纤维、英威达纤维和低熔点纤维中的一种或多种混合得到混合纤维絮片。
优选的,所述第二纤维絮片选自天然纤维和人造纤维中的一种或多种形成的混合纤维絮片;更有选的,所述第二纤维絮片包括:
5wt%~95wt%的低熔点纤维,所述低熔点纤维为低熔点纤维为聚丙烯/聚乙烯皮芯型复合纤维;
5wt%~95wt%的涤纶纤维或涤纶粗纤维。
在本发明的一些具体实施方式中,所述第二纤维絮片为质量比为95:5的涤纶纤维和低熔点纤维形成的混合纤维絮片;在本发明的另一些具体实施方式中,所述第二纤维絮片为质量比为90:10的涤纶纤维和低熔点纤维形成的混合纤维絮片;在本发明的另一些具体实施方式中,所述第二纤维絮片为质量比为85:15的涤纶纤维和低熔点纤维形成的混合纤维絮片,在本发明的另一些实施例中,所述第二纤维絮片为质量比为10:90的涤纶粗纤维和低熔点纤维形成的混合纤维絮片。
在本发明中,所述双层结构的分层结构填充物中,所述第一纤维絮片的厚度优选为1.0~5.0cm,更优选为1.1~4.5cm。所述第一絮片的克重优选为50~200g/m2,更优选为50~150g/m2
所述第二纤维絮片的厚度优选为1.0~5.0cm,更优选为1.5~4.5cm,所述第二絮片的克重优选为50~200g/m2,更优选为50~150g/m2
所述分层结构填充物的厚度优选为1.0~10.0cm,更优选为6.0~8.0cm,所述分层结构填充物的克重优选为40~600g/m2,更优选为50~450g/m2
在本发明中,所述分层结构填充物还可以为三层结构,即还包括复合于所述第二纤维絮片的第三纤维絮片(3)。
参见图2,图2为本发明提供的分层结构填充物的结构示意图,图2中1为第一纤维絮片,2为第二纤维絮片,3为第三纤维絮片。
在本发明中,所述第三纤维絮片为天然纤维絮片、人造纤维絮片或天然纤维和人造纤维中的一种或多种形成的混合纤维絮片。
所述天然纤维絮片选自天丝絮片、羊毛纤维絮片或竹纤维絮片;
所述人造纤维絮片选自涤纶纤维、coolmax纤维、涤纶超细纤维、涤纶粗纤维、粘胶纤维、晴纶纤维、牛奶蛋白纤维、AMICOR纤维、英威达纤维或低熔点纤维形成的人造纤维絮片;
所述天然纤维和人造纤维中的一种或多种形成的混合纤维絮片选自羊毛纤维、竹纤维、涤纶纤维、coolmax纤维、天丝、涤纶超细纤维、涤纶粗纤维、 粘胶纤维、晴纶纤维、牛奶蛋白纤维、AMICOR纤维、英威达纤维和低熔点纤维中的一种或多种混合得到混合纤维絮片。
在本发明中,所述第三纤维絮片优选为天然纤维和人造纤维中的一种或多种形成的混合纤维絮片。更有选的,所述第三纤维絮片包括:
5wt%~20wt%的低熔点纤维,所述低熔点纤维为低熔点纤维为聚丙烯/聚乙烯皮芯型复合纤维;
0wt%~75wt%的涤纶纤维;
20wt%~90wt%的其他纤维,所述其他纤维选自羊毛纤维、竹纤维、coolmax纤维、天丝、涤纶超细纤维、涤纶粗纤维、粘胶纤维、晴纶纤维、牛奶蛋白纤维、AMICOR纤维和英威达纤维中的一种或多种;
在本发明的一些实施例中,所述第三纤维絮片为质量比为(5~20):(10~75):(20~80)的聚丙烯/聚乙烯皮芯型复合纤维、涤纶纤维和coolmax纤维形成的混合纤维絮片;在本发明的一些具体实施例中,所述第三纤维絮片为质量比为5:75:20的聚丙烯/聚乙烯皮芯型复合纤维、涤纶纤维和coolmax纤维形成的混合纤维絮片;在本发明的另一些具体实施例中,所述第三纤维絮片为质量比为10:40:50的聚丙烯/聚乙烯皮芯型复合纤维、涤纶纤维和coolmax纤维形成的混合纤维絮片;在本发明的另一些具体实施例中,所述第三纤维絮片为质量比为15:5:80的聚丙烯/聚乙烯皮芯型复合纤维、涤纶纤维和coolmax纤维形成的混合纤维絮片。
在本发明的另一些实施例中,所述第三纤维絮片为质量比为(5~20):(10~75):(20~80)的聚丙烯/聚乙烯皮芯型复合纤维、涤纶纤维和天丝形成的混合纤维絮片;在本发明的一些具体实施例中,所述第三纤维絮片为质量比为5:75:20的聚丙烯/聚乙烯皮芯型复合纤维、涤纶纤维和天丝形成的混合纤维絮片;在本发明的另一些具体实施例中,所述第三纤维絮片为质量比为10:40:50的聚丙烯/聚乙烯皮芯型复合纤维、涤纶纤维和天丝形成的混合纤维絮片;在本发明的另一些具体实施例中,所述第三纤维絮片为质量比为15:5:80的聚丙烯/聚乙烯皮芯型复合纤维、涤纶纤维和天丝形成的混合纤维絮片。
在本发明的另一些实施例中,所述第三纤维絮片为质量比为(5~20):(10~75):(20~80)的聚丙烯/聚乙烯皮芯型复合纤维、涤纶纤维和粘胶纤维形成的混合纤维絮片;在本发明的一些具体实施例中,所述第三纤维絮片为质量比为5:75:20的聚丙烯/聚乙烯皮芯型复合纤维、涤纶纤维和粘胶纤维形成的 混合纤维絮片;在本发明的另一些具体实施例中,所述第三纤维絮片为质量比为10:40:50的聚丙烯/聚乙烯皮芯型复合纤维、涤纶纤维和粘胶纤维形成的混合纤维絮片;在本发明的另一些具体实施例中,所述第三纤维絮片为质量比为15:5:80的聚丙烯/聚乙烯皮芯型复合纤维、涤纶纤维和粘胶纤维形成的混合纤维絮片。
在本发明的另一些实施例中,所述第三纤维絮片为质量比为(5~20):(10~75):(20~80)的聚丙烯/聚乙烯皮芯型复合纤维、涤纶纤维和羊毛纤维形成的混合纤维絮片;在本发明的一些具体实施例中,所述第三纤维絮片为质量比为5:75:20的聚丙烯/聚乙烯皮芯型复合纤维、涤纶纤维和羊毛纤维形成的混合纤维絮片;在本发明的另一些具体实施例中,所述第三纤维絮片为质量比为10:40:50的聚丙烯/聚乙烯皮芯型复合纤维、涤纶纤维和羊毛纤维形成的混合纤维絮片;在本发明的另一些具体实施例中,所述第三纤维絮片为质量比为15:5:80的聚丙烯/聚乙烯皮芯型复合纤维、涤纶纤维和羊毛纤维形成的混合纤维絮片。
在本发明的另一些实施例中,所述第三纤维絮片为质量比为(5~20):(10~70):(20~80)的聚丙烯/聚乙烯皮芯型复合纤维、涤纶纤维和竹纤维形成的混合纤维絮片;在本发明的一些具体实施例中,所述第三纤维絮片为质量比为5:75:20的聚丙烯/聚乙烯皮芯型复合纤维、涤纶纤维和竹纤维形成的混合纤维絮片;在本发明的另一些具体实施例中,所述第三纤维絮片为质量比为10:40:50的聚丙烯/聚乙烯皮芯型复合纤维、涤纶纤维和竹纤维形成的混合纤维絮片;在本发明的另一些具体实施例中,所述第三纤维絮片为质量比为15:5:80的聚丙烯/聚乙烯皮芯型复合纤维、涤纶纤维和竹纤维形成的混合纤维絮片。
在本发明的另一些实施例中,所述第三纤维絮片为质量比为(5~20):(10~75):(20~80)的聚丙烯/聚乙烯皮芯型复合纤维、涤纶纤维和腈纶纤维形成的混合纤维絮片;在本发明的一些具体实施例中,所述第三纤维絮片为质量比为5:75:20的聚丙烯/聚乙烯皮芯型复合纤维、涤纶纤维和腈纶纤维形成的混合纤维絮片;在本发明的另一些具体实施例中,所述第三纤维絮片为质量比为10:40:50的聚丙烯/聚乙烯皮芯型复合纤维、涤纶纤维和腈纶纤维形成的混合纤维絮片;在本发明的另一些具体实施例中,所述第三纤维絮片为质量比为15:5:80的聚丙烯/聚乙烯皮芯型复合纤维、涤纶纤维和腈纶纤维形成的混合纤维絮片。
在本发明的另一些实施例中,所述第三纤维絮片为质量比为(5~20):(10~75):(20~80)的聚丙烯/聚乙烯皮芯型复合纤维、涤纶纤维和牛奶蛋白纤维形成的混合纤维絮片;在本发明的一些具体实施例中,所述第三纤维絮片为质量比为5:75:20的聚丙烯/聚乙烯皮芯型复合纤维、涤纶纤维和牛奶蛋白纤维形成的混合纤维絮片;在本发明的另一些具体实施例中,所述第三纤维絮片为质量比为10:40:50的聚丙烯/聚乙烯皮芯型复合纤维、涤纶纤维和牛奶蛋白纤维形成的混合纤维絮片;在本发明的另一些具体实施例中,所述第三纤维絮片为质量比为15:5:80的聚丙烯/聚乙烯皮芯型复合纤维、涤纶纤维和牛奶蛋白纤维形成的混合纤维絮片。
在本发明的另一些实施例中,所述第三纤维絮片为质量比为(5~20):(10~75):(20~80)的聚丙烯/聚乙烯皮芯型复合纤维、涤纶纤维和AMICOR纤维形成的混合纤维絮片;在本发明的一些具体实施例中,所述第三纤维絮片为质量比为5:75:20的聚丙烯/聚乙烯皮芯型复合纤维、涤纶纤维和AMICOR纤维形成的混合纤维絮片;在本发明的另一些具体实施例中,所述第三纤维絮片为质量比为10:40:50的聚丙烯/聚乙烯皮芯型复合纤维、涤纶纤维和AMICOR纤维形成的混合纤维絮片;在本发明的另一些具体实施例中,所述第三纤维絮片为质量比为15:5:80的聚丙烯/聚乙烯皮芯型复合纤维、涤纶纤维和AMICOR纤维形成的混合纤维絮片。
在本发明的另一些实施例中,所述第三纤维絮片为质量比为(5~20):(10~75):(20~80)的聚丙烯/聚乙烯皮芯型复合纤维、涤纶纤维和英威达纤维;在本发明的一些具体实施例中,所述第三纤维絮片为质量比为5:75:20的聚丙烯/聚乙烯皮芯型复合纤维、涤纶纤维和英威达纤维形成的混合纤维絮片;在本发明的另一些具体实施例中,所述第三纤维絮片为质量比为10:40:50的聚丙烯/聚乙烯皮芯型复合纤维、涤纶纤维和英威达纤维形成的混合纤维絮片;在本发明的另一些具体实施例中,所述第三纤维絮片为质量比为15:5:80的聚丙烯/聚乙烯皮芯型复合纤维、涤纶纤维和英威达纤维形成的混合纤维絮片。
在本发明的另一些实施例中,所述第三纤维絮片为质量比为(5~20):(10~75):(20~80)的聚丙烯/聚乙烯皮芯型复合纤维、涤纶纤维和涤纶超细纤维;在本发明的一些具体实施例中,所述第三纤维絮片为质量比为10:70:20的聚丙烯/聚乙烯皮芯型复合纤维、涤纶纤维和涤纶超细纤维形成的混合纤维絮片。
在本发明中,所述三层结构的分层结构填充物中,所述第一纤维絮片的厚度优选为1.0~5.0cm,更优选为1.1~4.5cm。所述第一纤维絮片的克重优选为50~200g/m2,更优选为50~150g/m2
所述第二纤维絮片的厚度优选为1.0~5.0cm,更优选为1.5~4.5cm,所述第二纤维絮片的克重优选为50~200g/m2,更优选为50~150g/m2
所述第三纤维絮片的厚度优选为1.0~5.0cm,更优选为1.5~4.5cm,所述第三纤维絮片的克重优选为50~200g/m2,更优选为50~150g/m2
所述三层结构的分层结构填充物的厚度优选为5.0~9.0cm,更优选为6.0~8.0cm,所述分层结构填充物的克重优选为40~600g/m2,更优选为50~450g/m2
本发明所提供的分层结构填充物中所使用的所有纤维原料的纤维长度优选为20~76mm。所述纤维原料可以为长纤维也可以为短纤维,也可以长纤维与短纤维的混合纤维,其中,所述长纤维的长度大于30mm,优选为32~76mm。所述短纤维的长度小于30mm,优选为20~28mm。
本发明提供的分层结构填充物中所使用的所有纤维原料的粗细优选为0.7D~15D,更优选为1D~12D。
本发明还提供了一种上述分层结构填充物的制备方法,包括以下步骤:
A)将纤维进行混合搅拌和预开松,得到第一混合纤维;
将纤维进行混合搅拌和预开松,得到第二混合纤维;
B)将第一混合纤维依次进行主开松、梳理和铺网,得到第一纤维絮片前体;
将第二混合纤维依次进行主开松、梳理和铺网,得到第二纤维絮片前体,并铺设于所述第一纤维絮片前体之上,得到分层结构填充物前体;
C)将所述分层结构填充物前体依次经过牵引、烘干、烫光和冷却得到分层结构填充物。
参见图3,图3为本发明提供的分层结构填充物的制备工艺流程图。具体的,本发明首先将纤维进行混合搅拌和预开松,得到第一混合纤维。
在本发明中,所述混合搅拌优选在混棉箱中进行,即将不同规格的各种捆包纤维按设定的比例在混棉箱中进行均匀搅拌混合,得到混合原料。
所述预开松在所述开松机中进行,所述预开松对混合原材料进行初步的分解,得到第一混合纤维。经过预开松后,第一混合纤维处于蓬松状态,不再成 团,并通过输棉风机输送给下道工序。
本发明还将纤维进行混合搅拌和预开松,得到第二混合纤维。
在本发明中,所述混合搅拌优选在混棉箱中进行,即将不同规格的各种捆包纤维按设定的比例在混棉箱中进行均匀搅拌混合,得到混合原料。
所述预开松在所述开松机中进行,所述预开松对混合原材料进行初步的分解,得到第二混合纤维。经过预开松后,第二混合纤维处于蓬松状态,不再成团,并通过输棉风机输送给下道工序。
在本发明中,所述制备第一混合纤维与制备第二混合纤维的顺序没有特殊限制。
得到第一混合纤维后,将第一混合纤维依次进行主开松、梳理和铺网,得到第一纤维絮片前体;
具体的,所述第一纤维絮片前体按照如下方法制备:
将第一混合纤维在主开松的开松机中进一步开松后,使得第一混合纤维完全开松,原材料为蓬松状态。
经过主开松后的第一混合纤维在高集棉箱中形成密实的第一筵棉,并使原料进行囤积,以确保梳理时能均匀的供给,保证克重的稳定。
接着,第一筵棉通过给棉机进入梳理机进行梳理成网,进行精细分解将第一筵棉拉直成型,加工成基本上由单纤维组成的定量纤网,输送给后道工序。在本发明中,所述梳理机优选为双锡林梳理机。
然后,进行铺网的操作,得到第一纤维絮片前体。具体的,根据客户的要求,按工艺要求进行门幅和克重调节以确保产品质量,将梳理机输出的纤维网均匀的折叠,铺设至所需的宽度及厚度。
本发明还将第二混合纤维依次进行主开松、梳理和铺网,得到第二纤维絮片前体,并铺设于所述第一纤维絮片前体之上,得到分层结构填充物前体;
具体的,所述分层结构填充物前体按照如下方法制备:
将第二混合纤维在主开松的开松机中进一步开松后,使得第二混合纤维完全开松,原材料分解的更清晰均匀,并通过输棉风机输送到给棉机储棉仓。
经过主开松后的第二混合纤维在高集棉箱中形成密实的第二筵棉,并使原料进行囤积,以确保梳理时能均匀的供给,保证克重的稳定。
接着,第二筵棉通过给棉机进入梳理机进行梳理成网,进行精细分解将第二筵棉拉直成型,加工成基本上由单纤维组成的定量纤网,输送给后道工序。 在本发明中,所述梳理机优选为双锡林梳理机。
然后,进行铺网的操作,得到第二纤维絮片前体。具体的,在进行第二纤维絮片前体的铺网时,将所述第二纤维絮片前体铺设于所述第一纤维絮片前体上。同时,根据客户的要求,按工艺要求进行门幅和克重调节以确保产品质量,将梳理机输出的纤维网均匀的折叠,铺设至所需的宽度及厚度。得到第一纤维絮片前体/第二纤维絮片前体复合而成的分层结构填充物前体。
本发明将所述分层结构填充物前体依次经过牵引、烘干、烫光和冷却得到分层结构填充物。
在本发明中,所述牵引优选采用五辊牵引机,以保证产品的平整度。在本发明中,所述牵引的速率优选为1200~1300rpm。
所述烘干为对已铺网好的产品进行水分的挥发,确保产品的干燥,再对产品里的粘丝进行溶解凝固,确保产品的拉力和形状。所述烘干的温度优选为170~180℃。
烘干结束后,将所述产品进行烫光,以增加产品的粘合和牢度,确保手洗不分离和跑毛。在本发明中,所述烫光的温度优选为180~200℃,所述烫光机的转速为40~50Hz。
烫光后,将所述经过烫光后的分层结构填充物前体进行冷却,得到分层结构填充物。在本发明中,所述冷却优选采用风冷却机。
优选的,将得到分层结构填充物进行收卷切边,按各产品的需求进行定量便于堆放和搬运。
本发明还提供了一种分层结构填充物的制备方法,包括以下步骤:
A)将纤维进行混合搅拌和预开松,得到第一混合纤维;
将纤维进行混合搅拌和预开松,得到第二混合纤维;
将纤维进行混合搅拌和预开松,得到第三混合纤维;
B)将第一混合纤维依次进行主开松、梳理和铺网,得到第一纤维絮片前体;
将第二混合纤维依次进行主开松、梳理和铺网,得到第二纤维絮片前体,并铺设于所述第一纤维絮片前体之上;
将第三混合纤维依次进行主开松、梳理和铺网,得到第三纤维絮片前体,并铺设于所述第二纤维絮片前体之上,得到分层结构填充物前体;
C)将所述分层结构填充物前体依次经过牵引、烘干、烫光和冷却得到分 层结构填充物。
参见图4,图4为本发明提供的分层结构填充物的制备工艺流程图。采用上述制备方法制备得到三层结构的填充物。具体的,
本发明首先将纤维进行混合搅拌和预开松,得到第一混合纤维。
在本发明中,所述混合搅拌优选在混棉箱中进行,即将不同规格的各种捆包纤维按设定的比例在混棉箱中进行均匀搅拌混合,得到混合原料。
所述预开松在所述开松机中进行,所述预开松对混合原材料进行初步的分解,得到第一混合纤维。经过预开松后,第一混合纤维处于蓬松状态,不再成团,并通过输棉风机输送给下道工序。
本发明还将纤维进行混合搅拌和预开松,得到第二混合纤维。
在本发明中,所述混合搅拌优选在混棉箱中进行,即将不同规格的各种捆包纤维按设定的比例在混棉箱中进行均匀搅拌混合,得到混合原料。
所述预开松在所述开松机中进行,所述预开松对混合原材料进行初步的分解,得到第二混合纤维。经过预开松后,第二混合纤维处于蓬松状态,不再成团,并通过输棉风机输送给下道工序。
本发明首先将纤维进行混合搅拌和预开松,得到第三混合纤维。
在本发明中,所述混合搅拌优选在混棉箱中进行,即将不同规格的各种捆包纤维按设定的比例在混棉箱中进行均匀搅拌混合,得到混合原料。
所述预开松在所述开松机中进行,所述预开松对混合原材料进行初步的分解,得到第三混合纤维。经过预开松后,第三混合纤维处于蓬松状态,不再成团,并通过输棉风机输送给下道工序。
在本发明中,所述制备第一混合纤维、第二混合纤维和第三混合纤维的顺序没有特殊限制。
得到第一混合纤维后,将第一混合纤维依次进行主开松、梳理和铺网,得到第一纤维絮片前体;
具体的,所述第一纤维絮片前体按照如下方法制备:
将第一混合纤维在主开松的开松机中进一步开松后,使得第一混合纤维完全开松,原材料为蓬松状态。
经过主开松后的第一混合纤维在高集棉箱中形成密实的第一筵棉,并使原料进行囤积,以确保梳理时能均匀的供给,保证克重的稳定。
接着,第一筵棉通过给棉机进入梳理机进行梳理成网,进行精细分解将第 一筵棉拉直成型,加工成基本上由单纤维组成的定量纤网,输送给后道工序,在本发明中,所述梳理机优选为双锡林梳理机。。
然后,进行铺网的操作,得到第一纤维絮片前体。具体的,根据客户的要求,按工艺要求进行门幅和克重调节以确保产品质量,将梳理机输出的纤维网均匀的折叠,铺设至所需的宽度及厚度。
本发明还将第二混合纤维依次进行主开松、梳理和铺网,得到第二纤维絮片前体,并铺设于所述第一纤维絮片前体之上;
具体的,将第二混合纤维在主开松的开松机中进一步开松后,使得第二混合纤维完全开松,原材料分解的更清晰均匀,并通过输棉风机输送到给棉机储棉仓。
经过主开松后的第二混合纤维在高集棉箱中形成密实的第二筵棉,并使原料进行囤积,以确保梳理时能均匀的供给,保证克重的稳定。
接着,第二筵棉通过给棉机进入梳理机进行梳理成网,进行精细分解将第二筵棉拉直成型,加工成基本上由单纤维组成的定量纤网,输送给后道工序。在本发明中,所述梳理机优选为双锡林梳理机。
然后,进行铺网的操作,得到第二纤维絮片前体。具体的,在进行第二纤维絮片前体的铺网时,将所述第二纤维絮片前体铺设于所述第一纤维絮片前体上。同时,根据客户的要求,按工艺要求进行门幅和克重调节以确保产品质量,将梳理机输出的纤维网均匀的折叠,铺设至所需的宽度及厚度。
本发明还将将第三混合纤维依次进行主开松、梳理和铺网,得到第三纤维絮片前体,并铺设于所述第二纤维絮片前体之上,得到分层结构填充物前体;
具体的,所述分层结构填充物前体按照如下方法进行制备:
将第三混合纤维在主开松的开松机中进一步开松后,使得第三混合纤维完全开松,原材料分解的更清晰均匀,并通过输棉风机输送到给棉机储棉仓。
经过主开松后的第三混合纤维在高集棉箱中形成密实的第三筵棉,并使原料进行囤积,以确保梳理时能均匀的供给,保证克重的稳定。
接着,第三筵棉通过给棉机进入梳理机进行梳理成网,进行精细分解将第三筵棉拉直成型,加工成基本上由单纤维组成的定量纤网,输送给后道工序,在本发明中,所述梳理机优选为双锡林梳理机。。
然后,进行铺网的操作,得到第三纤维絮片前体。具体的,在进行第三纤维絮片前体的铺网时,将所述第三纤维絮片前体铺设于所述第二纤维絮片前体 上。同时,根据客户的要求,按工艺要求进行门幅和克重调节以确保产品质量,将梳理机输出的纤维网均匀的折叠,铺设至所需的宽度及厚度,得到第一纤维絮片前体/第二纤维絮片前体/第三纤维絮片前体复合而成的分层结构填充物前体。
本发明将所述分层结构填充物前体依次经过牵引、烘干、烫光和冷却得到分层结构填充物。
在本发明中,所述牵引优选采用五辊牵引机,以保证产品的平整度。在本发明中,所述牵引的速率优选为1200~1300rpm
所述烘干为对已铺网好的产品进行水分的挥发,确保产品的干燥,再对产品里的粘丝进行溶解凝固,确保产品的拉力和形状。所述烘干的温度优选为170~180℃。
烘干结束后,将所述产品进行烫光,以增加产品的粘合和牢度,确保手洗不分离和跑毛。在本发明中,所述烫光的温度优选为180~200℃,所述烫光机的转速为40~50Hz。
烫光后,将所述经过烫光后的分层结构填充物前体进行冷却,得到分层结构填充物。在本发明中,所述冷却优选采用风冷却机。
优选的,将得到分层结构填充物进行收卷切边,按各产品的需求进行定量便于堆放和搬运。
在上述制备方法中,所述第一混合纤维包括羊毛纤维、竹纤维、涤纶纤维、coolmax纤维、天丝、涤纶超细纤维、涤纶粗纤维、粘胶纤维、晴纶纤维、牛奶蛋白纤维、AMICOR纤维、英威达纤维和低熔点纤维中的一种或多种;
所述第二混合纤维包括羊毛纤维、竹纤维、涤纶纤维、coolmax纤维、天丝、涤纶超细纤维、涤纶粗纤维、粘胶纤维、晴纶纤维、牛奶蛋白纤维、AMICOR纤维、英威达纤维和低熔点纤维中的一种或多种;
所述第三混合纤维包括羊毛纤维、竹纤维、涤纶纤维、coolmax纤维、天丝、涤纶超细纤维、涤纶粗纤维、粘胶纤维、晴纶纤维、牛奶蛋白纤维、AMICOR纤维、英威达纤维和低熔点纤维中的一种或多种。
本发明所述的填充物可用于服饰、床品、饰品、车饰等能够用于填充的物品。
本发明通过将纤维絮片分层设置,使得到的填充物具有良好的蓬松度和保暖度。
结果表明,本发明提供的分层结构填充物的厚度为6.5~9cm,克罗值≥5.15。
为了进一步理解本发明,下面结合实施例对本发明提供的分层结构填充物及其制备方法进行说明,本发明的保护范围不受以下实施例的限制。
以下实施例中,原料规格如下:
涤纶纤维包括:3D*64MM三维中空含硅小化纤、7D*64MM三维中空含硅小化纤和涤纶纤维6D*64MM二维中空小化纤;
低熔点纤维:4D*51MM的聚丙烯/聚乙烯皮芯型复合纤维;
coolmax纤维:1.6D*38MM的coolmax纤维;
天丝纤维:6.7D*60MM含硅天丝纤维;
粘胶纤维:1.67D*38MM的粘胶纤维;
羊毛纤维:60支*30MM的羊毛纤维;
竹纤维:1.2D*38MM的竹纤维;
腈纶纤维:3D*60MM的腈纶纤维;
牛奶蛋白纤维:1.5D*51MM的牛奶蛋白纤维;
AMICOR纤维:6D*64MM的AMICOR纤维;
英威达纤维:4.2D*76MM含硅DS4英威达纤维;
涤纶超细纤维包括:涤纶细旦纤维1.2D*51MM二维含硅小化纤;
涤纶粗纤维:12D*64MM二维中空含硅小化纤。
实施例1~28
实施例1~28为两层结构填充物的制备方法,具体的:
按照表1的原料配方,将用于制备第一纤维絮片的、不同规格的各种捆包纤维按设定的比例在混棉箱中进行均匀搅拌混合,得到混合原料。
将得到的混合原料在开松机中进行初步的分解,使混合原料处于蓬松状态,不再成团,形成第一混合纤维,并将所述第一混合纤维通过输棉风机输送给下道工序。
同时,按照表1的原料配方,将用于制备第二纤维絮片的、不同规格的各种捆包纤维按设定的比例在混棉箱中进行均匀搅拌混合,得到混合原料。
将得到的混合原料在开松机中进行初步的分解,开松机转速1440Y/min。使混合原料处于蓬松状态,不再成团,形成第二混合纤维,并将所述第二混合纤维通过输棉风机输送给下道工序。
将得到的第一混合纤维与第二混合纤维分别输送至两个开松机进行主开松,使混合纤维完全开松。开松机转速为1440Y/min。
经过主开松后,第一混合纤维在高集棉箱(高集棉箱尺寸为200cm*280cm*170cm)中形成密实的第一筵棉,并使原料进行囤积,以确保梳理时能均匀的供给,保证克重的稳定。
接着,第一筵棉通过给棉机以750rpm的速度进入双锡林梳理机进行梳理成网,具体的,把开松好的原材料进入到转速1200r/min锡林,48Hz的道夫进行梳理成型,进行精细分解将第一筵棉拉直成型,加工成基本上由单纤维组成的定量纤网,输送给后道工序。
然后,进行铺网的操作,得到第一纤维絮片前体。具体的,按工艺要求进行门幅和克重调节以确保产品质量,将梳理机输出的纤维网均匀的折叠,铺设至所需的宽度及厚度。其中,铺网机斜帘38.25Hz、环帘23.9Hz、底帘27Hz、往复帘40Hz。
经过主开松后,第二混合纤维在高集棉箱(高集棉箱尺寸为200cm*280cm*170cm)中形成密实的第二筵棉,并使原料进行囤积,以确保梳理时能均匀的供给,保证克重的稳定。
接着,第二筵棉通过给棉机以750rpm的速度进入双锡林梳理机进行梳理成网,具体的,把开松好的原材料进入到转速1200r/min锡林,48Hz的道夫进行梳理成型,进行精细分解将第二筵棉拉直成型,加工成基本上由单纤维组成的定量纤网,输送给后道工序。
然后,进行铺网的操作,将第二筵棉铺设于所述第一纤维絮片前体之上,得到第一纤维絮片前体/第二纤维絮片前体复合而成的分层结构填充物前体。具体的,按工艺要求进行门幅和克重调节以确保产品质量,将梳理机输出的纤维网均匀的折叠,铺设至所需的宽度及厚度。其中,铺网机斜帘38.25Hz、环帘23.9Hz、底帘27Hz、往复帘40Hz。
将所述分层结构填充物前体在牵引速率为1250rpm的五辊牵引机中进行牵引,保证产品的平整度。
牵引结束后,将铺好网的产品进行水分的挥发,确保产品的干燥,再对产品里的粘丝进行溶解凝固,确保产品的拉力和形状。所述烘干的温度优选为170℃。
干燥结束后,将所述产品进行烫光,以增加产品的粘合和牢度,确保手洗 不分离和跑毛。其中,所述烫光的温度为200℃,所述烫光机的转速为45Hz。
烫光后,将所述经过烫光后的分层结构填充物前体用转速1430Y/min的风机进行吹风内圈冷却进行降温定型,得到分层结构填充物。
最后,以每22转为一米的定量并以1200rpm的速度进行成卷,得到产品。对产品进行性能测定,结果见表2,表2为实施例1~28制备的双层结构填充物的性能测定结果。
表1具有双层结构的分层结构填充物的原料配方
Figure PCTCN2016080959-appb-000001
Figure PCTCN2016080959-appb-000002
表1中,实施例2、5、6、9、10、15、16、21、22、24和25所述的第一纤维絮片中的涤纶选用型号为6D*64MM二维中空小化纤,实施例3所述的第一纤维絮片中的涤纶选用型号为7D*64MM三维中空含硅小化纤,除上述实施例外的第一纤维絮片中的涤纶选用型号为3D*64MM三维中空含硅小化纤;
实施例1、4、8、11、14、17、20、23和26所述的第二纤维絮片中的涤纶纤维选用型号为7D*64MM三维中空含硅小化纤;除上述实施例的其他实施例所述的第二纤维絮片中的涤纶纤维选用型号为6D*64MM二维中空小化纤。
表2实施例1~28制备的双层结构填充物的性能测定结果
Figure PCTCN2016080959-appb-000003
Figure PCTCN2016080959-appb-000004
Figure PCTCN2016080959-appb-000005
实施例29~56
实施例29~56为两层结构填充物的制备方法,具体的:
按照表3的原料配方,将用于制备第一纤维絮片的、不同规格的各种捆包纤维按设定的比例在混棉箱中进行均匀搅拌混合,得到混合原料。
将得到的混合原料在开松机中进行初步的分解,使混合原料处于蓬松状态,不再成团,形成第一混合纤维,并将所述第一混合纤维通过输棉风机输送给下道工序。
同时,按照表3的原料配方,将用于制备第二纤维絮片的、不同规格的各种捆包纤维按设定的比例在混棉箱中进行均匀搅拌混合,得到混合原料。
将得到的混合原料在开松机中进行初步的分解,开松机转速1440Y/min。使混合原料处于蓬松状态,不再成团,形成第二混合纤维,并将所述第二混合纤维通过输棉风机输送给下道工序。
同时,按照表3的原料配方,将用于制备第三纤维絮片的、不同规格的各种捆包纤维按设定的比例在混棉箱中进行均匀搅拌混合,得到混合原料。
将得到的混合原料在开松机中进行初步的分解,开松机转速1440Y/min。使混合原料处于蓬松状态,不再成团,形成第三混合纤维,并将所述第三混合纤维通过输棉风机输送给下道工序。
将得到的第一混合纤维、第二混合纤维和第三混合纤维分别输送至三个开松机进行主开松,使混合纤维完全开松。开松机转速为1440Y/min。
经过主开松后,第一混合纤维在高集棉箱(高集棉箱尺寸为200cm*280cm*170cm)中形成密实的第一筵棉,并使原料进行囤积,以确保梳理时能均匀的供给,保证克重的稳定。
接着,第一筵棉通过给棉机以750rpm的速度进入双锡林梳理机进行梳理成网,具体的,把开松好的原材料进入到转速1200r/min锡林,48Hz的道夫进行梳理成型,进行精细分解将第一筵棉拉直成型,加工成基本上由单纤维组成的定量纤网,输送给后道工序。
然后,进行铺网的操作,得到第一纤维絮片前体。具体的,按工艺要求进行门幅和克重调节以确保产品质量,将梳理机输出的纤维网均匀的折叠,铺设至所需的宽度及厚度。其中,铺网机斜帘38.25Hz、环帘23.9Hz、底帘27Hz、往复帘40Hz。
经过主开松后,第二混合纤维在高集棉箱(高集棉箱尺寸为200cm*280cm*170cm)中形成密实的第二筵棉,并使原料进行囤积,以确保梳理时能均匀的供给,保证克重的稳定。
接着,第二筵棉通过给棉机以750rpm的速度进入双锡林梳理机进行梳理成网,具体的,把开松好的原材料进入到转速1200r/min锡林,48Hz的道夫进行梳理成型,进行精细分解将第二筵棉拉直成型,加工成基本上由单纤维组成的定量纤网,输送给后道工序。
然后,进行铺网的操作,得到第二纤维絮片前体。具体的,按工艺要求进行门幅和克重调节以确保产品质量,将梳理机输出的纤维网均匀的折叠,铺设至所需的宽度及厚度。其中,铺网机斜帘38.25Hz、环帘23.9Hz、底帘27Hz、往复帘40Hz。
经过主开松后,第三混合纤维在高集棉箱(高集棉箱尺寸为200cm*280cm*170cm)中形成密实的第三筵棉,并使原料进行囤积,以确保梳理时能均匀的供给,保证克重的稳定。
接着,第三筵棉通过给棉机以750rpm的速度进入双锡林梳理机进行梳理成网,具体的,把开松好的原材料进入到转速1200r/min锡林,48Hz的道夫进行梳理成型,进行精细分解将第三筵棉拉直成型,加工成基本上由单纤维组成的定量纤网,输送给后道工序。
然后,进行铺网的操作,将第三筵棉铺设于所述第二纤维絮片前体之上,得到第一纤维絮片前体/第二纤维絮片前体/第三纤维絮片前体复合而成的分层结构填充物前体。具体的,按工艺要求进行门幅和克重调节以确保产品质量,将梳理机输出的纤维网均匀的折叠,铺设至所需的宽度及厚度。其中,铺网机斜帘38.25Hz、环帘23.9Hz、底帘27Hz、往复帘40Hz。
将所述分层结构填充物前体在牵引速率为1250rpm的五辊牵引机中进行牵引,保证产品的平整度。
牵引结束后,将铺好网的产品进行水分的挥发,确保产品的干燥,再对产品里的粘丝进行溶解凝固,确保产品的拉力和形状。所述烘干的温度优选为170℃。
干燥结束后,将所述产品进行烫光,以增加产品的粘合和牢度,确保手洗不分离和跑毛。其中,所述烫光的温度为200℃,所述烫光机的转速为45Hz。
烫光后,将所述经过烫光后的分层结构填充物前体用转速1430Y/min的风机进行吹风内圈冷却进行降温定型,得到分层结构填充物。
最后,以每22转为一米的定量并以1200rpm的速度进行成卷,得到产品。对产品进行性能测定,结果见表4,表4为实施例29~56制备的三层结构填充物的性能测定结果。
表3具有三层结构的分层结构填充物的原料配方
Figure PCTCN2016080959-appb-000006
Figure PCTCN2016080959-appb-000007
表3中,实施例29~56所述的第一纤维絮片与第三纤维絮片选用质量比相同的原料,其中的涤纶选用型号为3D*64MM三维中空含硅小化纤,实施例8~10和14~19所述的第二纤维絮片中的涤纶选用型号为6D*64MM二维中空含硅小化纤,实施例1~7、11~13和20~28所述的第二纤维絮片中的涤纶选用型号为7D*64MM三维中空含硅小化纤。
表4实施例29~56制备的双层结构填充物的性能测定结果
Figure PCTCN2016080959-appb-000008
Figure PCTCN2016080959-appb-000009
Figure PCTCN2016080959-appb-000010
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (10)

  1. 一种分层结构填充物,其特征在于,包括:第一纤维絮片(1)以及复合于所述第一纤维絮片的第二纤维絮片(2)。
  2. 根据权利要求1所述的填充物,其特征在于,还包括复合于所述第二纤维絮片的第三纤维絮片(3)。
  3. 根据权利要求1所述的填充物,其特征在于,所述第一纤维絮片为天然纤维絮片、人造纤维絮片或天然纤维和人造纤维中的一种或多种形成的混合纤维絮片;
    所述第二纤维絮片选自天然纤维絮片、人造纤维絮片或天然纤维和人造纤维中的一种或多种形成的混合纤维絮片。
  4. 根据权利要求2所述的填充物,其特征在于,所述第三纤维絮片选自天然纤维絮片、人造纤维絮片或天然纤维和人造纤维中的一种或多种形成的混合纤维絮片。
  5. 根据权利要求3或4所述的填充物,其特征在于,所述天然纤维絮片选自天丝絮片、羊毛纤维絮片或竹纤维絮片;
    所述人造纤维絮片选自涤纶纤维、coolmax纤维、涤纶超细纤维、涤纶粗纤维、粘胶纤维、晴纶纤维、牛奶蛋白纤维、AMICOR纤维、英威达纤维或低熔点纤维形成的人造纤维絮片;
    所述天然纤维和人造纤维中的一种或多种形成的混合纤维絮片选自羊毛纤维、竹纤维、涤纶纤维、coolmax纤维、天丝、涤纶超细纤维、涤纶粗纤维、粘胶纤维、晴纶纤维、牛奶蛋白纤维、AMICOR纤维、英威达纤维和低熔点纤维中的一种或多种混合得到混合纤维絮片。
  6. 根据权利要求5所述的填充物,其特征在于,所述第一纤维絮片包括:
    5wt%~20wt%的低熔点纤维,所述低熔点纤维为低熔点纤维为聚丙烯/聚乙烯皮芯型复合纤维;
    0wt%~75wt%的涤纶纤维;
    20wt%~90wt%的其他纤维,所述其他纤维选自羊毛纤维、竹纤维、coolmax纤维、天丝、涤纶超细纤维、涤纶粗纤维、粘胶纤维、晴纶纤维、牛奶蛋白纤 维、AMICOR纤维和英威达纤维中的一种或多种;
    所述第二纤维絮片包括:
    5wt%~95wt%的低熔点纤维,所述低熔点纤维为低熔点纤维为聚丙烯/聚乙烯皮芯型复合纤维;
    5wt%~95wt%的涤纶纤维或涤纶粗纤维;
    所述第三纤维絮片包括:
    5wt%~20wt%的低熔点纤维,所述低熔点纤维为低熔点纤维为聚丙烯/聚乙烯皮芯型复合纤维;
    0wt%~75wt%的涤纶纤维;
    20wt%~90wt%的其他纤维,所述其他纤维选自羊毛纤维、竹纤维、coolmax纤维、天丝、涤纶超细纤维、涤纶粗纤维、粘胶纤维、晴纶纤维、牛奶蛋白纤维、AMICOR纤维和英威达纤维中的一种或多种。
  7. 根据权利要求2所述的填充物,其特征在于,所述第一纤维絮片、第二纤维絮片和第三纤维絮片中纤维的粗细为0.7D~15D,纤维的长度为20~76mm。
  8. 一种分层结构填充物的制备方法,其特征在于,包括以下步骤:
    A)将纤维进行混合搅拌和预开松,得到第一混合纤维;
    将纤维进行混合搅拌和预开松,得到第二混合纤维;
    B)将第一混合纤维依次进行主开松、梳理和铺网,得到第一纤维絮片前体;
    将第二混合纤维依次进行主开松、梳理和铺网,得到第二纤维絮片前体,并铺设于所述第一纤维絮片前体之上,得到分层结构填充物前体;
    C)将所述分层结构填充物前体依次经过牵引、烘干、烫光和冷却得到分层结构填充物。
  9. 一种分层结构填充物的制备方法,其特征在于,包括以下步骤:
    A)将纤维进行混合搅拌和预开松,得到第一混合纤维;
    将纤维进行混合搅拌和预开松,得到第二混合纤维;
    将纤维进行混合搅拌和预开松,得到第三混合纤维;
    B)将第一混合纤维依次进行主开松、梳理和铺网,得到第一纤维絮片前 体;
    将第二混合纤维依次进行主开松、梳理和铺网,得到第二纤维絮片前体,并铺设于所述第一纤维絮片前体之上;
    将第三混合纤维依次进行主开松、梳理和铺网,得到第三纤维絮片前体,并铺设于所述第二纤维絮片前体之上,得到分层结构填充物前体;
    C)将所述分层结构填充物前体依次经过牵引、烘干、烫光和冷却得到分层结构填充物。
  10. 根据权利要求9所述的制备方法,其特征在于,所述第一混合纤维包括羊毛纤维、竹纤维、涤纶纤维、coolmax纤维、天丝、涤纶超细纤维、涤纶粗纤维、粘胶纤维、晴纶纤维、牛奶蛋白纤维、AMICOR纤维、英威达纤维和低熔点纤维中的一种或多种;
    所述第二混合纤维包括羊毛纤维、竹纤维、涤纶纤维、coolmax纤维、天丝、涤纶超细纤维、涤纶粗纤维、粘胶纤维、晴纶纤维、牛奶蛋白纤维、AMICOR纤维、英威达纤维和低熔点纤维中的一种或多种;
    所述第三混合纤维包括羊毛纤维、竹纤维、涤纶纤维、coolmax纤维、天丝、涤纶超细纤维、涤纶粗纤维、粘胶纤维、晴纶纤维、牛奶蛋白纤维、AMICOR纤维、英威达纤维和低熔点纤维中的一种或多种。
PCT/CN2016/080959 2016-01-26 2016-05-04 一种分层结构填充物及其制备方法 WO2017128549A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/541,306 US20180044824A1 (en) 2016-01-26 2016-05-04 Laminated filler and preparation method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610052601.6A CN105525435B (zh) 2016-01-26 2016-01-26 一种分层结构填充物及其制备方法
CN201610052601.6 2016-01-26

Publications (1)

Publication Number Publication Date
WO2017128549A1 true WO2017128549A1 (zh) 2017-08-03

Family

ID=55767937

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/080959 WO2017128549A1 (zh) 2016-01-26 2016-05-04 一种分层结构填充物及其制备方法

Country Status (3)

Country Link
US (1) US20180044824A1 (zh)
CN (1) CN105525435B (zh)
WO (1) WO2017128549A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105525435B (zh) * 2016-01-26 2018-06-19 浙江大彩绗缝制品有限公司 一种分层结构填充物及其制备方法
CN106192200B (zh) * 2016-08-16 2018-07-13 南通纺织丝绸产业技术研究院 一种功能性保暖复合絮片的制备方法
CN106637669A (zh) * 2016-11-22 2017-05-10 上海缔荣纺织品有限公司 高克重阻燃无胶棉无纺布及其制备方法
CN109537160A (zh) * 2018-11-15 2019-03-29 王洪亮 一种纯天然环保可降解絮片的制备方法
CN110241512B (zh) * 2019-04-25 2020-09-04 新疆大学 防风保暖驼绒复合絮片的制备方法
CN110699856A (zh) * 2019-11-18 2020-01-17 辽宁瑷玛特新材料科技有限公司 一次成型制备多组分多层级保温棉芯的方法
CN111648025B (zh) * 2020-03-23 2021-10-26 东华大学 具有纵向变密度结构的微纳米纤维保暖絮片及制备方法
CN113403749A (zh) * 2021-06-23 2021-09-17 山西景柏服饰股份有限公司 一种热熔烫光落麻填充絮片的制造方法
CN114411298A (zh) * 2022-03-09 2022-04-29 安徽弋尚纺织科技有限公司 一种抑菌再生纤维素纤维

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1519410A (zh) * 2003-01-22 2004-08-11 中国人民解放军总后勤部军需装备研究 防钻绒羽绒复合絮片
CN101787619A (zh) * 2010-03-05 2010-07-28 浙江三弘集团有限公司 三层夹心式复合羽绒絮片及其制造方法
CN102021745A (zh) * 2009-09-15 2011-04-20 常熟市金羽纤维制品厂 一种新型棉絮片的加工工艺
CN102720000A (zh) * 2012-05-11 2012-10-10 青岛大学 一种多层复合定型羽绒絮片的加工方法
CN104611835A (zh) * 2015-02-13 2015-05-13 上海特安纶纤维有限公司 包含含砜基的芳香族聚合物纤维的絮片及其制备方法
CN105525435A (zh) * 2016-01-26 2016-04-27 浙江大彩绗缝制品有限公司 一种分层结构填充物及其制备方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2500846B2 (ja) * 1993-10-18 1996-05-29 丸三開発株式会社 多層構造詰物体
TW358839B (en) * 1994-09-06 1999-05-21 Kang Na Hsiung Entpr Co Ltd Manufacturing method by high-expansion hot air of non-woven goods and the product
JPH09291459A (ja) * 1996-04-19 1997-11-11 Toray Ind Inc 合成繊維カット綿用トウ、カット綿の製造方法および装置
CN201155026Y (zh) * 2007-11-28 2008-11-26 庄淑嫦 一种新型棉胎
US7928025B2 (en) * 2008-10-01 2011-04-19 Polymer Group, Inc. Nonwoven multilayered fibrous batts and multi-density molded articles made with same and processes of making thereof
CN102286846A (zh) * 2010-06-17 2011-12-21 上海丹爱法企业发展有限公司 多层不同疏密结构构造的保温絮胎
CN101906700A (zh) * 2010-07-01 2010-12-08 张延青 一种填充棉及其制作方法
CN202000090U (zh) * 2011-01-19 2011-10-05 张家强 多层结构的复合棉花絮片
CN103271586A (zh) * 2013-01-04 2013-09-04 苏州摩维天然纤维材料有限公司 一种复合天然纤维床芯及其制备方法
CN203065774U (zh) * 2013-01-04 2013-07-17 张元军 内置双层物理定型线棉絮
CN104593948B (zh) * 2013-10-30 2017-04-12 3M创新有限公司 制造蓬松调温保暖材料的方法及蓬松调温保暖材料
KR20150105031A (ko) * 2014-03-07 2015-09-16 김민수 적층솜 및 그 제조 방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1519410A (zh) * 2003-01-22 2004-08-11 中国人民解放军总后勤部军需装备研究 防钻绒羽绒复合絮片
CN102021745A (zh) * 2009-09-15 2011-04-20 常熟市金羽纤维制品厂 一种新型棉絮片的加工工艺
CN101787619A (zh) * 2010-03-05 2010-07-28 浙江三弘集团有限公司 三层夹心式复合羽绒絮片及其制造方法
CN102720000A (zh) * 2012-05-11 2012-10-10 青岛大学 一种多层复合定型羽绒絮片的加工方法
CN104611835A (zh) * 2015-02-13 2015-05-13 上海特安纶纤维有限公司 包含含砜基的芳香族聚合物纤维的絮片及其制备方法
CN105525435A (zh) * 2016-01-26 2016-04-27 浙江大彩绗缝制品有限公司 一种分层结构填充物及其制备方法

Also Published As

Publication number Publication date
CN105525435A (zh) 2016-04-27
US20180044824A1 (en) 2018-02-15
CN105525435B (zh) 2018-06-19

Similar Documents

Publication Publication Date Title
WO2017128549A1 (zh) 一种分层结构填充物及其制备方法
CN105401334B (zh) 一种针刺无纺布的制备方法
CN101324012B (zh) 一种麻纤维无纺布的制造方法
CN102358972B (zh) 一种丝光毛与锦纶、抗起球腈纶的混纺纱线的制备方法
CN106222887B (zh) 一种四层复合水刺非织造布的制造方法
CN103074737B (zh) 棉纤维网和多层复合非织造材料的制造方法及其设备
CN106801281B (zh) 桑蚕丝长纤维与莫代尔纤维混纺纱线及其纺纱工艺
CN106192200A (zh) 一种功能性保暖复合絮片的制备方法
CN106042572A (zh) 一种高速列车座椅用面料及其制造方法
CN107099897B (zh) 一种粘胶纤维、丽彩纤维混纺纱线及其纺纱工艺
CN107326536A (zh) 异型涤纶纤维与木浆纤维复合水刺湿巾布及其制备方法
CN103820906B (zh) 环锭纺羊绒/绢丝混纺高支纱线及其生产方法
CN107841829B (zh) 一种具有抑菌、保暖和远红外功能的絮片及其制备方法
CN106436018A (zh) 一种汽车内饰布的制造方法
CN102912558B (zh) 多层复合非织造材料制造设备和制造方法
CN103485016A (zh) 混纺纱的生产方法、混纺纱及混纺面料
CN109355802A (zh) 一种高弹阻燃抗菌性硬质棉非织造材料及其制备方法
CN201241250Y (zh) 一种用于纤维棉加工的气流成网装置
CN101289784A (zh) 一种无纺布加工工艺
CN105420869A (zh) 一种亚麻复合纤维及其制备方法
CN105401336B (zh) 采用不定岛非织造布开边料的汽车地毯
CN110004548A (zh) 针织混纺纱的生产方法
CN107723924A (zh) 一种非织造布及制造方法
CN107723869A (zh) 一种多品种混纺功能性包芯纱及其制备工艺
CN1027705C (zh) 防寒羊绒絮片制备工艺

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15541306

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16887431

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16887431

Country of ref document: EP

Kind code of ref document: A1