WO2017121169A1 - 一种蒽醌功能化的聚偏氟乙烯膜的制备方法 - Google Patents

一种蒽醌功能化的聚偏氟乙烯膜的制备方法 Download PDF

Info

Publication number
WO2017121169A1
WO2017121169A1 PCT/CN2016/103560 CN2016103560W WO2017121169A1 WO 2017121169 A1 WO2017121169 A1 WO 2017121169A1 CN 2016103560 W CN2016103560 W CN 2016103560W WO 2017121169 A1 WO2017121169 A1 WO 2017121169A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyvinylidene fluoride
tetramethoxynaphthalene
reaction
hydroxy
butene
Prior art date
Application number
PCT/CN2016/103560
Other languages
English (en)
French (fr)
Inventor
严滨
王玉平
叶茜
Original Assignee
厦门理工学院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 厦门理工学院 filed Critical 厦门理工学院
Priority to JP2018521457A priority Critical patent/JP6574061B2/ja
Publication of WO2017121169A1 publication Critical patent/WO2017121169A1/zh
Priority to US15/821,845 priority patent/US20180093228A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F212/14Monomers containing only one unsaturated aliphatic radical containing one ring substituted by heteroatoms or groups containing heteroatoms
    • C08F212/22Oxygen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/125In situ manufacturing by polymerisation, polycondensation, cross-linking or chemical reaction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/145Ultrafiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0006Organic membrane manufacture by chemical reactions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0009Organic membrane manufacture by phase separation, sol-gel transition, evaporation or solvent quenching
    • B01D67/0011Casting solutions therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/30Polyalkenyl halides
    • B01D71/32Polyalkenyl halides containing fluorine atoms
    • B01D71/34Polyvinylidene fluoride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/76Macromolecular material not specifically provided for in a single one of groups B01D71/08 - B01D71/74
    • B01D71/80Block polymers
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/444Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by ultrafiltration or microfiltration
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F12/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F12/02Monomers containing only one unsaturated aliphatic radical
    • C08F12/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F12/14Monomers containing only one unsaturated aliphatic radical containing one ring substituted by hetero atoms or groups containing heteroatoms
    • C08F12/22Oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F259/00Macromolecular compounds obtained by polymerising monomers on to polymers of halogen containing monomers as defined in group C08F14/00
    • C08F259/08Macromolecular compounds obtained by polymerising monomers on to polymers of halogen containing monomers as defined in group C08F14/00 on to polymers containing fluorine
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/12Chemical modification
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/36Introduction of specific chemical groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/40Details relating to membrane preparation in-situ membrane formation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/16Nitrogen compounds, e.g. ammonia
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2438/00Living radical polymerisation
    • C08F2438/01Atom Transfer Radical Polymerization [ATRP] or reverse ATRP
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2327/16Homopolymers or copolymers of vinylidene fluoride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2351/00Characterised by the use of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers

Definitions

  • the invention belongs to the field of preparation of a polyvinylidene fluoride ultrafiltration membrane, and in particular relates to a preparation method of a hydrazine functionalized polyvinylidene fluoride ultrafiltration membrane.
  • the biological method is the most common method to solve the above-mentioned problem of water pollution, but due to the limitation of the electron transport rate in the biological denitrification process, the biological treatment effect is unstable and the treatment efficiency is low. It has been found that the redox mediator can accelerate the electron transport rate in the biological denitrification process and improve the biological process efficiency. Terpenoids are one of the redox mediators. There have been a lot of reports to prove that terpenoids can effectively promote the degradation of nitrogenous wastewater.
  • reaction solution is extracted with chloroform, washed with saturated brine, dried over anhydrous magnesium sulfate, filtered, and then evaporated to chloroform, and then purified by column chromatography to obtain 1,4,5,8-tetramethoxynaphthalene-2-carbaldehyde;
  • step 2 the volume ratio of N,N-2-methylacetamide, phosphorus oxychloride, and 1,4,5,8-tetramethoxynaphthalene in chloroform is 2-3:2-5. :10-25.
  • the eluents used in the column chromatography in Step 1, Step 2, and Step 3 were mixed solvents of petroleum ether and acetone in a volume ratio of 4:1.
  • the step (2) is specifically: adding a solution of polyvinylidene fluoride and N,N-dimethylformamide in a double-layer glass reactor (as shown in FIG. 3), stirring until the solution is uniform, and adding Me6TREN and 2- (1-hydroxy-3-butene)-1,4,5,8-tetramethoxynaphthalene, deoxygenated with argon for 30 min, added cuprous chloride, deoxygenated for 1 h, sealed, double-layer glass reactor The mixture was placed in an ice water bath and subjected to ultraviolet irradiation under magnetic stirring for a predetermined time.
  • the outer layer of the double-layer glass reactor in the step 2) is provided with a water inlet and a water outlet, and is connected with the constant temperature circulating water bath to keep the reaction temperature constant; the inner layer is provided with an air inlet, a vacuum port and a feed.
  • the reaction was carried out under a nitrogen atmosphere; the top was covered with quartz glass to reduce the absorption of ultraviolet light by the glass during ultraviolet irradiation; the wavelength of the ultraviolet lamp used was 365 nm and the power was 1000 W.
  • the mass ratio of the N,N-dimethylformamide to the polymer of the step (3) is 15-20:80-85.
  • Figure 3 is a double glass reactor
  • Fig. 5 is a recycling effect diagram of a fluorene-functionalized polyvinylidene fluoride ultrafiltration membrane; as can be seen from the figure, the ultrafiltration membrane of the present invention has stable performance and can be recycled and used multiple times.
  • N,N-2-methylacetamide was added to two reaction bottles, and the two reaction bottles were placed in an ice water bath, which was slowly dropped.
  • the aromatic ether copolymer is vacuum dried for use; the ratio of raw materials is: 2-(1-hydroxy-3-butene)-1,4,5,8-tetramethoxynaphthalene, polyvinylidene fluoride, N,N - dimethylformamide, the mass ratio of the catalytic system is: 45:7:500:0.5;

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Dispersion Chemistry (AREA)
  • Materials Engineering (AREA)
  • Emergency Medicine (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

一种蒽醌功能化聚偏氟乙烯超滤膜的制备方法,包括:(1)2-(1-羟基-3-丁烯)-1,4,5,8-四甲氧基萘的合成;(2)聚偏氟乙烯-芳香醚类共聚物的合成:选用聚偏氟乙烯为引发剂,2-(1-羟基-3-丁烯)-1,4,5,8-四甲氧基萘为单体,N,N-二甲基甲酰胺为溶剂,氯化亚铜/Me6TREN为催化体系,经过原子自由基聚合法合成聚偏氟乙烯-芳香醚类共聚物;(3)利用脱甲基氧化法将聚偏氟乙烯-芳香醚类共聚物还原成醌;(4)将步骤(3)的聚合物和N,N-二甲基甲酰胺制成铸膜液,刮制成膜。

Description

一种蒽醌功能化的聚偏氟乙烯膜的制备方法 技术领域
本发明属于聚偏氟乙烯超滤膜的制备领域,具体涉及一种蒽醌功能化聚偏氟乙烯超滤膜的制备方法。
背景技术
聚偏氟乙烯高分子材料具有机械强度高,化学稳定性良好、耐紫外辐照、室温下不被酸、碱、强氧化剂和卤素腐蚀等优点,以聚偏氟乙烯为原料制备的膜材料在环境工程领域应用广泛。但是聚偏氟乙烯表面疏水性较强,表面能比较低等缺点将影响膜的寿命。为进一步优化聚偏氟乙烯膜的性能,研究人员进行了一系列改性研究。申请号为2010102559483的中国专利申请公开了一种聚偏氟乙烯改性膜的制备方法,通过在铸膜液中添加致孔剂和聚丙烯腈来共混改性聚偏氟乙烯膜;申请号为2011100222338的中国专利申请利用水相原子转移自由基聚合的方法在聚偏氟乙烯膜表面上接枝有功能性聚合物,使聚偏氟乙烯膜表功能化,所得的膜具有良好的亲水性和抗污能力;申请号为2014106980874的中国专利申请通过静电纺丝的方法制备了聚偏氟乙烯/改性蒙脱土复合纤维膜材料,所制备的膜材料具有优良疏水吸油性能,可用于海上或水面溢油的处理、含油废水的处理。上述改性研究对优化膜性能、增加膜的使用寿命有一定意义,但是其应用原理仍然是基于物理分离,即将污染物质转移和富集,并未实现污染物质的降解,仍有危害环境的可能。研究开发一种既能够净化污水,又能够降解污染物质的膜具有重要的意义。
高浓度含氮的生活污水、工业废水和农田地表水径流汇入湖泊、水库、河流和海湾水域,造成水体中的某些藻类过度繁殖,严重恶化水质,破坏水体生态平衡。生物法是解决上述水体污染问题的最常用方法,但是受生物反硝化过程中电子传输速率的限制,生物法处理效果不稳定、处理效率低。经研究发现氧化还原介体可加快生物反硝化过程中的电子传输速率,提高生物法的处理效率。蒽醌类化合物是氧化还原介体中的一种,目前已有大量报道证实蒽醌类化合物能有效促进含氮废水的降解。已有的报道中多将蒽醌类化合物直接投入使用,这将造成氧化还原介体的流失,引发二次污染。为解决上述问题,研究人员对蒽醌类化合物的固定进行了一系列的研究。文献《固定化氧化还原介体强化酸性红B生物脱色作用研究》采用海藻酸钙固定1,5-二氯蒽,并应用于偶氮染料酸性红B的脱色中,发现固定化的1,5-二氯蒽能促进偶氮染料酸性红B的脱色,但是1,5-二氯蒽只是通过物理作用力束缚在载体上,容易从载体上解析下来。文献《固定化氧化还原介体加速亚硝酸盐生物反硝化作用》利用循环伏 安法固定蒽醌磺酸钠(AQS/PPy/ACF),结果表明固定后的蒽醌磺酸钠能够明显加速亚硝酸盐生物反硝化过程,但是采用循环伏安法固定蒽醌磺酸钠的前提是制备聚吡咯膜,其制备过程受很多参数控制,非常复杂。如果将氧化还原介体固定于膜上,能有效解决氧化还原介体固定的问题,提高高浓度含氮污水的处理效率。
发明内容
本发明的目的在于针对现有技术的不足,提供一种蒽醌功能化聚偏氟乙烯超滤膜的制备方法。该发明以化学合成和化学改性的方法将氧化还原介体固定于聚偏氟乙烯上,解决了现有的物理固定方法中出现的醌类物质易从载体上脱落流失,造成水体二次污染等问题;所制得的蒽醌功能化聚偏氟乙烯超滤膜在含氮污水处理领域具有良好的应用前景。
为实现上述目的,本发明采用如下技术方案:
一种蒽醌功能化聚偏氟乙烯超滤膜的制备方法,包括以下步骤:
(1)2-(1-羟基-3-丁烯)-1,4,5,8-四甲氧基萘的合成;
(2)聚偏氟乙烯-芳香醚类共聚物的合成:选用聚偏氟乙烯为引发剂,2-(1-羟基-3-丁烯)-1,4,5,8-四甲氧基萘为单体,N,N-二甲基甲酰胺为溶剂,氯化亚铜/Me6TREN为催化体系,经原子自由基聚合法合成聚偏氟乙烯-芳香醚类共聚物;
(3)利用脱甲基氧化法将聚偏氟乙烯-芳香醚类共聚物脱甲氧基还原成醌;
(4)将步骤(3)的聚合物和N,N-二甲基甲酰胺制成铸膜液,刮制成膜。
步骤(1)中2-(1-羟基-3-丁烯)-1,4,5,8-四甲氧基萘的合成包括以下步骤:
①1,4,5,8-四甲氧基萘的合成:将萘茜、催化量四丁基溴化铵、四氢呋喃加入到圆底烧瓶中,搅拌至溶解,然后添加连二亚硫酸钠水溶液和硫酸二甲酯溶液,搅拌至溶液均匀;将圆底烧瓶移至冰水浴中,反应1h,缓慢滴加NaOH水溶液,滴加完毕后移除冰水浴,在室温下反应30min,匀速搅拌18h至反应完全,反应液经乙酸乙酯萃取、饱和食盐水洗涤、无水硫酸镁干燥,过滤,减压回收乙酸乙酯,柱层析分离得1,4,5,8-四甲氧基萘;
②1,4,5,8-四甲氧基萘-2-甲醛的合成:在两口反应瓶中加入N,N-2-甲基乙酰胺,将两口反应瓶置于冰水浴中,依次缓慢滴加三氯氧磷溶液和0.063mol/L 1,4,5,8-四甲氧基萘的三氯甲烷溶液,滴加完毕后移除冰水浴,加热回流反应5h;然后加冰水停止反应,反应液经氯仿萃取、饱和食盐水洗涤、无水硫酸镁干燥,过滤,减压回收氯仿,柱层析分离得1,4,5,8-四甲氧基萘-2-甲醛;
③2-(1-羟基-3-丁烯)-1,4,5,8-四甲氧基萘的合成:氩气保护下,在干燥的两口反应瓶中依次加入分子筛、无水四氢呋喃、无水三氯化铬和锰粉,搅拌至颜色变成黑色后加入烯丙基 溴,加入1,4,5,8-四甲氧基萘-2-甲醛和三甲基氯硅烷,反应3h,加饱和碳酸氢钠淬灭反应,反应液经硅藻土、乙醚洗涤,乙醚萃取,饱和食盐水洗涤,无水硫酸镁干燥,减压回收浓缩残留物,用四氢呋喃溶解,加10%盐酸水解,在室温下搅拌10min,用乙醚萃取,饱和食盐水洗涤,无水硫酸镁干燥,减压浓缩,柱层析得2-(1-羟基-3-丁烯)-1,4,5,8-四甲氧基萘。
步骤①中萘茜、四氢呋喃、连二亚硫酸钠、硫酸二甲酯、氢氧化钠的质量配比为:1.2-2:70-80:50-60:100-120:100-150。
步骤②中N,N-2-甲基乙酰胺、三氯氧磷、1,4,5,8-四甲氧基萘的三氯甲烷溶液的体积配比为:2-3:2-5:10-25。
步骤③中无水四氢呋喃、无水三氯化铬、1,4,5,8-四甲氧基萘-2-甲醛、三甲基氯硅烷、烯丙基溴、锰粉的质量配比为:10-30:10-30:30-60:30-80:30-80:600-800。
步骤①、步骤②、步骤③中柱层析时所用的洗脱剂均为体积比为4:1的石油醚和丙酮混合溶剂。
步骤(2)具体为:在双层玻璃反应器(如图3所示)中依次添加聚偏氟乙烯、N,N-二甲基甲酰胺溶液,搅拌至溶液均匀后,添加Me6TREN和2-(1-羟基-3-丁烯)-1,4,5,8-四甲氧基萘,通氩气除氧30min,添加氯化亚铜,除氧1h,密封,将双层玻璃反应器置于冰水浴中,磁力搅拌下紫外辐照反应至预定的时间,待反应结束后用1:1的乙醇/水溶液沉析过滤,用氯仿重复多次抽提,得聚偏氟乙烯-芳香醚类共聚物,真空干燥备用;原料配比为:2-(1-羟基-3-丁烯)-1,4,5,8-四甲氧基萘、聚偏氟乙烯、N,N-二甲基甲酰胺、催化体系的质量配比为:30-60:5-12:400-550:0.1-1。
步骤2)中所述双层玻璃反应器的外层上设有进水口和出水口,与恒温循环水浴槽相连,以保持反应温度恒定;内层设有进气口、抽真空口及进料口,使反应在氮气氛围下进行;顶端采用石英玻璃加盖,以减少紫外辐照过程中玻璃对紫外光的吸收;所用紫外灯的波长为365nm,功率为1000W。
步骤(3)具体为:在两口反应瓶中滴加聚偏氟乙烯-芳香醚类共聚物的乙氰溶液,室温搅拌下滴加硝酸铈铵的水溶液,反应1h,减压回收乙氰,用氯仿萃取,水洗,饱和食盐水洗,无水硫酸镁干燥1.5h,减压回收氯仿,硅胶柱层析分离得2-(1-羟基-3-丁烯)-5,8-二甲氧基-1,4-萘醌和6-(1-羟基-3-丁烯)-5,8-二甲氧基-1,4-萘醌的混合物,真空干燥后备用;所述的硅胶柱层析时所用的洗脱剂为体积比为3:1的石油醚和丙酮混合溶剂。
步骤(4)中:N,N-二甲基甲酰胺和步骤(3)的聚合物的质量配比为:15-20:80-85。
上述制备过程主要分为四步:①本发明利用NHK反应在萘茜上引入双键侧链,利 于高分子材料与蒽醌类物质的ATRP聚合反应的发生;②利用ATRP法合成接枝PVDF-芳香醚类共聚物,使聚偏氟乙烯功能化;③利用脱甲基氧化法制备醌,使聚偏氟乙烯蒽醌功能化;④利用相转化法,将制备的蒽醌功能化聚偏氟乙烯材料刮制成膜。
本发明的有益效果在于:
(1)单纯的蒽醌类化合物无法进行原子自由基聚合,本发明利用NHK反应在萘茜上引入双键侧链,利于高分子材料与蒽醌类物质的ATRP聚合反应的发生;在聚偏氟乙烯膜上所固定的蒽醌分子牢固、不会脱落;
(2)应用膜作为氧化还原介体的固定载体,可以适应各种膜处理设备,利于本发明的推广和应用;
(3)本发明能有效促进高浓度含氮废水的降解,特别是印染废水的降解。
附图说明
图1为2-(1-羟基-3-丁烯)-1,4,5,8-四甲氧基萘的合成路线图;
图2为聚偏氟乙烯-芳香醚类共聚物的合成路线图;
图3为双层玻璃反应器;
图4为所制膜片的红外光谱图;
图5为蒽醌功能化聚偏氟乙烯超滤膜的循环使用效果图;从图中可以看出,本发明的超滤膜性能稳定,可循环多次使用。
具体实施方式
本发明用下列实施例来进一步说明本发明,但本发明的保护范围并不限于下列实施例。
实施例1
一种蒽醌功能化聚偏氟乙烯超滤膜的制备方法,包括以下步骤:
(1)2-(1-羟基-3-丁烯)-1,4,5,8-四甲氧基萘的合成:
①1,4,5,8-四甲氧基萘的合成:将萘茜、催化量四丁基溴化铵、四氢呋喃加入到圆底烧瓶中,搅拌至溶解,然后添加连二亚硫酸钠水溶液和硫酸二甲酯溶液,搅拌至溶液均匀;将圆底烧瓶移至冰水浴中,反应1h,缓慢滴加NaOH水溶液,滴加完毕后移除冰水浴,在室温下反应30min,匀速搅拌18h至反应完全,反应液经乙酸乙酯萃取、饱和食盐水洗涤、无水硫酸镁干燥,过滤,减压回收乙酸乙酯,柱层析分离得1,4,5,8-四甲氧基萘;1H NMR(400MHz,DMSO):δ6.44(d,4H),3.37(s,12H,CH3)。
萘茜、四氢呋喃、连二亚硫酸钠、硫酸二甲酯、氢氧化钠的质量配比为:1.5:75:55: 110:125;
②1,4,5,8-四甲氧基萘-2-甲醛的合成:在两口反应瓶中加入N,N-2-甲基乙酰胺,将两口反应瓶置于冰水浴中,依次缓慢滴加三氯氧磷和0.063mol/L1,4,5,8-四甲氧基萘的三氯甲烷溶液,滴加完毕后移除冰水浴,加热回流反应5h;然后加冰水停止反应,反应液经氯仿萃取、饱和食盐水洗涤、无水硫酸镁干燥,过滤,减压回收氯仿,柱层析分离得1,4,5,8-四甲氧基萘-2-甲醛;1H NMR(400MHz,DMSO):δ6.49-6.51(m,3H),3.40(s,9H,CH3),3.43(s,3H,CH3),10.11(s,1H,CHO)。
N,N-2-甲基乙酰胺、三氯氧磷、1,4,5,8-四甲氧基萘的三氯甲烷溶液的体积配比为:2.5:3:15;
③2-(1-羟基-3-丁烯)-1,4,5,8-四甲氧基萘的合成:氩气保护下,在干燥的两口反应瓶中依次加入分子筛、无水四氢呋喃、无水三氯化铬和锰粉,搅拌至颜色变成黑色后加入烯丙基溴,加入1,4,5,8-四甲氧基萘-2-甲醛和三甲基氯硅烷,反应3h,加饱和碳酸氢钠淬灭反应,反应液经硅藻土、乙醚洗涤,乙醚萃取,饱和食盐水洗涤,无水硫酸镁干燥,减压回收浓缩残留物,用四氢呋喃溶解,加10%盐酸水解,在室温下搅拌10min,用乙醚萃取,饱和食盐水洗涤,无水硫酸镁干燥,减压浓缩,柱层析得2-(1-羟基-3-丁烯)-1,4,5,8-四甲氧基萘;1H NMR(400MHz,DMSO):δ6.47-6.51(m,3H),3.37(s,9H,CH3),3.43(s,3H,CH3),8.45(s,1H,OH),4.83(t,1H,CH),2.39(m,2H,CH2),4.92(d,2H,CH2),5.76(m,1H,CH)。
无水四氢呋喃、无水三氯化铬、1,4,5,8-四甲氧基萘-2-甲醛、三甲基氯硅烷、烯丙基溴、锰粉的质量配比为:20:20:50:60:50:700。
(2)聚偏氟乙烯-芳香醚类共聚物的合成:在双层玻璃反应器中依次添加聚偏氟乙烯、N,N-二甲基甲酰胺溶液,搅拌至溶液均匀后,添加Me6TREN和2-(1-羟基-3-丁烯)-1,4,5,8-四甲氧基萘,通氩气除氧30min,添加氯化亚铜,除氧1h,密封,将双层玻璃反应器置于冰水浴中,磁力搅拌下紫外辐照反应至预定的时间,待反应结束后用1:1的乙醇/水溶液沉析过滤,用氯仿重复多次抽提,得聚偏氟乙烯-芳香醚类共聚物,真空干燥备用;原料配比为:2-(1-羟基-3-丁烯)-1,4,5,8-四甲氧基萘、聚偏氟乙烯、N,N-二甲基甲酰胺、催化体系的质量配比为:45:7:500:0.5;
(3)利用脱甲基氧化法将聚偏氟乙烯-芳香醚类共聚物制成醌:
在两口反应瓶中滴加聚偏氟乙烯-芳香醚类共聚物的乙氰溶液,室温搅拌下滴加硝酸铈铵的水溶液,反应1h,减压回收乙氰,用氯仿萃取,水洗,饱和食盐水洗,无水硫酸镁干燥1.5 h,减压回收氯仿,硅胶柱层析分离得2-(1-羟基-3-丁烯)-5,8-二甲氧基-1,4-萘醌和6-(1-羟基-3-丁烯)-5,8-二甲氧基-1,4-萘醌的混合物,真空干燥后备用;所述的硅胶柱层析时所用的洗脱剂为体积比为3:1的石油醚和丙酮混合溶剂;
(4)将步骤(3)的聚合物和N,N-二甲基甲酰胺按质量配比17:82制成铸膜液,刮制成膜。
实施例2
一种蒽醌功能化聚偏氟乙烯超滤膜的制备方法,包括以下步骤:
(1)2-(1-羟基-3-丁烯)-1,4,5,8-四甲氧基萘的合成:
①1,4,5,8-四甲氧基萘的合成:将萘茜、催化量四丁基溴化铵、四氢呋喃加入到圆底烧瓶中,搅拌至溶解,然后添加连二亚硫酸钠水溶液和硫酸二甲酯溶液,搅拌至溶液均匀;将圆底烧瓶移至冰水浴中,反应1h,缓慢滴加NaOH水溶液,滴加完毕后移除冰水浴,在室温下反应30min,匀速搅拌18h至反应完全,反应液经乙酸乙酯萃取、饱和食盐水洗涤、无水硫酸镁干燥,过滤,减压回收乙酸乙酯,柱层析分离得1,4,5,8-四甲氧基萘;萘茜、四氢呋喃、连二亚硫酸钠、硫酸二甲酯、氢氧化钠的质量配比为:1.2:80:50:120:150;
②1,4,5,8-四甲氧基萘-2-甲醛的合成:在两口反应瓶中加入N,N-2-甲基乙酰胺,将两口反应瓶置于冰水浴中,依次缓慢滴加三氯氧磷和0.063mol/L 1,4,5,8-四甲氧基萘的三氯甲烷溶液,滴加完毕后移除冰水浴,加热回流反应5h;然后加冰水停止反应,反应液经氯仿萃取、饱和食盐水洗涤、无水硫酸镁干燥,过滤,减压回收氯仿,柱层析分离得1,4,5,8-四甲氧基萘-2-甲醛;N,N-2-甲基乙酰胺、三氯氧磷、1,4,5,8-四甲氧基萘的三氯甲烷溶液的体积配比为:2:5:10;
③2-(1-羟基-3-丁烯)-1,4,5,8-四甲氧基萘的合成:氩气保护下,在干燥的两口反应瓶中依次加入分子筛、无水四氢呋喃、无水三氯化铬和锰粉,搅拌至颜色变成黑色后加入烯丙基溴,加入1,4,5,8-四甲氧基萘-2-甲醛和三甲基氯硅烷,反应3h,加饱和碳酸氢钠淬灭反应,反应液经硅藻土、乙醚洗涤,乙醚萃取,饱和食盐水洗涤,无水硫酸镁干燥,减压回收浓缩残留物,用四氢呋喃溶解,加10%盐酸水解,在室温下搅拌10min,用乙醚萃取,饱和食盐水洗涤,无水硫酸镁干燥,减压浓缩,柱层析得2-(1-羟基-3-丁烯)-1,4,5,8-四甲氧基萘;无水四氢呋喃、无水三氯化铬、1,4,5,8-四甲氧基萘-2-甲醛、三甲基氯硅烷、烯丙基溴、锰粉的质量配比为:10:30:30:80:30:800。
(2)聚偏氟乙烯-芳香醚类共聚物的合成:在双层玻璃反应器中依次添加聚偏氟乙烯、N,N-二甲基甲酰胺溶液,搅拌至溶液均匀后,添加Me6TREN和2-(1-羟基-3-丁烯)-1,4,5,8-四甲氧基萘,通氩气除氧30min,添加氯化亚铜,除氧1h,密封,将双层玻璃反应器置于冰水 浴中,磁力搅拌下紫外辐照反应至预定的时间,待反应结束后用1:1的乙醇/水溶液沉析过滤,用氯仿重复多次抽提,得聚偏氟乙烯-芳香醚类共聚物,真空干燥备用;原料配比为:2-(1-羟基-3-丁烯)-1,4,5,8-四甲氧基萘、聚偏氟乙烯、N,N-二甲基甲酰胺、催化体系的质量配比为:30:12:400:1;
(3)利用脱甲基氧化法将聚偏氟乙烯-芳香醚类共聚物制成醌:
在两口反应瓶中滴加聚偏氟乙烯-芳香醚类共聚物的乙氰溶液,室温搅拌下滴加硝酸铈铵的水溶液,反应1h,减压回收乙氰,用氯仿萃取,水洗,饱和食盐水洗,无水硫酸镁干燥1.5h,减压回收氯仿,硅胶柱层析分离得2-(1-羟基-3-丁烯)-5,8-二甲氧基-1,4-萘醌和6-(1-羟基-3-丁烯)-5,8-二甲氧基-1,4-萘醌的混合物,真空干燥后备用;所述的硅胶柱层析时所用的洗脱剂为体积比为3:1的石油醚和丙酮混合溶剂;
(4)将步骤(3)的聚合物和N,N-二甲基甲酰胺按质量配比15:85制成铸膜液,刮制成膜。
实施例3
一种蒽醌功能化聚偏氟乙烯超滤膜的制备方法,包括以下步骤:
(1)2-(1-羟基-3-丁烯)-1,4,5,8-四甲氧基萘的合成:
①1,4,5,8-四甲氧基萘的合成:将萘茜、催化量四丁基溴化铵、四氢呋喃加入到圆底烧瓶中,搅拌至溶解,然后添加连二亚硫酸钠水溶液和硫酸二甲酯溶液,搅拌至溶液均匀;将圆底烧瓶移至冰水浴中,反应1h,缓慢滴加NaOH水溶液,滴加完毕后移除冰水浴,在室温下反应30min,匀速搅拌18h至反应完全,反应液经乙酸乙酯萃取、饱和食盐水洗涤、无水硫酸镁干燥,过滤,减压回收乙酸乙酯,柱层析分离得1,4,5,8-四甲氧基萘;萘茜、四氢呋喃、连二亚硫酸钠、硫酸二甲酯、氢氧化钠的质量配比为:2:70:60:100:100;
②1,4,5,8-四甲氧基萘-2-甲醛的合成:在两口反应瓶中加入N,N-2-甲基乙酰胺,将两口反应瓶置于冰水浴中,依次缓慢滴加三氯氧磷溶液0.063mol/L1,4,5,8-四甲氧基萘的三氯甲烷溶液,滴加完毕后移除冰水浴,加热回流反应5h;然后加冰水停止反应,反应液经氯仿萃取、饱和食盐水洗涤、无水硫酸镁干燥,过滤,减压回收氯仿,柱层析分离得1,4,5,8-四甲氧基萘-2-甲醛;N,N-2-甲基乙酰胺、三氯氧磷、1,4,5,8-四甲氧基萘的三氯甲烷溶液的体积配比为:3:2:25;
③2-(1-羟基-3-丁烯)-1,4,5,8-四甲氧基萘的合成:氩气保护下,在干燥的两口反应瓶中依次加入分子筛、无水四氢呋喃、无水三氯化铬和锰粉,搅拌至颜色变成黑色,加入1,4,5,8-四甲氧基萘-2-甲醛和三甲基氯硅烷,反应3h,加饱和碳酸氢钠淬灭反应,反应液经硅藻土、乙醚洗涤,乙醚萃取,饱和食盐水洗涤,无水硫酸镁干燥,减压回收浓缩残留物,用四氢呋 喃溶解,加10%盐酸水解,在室温下搅拌10min,用乙醚萃取,饱和食盐水洗涤,无水硫酸镁干燥,减压浓缩,柱层析得2-(1-羟基-3-丁烯)-1,4,5,8-四甲氧基萘;无水四氢呋喃、无水三氯化铬、1,4,5,8-四甲氧基萘-2-甲醛、三甲基氯硅烷、烯丙基溴、锰粉的质量配比为:30:10:60:30:80:800。
(2)聚偏氟乙烯-芳香醚类共聚物的合成:在双层玻璃反应器中依次添加聚偏氟乙烯、N,N-二甲基甲酰胺溶液,搅拌至溶液均匀后,添加Me6TREN和2-(1-羟基-3-丁烯)-1,4,5,8-四甲氧基萘,通氩气除氧30min,添加氯化亚铜,除氧1h,密封,将双层玻璃反应器置于冰水浴中,磁力搅拌下紫外辐照反应至预定的时间,待反应结束后用1:1的乙醇/水溶液沉析过滤,用氯仿重复多次抽提,得聚偏氟乙烯-芳香醚类共聚物,真空干燥备用;原料配比为:2-(1-羟基-3-丁烯)-1,4,5,8-四甲氧基萘、聚偏氟乙烯、N,N-二甲基甲酰胺、催化体系的质量配比为:60:5:550:0.1;
(3)利用脱甲基氧化法将聚偏氟乙烯-芳香醚类共聚物制成醌:
在两口反应瓶中滴加聚偏氟乙烯-芳香醚类共聚物的乙氰溶液,室温搅拌下滴加硝酸铈铵的水溶液,反应1h,减压回收乙氰,用氯仿萃取,水洗,饱和食盐水洗,无水硫酸镁干燥1.5h,减压回收氯仿,硅胶柱层析分离得2-(1-羟基-3-丁烯)-5,8-二甲氧基-1,4-萘醌和6-(1-羟基-3-丁烯)-5,8-二甲氧基-1,4-萘醌的混合物,真空干燥后备用;所述的硅胶柱层析时所用的洗脱剂为体积比为3:1的石油醚和丙酮混合溶剂;
(4)将步骤(3)的聚合物和N,N-二甲基甲酰胺按质量配比20:80制成铸膜液,刮制成膜。
应用实施例1
表1在含氮废水降解中的应用数据
Figure PCTCN2016103560-appb-000001
以上所述仅为本发明的较佳实施例,凡依本发明申请专利范围所做的均等变化与修饰,皆应属本发明的涵盖范围。

Claims (10)

  1. 一种蒽醌功能化聚偏氟乙烯超滤膜的制备方法,其特征在于:包括以下步骤:
    (1)2-(1-羟基-3-丁烯)-1,4,5,8-四甲氧基萘的合成;
    (2)聚偏氟乙烯-芳香醚类共聚物的合成:选用聚偏氟乙烯为引发剂,2-(1-羟基-3-丁烯)-1,4,5,8-四甲氧基萘为单体,N,N-二甲基甲酰胺为溶剂,氯化亚铜/Me6TREN为催化体系,经原子自由基聚合法合成聚偏氟乙烯-芳香醚类共聚物;
    (3)利用脱甲基氧化法将聚偏氟乙烯-芳香醚类共聚物脱甲氧基还原成醌;
    (4)将步骤(3)的聚合物和N,N-二甲基甲酰胺制成铸膜液,刮制成膜。
  2. 根据权利要求1所述的蒽醌功能化聚偏氟乙烯超滤膜的制备方法,其特征在于:步骤(1)中2-(1-羟基-3-丁烯)-1,4,5,8-四甲氧基萘的合成包括以下步骤:
    ①1,4,5,8-四甲氧基萘的合成:将萘茜、催化量四丁基溴化铵、四氢呋喃加入到圆底烧瓶中,搅拌至溶解,然后添加连二亚硫酸钠水溶液和硫酸二甲酯溶液,搅拌至溶液均匀;将圆底烧瓶移至冰水浴中,反应1h,缓慢滴加NaOH水溶液,滴加完毕后移除冰水浴,在室温下反应30min,匀速搅拌18h至反应完全,反应液经乙酸乙酯萃取、饱和食盐水洗涤、无水硫酸镁干燥,过滤,减压回收乙酸乙酯,柱层析分离得1,4,5,8-四甲氧基萘;
    ②1,4,5,8-四甲氧基萘-2-甲醛的合成:在两口反应瓶中加入N,N-2-甲基乙酰胺,将两口反应瓶置于冰水浴中,依次缓慢滴加三氯氧磷和0.063mol/L1,4,5,8-四甲氧基萘的三氯甲烷溶液,滴加完毕后移除冰水浴,加热回流反应5h;然后加冰水停止反应,反应液经氯仿萃取、饱和食盐水洗涤、无水硫酸镁干燥,过滤,减压回收氯仿,柱层析分离得1,4,5,8-四甲氧基萘-2-甲醛;
    ③2-(1-羟基-3-丁烯)-1,4,5,8-四甲氧基萘的合成:氩气保护下,在干燥的两口反应瓶中依次加入分子筛、无水四氢呋喃、无水三氯化铬和锰粉,搅拌至颜色变成黑色后加入烯丙基溴,搅拌至颜色变成黑色,加入1,4,5,8-四甲氧基萘-2-甲醛和三甲基氯硅烷,反应3h,加饱和碳酸氢钠淬灭反应,反应液经硅藻土、乙醚洗涤,乙醚萃取,饱和食盐水洗涤,无水硫酸镁干燥,减压回收浓缩残留物,用四氢呋喃溶解,加10%盐酸水解,在室温下搅拌10min,用乙醚萃取,饱和食盐水洗涤,无水硫酸镁干燥,减压浓缩,柱层析得2-(1-羟基-3-丁烯)-1,4,5,8-四甲氧基萘。
  3. 根据权利要求2所述的蒽醌功能化聚偏氟乙烯超滤膜的制备方法,其特征在于:步骤①中萘茜、四氢呋喃、连二亚硫酸钠、硫酸二甲酯、氢氧化钠的质量配比为:1.2-2:70-80:50-60:100-120:100-150。
  4. 根据权利要求2所述的蒽醌功能化聚偏氟乙烯超滤膜的制备方法,其特征在于:步骤② 中N,N-2-甲基乙酰胺、三氯氧磷、1,4,5,8-四甲氧基萘的三氯甲烷溶液的体积配比为:2-3:2-5:10-25。
  5. 根据权利要求2所述的蒽醌功能化聚偏氟乙烯超滤膜的制备方法,其特征在于:步骤③中无水四氢呋喃、无水三氯化铬、1,4,5,8-四甲氧基萘-2-甲醛、三甲基氯硅烷、烯丙基溴、锰粉的质量配比为:10-30:10-30:30-60:30-80:30-80:600-800。
  6. 根据权利要求2-5任一项所述的蒽醌功能化聚偏氟乙烯超滤膜的制备方法,其特征在于:步骤①、步骤②、步骤③中柱层析时所用的洗脱剂均为体积比为4:1的石油醚和丙酮混合溶剂。
  7. 根据权利要求1所述的蒽醌功能化聚偏氟乙烯超滤膜的制备方法,其特征在于:步骤(2)中:2-(1-羟基-3-丁烯)-1,4,5,8-四甲氧基萘、聚偏氟乙烯、N,N-二甲基甲酰胺、催化体系的质量配比为:30-60:5-12:400-550:0.1-1。
  8. 根据权利要求1所述的蒽醌功能化聚偏氟乙烯超滤膜的制备方法,其特征在于:步骤(3)具体为:在两口反应瓶中滴加聚偏氟乙烯-芳香醚类共聚物的乙氰溶液,室温搅拌下滴加硝酸铈铵的水溶液,反应1h,减压回收乙氰,用氯仿萃取,水洗,饱和食盐水洗,无水硫酸镁干燥1.5h,减压回收氯仿,硅胶柱层析分离得2-(1-羟基-3-丁烯)-5,8-二甲氧基-1,4-萘醌和6-(1-羟基-3-丁烯)-5,8-二甲氧基-1,4-萘醌的混合物,真空干燥后备用。
  9. 根据权利要求8所述的蒽醌功能化聚偏氟乙烯超滤膜的制备方法,其特征在于:所述的硅胶柱层析时所用的洗脱剂为体积比为3:1的石油醚和丙酮混合溶剂。
  10. 根据权利要求1所述的蒽醌功能化聚偏氟乙烯超滤膜的制备方法,其特征在于:步骤(4)中:N,N-二甲基甲酰胺和步骤(3)的聚合物的质量配比为:15-20:80-85。
PCT/CN2016/103560 2016-01-13 2016-10-27 一种蒽醌功能化的聚偏氟乙烯膜的制备方法 WO2017121169A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018521457A JP6574061B2 (ja) 2016-01-13 2016-10-27 ナフトキノン混合物を用いたろ過膜の製造方法
US15/821,845 US20180093228A1 (en) 2016-01-13 2017-11-24 Method for preparing anthraquinone-functionalized poly(vinylidene fluoride) membrane

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2016100199071 2016-01-13
CN201610019907.1A CN105642127B (zh) 2016-01-13 2016-01-13 一种蒽醌功能化聚偏氟乙烯超滤膜的制备方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/821,845 Continuation US20180093228A1 (en) 2016-01-13 2017-11-24 Method for preparing anthraquinone-functionalized poly(vinylidene fluoride) membrane

Publications (1)

Publication Number Publication Date
WO2017121169A1 true WO2017121169A1 (zh) 2017-07-20

Family

ID=56487213

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/103560 WO2017121169A1 (zh) 2016-01-13 2016-10-27 一种蒽醌功能化的聚偏氟乙烯膜的制备方法

Country Status (4)

Country Link
US (1) US20180093228A1 (zh)
JP (1) JP6574061B2 (zh)
CN (1) CN105642127B (zh)
WO (1) WO2017121169A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114685920A (zh) * 2022-05-13 2022-07-01 安徽康采恩包装材料有限公司 一种可降解包装材料及其合成方法

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105642127B (zh) * 2016-01-13 2018-01-05 厦门理工学院 一种蒽醌功能化聚偏氟乙烯超滤膜的制备方法
CN108911136B (zh) * 2018-07-17 2021-05-14 厦门理工学院 一种重金属废水的处理方法
CN108911134B (zh) * 2018-07-17 2021-06-11 厦门理工学院 一种生活污水的处理方法
CN108911137B (zh) * 2018-07-17 2021-04-16 厦门理工学院 一种染料废水的处理方法
CN110092389B (zh) * 2019-04-29 2020-06-16 厦门理工学院 一种表面接枝蒽醌化合物的电气石、制备方法及应用
CN110066009B (zh) * 2019-04-29 2020-04-21 厦门理工学院 一种含有蒽醌化合物的电气石、制备方法及应用
CN110040844B (zh) * 2019-04-29 2020-07-07 厦门理工学院 一种无机填料表面接枝蒽醌化合物的制备方法及应用
CN110157007B (zh) * 2019-06-04 2021-03-26 厦门理工学院 塑料表面接枝石墨烯和蒽醌化合物的制备方法及应用
CN110479109B (zh) * 2019-08-19 2022-07-05 上海应用技术大学 通量高、抗污染性强的聚偏氟乙烯混合基质膜的制备方法
CN111495204B (zh) * 2020-04-23 2022-05-10 厦门理工学院 一种改性微滤膜及制备方法
CN111804163B (zh) * 2020-06-17 2022-01-11 龙岩市厦龙工程技术研究院 一种蒽醌超滤膜其及制备方法
CN112206790B (zh) * 2020-11-12 2022-04-22 厦门理工学院 具有光催化性能的改性硫铁矿的制备方法及其应用
CN113144911B (zh) * 2021-04-12 2022-04-29 浙江工业大学 含羟基嵌段共聚物及耐污染耐酸碱溶胀多孔膜的制备方法
CN115536549B (zh) * 2022-10-11 2023-10-17 枣庄市润安制药新材料有限公司 一种5-己烯腈的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103394295A (zh) * 2013-08-14 2013-11-20 哈尔滨工业大学 一种亲水性pvdf复合超滤膜及其制备方法
CN103464013A (zh) * 2013-07-25 2013-12-25 烟台绿水赋膜材料有限公司 一种高性能杂化分离膜及其制备方法
CN104289118A (zh) * 2013-07-15 2015-01-21 华东理工大学 一种原位聚合调控聚偏氟乙烯超滤膜结构的方法
CN105642127A (zh) * 2016-01-13 2016-06-08 厦门理工学院 一种蒽醌功能化聚偏氟乙烯超滤膜的制备方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60252441A (ja) * 1984-05-28 1985-12-13 Otsuka Pharmaceut Factory Inc ナフタレン及びナフトキノン誘導体
JPS63112531A (ja) * 1986-10-29 1988-05-17 Kyushu Kogyo Univ 2−(1−ヒドロキシ−4−メチル−4−ペンテニル)−1,4,5,8−テトラメトキシナフタレンおよびその製造法
JPS63112530A (ja) * 1986-10-29 1988-05-17 Kyushu Kogyo Univ 1,4,5,8−テトラメトキシナフタレンの製造法
KR20030069326A (ko) * 2002-02-20 2003-08-27 주식회사 엠티티 폴리테트라플루오르에틸렌 물질의 화학적 표면개질 방법
CN1792879A (zh) * 2005-10-29 2006-06-28 大连理工大学 一种固定化醌类化合物加速偶氮染料废水生物厌氧脱色方法
CN102140181B (zh) * 2011-01-19 2013-04-17 天津工业大学 聚偏氟乙烯亲水改性膜及其制备方法
JP6009579B2 (ja) * 2011-12-09 2016-10-19 ナンヤン テクノロジカル ユニヴァーシティー ポリ(フッ化ビニリデン)系ポリマーおよび少なくとも1種の導電性ポリマーのグラフトコポリマーの形成方法
CN103724668B (zh) * 2014-01-07 2016-02-03 河北科技大学 一种蒽醌功能化纤维素膜及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104289118A (zh) * 2013-07-15 2015-01-21 华东理工大学 一种原位聚合调控聚偏氟乙烯超滤膜结构的方法
CN103464013A (zh) * 2013-07-25 2013-12-25 烟台绿水赋膜材料有限公司 一种高性能杂化分离膜及其制备方法
CN103394295A (zh) * 2013-08-14 2013-11-20 哈尔滨工业大学 一种亲水性pvdf复合超滤膜及其制备方法
CN105642127A (zh) * 2016-01-13 2016-06-08 厦门理工学院 一种蒽醌功能化聚偏氟乙烯超滤膜的制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114685920A (zh) * 2022-05-13 2022-07-01 安徽康采恩包装材料有限公司 一种可降解包装材料及其合成方法
CN114685920B (zh) * 2022-05-13 2023-09-26 安徽康采恩包装材料有限公司 一种可降解包装材料及其合成方法

Also Published As

Publication number Publication date
US20180093228A1 (en) 2018-04-05
CN105642127A (zh) 2016-06-08
CN105642127B (zh) 2018-01-05
JP6574061B2 (ja) 2019-09-11
JP2018528859A (ja) 2018-10-04

Similar Documents

Publication Publication Date Title
WO2017121169A1 (zh) 一种蒽醌功能化的聚偏氟乙烯膜的制备方法
WO2017107658A1 (zh) 一种蒽醌功能化的聚偏氟乙烯膜及其制备方法与应用
CN101092332A (zh) 一种由甲苯一步催化氧化制备甲基苯酚的方法
CN114196066B (zh) 一种热响应型智能海绵及其制备方法和应用
CN114292374A (zh) 一种含氟基多结构单元共价有机框架材料、其制备方法及油水分离应用
CN108246334A (zh) 一种功能化三元复合光催化材料及其制备方法与用途
CN105130854A (zh) 一种改进的h酸生产工艺
CN101962246B (zh) 一种mto工艺废水处理及回用方法
CN105749981B (zh) 一种碳纳米管/氧化锌ptfe膜及其制备方法
CN104671574B (zh) 一种间硝基苯磺酸钠生产废水的处理工艺
CN108773978A (zh) 一种有机硅废水处理系统及其处理方法
CN103613185B (zh) 一种高效处理焦化废水的方法
CN105731711A (zh) 基于碳纳米管/氧化锌ptfe光催化膜的废水处理装置及其应用
CN108722210B (zh) 多孔有机材料/聚合物复合膜及其制备方法和应用
CN116371432A (zh) 一种复合光催化纳米材料及制备方法和应用
CN113912208B (zh) 一种微通道连续流深度处理有机废水的方法
CN114409009A (zh) 一种基于聚合物pim-1吸附对苯二酚的方法
CN107661698A (zh) 铁铜双金属负载介孔碳氧化铝复合陶瓷膜材料的制备方法及其应用
CN103771550B (zh) 一种硝基氯苯废水的反渗透浓水深度处理方法
CN103771640B (zh) 一种硝基氯苯高温废水的深度处理及回用方法
CN113171797A (zh) 一种基于二茂铁改性的共价有机框架材料及其制备方法和应用
CN111905808A (zh) 一种基于石墨烯的复合材料及其制备方法
CN111333258B (zh) 一种催化分解联合生物技术处理dmf废水的方法
CN111115977A (zh) 一种喹吖啶酮生产废水处理方法及系统
CN104151150A (zh) 一种3,4-二(3,4,5-三氟苯基)-2,5-二苯基环戊二烯酮的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16884721

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018521457

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16884721

Country of ref document: EP

Kind code of ref document: A1