WO2017107658A1 - 一种蒽醌功能化的聚偏氟乙烯膜及其制备方法与应用 - Google Patents
一种蒽醌功能化的聚偏氟乙烯膜及其制备方法与应用 Download PDFInfo
- Publication number
- WO2017107658A1 WO2017107658A1 PCT/CN2016/103540 CN2016103540W WO2017107658A1 WO 2017107658 A1 WO2017107658 A1 WO 2017107658A1 CN 2016103540 W CN2016103540 W CN 2016103540W WO 2017107658 A1 WO2017107658 A1 WO 2017107658A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- polyvinylidene fluoride
- film
- fluoride film
- membrane
- anthraquinone
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/18—Manufacture of films or sheets
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/70—Treatment of water, waste water, or sewage by reduction
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/72—Treatment of water, waste water, or sewage by oxidation
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F114/00—Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
- C08F114/18—Monomers containing fluorine
- C08F114/22—Vinylidene fluoride
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F8/00—Chemical modification by after-treatment
- C08F8/34—Introducing sulfur atoms or sulfur-containing groups
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J3/00—Processes of treating or compounding macromolecular substances
- C08J3/28—Treatment by wave energy or particle radiation
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2327/00—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
- C08J2327/02—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
- C08J2327/12—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
- C08J2327/16—Homopolymers or copolymers of vinylidene fluoride
Definitions
- the invention belongs to the technical field of material engineering, and particularly relates to a fluorene-functionalized polyvinylidene fluoride film and a preparation method and application thereof.
- the biological method is the most commonly used method to solve the above-mentioned problem of water pollution, but the biological treatment rate is unstable and the treatment efficiency is low due to the limitation of the electron transport rate in the biological denitrification process. It has been found that the redox mediator can accelerate the electron transport rate in the biological denitrification process and improve the biological process efficiency. Terpenoids are one of the redox mediators. There have been a lot of reports to prove that terpenoids can effectively promote the degradation of nitrogenous wastewater.
- Polyvinylidene fluoride polymer material has the advantages of high mechanical strength, good chemical stability, resistance to ultraviolet radiation, corrosion by acid, alkali, strong oxidizing agent and halogen at room temperature, and membrane material prepared by using polyvinylidene fluoride as raw material. Widely used in the field of environmental engineering. However, the disadvantages of the hydrophobicity of the polyvinylidene fluoride surface and the relatively low surface energy will affect the life of the membrane. To further optimize the performance of polyvinylidene fluoride membranes, the researchers conducted a series of modification studies.
- Cida Patent 201410577072.2 discloses a preparation method of a modified polyvinylidene fluoride microporous membrane, which is subjected to ultraviolet grafting reaction of PVDF powder and acrylic acid monomer under ultraviolet irradiation, and then blended with polyvinylpyrrolidone.
- Microporous membrane the obtained membrane has good pressure resistance performance, no need for supporting layer and uniform pore diameter;
- Chinese Patent 201410267427.8 discloses a graft modification method of pollution-resistant polyvinylidene fluoride flat ultrafiltration membrane, which is prepared by using immersion sedimentation method After spraying the mixed solution containing the monomer to be grafted and the initiator on the obtained film, the film is irradiated under ultraviolet light to initiate grafting, and pure water of the film is obtained. The flux is slightly decreased, but the hydrophilic property and the anti-pollution ability are greatly improved, and the mechanical properties are also improved.
- Chinese Patent 201410690025.9 discloses a preparation method of a polyvinylidene fluoride hollow fiber composite membrane, which first immerses the glass fiber.
- the functionalized glass fiber is prepared in the coupling agent solution, and the active glass fiber support is prepared by ultraviolet irradiation grafting method under nitrogen atmosphere, and the prepared active glass fiber support and the polyvinylidene fluoride are jointly prepared to prepare the casting solution.
- a polyvinylidene fluoride composite cellulose hollow fiber membrane was obtained by a melt spinning method.
- the membrane products of the above research are still based on the principle of physical separation, so that the pollutants are transferred and enriched, and the degradation of pollutants is not realized, and there is still the possibility of harming the environment.
- the membrane has a large specific surface area and is widely used in the field of sewage treatment. Therefore, if the redox mediator can be fixed on the membrane, a membrane capable of purifying the sewage and degrading the pollutants can be developed, which can effectively solve the problem of redox mediator fixation and improve the high-concentration nitrogen-containing sewage. Processing efficiency is of great significance.
- the object of the present invention is to provide a fluorene-functionalized polyvinylidene fluoride film and a preparation method and application thereof, which utilize a polyvinylidene fluoride film material to enrich free radicals under ultraviolet light high-energy irradiation, thereby being prone to occur.
- the redox mediator was grafted on the surface of the film under ultraviolet irradiation to obtain a fluorene-functionalized polyvinylidene fluoride film.
- the obtained polyvinylidene fluoride can realize the degradation of pollutants. Suitable for the treatment of nitrogenous wastewater.
- the present invention adopts the following technical solutions:
- a ⁇ functionalized polyvinylidene fluoride film the preparation method thereof comprises the following steps:
- the membrane obtained in the step 1) is immersed in an ethanol solution, ultrasonically cleaned for 30 minutes, the impurities on the surface of the membrane are removed, and then the ultra-pure water is soaked for 1 hour to gradually replace the residual ethanol in the membrane.
- the film is then dried to a constant weight at room temperature and stored in a ziplock bag;
- step 2 UV grafting of polyvinylidene fluoride film: the film which was dried to constant weight in step 2) was immersed in an ethanol solution containing 0.4 mol/L benzophenone for 1 hour to enable the benzophenone to be sufficiently settled. On the surface of the polyvinylidene fluoride film, the film is taken out and naturally air-dried at room temperature, so that the benzophenone can be fully reacted on the surface of the film; then the film is placed in a double-layer glass reactor, and the mass concentration is added along the wall.
- the amount of the organic solvent used in the step 1) is 83-88 wt%, the amount of the polyvinylidene fluoride is 10-15 wt%, the amount of the porogen is 1-2 wt%, and the sum of the mass percentages of the three is 100%;
- the organic solvent used is any one of N,N-dimethylformamide, N,N-dimethylacetamide and dimethyl sulfoxide.
- the porogen used is any one of lithium chloride and ethanol
- the coagulation bath consists of deionized water.
- the outer layer of the double-layer glass reactor is provided with a water inlet and a water outlet, and is connected with the constant temperature circulating water bath to keep the reaction temperature constant;
- the inner layer is provided with an air inlet, a vacuum port and a feed. Mouth, the reaction is carried out under a nitrogen atmosphere; the top is covered with quartz glass to reduce the absorption of ultraviolet light by the glass during ultraviolet irradiation;
- the UV lamp used had a wavelength of 365 nm and a power of 1000 W.
- the ⁇ functionalized polyvinylidene fluoride film can accelerate the microbial denitrification process and accelerate the degradation of pollutants, and is suitable for the treatment of sewage, especially high concentration nitrogenous sewage.
- the invention has the significant advantage that the invention fixes the terpenoid compound on the polyvinylidene fluoride by chemical synthesis and chemical modification, which can effectively solve the cockroach substance appearing in the existing fixing method and is easy to be obtained from the carrier.
- the problem of loss of water loss and secondary pollution of the water body, and the application of the membrane as a fixed carrier of the redox mediator, can be adapted to various membrane processing equipment, and is advantageous for promotion and application.
- the obtained modified polyvinylidene fluoride film can effectively promote the degradation of high-concentration nitrogen-containing wastewater, especially printing and dyeing wastewater, and has a good application prospect in the field of sewage treatment.
- Figure 1 is a schematic view showing the structure of a double-layer glass reactor of the present invention.
- FIG. 2 is an infrared spectrum diagram of a ruthenium functionalized polyvinylidene fluoride film obtained by the present invention.
- A is a non-grafted polyvinylidene fluoride film prepared in a comparative example
- B is a ruthenium functionalized polyvinylidene fluoride film obtained in Example 2.
- A is a non-grafted polyvinylidene fluoride film prepared in a comparative example
- B is a ruthenium functionalized polyvinylidene fluoride film obtained in Example 2.
- Figure 5 is a multiple of the effect of the ruthenium functionalized polyvinylidene fluoride film obtained in Example 2 and the non-grafted polyvinylidene fluoride film on the nitrate removal effect in the cycle experiment.
- the structure of the double-layer glass reactor used is as shown in Fig. 1.
- the outer layer is provided with a water inlet and a water outlet, and is connected with a constant temperature circulating water bath to keep the reaction temperature constant;
- the inner layer is provided with an air inlet and a vacuum port.
- the feed port is made to carry out the reaction under a nitrogen atmosphere;
- the top is covered with quartz glass to reduce the absorption of ultraviolet light by the glass during ultraviolet irradiation.
- the membrane obtained in the step 1) is immersed in an ethanol solution, ultrasonically cleaned for 30 minutes, the impurities on the surface of the membrane are removed, and then the ultra-pure water is soaked for 1 hour to gradually replace the residual ethanol in the membrane. Then, the film is dried to a constant weight at normal temperature and stored with a sealing tape;
- step 2 UV grafting of polyvinylidene fluoride film: the film which was dried to constant weight in step 2) was immersed in an ethanol solution containing 0.4 mol/L benzophenone for 1 hour to enable the benzophenone to be sufficiently settled. On the surface of the polyvinylidene fluoride film, the film is taken out and naturally air-dried at room temperature, so that the benzophenone can be fully reacted on the surface of the film; then the film is placed in a double-layer glass reactor, and the mass concentration is added along the wall.
- the membrane obtained in the step 1) is immersed in an ethanol solution, ultrasonically cleaned for 30 minutes, the impurities on the surface of the membrane are removed, and then the ultra-pure water is soaked for 1 hour to gradually replace the residual ethanol in the membrane. Then, the film is dried to a constant weight at normal temperature and stored with a sealing tape;
- step 2 UV grafting of polyvinylidene fluoride film: the film which was dried to constant weight in step 2) was immersed in an ethanol solution containing 0.4 mol/L benzophenone for 1 hour to enable the benzophenone to be sufficiently settled. On the surface of the polyvinylidene fluoride film, the film is taken out and naturally air-dried at room temperature, so that the benzophenone can be fully reacted on the surface of the film; then the film is placed in a double-layer glass reactor, and the mass concentration is added along the wall.
- the membrane obtained in the step 1) is immersed in an ethanol solution, ultrasonically cleaned for 30 minutes, the impurities on the surface of the membrane are removed, and then the ultra-pure water is soaked for 1 hour to gradually replace the residual ethanol in the membrane. Then, the film is dried to a constant weight at normal temperature and stored with a sealing tape;
- step 2 UV grafting of polyvinylidene fluoride film: the film which was dried to constant weight in step 2) was immersed in an ethanol solution containing 0.4 mol/L benzophenone for 1 hour to enable the benzophenone to be sufficiently settled. On the surface of the polyvinylidene fluoride film, the film is taken out and naturally air-dried at room temperature, so that the benzophenone can be fully reacted on the surface of the film; then the film is placed in a double-layer glass reactor, and the mass concentration is added along the wall.
- the membrane obtained in the step 1) is immersed in an ethanol solution, ultrasonically cleaned for 30 minutes, the impurities on the surface of the membrane are removed, and then the ultra-pure water is soaked for 1 hour to gradually replace the residual ethanol in the membrane. The film was then dried to constant weight at room temperature.
- FIG. 2 is an infrared spectrum diagram of a ruthenium functionalized polyvinylidene fluoride film obtained by the present invention. As can be seen from Fig. 2, the structure of the group on the polyvinylidene fluoride film was changed, indicating that a graft reaction occurred.
- FIG. 3 is a SEM comparison diagram of the surface of the ruthenium functionalized polyvinylidene fluoride film obtained in Example 2 and the surface of the non-grafted polyvinylidene fluoride film. It can be seen from FIG. 3 that the surface of the yttrium-functionalized polyvinylidene fluoride film prepared in Example 2 is rougher than the surface of the un-grafted polyvinylidene fluoride film in the comparative example, and has slight cracks, indicating that it occurs on the surface of the film. The grafting reaction has an effect on the external structure of the polyvinylidene fluoride film.
- FIG. 4 is a SEM comparison diagram of a cross section of a fluorene-modified polyvinylidene fluoride film obtained in Example 2 and a comparative non-grafted polyvinylidene fluoride film. It can be seen from Fig. 4 that the non-grafted polyvinylidene fluoride film in the comparative example, the finger-shaped pores of the ⁇ functionalized polyvinylidene fluoride film obtained in Example 2 are finer, indicating that it also occurs inside the film. The grafting reaction has an effect on the internal structure of the polyvinylidene fluoride film.
- Example 1-3 The hydrazine-modified polyvinylidene fluoride film obtained in Example 1-3 and the comparative non-grafted polyvinylidene fluoride film were respectively subjected to treatment of nitrogen-containing wastewater for 10 hours, and the removal effect thereof was measured. The results are shown in Table 1.
- the cerium functionalized polyvinylidene fluoride film obtained in Examples 1-3 has a removal rate of more than 92% for nitrogen-containing wastewater, which is significantly higher than that of the non-grafted polyvinylidene fluoride film, and proves the present invention.
- the prepared hydrazine functionalized polyvinylidene fluoride membrane is suitable for wastewater treatment.
- Figure 5 is a multiple of the effect of the ruthenium functionalized polyvinylidene fluoride film obtained in Example 2 and the non-grafted polyvinylidene fluoride film on the nitrate removal effect in the cycle experiment. It can be seen from FIG. 5 that the removal rate of the ruthenium functionalized polyvinylidene fluoride film obtained in Example 2 after using 10 cycles is still 1.3-1.4 times higher than that of the comparative example, indicating that the ruthenium functionalized polyfluorinated fluorine prepared by the present invention is obtained. The terpenoids on the vinyl film are not easily lost and can be recycled.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Polymers & Plastics (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Hydrology & Water Resources (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Materials Engineering (AREA)
- General Chemical & Material Sciences (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
本发明公开了一种蒽醌功能化的聚偏氟乙烯膜及其制备方法与应用,其利用聚偏氟乙烯膜材料在紫外光高能辐照下表面能富集自由基而易于发生接枝反应的特性,通过聚偏氟乙烯膜的制备、膜片预处理、聚偏氟乙烯膜的紫外接枝三个步骤,在紫外辐照条件下将蒽醌类化合物固定于聚偏氟乙烯上,以有效解决现有固定方法中蒽醌类物质易从载体上脱落流失的问题。所得改性聚偏氟乙烯膜能有效促进高浓度含氮废水的降解,特别是印染废水的降解,在污水处理领域具有良好的应用前景。
Description
本发明属于材料工程技术领域,具体涉及一种蒽醌功能化的聚偏氟乙烯膜及其制备方法与应用。
高浓度含氮的生活污水、工业废水和农田地表水径流汇入湖泊、水库、河流和海湾水域,造成水体中的某些藻类过度繁殖,严重恶化水质,破坏水体生态平衡。生物法是解决上述水体污染问题的最常用方法,但是受生物反硝化过程中电子传输速率的限制,生物法处理的效果不稳定、处理效率低。经研究发现,氧化还原介体可加快生物反硝化过程中的电子传输速率,提高生物法的处理效率。蒽醌类化合物是氧化还原介体中的一种,目前已有大量报道证实蒽醌类化合物能有效促进含氮废水的降解。但已有的报道中多是将蒽醌类化合物直接投入水体中使用,这将造成氧化还原介体的流失,引发二次污染。为解决上述问题,研究人员对蒽醌类化合物的固定进行了一系列的研究。文献《固定化氧化还原介体强化酸性红B生物脱色作用研究》采用海藻酸钙固定1,5-二氯蒽,并应用于偶氮染料酸性红B的脱色中,结果发现固定化的1,5-二氯蒽能促进偶氮染料酸性红B的脱色,但是1,5-二氯蒽只是通过物理作用力束缚在载体上,容易从载体上解析下来。文献《固定化氧化还原介体加速亚硝酸盐生物反硝化作用》利用循环伏安法固定蒽醌磺酸钠(AQS/PPy/ACF),结果表明固定后的蒽醌磺酸钠能够明显加速亚硝酸盐生物反硝化过程,但是采用循环伏安法固定蒽醌磺酸钠的前提是制备聚吡咯膜,其制备过程受很多参数控制,非常复杂。
聚偏氟乙烯高分子材料具有机械强度高,化学稳定性良好、耐紫外辐照、室温下不被酸、碱、强氧化剂和卤素腐蚀等优点,使以聚偏氟乙烯为原料制备的膜材料在环境工程领域应用广泛。但是聚偏氟乙烯表面疏水性较强、表面能比较低等缺点会影响膜的寿命。为进一步优化聚偏氟乙烯膜的性能,研究人员进行了一系列改性研究。其中,紫外辐照改性因能有效改善膜性能,增长膜的使用寿命,且具有设备简单、接枝效率高、成本低等优点而受到广泛关注。中国专利201410577072.2公开了一种改性聚偏氟乙烯微孔膜的制备方法,其在紫外光照射的条件下将PVDF粉体与丙烯酸单体进行紫外接枝反应,再与聚乙烯吡咯烷酮共混制备微孔膜,制得的膜耐压性能良好、无需支撑层、孔径均一;中国专利201410267427.8公开了一种耐污染聚偏氟乙烯平板超滤膜的接枝改性方法,其在利用浸没沉淀法制得的膜上喷洒含欲接枝单体与引发剂的混合溶液后,将膜片置于紫外光下辐照,引发接枝,制得膜片的纯水
通量略有下降,但亲水性能和抗污染能力都大大提高,力学性能也有一定的改善;中国专利201410690025.9公开了一种聚偏氟乙烯中空纤维复合膜的制备方法,其先将玻璃纤维浸入偶联剂溶液中制备官能化玻璃纤维,再通过紫外辐照接枝法,在氮气氛围下制备活性玻璃纤维支撑体,将制备的活性玻璃纤维支撑体与聚偏氟乙烯共同制备铸膜液,用熔融纺丝法制得聚偏氟乙烯复合纤维素中空纤维膜。但是上述研究的膜产品仍然是基于物理分离的原理,使污染物质转移和富集,并未实现污染物质的降解,仍有危害环境的可能。
膜的比表面积大,在污水处理领域应用广泛。因此,若能实现将氧化还原介体固定于膜上,研究开发一种既能够净化污水,又能够降解污染物质的膜,能有效解决氧化还原介体固定的问题,提高高浓度含氮污水的处理效率,具有重要的意义。
发明内容
本发明的目的在于提供一种蒽醌功能化的聚偏氟乙烯膜及其制备方法与应用,其利用聚偏氟乙烯膜材料在紫外光高能辐照下表面能富集自由基,因而易于发生接枝反应的特性,在紫外辐照条件下,将氧化还原介体接枝在膜表面,制得一种蒽醌功能化的聚偏氟乙烯膜,所得聚偏氟乙烯能实现污染物质的降解,适用于含氮废水的处理。
为实现上述目的,本发明采用如下技术方案:
一种蒽醌功能化的聚偏氟乙烯膜,其制备方法包括如下步骤:
1)聚偏氟乙烯膜的制备:将聚偏氟乙烯和致孔剂溶解于有机溶剂中,搅拌混匀,制成铸膜液;然后于80℃真空恒温干燥箱中静置脱泡48h后,在干燥洁净的玻璃板上刮制成膜,立即置于凝固浴中成膜,所得膜于去离子水中保存;
2)膜片预处理:将步骤1)制得的膜片浸泡在乙醇溶液中,超声清洗30min,去除膜表面的杂质,再用超纯水浸泡1h,逐步置换出膜片中残留的乙醇,然后将膜片于常温下干燥至恒重,用自封袋保存;
3)聚偏氟乙烯膜的紫外接枝:将步骤2)干燥至恒重的膜片置于含0.4mol/L二苯甲酮的乙醇溶液中浸泡1h,使二苯甲酮能够充分地沉降在聚偏氟乙烯膜表面,然后将膜片取出,室温下自然风干,使二苯甲酮在膜表面上可以充分反应;再将膜片置于双层玻璃反应器中,沿壁添加质量浓度为0.5-4%的蒽醌-2-磺酸钠水溶液,至容器的1/3处,通氮气30min除氧,密封,打开紫外灯,使其在氮气氛围下紫外辐照反应至5-30min。
步骤1)中有机溶剂的用量为83-88wt%,聚偏氟乙烯的用量为10-15wt%,致孔剂的用量为1-2wt%,三者的质量百分数之和为100%;
其中,所用有机溶剂为N,N-二甲基甲酰胺、N,N-二甲基乙酰胺、二甲基亚砜中的任意一
种;
所用致孔剂为氯化锂、乙醇中的任意一种;
所述凝固浴由去离子水组成。
步骤3)中所述双层玻璃反应器的外层上设有进水口和出水口,与恒温循环水浴槽相连,以保持反应温度恒定;内层设有进气口、抽真空口及进料口,使反应在氮气氛围下进行;顶端采用石英玻璃加盖,以减少紫外辐照过程中玻璃对紫外光的吸收;
所用紫外灯的波长为365nm,功率为1000W。
所述蒽醌功能化的聚偏氟乙烯膜能加速微生物反硝化过程,加快污染物质的降解,适用于污水,尤其是高浓度含氮污水的处理。
本发明的显著优点在于:本发明以化学合成和化学改性的方法将蒽醌类化合物固定于聚偏氟乙烯上,其能有效解决现有固定方法中出现的蒽醌类物质易从载体上脱落流失,造成水体二次污染等问题,且应用膜作为氧化还原介体的固定载体,可以适应各种膜处理设备,利于推广和应用。所得改性聚偏氟乙烯膜能有效促进高浓度含氮废水,特别是印染废水的降解,在污水处理领域具有良好的应用前景。
图1为本发明双层玻璃反应器的结构示意图。
图2为本发明所得蒽醌功能化聚偏氟乙烯膜的红外光谱图。
图3为聚偏氟乙烯膜的表面SEM对比图,其中A为对比例制得的未经接枝聚偏氟乙烯膜,B为实施例2制得的蒽醌功能化聚偏氟乙烯膜。
图4为聚偏氟乙烯膜的截面SEM对比图,其中A为对比例制得的未经接枝聚偏氟乙烯膜,B为实施例2制得的蒽醌功能化聚偏氟乙烯膜。
图5为循环实验中,实施例2所得蒽醌功能化聚偏氟乙烯膜与对比例未接枝聚偏氟乙烯膜对硝酸盐去除效果的倍数图。
为了使本发明所述的内容更加便于理解,下面结合具体实施方式对本发明所述的技术方案做进一步的说明,但是本发明不仅限于此。
所用双层玻璃反应器的结构如图1所示,其外层设有进水口和出水口,与恒温循环水浴槽相连,以保持反应温度恒定;内层设有进气口、抽真空口及进料口,使反应在氮气氛围下进行;顶端采用石英玻璃加盖,以减少紫外辐照过程中玻璃对紫外光的吸收。
实施例1
1)聚偏氟乙烯膜的制备:将聚偏氟乙烯和氯化锂溶解于N,N-二甲基甲酰胺中,搅拌混匀,制成铸膜液,其中N,N-二甲基甲酰胺的用量为83wt%,聚偏氟乙烯的用量为15wt%,氯化锂的用量为2wt%;然后于80℃真空恒温干燥箱中静置脱泡48h后,在干燥洁净的玻璃板上刮制成膜,立即置于由去离子水组成的凝固浴中成膜,所得膜于去离子水中保存;
2)膜片预处理:将步骤1)制得的膜片浸泡在乙醇溶液中,超声清洗30min,去除膜表面的杂质,再用超纯水浸泡1h,逐步置换出膜片中残留的乙醇,然后将膜片于常温下干燥至恒重,用密封带保存;
3)聚偏氟乙烯膜的紫外接枝:将步骤2)干燥至恒重的膜片置于含0.4mol/L二苯甲酮的乙醇溶液中浸泡1h,使二苯甲酮能够充分地沉降在聚偏氟乙烯膜表面,然后将膜片取出,室温下自然风干,使二苯甲酮在膜表面上可以充分反应;再将膜片置于双层玻璃反应器中,沿壁添加质量浓度为0.5%的蒽醌-2-磺酸钠水溶液,至容器的1/3处,通氮气30min除氧,密封,打开紫外灯(功率为1000W),使其在氮气氛围、365nm下紫外辐照反应至5min。
实施例2
1)聚偏氟乙烯膜的制备:将聚偏氟乙烯和乙醇溶解于N,N-二甲基乙酰胺中,搅拌混匀,制成铸膜液,其中N,N-二甲基乙酰胺的用量为84wt%,聚偏氟乙烯的用量为15wt%,乙醇的用量为1wt%;然后于80℃真空恒温干燥箱中静置脱泡48h后,在干燥洁净的玻璃板上刮制成膜,立即置于由去离子水组成的凝固浴中成膜,所得膜于去离子水中保存;
2)膜片预处理:将步骤1)制得的膜片浸泡在乙醇溶液中,超声清洗30min,去除膜表面的杂质,再用超纯水浸泡1h,逐步置换出膜片中残留的乙醇,然后将膜片于常温下干燥至恒重,用密封带保存;
3)聚偏氟乙烯膜的紫外接枝:将步骤2)干燥至恒重的膜片置于含0.4mol/L二苯甲酮的乙醇溶液中浸泡1h,使二苯甲酮能够充分地沉降在聚偏氟乙烯膜表面,然后将膜片取出,室温下自然风干,使二苯甲酮在膜表面上可以充分反应;再将膜片置于双层玻璃反应器中,沿壁添加质量浓度为2%的蒽醌-2-磺酸钠水溶液,至容器的1/3处,通氮气30min除氧,密封,打开紫外灯(功率为1000W),使其在氮气氛围、365nm下紫外辐照反应至20min。
实施例3
1)聚偏氟乙烯膜的制备:将聚偏氟乙烯和乙醇溶解于二甲基亚砜中,搅拌混匀,制成铸膜液,其中二甲基亚砜的用量为88wt%,聚偏氟乙烯的用量为10wt%,乙醇的用量为2wt%;然后于80℃真空恒温干燥箱中静置脱泡48h后,在干燥洁净的玻璃板上刮制成膜,立即置于由去离子水组成的凝固浴中成膜,所得膜于去离子水中保存;
2)膜片预处理:将步骤1)制得的膜片浸泡在乙醇溶液中,超声清洗30min,去除膜表面的杂质,再用超纯水浸泡1h,逐步置换出膜片中残留的乙醇,然后将膜片于常温下干燥至恒重,用密封带保存;
3)聚偏氟乙烯膜的紫外接枝:将步骤2)干燥至恒重的膜片置于含0.4mol/L二苯甲酮的乙醇溶液中浸泡1h,使二苯甲酮能够充分地沉降在聚偏氟乙烯膜表面,然后将膜片取出,室温下自然风干,使二苯甲酮在膜表面上可以充分反应;再将膜片置于双层玻璃反应器中,沿壁添加质量浓度为4%的蒽醌-2-磺酸钠水溶液,至容器的1/3处,通氮气30min除氧,密封,打开紫外灯(功率为1000W),使其在氮气氛围、365nm下紫外辐照反应至30min。
对比例
1)聚偏氟乙烯膜的制备:将聚偏氟乙烯和乙醇溶解于二甲基亚砜中,搅拌混匀,制成铸膜液,其中二甲基亚砜的用量为84wt%,聚偏氟乙烯的用量为15wt%,乙醇的用量为1wt%;然后于80℃真空恒温干燥箱中静置脱泡48h后,在干燥洁净的玻璃板上刮制成膜,立即置于由去离子水组成的凝固浴中成膜,所得膜于去离子水中保存;
2)膜片预处理:将步骤1)制得的膜片浸泡在乙醇溶液中,超声清洗30min,去除膜表面的杂质,再用超纯水浸泡1h,逐步置换出膜片中残留的乙醇,然后将膜片于常温下干燥至恒重。
图2为本发明所得蒽醌功能化聚偏氟乙烯膜的红外光谱图。由图2可以知晓,聚偏氟乙烯膜上的基团结构发生了变化,说明其发生了接枝反应。
图3为实施例2所得蒽醌功能化聚偏氟乙烯膜与对比例未接枝聚偏氟乙烯膜表面的SEM对比图。由图3可以看出,实施例2制得的蒽醌功能化聚偏氟乙烯膜表面较对比例中未经接枝聚偏氟乙烯膜表面粗糙,且有轻微的裂纹,说明在膜表面发生了接枝反应,并对聚偏氟乙烯膜的外部结构产生了影响。
图4为实施例2所得蒽醌功能化聚偏氟乙烯膜与对比例未接枝聚偏氟乙烯膜截面的SEM对比图。由图4可以看出,较对比例中未经接枝聚偏氟乙烯膜,实施例2制得的蒽醌功能化聚偏氟乙烯膜截面的指状孔更细小,说明在膜内部也发生了接枝反应,并对聚偏氟乙烯膜的内部结构产生了影响。
采用实施例1-3所得蒽醌功能化聚偏氟乙烯膜与对比例未经接枝聚偏氟乙烯膜分别对含氮废水进行10小时的处理,测定其去除效果,其结果见表1。
表1含氮废水中总氮含量测定结果
由表1可见,实施例1-3所得蒽醌功能化聚偏氟乙烯膜对含氮废水的清除率可达92%以上,显著高于未接枝处理的聚偏氟乙烯膜,证明本发明制备的蒽醌功能化聚偏氟乙烯膜适用于废水处理。
图5为循环实验中,实施例2所得蒽醌功能化聚偏氟乙烯膜与对比例未接枝聚偏氟乙烯膜对硝酸盐去除效果的倍数图。由图5可见,实施例2所得蒽醌功能化聚偏氟乙烯膜经10次循环使用后,其去除率仍高于对比例1.3-1.4倍,说明本发明制备的蒽醌功能化聚偏氟乙烯膜上的蒽醌类物质不易流失,可循环使用。
以上所述仅为本发明的较佳实施例,凡依本发明申请专利范围所做的均等变化与修饰,皆应属本发明的涵盖范围。
Claims (4)
- 一种蒽醌功能化的聚偏氟乙烯膜,其特征在于:其制备方法包括如下步骤:1)聚偏氟乙烯膜的制备:将聚偏氟乙烯和致孔剂溶解于有机溶剂中,搅拌混匀,制成铸膜液;然后于80℃真空恒温干燥箱中静置脱泡48h后,在干燥洁净的玻璃板上刮制成膜,立即置于凝固浴中成膜;2)膜片预处理:将步骤1)制得的膜片浸泡在乙醇溶液中,超声清洗30min,去除膜表面的杂质,再用超纯水浸泡1h,逐步置换出膜片中残留的乙醇,然后将膜片于常温下干燥至恒重;3)聚偏氟乙烯膜的紫外接枝:将步骤2)干燥至恒重的膜片置于0.4mol/L含二苯甲酮的乙醇溶液中浸泡1h,然后将膜片取出,室温下自然风干;再将膜片置于双层玻璃反应器中,沿壁添加质量浓度为0.5-4%的蒽醌-2-磺酸钠水溶液,至容器的1/3处,通氮气30min除氧,密封,打开紫外灯,使其在氮气氛围下紫外辐照反应5-30min。
- 根据权利要求1所述蒽醌功能化的聚偏氟乙烯膜,其特征在于:步骤1)中有机溶剂的用量为83-88wt%,聚偏氟乙烯的用量为10-15wt%,致孔剂的用量为1-2wt%,三者的质量百分数之和为100%;其中,所用有机溶剂为N,N-二甲基甲酰胺、N,N-二甲基乙酰胺、二甲基亚砜中的任意一种;所用致孔剂为氯化锂、乙醇中的任意一种;所述凝固浴由去离子水组成。
- 根据权利要求1所述蒽醌功能化的聚偏氟乙烯膜,其特征在于:步骤3)中所述双层玻璃反应器的外层设有进水口和出水口,与恒温循环水浴槽相连;内层设有进气口、抽真空口及进料口;顶端采用石英玻璃加盖;所用紫外灯的波长为365nm,功率为1000W。
- 一种如权利要求1所述蒽醌功能化的聚偏氟乙烯膜的应用,其特征在于:用于含氮污水处理。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510975517.7 | 2015-12-23 | ||
CN201510975517.7A CN105504319B (zh) | 2015-12-23 | 2015-12-23 | 一种蒽醌功能化的聚偏氟乙烯膜及其制备方法与应用 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017107658A1 true WO2017107658A1 (zh) | 2017-06-29 |
Family
ID=55712659
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2016/103540 WO2017107658A1 (zh) | 2015-12-23 | 2016-10-27 | 一种蒽醌功能化的聚偏氟乙烯膜及其制备方法与应用 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN105504319B (zh) |
WO (1) | WO2017107658A1 (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113729654A (zh) * | 2021-09-14 | 2021-12-03 | 华中科技大学 | 术后皮瓣与重建肢体血流状态检测表皮贴附式传感系统 |
CN113952849A (zh) * | 2021-10-13 | 2022-01-21 | 天津工业大学 | 一种去除水中重金属离子的膜吸附剂及其制备方法 |
CN115105968A (zh) * | 2021-03-22 | 2022-09-27 | 中国石油化工股份有限公司 | 一种具有微纳结构的去甲醛多孔分离膜及其制备方法和应用 |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105504319B (zh) * | 2015-12-23 | 2018-06-12 | 厦门理工学院 | 一种蒽醌功能化的聚偏氟乙烯膜及其制备方法与应用 |
CN108911135B (zh) * | 2018-07-17 | 2021-06-11 | 厦门理工学院 | 一种畜禽废水的处理方法 |
CN108911137B (zh) * | 2018-07-17 | 2021-04-16 | 厦门理工学院 | 一种染料废水的处理方法 |
CN108911134B (zh) * | 2018-07-17 | 2021-06-11 | 厦门理工学院 | 一种生活污水的处理方法 |
CN108911136B (zh) * | 2018-07-17 | 2021-05-14 | 厦门理工学院 | 一种重金属废水的处理方法 |
CN110040844B (zh) * | 2019-04-29 | 2020-07-07 | 厦门理工学院 | 一种无机填料表面接枝蒽醌化合物的制备方法及应用 |
CN110040843B (zh) * | 2019-04-29 | 2020-06-16 | 厦门理工学院 | 一种蒽醌化合物固定在无机填料表面的制备方法及应用 |
CN110157031B (zh) * | 2019-06-04 | 2021-08-17 | 厦门理工学院 | 塑料表面接枝蒽醌化合物的制备方法及应用 |
CN111825215B (zh) * | 2020-06-17 | 2022-05-10 | 龙岩市厦龙工程技术研究院 | 一种含氮废水的膜生物反应器处理方法 |
CN111804163B (zh) * | 2020-06-17 | 2022-01-11 | 龙岩市厦龙工程技术研究院 | 一种蒽醌超滤膜其及制备方法 |
CN112604506B (zh) * | 2020-10-22 | 2022-11-25 | 山东东岳高分子材料有限公司 | 用于染料催化脱色的聚四氟乙烯膜的制备方法及聚四氟乙烯膜的应用方法 |
CN114538685B (zh) * | 2022-02-15 | 2022-12-02 | 江苏万邦达环保科技有限公司 | 一种高浓废水中的低沸有机物去除工艺 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01224009A (ja) * | 1988-03-04 | 1989-09-07 | Asahi Chem Ind Co Ltd | ブラフト膜の処理方法 |
CN1792879A (zh) * | 2005-10-29 | 2006-06-28 | 大连理工大学 | 一种固定化醌类化合物加速偶氮染料废水生物厌氧脱色方法 |
KR20080076252A (ko) * | 2007-02-15 | 2008-08-20 | 웅진케미칼 주식회사 | 고유량 특성을 갖는 폴리비닐리덴 플루오라이드 멤브레인의표면개질방법 |
CN101862680A (zh) * | 2010-06-10 | 2010-10-20 | 大连理工大学 | 一种多孔无机填料固定醌化合物的制备方法 |
CN102698608A (zh) * | 2012-05-23 | 2012-10-03 | 中国海洋大学 | 一种具有永久亲水性和永久抗菌性的超滤膜制备方法 |
CN103724668A (zh) * | 2014-01-07 | 2014-04-16 | 河北科技大学 | 一种蒽醌功能化纤维素膜及其制备方法 |
CN103936146A (zh) * | 2014-04-14 | 2014-07-23 | 河北科技大学 | 一种醌类化合物修饰的尼龙膜生物载体制备方法及应用 |
CN104043351A (zh) * | 2014-06-16 | 2014-09-17 | 东北林业大学 | 一种耐污染聚偏氟乙烯平板超滤膜的接枝改性方法 |
CN105504319A (zh) * | 2015-12-23 | 2016-04-20 | 厦门理工学院 | 一种蒽醌功能化的聚偏氟乙烯膜及其制备方法与应用 |
-
2015
- 2015-12-23 CN CN201510975517.7A patent/CN105504319B/zh not_active Expired - Fee Related
-
2016
- 2016-10-27 WO PCT/CN2016/103540 patent/WO2017107658A1/zh active Application Filing
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01224009A (ja) * | 1988-03-04 | 1989-09-07 | Asahi Chem Ind Co Ltd | ブラフト膜の処理方法 |
CN1792879A (zh) * | 2005-10-29 | 2006-06-28 | 大连理工大学 | 一种固定化醌类化合物加速偶氮染料废水生物厌氧脱色方法 |
KR20080076252A (ko) * | 2007-02-15 | 2008-08-20 | 웅진케미칼 주식회사 | 고유량 특성을 갖는 폴리비닐리덴 플루오라이드 멤브레인의표면개질방법 |
CN101862680A (zh) * | 2010-06-10 | 2010-10-20 | 大连理工大学 | 一种多孔无机填料固定醌化合物的制备方法 |
CN102698608A (zh) * | 2012-05-23 | 2012-10-03 | 中国海洋大学 | 一种具有永久亲水性和永久抗菌性的超滤膜制备方法 |
CN103724668A (zh) * | 2014-01-07 | 2014-04-16 | 河北科技大学 | 一种蒽醌功能化纤维素膜及其制备方法 |
CN103936146A (zh) * | 2014-04-14 | 2014-07-23 | 河北科技大学 | 一种醌类化合物修饰的尼龙膜生物载体制备方法及应用 |
CN104043351A (zh) * | 2014-06-16 | 2014-09-17 | 东北林业大学 | 一种耐污染聚偏氟乙烯平板超滤膜的接枝改性方法 |
CN105504319A (zh) * | 2015-12-23 | 2016-04-20 | 厦门理工学院 | 一种蒽醌功能化的聚偏氟乙烯膜及其制备方法与应用 |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115105968A (zh) * | 2021-03-22 | 2022-09-27 | 中国石油化工股份有限公司 | 一种具有微纳结构的去甲醛多孔分离膜及其制备方法和应用 |
CN115105968B (zh) * | 2021-03-22 | 2023-07-21 | 中国石油化工股份有限公司 | 一种具有微纳结构的去甲醛多孔分离膜及其制备方法和应用 |
CN113729654A (zh) * | 2021-09-14 | 2021-12-03 | 华中科技大学 | 术后皮瓣与重建肢体血流状态检测表皮贴附式传感系统 |
US12109013B2 (en) | 2021-09-14 | 2024-10-08 | Huazhong University Of Science And Technology | On-skin sensing system for detecting blood flow status in postoperative flap and reconstructed limb |
CN113952849A (zh) * | 2021-10-13 | 2022-01-21 | 天津工业大学 | 一种去除水中重金属离子的膜吸附剂及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN105504319A (zh) | 2016-04-20 |
CN105504319B (zh) | 2018-06-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017107658A1 (zh) | 一种蒽醌功能化的聚偏氟乙烯膜及其制备方法与应用 | |
US20180093228A1 (en) | Method for preparing anthraquinone-functionalized poly(vinylidene fluoride) membrane | |
CN103464004B (zh) | 高强度纳米改性超滤膜及其制备方法 | |
CN105413472B (zh) | 一种水处理膜组件 | |
CN112973653B (zh) | 基于聚偕胺肟的Mxene膜吸附材料的制备方法及提铀方法 | |
WO2021093832A1 (zh) | 一种c3n4改性有机膜的制备方法及应用 | |
CN114042387B (zh) | 光催化降解染料废水分离多层复合膜及其制备方法与应用 | |
CN109925747B (zh) | 一种紫外光照可控制超疏水-超亲水可逆转换的油水分离材料 | |
CN110652890B (zh) | 一种聚丙烯腈分离膜表面亲水化改性方法 | |
CN107376673B (zh) | 一种负载有TiO2纳米管的PES超滤膜及其制备方法和应用 | |
CN104371128B (zh) | 高强度机械性能碱性阴离子交换复合膜、制备及应用 | |
CN103861476A (zh) | 一种聚偏氟乙烯复合介孔膜的制备方法 | |
CN108854588B (zh) | 一种具有双重过硫酸盐活化功能的中空纤维陶瓷膜的制备方法及应用 | |
CN113797763B (zh) | 一种纤维素凝胶层修饰的高通量染料分离用疏松纳滤膜及其制备方法与应用 | |
WO2022160567A1 (zh) | 一种基于原位还原的无机改性膜的制备方法及其应用 | |
CN113975977A (zh) | 一种基于废弃mbr膜组件的光热蒸发膜及其制备方法与应用 | |
CN107626219A (zh) | 一种重金属离子和有机染料去除功能的抗污染中空纤维膜 | |
CN108097062A (zh) | 一种用于水体过滤净化的中空纤维复合纳滤膜及其制备方法 | |
CN110052177B (zh) | 一种中空微球增强高通量聚丙烯腈过滤膜的制备方法 | |
CN112090296A (zh) | 基于F-TiO2/Fe-g-C3N4的自清洁平板式PVDF超滤膜及制备方法 | |
CN114950160A (zh) | 一种纳米粒子改性pvdf超滤膜复合材料及其制备方法和应用 | |
CN107602770A (zh) | 紫外接枝丙烯酸的改性聚氨酯载体及其制备方法与应用 | |
CN112723479B (zh) | 基于多孔聚合物修饰的金属碳纳米管复合膜分离含染料废水的方法 | |
CN108295678A (zh) | 一种污水处理膜材料及其制备方法 | |
CN210410244U (zh) | 一种氨基化氧化石墨烯与石墨相氮化碳复合改性膜 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16877469 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16877469 Country of ref document: EP Kind code of ref document: A1 |