WO2017126160A1 - Led表示パネル、led表示装置およびled表示パネルの製造方法 - Google Patents

Led表示パネル、led表示装置およびled表示パネルの製造方法 Download PDF

Info

Publication number
WO2017126160A1
WO2017126160A1 PCT/JP2016/077936 JP2016077936W WO2017126160A1 WO 2017126160 A1 WO2017126160 A1 WO 2017126160A1 JP 2016077936 W JP2016077936 W JP 2016077936W WO 2017126160 A1 WO2017126160 A1 WO 2017126160A1
Authority
WO
WIPO (PCT)
Prior art keywords
light transmissive
substrate
led display
light
display panel
Prior art date
Application number
PCT/JP2016/077936
Other languages
English (en)
French (fr)
Inventor
中野 勇三
重教 渋江
直樹 土師
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2017562428A priority Critical patent/JP6469260B2/ja
Priority to EP16886400.7A priority patent/EP3407396B1/en
Priority to US15/781,056 priority patent/US10403802B2/en
Priority to RU2018129343A priority patent/RU2691128C1/ru
Publication of WO2017126160A1 publication Critical patent/WO2017126160A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00663Production of light guides
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/33Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements being semiconductor devices, e.g. diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/54Encapsulations having a particular shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/005Processes relating to semiconductor body packages relating to encapsulations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0058Processes relating to semiconductor body packages relating to optical field-shaping elements

Definitions

  • the present invention relates to an LED display panel, an LED display device, and a method for manufacturing the LED display panel.
  • LED display device in which a plurality of LED (Light Emitting Diode) elements are arranged in a square array and image information is displayed by blinking control for each LED element.
  • LED Light Emitting Diode
  • LED display devices are widely used for outdoor and indoor advertising display, etc. due to the technological development and cost reduction of LED elements. These LED display devices have been mainly used for displaying moving images such as natural images and animations. In recent years, in indoor applications, the viewing distance becomes shorter as the pixel pitch becomes narrower, so that it is also used for image display of personal computers such as conference rooms and surveillance applications. Particularly in surveillance applications, personal computer images close to still images are often displayed.
  • LED display devices are SMD (Surface Mount Device: surface mount components) in which LED elements are mounted in a cavity molded with ceramic or resin, and a small LED package solidified with sealing resin from above is mounted on a substrate.
  • the mold was mainstream.
  • the SMD type has been mainly used as a large display device having a pixel pitch of 3 mm or more.
  • the alignment characteristics are improved by providing a columnar or convex lens on each LED element, and the light utilization efficiency is increased.
  • Technology is disclosed.
  • a reflecting plate having a plurality of holes corresponding to each LED element is fixed on a substrate on which a plurality of LED elements are arranged, and is fixed on the glass plate.
  • JP 2011-112737 A Japanese Utility Model Publication No. 5-52882 JP 2004-79750 A
  • the lens is arranged on the upper part of each LED element, the resin material for stopping the lens, the light reflecting case, etc. are provided, so the structure becomes complicated and the number of manufacturing processes is large. Therefore, there is a problem that the time and cost required for the production increase.
  • a conventional LED display device when a large screen display device is configured by connecting a plurality of LED display panels, particularly when the seam of the LED display panel is viewed from an oblique direction, the seam is caused by a luminance step. There was a problem of being conspicuous.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide an LED panel and an LED display device that improve the orientation of the LED elements with a simple configuration and increase the light use efficiency. Moreover, this invention aims at provision of the manufacturing method of the LED display panel which suppressed the increase in the number of manufacturing processes.
  • An LED display panel includes a plurality of chip-on-board type LED elements that are arranged and mounted on a substrate and have a light emitting surface on a surface opposite to the substrate side, and a plurality of light transmissive members.
  • Each of the plurality of light transmissive members is disposed on the substrate so as to cover the light emission surface of at least one LED element, and each light transmissive member increases the directivity of the emitted light of the LED element.
  • the LED display panel of the present invention for example, by arranging a plurality of LED elements that emit light of different colors as one pixel unit, and arranging the light transmissive member so as to cover the light emitting surface for each pixel unit, It is possible to bring the orientation characteristics of the LED elements arranged on the outer peripheral side of the LED display panel closer to the orientation characteristics of the LED elements arranged inside the LED display panel. Therefore, it is possible to improve and arrange the light distribution characteristics of the LED elements, particularly the alignment characteristics of the LED elements arranged on the outer peripheral side of the LED display panel, and to increase the light utilization efficiency.
  • FIG. 2 is a plan view of the LED display device according to Embodiment 1.
  • FIG. 2 is a cross-sectional view of the LED display panel according to Embodiment 1.
  • FIG. 3 is a flowchart showing a manufacturing process of the LED display panel according to Embodiment 1.
  • 3 is a cross-sectional view of a light transmissive member molding die used for manufacturing the LED display panel according to Embodiment 1.
  • FIG. 4 is a diagram illustrating a process of forming a light transmissive member in manufacturing the LED display panel according to Embodiment 1.
  • FIG. 4 is a diagram illustrating a process of forming a light transmissive member in manufacturing the LED display panel according to Embodiment 1.
  • FIG. 4 is a diagram illustrating light distribution characteristics of a connecting portion of the LED display panel according to Embodiment 1.
  • 6 is a plan view of an LED display device according to Embodiment 2.
  • FIG. 6 is a cross-sectional view of an LED display panel according to Embodiment 2.
  • FIG. 12 is a flowchart showing a manufacturing process of the LED display panel according to Embodiment 2.
  • 12 is a flowchart showing a manufacturing process of the LED display panel according to Embodiment 3.
  • 6 is a cross-sectional view of a light transmissive member molding die used for manufacturing an LED display panel according to Embodiment 3.
  • FIG. 10 is a diagram illustrating a process of forming a light transmissive member in manufacturing an LED display panel according to Embodiment 3.
  • 6 is a cross-sectional view of an LED display panel according to Embodiment 4.
  • FIG. 6 is a sectional view of an LED display panel according to Embodiment 5.
  • FIG. It is a figure which shows the light distribution characteristic of the LED display panel which concerns on a premise technique. It is a figure which shows the light distribution characteristic of the connection part of the LED display panel which concerns on a premise technique.
  • FIG. 17 is a diagram showing a light distribution characteristic of an LED display panel on which a plurality of COB type LED elements covered with a light transmissive member such as a resist resin material in the base technology is mounted.
  • FIG. 18 is a figure which shows the light distribution characteristic of the connection part of the LED display apparatus which arrange
  • a plurality of LED elements 2 a, 2 b, 2 c are arranged and mounted on a substrate 3.
  • the plurality of LED elements 2a, 2b, 2c are arranged in units of the pixel unit 21.
  • the pixel unit 21 includes a red LED element 2a, a green LED element 2b, and a blue LED element 2c.
  • the LED elements 2a, 2b, and 2c have a light emission surface on the surface opposite to the substrate 3.
  • the light transmissive member 41 is disposed on the substrate 3 so as to cover the light emission surfaces of the plurality of pixel units 21.
  • the light transmissive member 41 has translucency.
  • the light transmissive member 41 is, for example, an epoxy or acrylic resin.
  • FIG. 17 shows the spread of the emitted light of each pixel unit 21 in the COB type LED display panel of the base technology. Comparing the emitted light L10 of the pixel unit 21 disposed on the outermost periphery of the substrate 3 (that is, the left and right ends in FIG. 17) with the emitted light L20 of the pixel unit 21 disposed on the inner side of the substrate 3, the emitted light It can be seen that L10 is influenced by the end of the light transmissive member 41 and the light orientation is biased. That is, in the base technology COB type LED display panel, the orientation characteristics are different between the pixel unit 21 arranged on the outermost periphery and the pixel unit 21 arranged on the inner side.
  • the pixel unit 21 that is, the emitted light L10 whose orientation characteristics are biased at the boundary portion between adjacent display panels. Is disposed). For this reason, there is a problem that a luminance level difference is easily visible at the boundary portion of the LED display panel, and the continuity of the screen is impaired.
  • the embodiment of the present invention solves the above-described problems.
  • FIG. 1 is a plan view of the LED display device 100 according to the first embodiment.
  • the LED display device 100 is formed by arranging a plurality of COB (chip on board) type LED display panels 10 in a matrix.
  • the LED display panel 10 is formed by arranging a plurality of COB type LED packages 22 in a matrix.
  • FIG. 2 is a cross-sectional view of the COB type LED display panel 10 taken along line AB in FIG.
  • the COB type LED package 22 constituting the COB type LED display panel 10 includes a plurality of COB type LED elements 2 a, 2 b, 2 c and a plurality of light transmissive members 4.
  • a plurality of LED elements 2 a, 2 b and 2 c are arranged and mounted on the substrate 3.
  • the substrate 3 is a ceramic substrate.
  • the plurality of LED elements 2a, 2b, 2c are arranged in units of two pixel units.
  • the pixel unit 2 includes a red LED element 2a, a green LED element 2b, and a blue LED element 2c.
  • a COB type LED package 22 composed of the pixel unit 2 and the light transmissive member 4 is arranged in a matrix on the substrate 3 as shown in FIG.
  • the pixel unit 2 is configured in an arbitrary size such as 3 ⁇ 3, 16 ⁇ 16, 120 ⁇ 90, 160 ⁇ 120, and 160 ⁇ 180.
  • the LED elements 2a, 2b, 2c have a light emission surface on the surface opposite to the substrate 3.
  • each of the plurality of light transmissive members 4 is arranged on the substrate 3 so as to cover each light emitting surface, with each LED element 2 a, 2 b, 2 c as one group.
  • Each light transmissive member 4 has a quadrangular frustum shape whose lower base is the substrate 3 side.
  • the light emitting surface on the upper base side of the light transmitting member 4 having the shape of a quadrangular pyramid has an emission angle from the LED elements 2a and 2c so that the light distribution of the LED elements 2a and 2c on the most peripheral side is not biased. It is set to a size that can be assured as the element 2b.
  • the light transmissive member 4 is an ultraviolet curable resin having translucency and thermal conductivity.
  • the ultraviolet curable resin is, for example, an epoxy or acrylic resin.
  • the light transmissive member 4 is excellent in thermal conductivity from the viewpoint of heat dissipation of the LED elements 2a, 2b, and 2c.
  • a concave portion 4 a is provided on the bottom of the light transmissive member 4.
  • Each LED element 2a, 2b, 2c is accommodated between the recess 4a and the substrate 3 without a gap.
  • FIG. 3 is a flowchart showing manufacturing steps of the COB type LED display panel 10 constituting the LED display device 100.
  • the substrate 3 on which the LED elements 2a, 2b, and 2c are mounted is prepared (step S101).
  • a light transmissive member mold 6 is prepared (step S102).
  • FIG. 4 is a cross-sectional view of the light transmissive member mold 6.
  • the light transmissive member mold 6 includes a light transmissive substrate 7 and a partition member 8.
  • the partition member 8 has a shape that defines the outline of the light transmissive member 4.
  • the partition member 8 is held by the light transmissive substrate 7 so that the lower bottom side (that is, the substrate 3 side) of the light transmissive member 4 is opened.
  • the light transmissive member molding die 6 is filled with the ultraviolet curable resin 12 (step S103). That is, the space between the partition members 8 is filled with the liquid ultraviolet curable resin 12.
  • FIG. 5 is a cross-sectional view for explaining alignment between the light transmissive member forming die 6 and the substrate 3.
  • the position detection sensor 9 is arrange
  • the position detection sensor 9 disposed on the right side in FIG. 5 detects the LED element 2 b provided in the pixel unit 2 mounted on the substrate 3 through the light transmissive substrate 7 and the ultraviolet curable resin 12. Further, the position detection sensor 9 disposed on the left side in FIG.
  • the LED element 2b is detected.
  • the position detection sensor 9 includes a camera, for example, and the camera recognizes the LED element 2b.
  • the position detection sensor 9 accurately detects the center position of the LED element 2b by recognizing the outer size and position of the LED element 2b.
  • a transport mechanism (not shown) moves the substrate 3 based on the detection result of the position detection sensor 9, and adjusts the relative position of the partition member 8 and the LED element 2b with high accuracy.
  • step S105 after aligning the light transmissive member mold 6 and the substrate 3, the light transmissive member mold 6 and the substrate 3 are brought into close contact with each other.
  • the ultraviolet curable resin 12 is cured by irradiating the ultraviolet curable resin 12 with ultraviolet rays through the light transmissive substrate 7 of the light transmissive member molding die 6 (step S106).
  • the cured ultraviolet curable resin 12 becomes the light transmissive member 4.
  • FIG. 6 is a cross-sectional view showing a state where the light transmissive member mold 6 is separated from the light transmissive member 4.
  • FIG. 7 is a diagram showing the light distribution characteristics of the COB type LED display panel 10 according to the first embodiment.
  • FIG. 8 is a diagram showing the light distribution characteristics of the LED display panel connecting portion of the LED display device 100 in which a plurality of COB type LED display panels 10 according to the first embodiment are arranged.
  • the light transmissive members 4 are individually arranged for the plurality of pixel units 2. Therefore, as shown in FIG. 8, the emitted light L30 of the pixel unit 2 arranged on the outermost periphery of the substrate 3 (that is, the left and right ends in FIG. 8) and the output of the pixel unit 2 arranged on the inner side of the substrate 3 It is possible to make the light distribution characteristics of the incident light L40 closer. Therefore, it is possible to suppress the occurrence of a luminance step in the pixel unit 2 arranged on the outermost periphery of the substrate 3.
  • the pixel unit 2 (that is, the emitted light L ⁇ b> 30 is emitted) at the boundary between adjacent LED display panels 10.
  • the pixel unit it is possible to prevent a luminance step from being visually recognized. That is, the joint between the LED display panels 10 is less visible and a large screen with a sense of unity can be configured.
  • the LED display panel 10 includes a plurality of chip-on-board type LED elements 2a, 2b, and 2c that are mounted on the substrate 3 and have a light emitting surface on the surface opposite to the substrate 3 side.
  • the light transmissive member 4 improves the directivity of the emitted light from the LED elements 2a, 2b, and 2c and adjusts the alignment characteristics.
  • the LED element It is possible to improve the light distribution characteristics of 2a, 2b, and 2c, increase the light utilization efficiency, and adjust the alignment characteristics.
  • each light transmissive member 4 has a quadrangular frustum shape with the lower base side being the substrate 3 side.
  • the light transmissive member 4 into the shape of a truncated pyramid, it is possible to improve the light distribution characteristics of the LED elements 2a, 2b, 2c with a simple structure, to increase the light utilization efficiency, and to adjust the alignment characteristics. is there. Furthermore, the heat radiating effect of each LED element 2a, 2b, 2c can be enhanced by forming the light transmissive member 4 from a highly heat conductive material.
  • the LED display device 100 includes a plurality of LED display panels 10, and the plurality of LED display panels 10 form one large screen.
  • a large screen is formed by arranging a plurality of LED display panels 10, the joint between the LED display panels 10 is less visible and a large screen with a sense of unity can be configured.
  • the partition member 8 is held by the light transmissive substrate 7 so that the substrate 3 side of the light transmissive member 4 is opened, and (c) a step of filling the light transmissive member molding die 6 with the ultraviolet curable resin 12.
  • the light transmissive member mold 6 is aligned with the substrate 3 on which the plurality of LED elements 2a, 2b, 2c are mounted, and the light transmissive member mold 6 And (e) after the step (d), the light transmissive substrate A step of irradiating the ultraviolet curable resin 12 with ultraviolet rays to cure the ultraviolet curable resin 12 to form the light transmissive member 4 on the substrate 3, and (f) after the step (e), the light And a step of separating the transmissive member molding die 6 from the light transmissive member 4.
  • the light transmissive member forming die 6 is used to bundle the plurality of light transmissive members 4 directly on the plurality of LED elements 2a, 2b, 2c. Form. Thereby, the light transmissive member 4 that adjusts the light distribution characteristics of the LED elements 2a, 2b, and 2c can be formed on the substrate 3 at a low cost and with a smaller number of steps.
  • the position detection sensor 9 is an LED element mounted on the substrate 3 through the light transmissive substrate 7 and the ultraviolet curable resin 12. The position 2b is detected.
  • the light transmitting member 4 can improve the light distribution characteristics of the LED elements 2a, 2b, and 2c, increase the light use efficiency, and adjust the alignment characteristics.
  • the sex member 4 may have any lens shape.
  • FIG. 9 is a plan view of the LED display device 200 according to the second embodiment.
  • the LED display device 200 is formed by arranging a plurality of COB type LED display panels 20 in a matrix.
  • the LED display panel 20 is formed by arranging a plurality of COB (chip on board) type LED packages 22 in a matrix.
  • FIG. 10 is a cross-sectional view of the COB type LED display panel 20 along the line segment CD in FIG.
  • the COB type LED package 22 constituting the COB type LED display panel 20 includes a plurality of COB type LED elements 2a, 2b, 2c, a plurality of light transmissive members 4, and a light blocking member 5.
  • the light-shielding member 5 is disposed so as to fill a gap between the light-transmissive members 4 adjacent to each other.
  • the light blocking member 5 is a black paint made of, for example, carbon black ink.
  • FIG. 11 is a flowchart showing a manufacturing process of the COB type LED display panel 20 according to the second embodiment.
  • steps S201 to S206 are the same as those in the first embodiment (steps S103 to S106 in FIG. 3), and thus description thereof is omitted.
  • the ultraviolet curable resin 12 is cured, that is, after the light transmissive member 4 is formed, the light transmissive substrate 7 is separated from the light transmissive member 4 and the light shielding member 5 while the light transmissive substrate 7 is curved.
  • Step S207 This state is shown in FIG. FIG. 6 is a cross-sectional view showing a state where the light transmissive substrate 7 is separated from the light transmissive member 4 and the light shielding member 5.
  • the light shielding material 5 is filled in the gap 5a between the light transmissive members 4 adjacent to each other to form the light shielding member 5 (step S208).
  • the COB type LED display panel 20 according to the second embodiment is obtained through the above manufacturing process. Then, a plurality of LED display panels 20 each having a plurality of COB-type LED packages 22 arranged in a matrix are arranged to form one large screen, whereby the LED display device 200 is obtained.
  • the LED display panel 20 according to the second embodiment further includes a light shielding member 5 that fills the space between the light transmissive members 4 adjacent to each other.
  • the LED display panel 20 by disposing the light shielding member 5 so as to fill the space between the light transmissive members 4 adjacent to each other, unnecessary light components emitted from the LED elements 2a, 2b, 2c are unnecessary.
  • the wide-angle component is absorbed by the light-shielding member, and the component totally reflected by the sloped portion of the quadrangular pyramid of the light-transmitting member is emitted forward.
  • the LED display device 200 in the second embodiment includes a plurality of LED display panels 20, and the plurality of LED display panels 10 form one large screen.
  • a large screen is configured by arranging a plurality of LED display panels 20, the joint between the LED display panels 20 is less likely to be visually recognized, and it is possible to configure a large screen with a sense of unity.
  • the manufacturing method of the LED display panel 20 in this Embodiment 2 is light-shielding between the light transmissive members 4 adjacent to each other after the step of separating the light transmissive member mold 6 from the light transmissive member 4. A step of filling the material and forming a light blocking member 5 that fills the space between the light transmissive members 4 adjacent to each other.
  • the light-shielding member 5 can be formed by filling a black paint made of, for example, carbon black ink as a light-shielding material between the light transmissive members 4 adjacent to each other.
  • FIG. 12 is a flowchart showing a manufacturing process of the COB type LED display panel 30 according to the third embodiment.
  • FIG. 13 is a cross-sectional view of the light transmissive member mold 6A.
  • the light transmissive member mold 6 ⁇ / b> A includes a light transmissive substrate 7 and a light blocking member 5.
  • the light shielding member 5 has the same shape as the light transmissive member 4.
  • the light shielding member 5 is placed on the light transmissive substrate 7 so that the lower bottom side of the light transmissive member 4 is opened.
  • step S303 to S306 in FIG. 12 are the same as those in the second embodiment (steps S203 to S206 in FIG. 11), and thus the description thereof is omitted.
  • FIG. 14 is a cross-sectional view showing a state where the light transmissive substrate 7 is separated from the light transmissive member 4 and the light shielding member 5.
  • step (k) after step (j), the light transmissive member molding die 6A is aligned with the substrate 3 on which the plurality of LED elements 2a, 2b, 2c are mounted, and is light transmissive.
  • the light transmitting group A step of irradiating the ultraviolet curable resin 12 with ultraviolet rays through 7 to cure the ultraviolet curable resin 12 to form the light transmissive member 4 on the substrate 3, and (m) after the step (l), And a step of separating the light transmissive substrate 7 from the light transmissive member 4 and the light shielding member 5.
  • the manufacturing method of the LED display panel 30 according to the third embodiment by forming the light-shielding member 5 in the light-transmissive member molding die 6A in advance, the formation of the light-transmissive member 4 on the substrate 3;
  • the light shielding member 5 can be formed simultaneously. Therefore, the process of forming the light shielding member 5 after separating the light transmissive member molding die 6A from the substrate 3 is not required, and the number of manufacturing steps can be further reduced.
  • the position detection sensor 9 passes through the light-transmitting substrate 7 and the ultraviolet curable resin 12, and the LED elements 2a, The positions 2b and 2c are detected.
  • FIG. 15 is a cross-sectional view of the LED display panel 40 according to the fourth embodiment.
  • the light transmissive film 13 is provided so as to cover the upper bottom surface of the light transmissive member 4 (that is, the display surface of the LED display panel 40).
  • the surface of the light transmissive film 13 opposite to the light transmissive member 4 is subjected to reflection reduction processing.
  • the light transmissive film 13 includes a base layer and an antireflection layer.
  • the antireflection layer is provided on the side opposite to the light transmissive member 4 with respect to the base layer.
  • the base layer is made of a light-transmitting material (for example, polyester resin, acrylic resin, glass, etc.).
  • the antireflection layer is made of a material having a refractive index smaller than that of the base layer (for example, a metal fluoride such as magnesium fluoride or aluminum fluoride).
  • the light transmissive film 13 is preferably excellent in thermal conductivity.
  • the configuration of the LED display panel 40 other than the light transmissive film 13 in the fourth embodiment is the same as that of the LED display panel 20 (FIG. 10), description thereof is omitted.
  • the LED display panel 40 according to the fourth embodiment further includes a light transmissive film 13 that covers a surface of the plurality of light transmissive members 4 opposite to the substrate 3 (that is, a surface on the upper bottom side of the light transmissive member 4).
  • the light transmission film 13 is subjected to a reflection reduction process.
  • FIG. 16 is a cross-sectional view of the LED display panel 50 according to the fifth embodiment.
  • a plurality of convex lenses 11 are provided so as to cover the upper bottom surface of each light transmissive member 4 (that is, the display surface of the LED display panel 50).
  • Each convex lens 11 is provided corresponding to each LED element 2a, 2b, 2c.
  • the surface opposite to the light transmissive member 4 of the convex lens 11 is subjected to a reflection reduction process.
  • the reflection reduction process is realized by coating the surface of the convex lens 11 with, for example, a metal fluoride.
  • the convex lens 11 is preferably excellent in thermal conductivity.
  • the LED display panel 50 covers the surface of each of the plurality of light transmissive members 4 opposite to the substrate 3 (that is, the surface on the upper bottom side of each of the plurality of light transmissive members 4).
  • the plurality of convex lenses 11 are further provided, and the convex lenses 11 are subjected to reflection reduction processing.
  • the light distribution characteristics of the LED elements 2a, 2b, 2c can be further adjusted by the refractive effect of the convex lens 11.
  • the brightness can be further increased by increasing the directivity of the LED elements 2a, 2b, and 2c by the convex lens 11.
  • each of the plurality of light transmissive members 4 emits a plurality of LED elements 2a, 2b, and 2c that emit light of different colors. It arrange
  • the pixel unit 2 is configured with the LED element 2a that emits red light, the LED element 2b that emits green light, and the LED element 2c that emits blue light as one group.
  • the light transmissive member 4 was provided so as to cover the light emitting surface every time. This makes it possible to adjust the alignment characteristics in units of pixels.
  • the plurality of LED elements 2 a, 2 b, 2 c are arranged on the substrate 3 in a matrix.
  • an LED element mounting substrate suitable for image display can be obtained.
  • the surface of the plurality of light transmissive members 4 on the substrate 3 side is provided with a recess 4a. LED elements 2a, 2b, and 2c are accommodated between them.
  • the heat generated in the LED elements 2a, 2b, and 2c can be efficiently transmitted to the light transmissive member 4, and the heat radiation efficiency is improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Theoretical Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Health & Medical Sciences (AREA)
  • Ophthalmology & Optometry (AREA)
  • Mechanical Engineering (AREA)
  • Led Device Packages (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

本発明は、簡易な構成でLED素子の配向性を高めるとともに光利用効率を高めたLEDパネルおよびLED表示装置の提供を目的とする。また、本発明は製造工程数の増大を抑制したLED表示パネルの製造方法の提供を目的とする。本発明に係るLED表示パネル10は、基板3上に配列して搭載され基板3側と反対側の面に光出射面を有するチップオンボード型の複数のLED素子2a,2b,2cと、複数の光透過性部材4と、を備え、複数の光透過性部材4のそれぞれは、少なくとも1つのLED素子2a,2b,2cの光出射面を覆うように基板3上に配置され、各光透過性部材4は、LED素子2a,2b,2cの出射光の指向性を高める。

Description

LED表示パネル、LED表示装置およびLED表示パネルの製造方法
 本発明はLED表示パネル、LED表示装置およびLED表示パネルの製造方法に関する。
 複数のLED(Light Emitting Diode)素子を正方配列状に配置し、個々のLED素子に対する点滅制御により映像情報を表示するLED表示装置が知られている。
 LED表示装置は、LED素子の技術発展と低コスト化により屋外、屋内の広告表示等に多く使用されている。これらのLED表示装置は、これまで自然画およびアニメーション等の動画像表示が主流であった。近年、屋内用途においては画素ピッチの狭ピッチ化に伴い視認距離が短くなることで、会議室や監視用途などパソコンの画像表示にも使用されている。特に、監視用途においては静止画に近いパソコン画像を表示することが多くなっている。
 これらのLED表示装置は、セラミックや樹脂などで成型したキャビティの中にLED素子を実装し、上から封止樹脂で固めた小さなLEDパッケージを基板に実装したSMD(Surface Mount Device:表面実装部品)型が主流であった。SMD型は、これまで主に画素ピッチが3mm以上の大型表示装置として使用されてきた。
 近年、LED素子の低コスト化の流れと高精細化の需要を背景に、画素ピッチが約1.9mm、1.5mm等の挟ピッチの製品が市場に投入されている。また、さらなる高精細化を図るために、個々にキャビティ化されたSMD型LEDパッケージではなく外殻の無いLED素子自体を基板に直接実装するCOB(Chip On Board)型を採用し、更なる高密度実装化を図る動きもある。
 例えば、特許文献1や特許文献2にて開示されているLED表示装置の場合、LED素子それぞれの上に支柱状や凸状のレンズを設けることで配向特性を改善し、光の利用効率を高める技術が開示されている。また、特許文献3のLED表示装置のように、複数のLED素子を並べた基板の上に各LED素子に対応した複数の孔のあいた反射板を位置合わせしながら固着し、その上にガラス板を組み合わせた光反射ケースを置くことで、配向特性を改善するとともに輝度むらを低減する技術が開示されている。
特開2011-112737号公報 実開平5-52882号公報 特開2004-79750号公報
 従来のLED表示装置の配光制御においては、個々のLED素子の上部に配置するレンズ、レンズを止める為の樹脂材、光反射ケースなどを設けるため、構造が複雑になり、製造工程数が多くなるため、製造に要する時間とコストが増大するという問題があった。また、従来のLED表示装置においては、複数のLED表示パネルを連結して大画面表示装置を構成する際に、特に斜め方向からLED表示パネルの継ぎ目を見た場合に、輝度の段差により継ぎ目が目立つという問題があった。
 本発明は以上のような課題を解決するためになされたものであり、簡易な構成でLED素子の配向性を高めるとともに光利用効率を高めたLEDパネルおよびLED表示装置の提供を目的とする。また、本発明は製造工程数の増大を抑制したLED表示パネルの製造方法の提供を目的とする。
 本発明に係るLED表示パネルは、基板上に配列して搭載され基板側と反対側の面に光出射面を有するチップオンボード型の複数のLED素子と、複数の光透過性部材と、を備え、複数の光透過性部材のそれぞれは、少なくとも1つのLED素子の光出射面を覆うように基板上に配置され、各光透過性部材は、LED素子の出射光の指向性を高める。
 本発明に係るLED表示パネルによれば、例えば異なる色の光を発する複数のLED素子を1つの画素ユニットとして、画素ユニットごとに光出射面を覆うように光透過性部材を配置することにより、LED表示パネルの外周側に配置されるLED素子の配向特性と、LED表示パネルの内側に配置されるLED素子の配向特性を近づけることが可能である。よって、LED素子の配光特性、特にLED表示パネルの外周側に配置されるLED素子の配向特性を改善して整えるとともに、光利用効率を高めることが可能である。
 この発明の目的、特徴、局面、および利点は、以下の詳細な説明と添付図面とによってより明白となる。
実施の形態1に係るLED表示装置の平面図である。 実施の形態1に係るLED表示パネルの断面図である。 実施の形態1に係るLED表示パネルの製造工程を示すフローチャートである。 実施の形態1に係るLED表示パネルの製造に用いる光透過性部材成形型の断面図である。 実施の形態1に係るLED表示パネルの製造における光透過性部材の形成工程を示す図である。 実施の形態1に係るLED表示パネルの製造における光透過性部材の形成工程を示す図である。 実施の形態1に係るLED表示パネルの配光特性を示す図である。 実施の形態1に係るLED表示パネルの連結部の配光特性を示す図である。 実施の形態2に係るLED表示装置の平面図である。 実施の形態2に係るLED表示パネルの断面図である。 実施の形態2に係るLED表示パネルの製造工程を示すフローチャートである。 実施の形態3に係るLED表示パネルの製造工程を示すフローチャートである。 実施の形態3に係るLED表示パネルの製造に用いる光透過性部材成形型の断面図である。 実施の形態3に係るLED表示パネルの製造における光透過性部材の形成工程を示す図である。 実施の形態4に係るLED表示パネルの断面図である。 実施の形態5に係るLED表示パネルの断面図である。 前提技術に係るLED表示パネルの配光特性を示す図である。 前提技術に係るLED表示パネルの連結部の配光特性を示す図である。
 <前提技術>
 本発明の実施形態を説明する前に、本発明の前提となる技術について説明をする。図17は前提技術におけるレジスト樹脂材料等の光透過性部材に覆われた複数のCOB型LED素子を実装したLED表示パネルの配光特性を示す図である。また、図18は、前提技術におけるCOB型LED素子を実装したLED表示パネルを複数配設したLED表示装置の連結部の配光特性を示す図である。
 図17に示すように、前提技術におけるCOB型LED表示パネルにおいて、複数のLED素子2a,2b,2cが、基板3上に配列して搭載されている。複数のLED素子2a,2b,2cは画素ユニット21単位で配列している。画素ユニット21は、赤色のLED素子2a、緑色のLED素子2b、青色のLED素子2cを含む。LED素子2a,2b,2cは、基板3とは反対側の面に光出射面を有する。
 図17に示すように、光透過性部材41は、複数の画素ユニット21の光出射面を覆うように基板3上に配置される。光透過性部材41は透光性を有する。光透過性部材41は、例えばエポキシ系又はアクリル系の樹脂である。
 図17に、前提技術のCOB型LED表示パネルにおける各画素ユニット21の出射光の広がりを示す。基板3の最外周(即ち、図17の左右の端)に配置された画素ユニット21の出射光L10と、基板3の内側に配置された画素ユニット21の出射光L20とを比較すると、出射光L10は、光透過性部材41の端の影響を受けて、光の配向に偏りがあることがわかる。つまり、前提技術のCOB型LED表示パネルにおいては、最外周に配置された画素ユニット21と、その内側に配置された画素ユニット21とで、配向特性が異なっていた。
 図18に示すように、前提技術のCOB型LED表示パネルを複数配設して大画面を構成する場合、隣接する表示パネルの境界部分に配向特性に偏りがある画素ユニット21(即ち出射光L10を出射する画素ユニット)が配置される。そのため、LED表示パネルの境界部分で輝度の段差が視認され易く、画面の連続性が損なわれてしまう問題があった。本発明の実施形態は上述した課題を解決するものである。
 <実施の形態1>
 <構成>
 図1は、本実施の形態1におけるLED表示装置100の平面図である。LED表示装置100は、複数のCOB(チップオンボード)型LED表示パネル10をマトリクス状に並べて形成されている。LED表示パネル10は、複数のCOB型LEDパッケージ22をマトリクス状に並べて形成されている。図2は、図1の線分ABにおけるCOB型LED表示パネル10の断面図である。COB型LED表示パネル10を構成するCOB型LEDパッケージ22は、複数のCOB型LED素子2a,2b,2cと、複数の光透過性部材4を備える。
 図1、2に示すように、COB型LED表示パネル10において、複数のLED素子2a,2b,2cが、基板3上に配列して搭載されている。基板3はセラミック基板である。複数のLED素子2a,2b,2cは画素ユニット2単位で配列している。画素ユニット2は、赤色のLED素子2a、緑色のLED素子2b、青色のLED素子2cを含む。この画素ユニット2と光透過性部材4からなるCOB型LEDパッケージ22が例えば図1に示すように基板3上にマトリクス状に配置されている。また、COB型LED表示パネル10は、画素ユニット2が3×3、16×16、120×90、160×120、160×180といった任意のサイズで構成されている。
 本実施の形態1において、LED素子2a,2b,2cは、基板3とは反対側の面に光出射面を有する。
 図2に示すように、複数の光透過性部材4のそれぞれは、各LED素子2a,2b,2cを1つのグループとして、それぞれの光出射面を覆うように基板3上に配置される。各光透過性部材4は、下底側が基板3側である四角錐台形状である。四角錐台形状の光透過性部材4の上底側の光出射面は、最周辺側のLED素子2a,2cの配光に偏りが出ないよう、LED素子2a,2cからの出射角をLED素子2bと同等に確保できるサイズに設定されている。光透過性部材4は、透光性および熱伝導性を有する紫外線硬化型樹脂である。紫外線硬化型樹脂とは、例えばエポキシ系又はアクリル系の樹脂である。また、LED素子2a,2b,2cの放熱性の観点から、光透過性部材4は熱伝導性に優れることが好ましい。
 光透過性部材4の下底には凹部4aが設けられている。各LED素子2a,2b,2cは、この凹部4aと基板3との間に隙間なく収納されている。
 <製造方法>
 図3は、LED表示装置100を構成するCOB型LED表示パネル10の製造工程を示すフローチャートである。まず、LED素子2a,2b,2cが搭載された基板3を用意する(ステップS101)。さらに、光透過性部材成形型6を用意する(ステップS102)。図4は、光透過性部材成形型6の断面図である。図4に示すように、光透過性部材成形型6は、光透過性基板7と、間仕切り部材8とを備える。間仕切り部材8は光透過性部材4の外郭を規定する形状である。間仕切り部材8は、光透過性部材4の下底側(即ち、基板3側)が開口するように光透過性基板7に保持されている。
 次に、図4に示すように、光透過性部材成形型6に紫外線硬化型樹脂12を充填する(ステップS103)。つまり、間仕切り部材8の間が液状の紫外線硬化型樹脂12で満たされる。
 次に、光透過性部材成形型6と基板3との位置合わせを行う(ステップS104)。位置合わせは、位置検出センサ9を用いて行われる。図5は、光透過性部材成形型6と基板3との位置合わせを説明するための断面図である。位置検出センサ9は、例えば、光透過性部材成形型6の4隅に対応する位置に配置されている。図5中の右側に配置された位置検出センサ9は、光透過性基板7および紫外線硬化型樹脂12越しに、基板3に搭載された画素ユニット2に備わるLED素子2bを検出する。また、図5中の左側に配置された位置検出センサ9は、光透過性部材成形型6の光透過性基板7および紫外線硬化型樹脂12越しに、基板3に搭載された画素ユニット2に備わるLED素子2bを検出する。位置検出センサ9は、例えばカメラを含み、カメラがLED素子2bを認識する。位置検出センサ9は、LED素子2bの外形サイズと位置を認識することにより、LED素子2bの中心位置を正確に検出する。図示しない搬送機構は、位置検出センサ9の検出結果に基づいて基板3を移動させ、間仕切り部材8とLED素子2bの相対位置を高精度に調整する。
 そして、図5に示すように、光透過性部材成形型6と基板3との位置合わせを行った後、光透過性部材成形型6と基板3とを密着させる(ステップS105)。
 次に、光透過性部材成形型6の光透過性基板7を介して紫外線硬化型樹脂12に紫外線を照射することにより、紫外線硬化型樹脂12を硬化させる(ステップS106)。硬化した紫外線硬化型樹脂12は、光透過性部材4となる。
 紫外線硬化型樹脂12を硬化させた後、即ち光透過性部材4を形成した後、光透過性基板7を湾曲させながら、光透過性部材成形型6を光透過性部材4から離間させる(ステップS107)。図6は、光透過性部材成形型6を光透過性部材4から離間させた状態を示す断面図である。以上の製造工程により、本実施の形態1におけるCOB型LEDパッケージ22が複数並んだLED表示パネル10を得る。そして、COB型LED表示装置10を複数並べて配設して1つの大画面を形成することにより、LED表示装置100を得る。
 図7は、本実施の形態1におけるCOB型LED表示パネル10の配光特性を示す図である。また、図8は、本実施の形態1におけるCOB型LED表示パネル10を複数配設したLED表示装置100のLED表示パネル連結部の配光特性を示す図である。
 本実施の形態1においては、複数の画素ユニット2に対して個別に光透過性部材4を配置した。そのため、図8に示すように、基板3の最外周(即ち、図8の左右の端)に配置された画素ユニット2の出射光L30と、基板3の内側に配置された画素ユニット2の出射光L40の配光特性を近づけることが可能である。よって、基板3の最外周に配置された画素ユニット2において、輝度の段差が生じることを抑制することが可能である。
 よって、図8に示すように、COB型LED表示パネル10を複数配設して大画面を構成する場合、隣接するLED表示パネル10の境界部分の画素ユニット2(即ち、出射光L30を出射する画素ユニット)において、輝度の段差が視認されることを抑制することが可能である。つまり、LED表示パネル10間の継ぎ目がより視認されにくく、より一体感のある大画面を構成することが可能である。
 <効果>
 本実施の形態1におけるLED表示パネル10は、基板3上に配列して搭載され基板3側と反対側の面に光出射面を有するチップオンボード型の複数のLED素子2a,2b,2cと、複数の光透過性部材4と、を備え、複数の光透過性部材4のそれぞれは、少なくとも1つのLED素子2a,2b,2cの光出射面を覆うように基板3上に配置され、各光透過性部材4は、LED素子2a,2b,2cの出射光の指向性を高め、配向特性を整える。
 従って、例えば異なる色の光を発する複数のLED素子2a,2b,2cを1つの画素ユニット2として、画素ユニット2の光出射面を覆うように光透過性部材4を配置することにより、LED素子2a,2b,2cの配光特性を改善し、光利用効率を高め、配向特性を整えることが可能である。
 また、本実施の形態1におけるLED表示パネル10において、各光透過性部材4は下底側が基板3側である四角錐台形状である。
 従って、光透過性部材4を四角錐台形状とすることにより、簡易な構造でLED素子2a,2b,2cの配光特性を改善し、光利用効率を高め、配向特性を整えることが可能である。さらに、光透過性部材4を高熱伝導性の材料で形成することにより各LED素子2a,2b,2cの放熱効果を高めることが可能である。
 また、実施の形態1におけるLED表示装置100は、LED表示パネル10を複数備え、複数のLED表示パネル10は1つの大画面を形成する。LED表示パネル10を複数並べて大画面を構成した場合、LED表示パネル10間の継ぎ目がより視認されにくく、より一体感のある大画面を構成することが可能である。
 本実施の形態1におけるLED表示パネル10の製造方法は、(a)複数のLED素子2a,2b,2cが搭載された基板3を用意する工程と、(b)光透過性部材4を形成するための光透過性部材成形型6を用意する工程と、を備え、光透過性部材成形型6は、光透過性基板7と、光透過性基板7に保持された間仕切り部材8と、を備え、間仕切り部材8は、光透過性部材4の基板3側が開口するように光透過性基板7に保持されており、(c)光透過性部材成形型6に紫外線硬化型樹脂12を充填する工程と、(d)工程(c)の後、光透過性部材成形型6と、複数のLED素子2a,2b,2cが搭載された基板3との位置合わせを行い、光透過性部材成形型6と基板3とを密着させる工程と、(e)工程(d)の後、光透過性基板7を介して紫外線硬化型樹脂12に紫外線を照射して、紫外線硬化型樹脂12を硬化させて基板3上に光透過性部材4を形成する工程と、(f)工程(e)の後、光透過性部材成形型6を光透過性部材4から離間させる工程と、をさらに備える。
 本実施の形態1におけるLED表示パネル10の製造方法においては、光透過性部材成形型6を用いて、複数のLED素子2a,2b,2c上に直接、複数の光透過性部材4を一括して形成する。これにより、LED素子2a,2b,2cの配光特性を整える光透過性部材4を、低コストかつ、より少ない工程数で基板3上に形成することができる。
 また、本実施の形態1におけるLED表示パネル10の製造方法の工程(d)において、位置検出センサ9が、光透過性基板7および紫外線硬化型樹脂12越しに、基板3に搭載されたLED素子2bの位置を検出する。
 従って、複数のLED素子2a,2b,2cが基板3上に高密度に実装されている場合でも、個々のLED素子に対応した位置に、高精度に光透過性部材4を配置することが可能である。
 なお、本実施の形態1において、光透過性部材4によってLED素子2a,2b,2cの配光特性を改善し、光の利用効率を高め、配向特性を整えることが可能であれば、光透過性部材4は任意のレンズ形状でよい。
 <実施の形態2>
 図9は、本実施の形態2におけるLED表示装置200の平面図である。LED表示装置200は、複数のCOB型LED表示パネル20をマトリクス状に並べて形成されている。LED表示パネル20は、複数のCOB(チップオンボード)型LEDパッケージ22をマトリクス状に並べて形成している。図10は、図9の線分CDにおけるCOB型LED表示パネル20の断面図である。COB型LED表示パネル20を構成するCOB型LEDパッケージ22は、複数のCOB型LED素子2a,2b,2cと、複数の光透過性部材4と、遮光性部材5とを備える。
 図10に示すように、遮光性部材5は、互いに隣接する光透過性部材4の隙間を埋めるように配置される。遮光性部材5は、例えばカーボンブラックインキからなる黒色塗料である。
 図11は、本実施の形態2におけるCOB型LED表示パネル20の製造工程を示すフローチャートである。図11において、ステップS201~S206は実施の形態1(図3のステップS103~S106)と同様のため説明を省略する。紫外線硬化型樹脂12を硬化させた後、即ち光透過性部材4を形成した後、光透過性基板7を湾曲させながら、光透過性基板7を光透過性部材4および遮光性部材5から離間させる(ステップS207)。この状態は、図6で示される。図6は、光透過性基板7を光透過性部材4および遮光性部材5から離間させた状態を示す断面図である。
 そして、互いに隣接する光透過性部材4の隙間5aに、遮光性材料を充填して遮光性部材5を形成する(ステップS208)。以上の製造工程により、本実施の形態2におけるCOB型LED表示パネル20を得る。そして、COB型LEDパッケージ22が複数マトリクス状に並んだLED表示パネル20を複数並べて配設して1つの大画面を形成することにより、LED表示装置200を得る。
 <効果>
 本実施の形態2におけるLED表示パネル20は、互いに隣接する光透過性部材4の間を埋める遮光性部材5をさらに備える。
 従って、LED表示パネル20において、互いに隣接する光透過性部材4の間を埋めるように遮光性部材5を配置することによって、各LED素子2a,2b,2cから出射する光成分の内、不要な広角成分は遮光性部材により吸収され、光透過性部材の四角錐台の斜面部にて全反射した成分は前方に出射される。これにより、各LED2a,2b,2cの配光特性を改善して整え、光利用効率を高め、さらに輝度ムラを低減させることが可能である。よって、LED表示パネル20を複数マトリクス状に並べて大画面を構成した場合、LED表示パネル20間の継ぎ目で線状の輝度の段差が視認されにくく、より一体感のある大画面を構成することが可能である。
 また、実施の形態2におけるLED表示装置200は、LED表示パネル20を複数備え、複数のLED表示パネル10は1つの大画面を形成する。LED表示パネル20を複数並べて大画面を構成した場合、LED表示パネル20間の継ぎ目がより視認されにくく、より一体感のある大画面を構成することが可能である。
 また、本実施の形態2におけるLED表示パネル20の製造方法は、光透過性部材成形型6を光透過性部材4から離間させる工程の後、互いに隣接する光透過性部材4の間に遮光性材料を充填して、互いに隣接する光透過性部材4の間を埋める遮光性部材5を形成する工程と、をさらに備える。
 従って、遮光性材料として例えばカーボンブラックインキからなる黒色塗料を、互いに隣接する光透過性部材4の間に充填することにより、遮光性部材5を形成することが可能である。
 <実施の形態3>
 本実施の形態3では、LED表示装置200の別の製造方法について説明する。図12は、本実施の形態3におけるCOB型LED表示パネル30の製造工程を示すフローチャートである。
 LED素子が搭載された基板3を用意する工程(ステップS301)は実施の形態2(図11のステップS201)と同じため説明を省略する。さらに、光透過性部材成形型6Aを用意する(ステップS302)。図13は、光透過性部材成形型6Aの断面図である。図13に示すように、光透過性部材成形型6Aは、光透過性基板7と、遮光性部材5とを備える。遮光性部材5は光透過性部材4と同じ形状である。遮光性部材5は、光透過性部材4の下底側が開口するように光透過性基板7に載置されている。
 続く工程(図12のステップS303~S306)は実施の形態2(図11のステップS203~S206)と同様のため説明を省略する。
 紫外線硬化型樹脂12を硬化させた後、即ち光透過性部材4を形成した後、光透過性基板7を湾曲させながら、光透過性基板7を光透過性部材4および遮光性部材5から離間させる(ステップS307)。図14は、光透過性基板7を光透過性部材4および遮光性部材5から離間させた状態を示す断面図である。以上の製造工程により、本実施の形態3におけるCOB型LED表示パネル30を得る。そして、COB型LED表示パネル30を複数並べて配設して1つの大画面を形成することにより、LED表示装置200を得る。
 <効果>
 本実施の形態3におけるLED表示パネル30の製造方法は、(h)複数のLED素子2a,2b,2cが搭載された基板3を用意する工程と、(i)光透過性部材4を形成するための光透過性部材成形型6Aを用意する工程と、を備え、光透過性部材成形型6Aは、光透過性基板7と、光透過性基板7に載置された遮光性部材5と、を備え、遮光性部材5は、光透過性部材4の下底側が開口するように光透過性基板7に載置されており、(j)光透過性部材成形型6Aに紫外線硬化型樹脂12を充填する工程と、(k)工程(j)の後、光透過性部材成形型6Aと、複数のLED素子2a,2b,2cが搭載された基板3との位置合わせを行い、光透過性部材成形型6Aと基板3とを密着させる工程と、(l)工程(k)の後、光透過性基板7を介して紫外線硬化型樹脂12に紫外線を照射して、紫外線硬化型樹脂12を硬化させて基板3上に光透過性部材4を形成する工程と、(m)工程(l)の後、光透過性基板7を光透過性部材4および遮光性部材5から離間させる工程と、をさらに備える。
 本実施の形態3におけるLED表示パネル30の製造方法では、光透過性部材成形型6Aに予め遮光性部材5を配置しておくことにより、基板3上への光透過性部材4の形成と、遮光性部材5の形成を同時に行うことが可能となる。よって、基板3から光透過性部材成形型6Aを離間させた後に、遮光性部材5の形成を行う工程が不要となり、製造工程数をさらに削減することが可能となる。
 本実施の形態3におけるLED表示パネル30の製造方法の工程(k)において、位置検出センサ9が、光透過性基板7および紫外線硬化型樹脂12越しに、基板3に搭載されたLED素子2a,2b,2cの位置を検出する。
 従って、複数のLED素子2a,2b,2cが基板3上に高密度に実装されている場合でも、個々のLED素子に対応した位置に、高精度に光透過性部材4を配置することが可能である。
 <実施の形態4>
 図15は、本実施の形態4におけるLED表示パネル40の断面図である。本実施の形態4においては、光透過性部材4の上底側の面(即ち、LED表示パネル40の表示面)を覆うように光透過性膜13が設けられている。光透過性膜13の光透過性部材4と反対側の面には反射低減処理が施されている。
 光透過性膜13は、ベース層と反射防止層からなる。反射防止層は、ベース層に対して光透過性部材4とは反対側に設けられる。ベース層は光透過性を有する材料(例えばポリエステル樹脂、アクリル樹脂、ガラス等)で形成されている。また、反射防止層は、ベース層よりも屈折率の小さい材料(例えば、フッ化マグネシウム、フッ化アルミニウム等の金属フッ化物)で形成されている。光透過性膜13は熱伝導性に優れることが好ましい。
 本実施の形態4におけるLED表示パネル40の光透過性膜13以外の構成は、LED表示パネル20(図10)と同じため説明を省略する。
 <効果>
 本実施の形態4におけるLED表示パネル40は複数の光透過性部材4の基板3と反対側の面(即ち、光透過性部材4の上底側の面)を覆う光透過性膜13をさらに備え、光透過性膜13には反射低減処理が施されている。
 光透過性部材4の直上に、表面反射低減処理を施した高熱伝導性の光透過性膜13を設けることで、LED素子2a,2b,2cと基板3との高さの差によって生じる凹凸が視認されることを抑制して、画面全体として統一感のある映像表示が可能となる。
 <実施の形態5>
 図16は、本実施の形態5におけるLED表示パネル50の断面図である。本実施の形態5においては、各光透過性部材4の上底側の面(即ち、LED表示パネル50の表示面)を覆うように複数の凸レンズ11が設けられている。各凸レンズ11は各LED素子2a,2b,2cに対応して設けられる。
 凸レンズ11の光透過性部材4と反対側の面には反射低減処理が施されている。反射低減処理は、凸レンズ11の表面を例えば金属フッ化物でコーティングすることで実現される。凸レンズ11は熱伝導性に優れることが好ましい。
 本実施の形態5におけるLED表示装置300の凸レンズ11以外の構成は、LED表示パネル20(図10)と同じため説明を省略する。
 <効果>
 本実施の形態5におけるLED表示パネル50は、複数の光透過性部材4のそれぞれの基板3と反対側の面(即ち、複数の光透過性部材4のそれぞれの上底側の面)を覆う、複数の凸レンズ11をさらに備え、凸レンズ11には反射低減処理が施されている。
 光透過性部材4の直上に、表面反射低減処理を施した凸レンズ11を設けることで、凸レンズ11の屈折効果によりLED素子2a,2b,2cの配光特性をさらに整えることが可能となる。例えば、凸レンズ11によりLED素子2a,2b,2cの指向性を高めることによって、さらなる高輝度化が可能である。
 また、実施の形態1~5におけるLED表示パネル10,20,30,40,50において、複数の光透過性部材4のそれぞれは、互いに異なる色の光を発する複数のLED素子2a,2b,2cの光出射面を覆うように基板3上に配置される。
 実施の形態1~5においては、赤色の光を発するLED素子2a、緑色の光を発するLED素子2b、青色の光を発するLED素子2cを1つのグループとして画素ユニット2を構成し、画素ユニット2ごとに光出射面を覆うように光透過性部材4を設けた。これにより、画素単位で配向特性を調整することが可能となる。
 また、実施の形態1~5におけるLED表示パネル10,20,30,40,50において、複数のLED素子2a,2b,2cは基板3上にマトリクス状に配置される。複数のLED素子2a,2b,2cを基板3上にマトリクス状に配列することにより、画像表示に適したLED素子搭載基板を得ることができる。
 また、実施の形態1~5におけるLED表示パネル10,20,30,40,50において、複数の光透過性部材4のそれぞれの基板3側の面には凹部4aが設けられ、凹部4aと基板3との間にLED素子2a,2b,2cが隙間なく収納される。
 よって、LED素子2a,2b,2cで生じた熱を効率的に光透過性部材4に伝えることが可能となり、放熱効率が向上する。
 この発明は詳細に説明されたが、上記した説明は、すべての局面において、例示であって、この発明がそれに限定されるものではない。例示されていない無数の変形例が、この発明の範囲から外れることなく想定され得るものと解される。
 2,21 画素ユニット、2a,2b,2c LED素子、22 LEDパッケージ、3 基板、4,41 光透過性部材、4a 凹部、5 遮光性部材、5a 隙間、6,6A 光透過性部材成形型、7 光透過性基板、8 間仕切り部材、9 位置検出センサ、10,20,30,40,50 LED表示パネル、11 凸レンズ、12 紫外線硬化型樹脂、13 光透過性膜、100,200 LED表示装置。

Claims (14)

  1.  基板上に配列して搭載され前記基板側と反対側の面に光出射面を有するチップオンボード型の複数のLED素子と、
     複数の光透過性部材と、
     を備え、
     前記複数の光透過性部材のそれぞれは、少なくとも1つの前記LED素子の前記光出射面を覆うように前記基板上に配置され、
     各前記光透過性部材は、前記LED素子の出射光の指向性を高める、
    LED表示パネル。
  2.  各前記光透過性部材は下底側が前記基板側である四角錐台形状である、
    請求項1に記載のLED表示パネル。
  3.  互いに隣接する前記光透過性部材の間を埋める遮光性部材をさらに備える、
    請求項1又は請求項2に記載のLED表示パネル。
  4.  前記複数の光透過性部材のそれぞれは、互いに異なる色の光を発する複数の前記LED素子の前記光出射面を覆うように前記基板上に配置される、
    請求項1から請求項3のいずれか一項に記載のLED表示パネル。
  5.  前記複数の光透過性部材の前記基板と反対側の面を覆う光透過性膜をさらに備え、
     前記光透過性膜には反射低減処理が施されている、
    請求項1から請求項4のいずれか一項に記載のLED表示パネル。
  6.  前記複数の光透過性部材のそれぞれの前記基板と反対側の面を覆う、複数の凸レンズをさらに備え、
     前記凸レンズには反射低減処理が施されている、
    請求項1から請求項4のいずれか一項に記載のLED表示パネル。
  7.  前記複数のLED素子は前記基板上にマトリクス状に配置される、
    請求項1から請求項6のいずれか一項に記載のLED表示パネル。
  8.  前記複数の光透過性部材のそれぞれの前記基板側の面には凹部が設けられ、
     前記凹部と前記基板との間に前記LED素子が隙間なく収納される、
    請求項1から請求項7のいずれか一項に記載のLED表示パネル。
  9.  請求項1から請求項8のいずれか一項に記載のLED表示パネルを複数備え、
     複数の前記LED表示パネルは1つの大画面を形成する、
    LED表示装置。
  10.  請求項1に記載のLED表示パネルの製造方法であって、
     (a)前記複数のLED素子が搭載された前記基板を用意する工程と、
     (b)前記光透過性部材を形成するための光透過性部材成形型を用意する工程と、
     を備え、
     前記光透過性部材成形型は、
     光透過性基板と、
     前記光透過性基板に保持された間仕切り部材と、
     を備え、
     前記間仕切り部材は、前記光透過性部材の前記基板側が開口するように前記光透過性基板に保持されており、
     (c)前記光透過性部材成形型に紫外線硬化型樹脂を充填する工程と、
     (d)前記工程(c)の後、前記光透過性部材成形型と、前記複数のLED素子が搭載された前記基板との位置合わせを行い、前記光透過性部材成形型と前記基板とを密着させる工程と、
     (e)前記工程(d)の後、前記光透過性基板を介して前記紫外線硬化型樹脂に紫外線を照射して、前記紫外線硬化型樹脂を硬化させて前記基板上に前記光透過性部材を形成する工程と、
     (f)前記工程(e)の後、前記光透過性部材成形型を前記光透過性部材から離間させる工程と、
     をさらに備える、
    LED表示パネルの製造方法。
  11.  (g)前記工程(f)の後、互いに隣接する前記光透過性部材の間に遮光性材料を充填して、互いに隣接する前記光透過性部材の間を埋める遮光性部材を形成する工程をさらに備える、
    請求項10に記載のLED表示パネルの製造方法。
  12.  前記工程(d)において、位置検出センサが、前記光透過性基板および前記紫外線硬化型樹脂越しに、前記基板に搭載された前記LED素子の位置を検出する、
    請求項10又は請求項11に記載のLED表示パネルの製造方法。
  13.  請求項3に記載のLED表示パネルの製造方法であって、
     (h)前記複数のLED素子が搭載された前記基板を用意する工程と、
     (i)前記光透過性部材を形成するための光透過性部材成形型を用意する工程と、
     を備え、
     前記光透過性部材成形型は、
     光透過性基板と、
     前記光透過性基板に載置された前記遮光性部材と、
     を備え、
     前記遮光性部材は、前記光透過性部材の前記基板側の面が開口するように前記光透過性基板に載置されており、
     (j)前記光透過性部材成形型に紫外線硬化型樹脂を充填する工程と、
     (k)前記工程(j)の後、前記光透過性部材成形型と、前記複数のLED素子が搭載された前記基板との位置合わせを行い、前記光透過性部材成形型と前記基板とを密着させる工程と、
     (l)前記工程(k)の後、前記光透過性基板を介して前記紫外線硬化型樹脂に紫外線を照射して、前記紫外線硬化型樹脂を硬化させて前記基板上に前記光透過性部材を形成する工程と、
     (m)前記工程(l)の後、前記光透過性基板を前記光透過性部材および前記遮光性部材から離間させる工程と、
     をさらに備える、
    LED表示パネルの製造方法。
  14.  前記工程(k)において、位置検出センサが、前記光透過性基板および前記紫外線硬化型樹脂越しに、前記基板に搭載された前記LED素子の位置を検出する、
    請求項13に記載のLED表示パネルの製造方法。
PCT/JP2016/077936 2016-01-19 2016-09-23 Led表示パネル、led表示装置およびled表示パネルの製造方法 WO2017126160A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017562428A JP6469260B2 (ja) 2016-01-19 2016-09-23 Led表示パネルの製造方法
EP16886400.7A EP3407396B1 (en) 2016-01-19 2016-09-23 Method for manufacturing led display panel
US15/781,056 US10403802B2 (en) 2016-01-19 2016-09-23 Method for manufacturing LED display panel
RU2018129343A RU2691128C1 (ru) 2016-01-19 2016-09-23 Способ производства панели светодиодного дисплея

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-007643 2016-01-19
JP2016007643 2016-01-19

Publications (1)

Publication Number Publication Date
WO2017126160A1 true WO2017126160A1 (ja) 2017-07-27

Family

ID=59362003

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/077936 WO2017126160A1 (ja) 2016-01-19 2016-09-23 Led表示パネル、led表示装置およびled表示パネルの製造方法

Country Status (5)

Country Link
US (1) US10403802B2 (ja)
EP (1) EP3407396B1 (ja)
JP (1) JP6469260B2 (ja)
RU (1) RU2691128C1 (ja)
WO (1) WO2017126160A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022176906A1 (ja) * 2021-02-18 2022-08-25 ソニーセミコンダクタソリューションズ株式会社 発光装置および表示装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111682019A (zh) * 2020-05-11 2020-09-18 安徽芯瑞达科技股份有限公司 一种Mini RGB LED模组的制造工艺
US20210399041A1 (en) * 2020-06-18 2021-12-23 Seoul Semiconductor Co., Ltd. Light emitting module having a plurality of unit pixels, method of fabricating the same, and displaying apparatus having the same
CN112419909B (zh) * 2020-11-20 2023-10-20 錼创显示科技股份有限公司 微型发光二极管透明显示器
TWI754462B (zh) 2020-11-20 2022-02-01 錼創顯示科技股份有限公司 微型發光二極體透明顯示器
CN113394241B (zh) * 2021-06-10 2022-10-14 东莞市中麒光电技术有限公司 一种精准稳定的芯片巨量转移方法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0552882U (ja) * 1991-12-20 1993-07-13 タキロン株式会社 ドットマトリクス発光表示体用表面集光板
JPH08287719A (ja) * 1995-04-10 1996-11-01 Copal Co Ltd 発光装置
JP2005251875A (ja) * 2004-03-02 2005-09-15 Toshiba Corp 半導体発光装置
JP2006295054A (ja) * 2005-04-14 2006-10-26 Matsushita Electric Ind Co Ltd 光源
JP2007073752A (ja) * 2005-09-07 2007-03-22 Meiko:Kk Ledディスプレー
JP2007112973A (ja) * 2005-02-23 2007-05-10 Mitsubishi Chemicals Corp 半導体発光デバイス用部材及びその製造方法、並びにそれを用いた半導体発光デバイス
JP2009506530A (ja) * 2005-08-26 2009-02-12 ソウル セミコンダクター カンパニー リミテッド 発光ダイオードの製造方法
CN101386194A (zh) * 2007-09-13 2009-03-18 艺术达科技材料股份有限公司 Led组件中树脂透镜体的成型方法
JP2012146770A (ja) * 2011-01-11 2012-08-02 Apic Yamada Corp 樹脂モールド方法及び樹脂モールド装置並びに供給ハンドラ
JP2013038369A (ja) * 2011-08-11 2013-02-21 Daiichi Seiko Co Ltd 樹脂封止装置
JP2014099468A (ja) * 2012-11-13 2014-05-29 Pioneer Electronic Corp 半導体デバイスの製造方法および半導体デバイス
JP2015194515A (ja) * 2014-03-31 2015-11-05 ソニー株式会社 表示装置および表示装置の製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004079750A (ja) 2002-08-16 2004-03-11 Fuji Photo Film Co Ltd 発光装置
US7344902B2 (en) 2004-11-15 2008-03-18 Philips Lumileds Lighting Company, Llc Overmolded lens over LED die
US7859006B2 (en) 2005-02-23 2010-12-28 Mitsubishi Chemical Corporation Semiconductor light emitting device member, method for manufacturing such semiconductor light emitting device member and semiconductor light emitting device using such semiconductor light emitting device member
US20060235107A1 (en) * 2005-04-15 2006-10-19 3M Innovative Properties Company Method of reusing flexible mold and microstructure precursor composition
JP2006327182A (ja) * 2005-04-25 2006-12-07 Nippon Sheet Glass Co Ltd スペーサ付き成形型およびその製造方法ならびにスペーサ付き成形型を用いたレンズアレイの製造方法
JP5320270B2 (ja) 2009-11-25 2013-10-23 株式会社沖データ 表示パネルの製造方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0552882U (ja) * 1991-12-20 1993-07-13 タキロン株式会社 ドットマトリクス発光表示体用表面集光板
JPH08287719A (ja) * 1995-04-10 1996-11-01 Copal Co Ltd 発光装置
JP2005251875A (ja) * 2004-03-02 2005-09-15 Toshiba Corp 半導体発光装置
JP2007112973A (ja) * 2005-02-23 2007-05-10 Mitsubishi Chemicals Corp 半導体発光デバイス用部材及びその製造方法、並びにそれを用いた半導体発光デバイス
JP2006295054A (ja) * 2005-04-14 2006-10-26 Matsushita Electric Ind Co Ltd 光源
JP2009506530A (ja) * 2005-08-26 2009-02-12 ソウル セミコンダクター カンパニー リミテッド 発光ダイオードの製造方法
JP2007073752A (ja) * 2005-09-07 2007-03-22 Meiko:Kk Ledディスプレー
CN101386194A (zh) * 2007-09-13 2009-03-18 艺术达科技材料股份有限公司 Led组件中树脂透镜体的成型方法
JP2012146770A (ja) * 2011-01-11 2012-08-02 Apic Yamada Corp 樹脂モールド方法及び樹脂モールド装置並びに供給ハンドラ
JP2013038369A (ja) * 2011-08-11 2013-02-21 Daiichi Seiko Co Ltd 樹脂封止装置
JP2014099468A (ja) * 2012-11-13 2014-05-29 Pioneer Electronic Corp 半導体デバイスの製造方法および半導体デバイス
JP2015194515A (ja) * 2014-03-31 2015-11-05 ソニー株式会社 表示装置および表示装置の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3407396A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022176906A1 (ja) * 2021-02-18 2022-08-25 ソニーセミコンダクタソリューションズ株式会社 発光装置および表示装置

Also Published As

Publication number Publication date
EP3407396A4 (en) 2019-01-02
RU2691128C1 (ru) 2019-06-11
EP3407396A1 (en) 2018-11-28
JP6469260B2 (ja) 2019-02-13
JPWO2017126160A1 (ja) 2018-04-12
US20180366625A1 (en) 2018-12-20
EP3407396B1 (en) 2020-03-11
US10403802B2 (en) 2019-09-03

Similar Documents

Publication Publication Date Title
JP6469260B2 (ja) Led表示パネルの製造方法
CN110970546B (zh) 显示基板及其制作方法、拼接显示装置
CN108878626B (zh) 一种显示面板及制作方法、显示装置
WO2019104937A1 (zh) 一种双层胶led显示屏及其加工方法
TWI426625B (zh) 發光單元
US8384845B2 (en) Liquid crystal display device and illuminating device
WO2019104939A1 (zh) 一种黑胶led显示屏及其加工方法
KR20200114823A (ko) 디스플레이 장치
WO2019104938A1 (zh) 一种明胶led显示屏及其加工方法
US11048460B2 (en) Display module including a light diffusion agent and display apparatus having the same
TWI693708B (zh) 透明顯示面板
US20170155811A1 (en) Compact led lighting unit
CN114335382A (zh) 显示模组及其制备方法
WO2022011780A1 (zh) 显示模块及其制作方法、led显示模组和led显示屏
TWI578579B (zh) 發光裝置、顯示單元及影像顯示裝置
CN113764455A (zh) 拼接显示面板及拼接显示装置
US11990499B2 (en) Display apparatus and method of fabricating the same
JP6599128B2 (ja) 表示装置
TW201411905A (zh) 有機發光二極體封裝結構以及於基板上製作凹穴之方法
JP2006337846A (ja) 明所コントラスト向上部材
CN219873530U (zh) 封装led模组
TWI812358B (zh) 顯示模組及其影像顯示器
CN114038320B (zh) 一种显示面板及显示装置
JP6896038B2 (ja) 表示装置
WO2021245830A1 (ja) 表示パネル、表示装置、および表示パネルの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16886400

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017562428

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE