CN112973653B - 基于聚偕胺肟的Mxene膜吸附材料的制备方法及提铀方法 - Google Patents

基于聚偕胺肟的Mxene膜吸附材料的制备方法及提铀方法 Download PDF

Info

Publication number
CN112973653B
CN112973653B CN202110203369.2A CN202110203369A CN112973653B CN 112973653 B CN112973653 B CN 112973653B CN 202110203369 A CN202110203369 A CN 202110203369A CN 112973653 B CN112973653 B CN 112973653B
Authority
CN
China
Prior art keywords
polyamidoxime
mxene
solution
adsorbing material
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110203369.2A
Other languages
English (en)
Other versions
CN112973653A (zh
Inventor
吴铭榜
叶昊
刘士成
马璐琳
姚菊明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang Sci Tech University ZSTU
Original Assignee
Zhejiang Sci Tech University ZSTU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang Sci Tech University ZSTU filed Critical Zhejiang Sci Tech University ZSTU
Priority to CN202110203369.2A priority Critical patent/CN112973653B/zh
Publication of CN112973653A publication Critical patent/CN112973653A/zh
Application granted granted Critical
Publication of CN112973653B publication Critical patent/CN112973653B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/262Synthetic macromolecular compounds obtained otherwise than by reactions only involving carbon to carbon unsaturated bonds, e.g. obtained by polycondensation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0248Compounds of B, Al, Ga, In, Tl
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • B01J20/205Carbon nanostructures, e.g. nanotubes, nanohorns, nanocones, nanoballs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28033Membrane, sheet, cloth, pad, lamellar or mat
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • C02F1/14Treatment of water, waste water, or sewage by heating by distillation or evaporation using solar energy
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/285Treatment of water, waste water, or sewage by sorption using synthetic organic sorbents
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B11/00Obtaining noble metals
    • C22B11/04Obtaining noble metals by wet processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B60/00Obtaining metals of atomic number 87 or higher, i.e. radioactive metals
    • C22B60/02Obtaining thorium, uranium, or other actinides
    • C22B60/0204Obtaining thorium, uranium, or other actinides obtaining uranium
    • C22B60/0217Obtaining thorium, uranium, or other actinides obtaining uranium by wet processes
    • C22B60/0252Obtaining thorium, uranium, or other actinides obtaining uranium by wet processes treatment or purification of solutions or of liquors or of slurries
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/04Treating liquids
    • G21F9/06Processing
    • G21F9/12Processing by absorption; by adsorption; by ion-exchange
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/46Materials comprising a mixture of inorganic and organic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/48Sorbents characterised by the starting material used for their preparation
    • B01J2220/4806Sorbents characterised by the starting material used for their preparation the starting material being of inorganic character
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/48Sorbents characterised by the starting material used for their preparation
    • B01J2220/4812Sorbents characterised by the starting material used for their preparation the starting material being of organic character
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/006Radioactive compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/08Seawater, e.g. for desalination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/138Water desalination using renewable energy
    • Y02A20/142Solar thermal; Photovoltaics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/20Controlling water pollution; Waste water treatment
    • Y02A20/208Off-grid powered water treatment
    • Y02A20/212Solar-powered wastewater sewage treatment, e.g. spray evaporation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Water Supply & Treatment (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Nanotechnology (AREA)
  • Geology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Water Treatment By Sorption (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

本发明公开了一种基于聚偕胺肟的Mxene膜吸附材料的制备方法及提铀方法。在一定温度和条件下,将原材料用HF处理;浸泡在DMSO溶液中并超声抽滤后形成Mxene膜;将Mxene膜浸泡在聚偕胺肟溶液中,浸泡结束后,真空抽滤掉聚偕胺肟溶液,纯水洗涤,随后烘干得偕胺肟化改性Mxene膜;平放在海绵上方表面,光照下将Mxene膜和海绵一同放入铀酰离子溶液中,海绵上方接触Mxene膜。本发明方法简单、原材料丰富、反应条件温和、耗能低,制备的材料吸附性能好。

Description

基于聚偕胺肟的Mxene膜吸附材料的制备方法及提铀方法
技术领域
本发明涉及材料制备及海水提铀领域,尤其涉及一种基于聚偕胺肟的Mxene膜吸附材料的制备方法及提铀方法。
背景技术
当今社会,核电站规模非常庞大,将近有四百多座核电站,相信未来核电站规模还会继续扩大。根据国际原子能协会报道,全世界核电站产出的电量占世界产能的13%,并且数十年后核能将会成为人类最依赖的能源形式。
但是,核能源现在说面临的最大的问题是:铀资源的短缺。陆地铀资源只有485万吨,仅仅供人类使用不到一个世纪;虽然海洋中铀的含量高达45亿吨,但由于海水水量庞大,使得铀的浓度极低只有3.3ppb,这就导致了海水提铀的效率低下,极大的限制了核工业的发展。
目前,海水提铀主要的方法有:膜过滤、溶剂提取、离子交换、吸附等。在众多的方法中,吸附法作为一种高效、制备简单、成本低的方法被广泛重视起来。而在众多的吸附材料中,偕胺肟基材料凭借其对铀酰离子的高亲和性及离子选择性、耐酸耐碱、使用寿命长等优点,成为当今主流的吸附材料。
公开号为CN108579709A的中国专利文献公开了一种用于海水提铀的多孔结构弹性复合材料制备方法,将偕胺肟化聚丙烯腈溶液与强碱混溶;将混合溶液加入到能够交联凝胶化的高分子材料溶液中;将多孔结构弹性材料浸没到混合溶液中,真空脱气泡;干燥;将干燥后的多孔结构弹性材料浸没于交联剂溶液中进行交联凝胶化;用清水漂洗,即得。本发明通过能够交联凝胶化的高分子材料水溶液进行交联凝胶化复合,提高了偕胺肟化聚丙烯腈在多孔结构弹性材料骨架上的包覆强度、改善材料柔性、力学稳定性和亲水性。
公开号为CN109847724A的中国专利文献公开了一种用于海水提铀的半互穿网络水凝胶薄膜材料的制备方法,先按一定质量比将聚丙烯偕胺肟、单体、光引发剂和交联剂溶解在碱性水溶液中获得前驱液,后将前驱液注入到模具中在紫外线或者太阳光下聚合反应制得。本制备方法简单且快速,成本低,通过在碱性条件下的低能耗和环保阳光聚合可用于大规模制造PAO半互穿网络水凝胶薄膜材料。该材料厚度为0.2mm,微级孔径均匀,具有高吸附效率、高选择性、优异的力学性能且可多次重复使用。
公开号为CN110846739A的中国专利文献公开了一种海水提铀用抗收缩抗菌纳米复合纤维材料的制备方法,按质量浓度为10-15%的甲氧基聚乙二醇-b-聚精氨酸二嵌段共聚物和质量浓度为18.5%的聚丙烯偕胺肟前体溶液共混纺丝制得海水提铀用抗收缩抗菌纳米复合纤维材料,本方法气纺工艺简单,无需复杂设备。所制备的纳米复合纤维材料不仅通过静电作用提高复合纤维强度,改善偕氨肟基纤维的收缩和降解,从而增强纤维在海水中提铀的稳定性和耐用性;且具有显著抗菌和抗生物膜活性,通过提升纤维吸附材料在海水提铀中的抗生物污损性能,增加吸附位点,从而提高铀吸附容量。
公开号为CN111530386A的中国专利文献公开了一种用于海水提铀的抗菌性偕胺肟气凝胶的制备方法,将质量比为8~12:8~12的壳聚糖和聚丙烯偕胺肟溶解在乙酸溶液中,搅拌加入戊二醛促进聚合物的交联,得前驱液,将前驱液注入模具中静置陈化、水洗、冷冻干燥,得抗菌性偕胺肟气凝胶。本发明的抗菌性偕胺肟气凝胶制备工艺简单、无需使用复杂昂贵的机械设备,使得气凝胶易批量制备、成本易控制。通过壳聚糖与偕胺肟的结合,使制得的气凝胶不但吸铀量高,且机械性能好,可以在海水中方便的回收,具有更长的使用寿命;其优异的抑菌抗污染性,避免了其活性位点被海洋微生物的占据,可提高其在海水中的作业效果。
已经报道的偕胺肟化改性吸附材料中,均没有增加吸附范围内的铀酰离子浓度的功能,即只能依靠材料自身的吸附性能,大大降低了这些材料在低浓度的铀酰离子的海水中的吸附效率。并且,这几种方法制备步骤多,反应复杂,耗能高而且某些原材料价格昂贵,使得无法投入到实际的应用当中。
发明内容
由于Mxene膜具有光热转换的功能,且转换效率接近100%,因此当Mxene膜吸收太阳光后,产生的热量足以把与膜接触的水分蒸发掉,达到增加所接触溶液浓度的目的;同时偕胺肟基与铀酰离子会发生多种相互作用(静电相互作用、络合作用),从而固定铀酰离子,达到吸附的目的。有鉴于此,本发明提供了一种步骤简单、经济可行、原料丰富、应用范围广的偕胺肟基Mxene膜吸附材料(Mxene-PAO)。
如图1所示,本发明采用的技术方案是:
一、一种基于聚偕胺肟的Mxene膜吸附材料的制备方法及提铀方法:
(1)在0~18℃温度和pH=4~10的条件下,将原材料用HF处理0.1~2小时以剥离其中的Al层;
(2)在10~60℃温度和pH=5~10的条件下,将(1)所得的原材料浸泡在DMSO溶液中并超声0.1~1小时抽滤后形成Mxene膜,即单层或多层的Mxene薄片;
(3)在20~40℃温度和pH=5~7的条件下,将(2)所得的Mxene膜浸泡在聚偕胺肟(PAO)溶液中1~12小时,浸泡结束后,在0.1~0.17MPa条件下,真空抽滤掉聚偕胺肟溶液,用纯水洗涤数次,随后烘干6小时,即得干燥的偕胺肟化改性Mxene膜(Mxene-PAO)。
本发明还在具体实施中,将Mxene膜平放在海绵上方表面,在光照下,将Mxene膜和海绵一同放入铀酰离子溶液中,即海绵下方接触溶液,海绵上方接触Mxene膜,以进行提铀测试。
所述的步骤(1)中所涉及的原材料为Ti3AlC2、炭黑、碳纳米管、石墨烯、纳米金、纳米铝、黑色二氧化钛、三氧化二钛、中空双金属等离子介孔纳米壳中的至少一种。
所述的步骤(1)中,HF浓度范围在0.1~1.4mol/L。
所述的步骤(2)中,DMSO浓度范围在1.4~14mol/L,超声的功率范围在70~99%。
所述的步骤(3)中,聚偕胺肟溶中的聚偕胺肟浓度范围为0.1~10mol/L。
二、一种基于聚偕胺肟的Mxene膜吸附材料,采用上述方法制备而成。
所制备的偕胺肟化改性Mxene膜表面负载其他的聚合物、功能基团等,使得其可以进一步优化固有的性能或者增加更多优异的性能。
三、一种基于聚偕胺肟的Mxene膜吸附材料的应用,其特征在于:
所制备的偕胺肟化改性Mxene膜吸附材料的应用领域包括在海水提铀、放射性海水处理、贵金属回收、环境修复、工业废水处理、海水淡化等应用。
将Mxene膜吸附材料平放在海绵上方表面,在光照下,将Mxene膜和海绵一同放入铀酰离子溶液中,即海绵下方接触溶液,海绵上方接触Mxene膜。
所述的光照强度范围在0.1~1Kw/m2。铀酰离子溶液浓度范围在1~32ppm。
本发明基于Ti3AlC2与HF预处理以及与DMSO反应制备Mxene膜,然后再通过真空抽滤的方法将PAO上的偕胺肟基接枝到Mxene膜表面及内部,进而使膜表面及内部均带有偕胺肟基;将膜洗涤并烘干;所得材料即为偕胺肟基Mxene膜吸附材料(Mxene-PAO)。通过控制制备Mxene膜的原材料的种类、PAO浓度及分子量、光照强度、铀酰离子浓度来调节Mxenen-PAO吸附材料的吸附性能。
本发明具有如下优点和有益效果:
所需要的原材料、基材种类丰富,来源范围广,成本低。同时,整个操作过程简单,反应条件(如,温度、PH、反应时间等)温和,耗能低。
此外,所制备的Mxene膜材料可以通过光热转化的方法将水蒸发进而使铀酰离子的浓度增加,使得提高了Mxene-PAO对铀酰离子的吸附效率,同时也为偕胺肟化改性的吸附材料的制备领域添加了新的制备方法。
用本方法制备的膜材料在海水提铀、放射性海水处理、回收贵金属、环境修复、工业废水处理、海水淡化等领域有着巨大的应用前景。
附图说明
图1是海水提铀装置图;
图2是使用不同原材料制备的Mxene-PAO对铀的吸附性能图;
图3是使用不同浓度的PAO制备出的Mxene-PAO对铀的吸附性能图;
图4是使用不同分子量的PAO制备出的Mxene-PAO对铀的吸附性能图;
图5是不同光照强度对铀的吸附性能图;
图6是不同铀酰离子溶液浓度对铀的吸附性能图。
具体实施方式
通过以下实施例对本发明做更详细的描述,但所述实施例不构成对本发明的限制。
本发明的实施例如下:
实施例1
选用Ti3AlC2为反应所需要的原材料。在温度为10℃的条件下,将0.1g Ti3AlC2加入到20mL浓度为0.1mol/L HF溶液中预处理0.5小时,预处理过程中,通过自动滴定系统不断滴加0.1mol/L NaOH溶液使pH维持在7;在温度为30℃的条件下,将预处理过的Ti3AlC2加入到60mL,pH=6,浓度为1.4mol/L的DMSO溶液中,并在超声功率在80%下,超声0.1小时;超声结束后,将Ti3AlC2取出烘干即得Mxene膜;在温度为20℃,pH=6的条件下,将Mxene膜浸泡在浓度为5mol/L,数均分子量为11万的PAO溶液中反应6小时;反应结束后,在真空度为0.17MPa的条件下,真空抽滤即得偕胺肟化改性的Mxene膜(Mxene-PAO)。
将干燥后的Mxene-PAO放置在海绵上方,将海绵与Mxene-PAO一同放入浓度为16ppm,pH=6,体积为2L的铀酰离子溶液中,即海绵上方为Mxene-PAO,海绵下方为铀酰离子溶液并在海绵正上方投以光照强度为1Kw/m2的光;吸附12小时后用ICP-MS测试溶液中铀酰离子的含量。经测试分析,Mxene-PAO对铀酰离子的吸附量为:1837.65mg/g。
实施例2~9
分别选用炭黑、碳纳米管、石墨烯、纳米金、纳米铝、黑色二氧化钛、三氧化二钛、中空双金属等离子介孔纳米壳作为原材料,其余条件同实例1。结果显示,以Ti3AlC2为原材料的Mxene-PAO膜的吸附性能最好(见图3)。
Figure BDA0002948806240000051
实施例10~14
PAO浓度分别为0.1mol/L、1mol/L、2.5mol/L、7.5mol/L、10mol/L,其余条件同实例1。结果显示,PAO浓度为7.5mol/L时吸附性能最好(见图4)。
测试 PAO浓度 铀吸附性能(mg/g)
实施例10 0.1mol/L 549.76
实施例11 1mol/L 795.23
实施例12 2.5mol/L 1505.69
实施例13 7.5mol/L 2196.34
实施例14 10mol/L 2039.71
实施例15~19
PAO的数均分子量分别为5万、7万、9万、11万、13万、15万,其余条件同实施例1。结果显示,PAO的数均分子量为11万时,吸附性能最佳(见图4)。
Figure BDA0002948806240000052
Figure BDA0002948806240000061
实施例20~23
分别将光照强度调节为0.1Kw/m2、0.2Kw/m2、0.4Kw/m2、0.8Kw/m2,其余条件同实施例1。结果显示,光照强度在1Kw/m2时,吸附性能最好(见图5)。
测试 光照强度 铀吸附性能(mg/g)
实施例20 0.1Kw/m<sup>2</sup> 638.37
实施例21 0.2Kw/m<sup>2</sup> 700.91
实施例22 0.4Kw/m<sup>2</sup> 1113.94
实施例23 0.8Kw/m<sup>2</sup> 1523.17
实施例24~27
分别将铀酰离子浓度调节为1ppm、4ppm、8ppm、32ppm,其余条件同实例1。结果显示,铀酰离子浓度为32ppm时,吸附性能最好(见图6)。
测试 铀酰离子浓度 铀吸附性能(mg/g)
实施例24 1ppm 1365.11
实施例25 4ppm 1596.34
实施例26 8ppm 1789.10
实施例27 32ppm 2130.69
由此实施可见,本发明方法简单、原材料丰富、反应条件温和、耗能低,制备的材料吸附性能好,在海水提铀、放射性海水处理、回收贵金属、环境修复、工业废水处理、海水淡化等领域有着巨大的应用前景。

Claims (8)

1.一种基于聚偕胺肟的Mxene膜吸附材料的制备方法,其特征在于:包括以下步骤:
(1)在0~18℃温度和pH=4~10的条件下,将原材料用HF处理0.1~2小时;
所述的步骤(1)中所涉及的原材料为Ti3AlC2、炭黑、碳纳米管、石墨烯、纳米金、纳米铝、黑色二氧化钛、三氧化二钛中的至少一种;
(2)在10~60℃温度和pH=5~10的条件下,将(1)所得的原材料浸泡在DMSO溶液中并超声0.1~1小时抽滤后形成Mxene膜;
(3)在20~40℃温度和pH=5~7的条件下,将(2)所得的Mxene膜浸泡在聚偕胺肟溶液中1~12小时,浸泡结束后,在0.1~0.17MPa条件下,真空抽滤掉聚偕胺肟溶液,用纯水洗涤数次,随后烘干6小时,即得偕胺肟化改性Mxene膜。
2.根据权利要求1所述的一种基于聚偕胺肟的Mxene膜吸附材料的制备方法,其特征在于:所述的步骤(1)中,HF浓度范围在0.1~1.4mol/L。
3.根据权利要求1所述的一种基于聚偕胺肟的Mxene膜吸附材料的制备方法,其特征在于:所述的步骤(2)中,DMSO浓度范围在1.4~14mol/L,超声的功率范围在70~99%。
4.根据权利要求1所述的一种基于聚偕胺肟的Mxene膜吸附材料的制备方法,其特征在于:所述的步骤(3)中,聚偕胺肟溶中的聚偕胺肟浓度范围为0.1~10mol/L。
5.一种基于聚偕胺肟的Mxene膜吸附材料,其特征在于:采用权利要求1-4任一所述方法制备而成。
6.根据权利要求5所述的一种基于聚偕胺肟的Mxene膜吸附材料的应用,其特征在于:在海水提铀、放射性海水处理、贵金属回收、环境修复、工业废水处理、海水淡化的应用。
7.根据权利要求5所述的一种基于聚偕胺肟的Mxene膜吸附材料的提铀方法,其特征在于:
将Mxene膜吸附材料平放在海绵上方表面,在光照下,将Mxene膜和海绵一同放入铀酰离子溶液中,即海绵下方接触溶液,海绵上方接触Mxene膜。
8.根据权利要求7所述的一种基于聚偕胺肟的Mxene膜吸附材料的提铀方法,其特征在于:所述的光照强度范围在0.1~1Kw/m2
CN202110203369.2A 2021-02-23 2021-02-23 基于聚偕胺肟的Mxene膜吸附材料的制备方法及提铀方法 Active CN112973653B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110203369.2A CN112973653B (zh) 2021-02-23 2021-02-23 基于聚偕胺肟的Mxene膜吸附材料的制备方法及提铀方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110203369.2A CN112973653B (zh) 2021-02-23 2021-02-23 基于聚偕胺肟的Mxene膜吸附材料的制备方法及提铀方法

Publications (2)

Publication Number Publication Date
CN112973653A CN112973653A (zh) 2021-06-18
CN112973653B true CN112973653B (zh) 2022-07-19

Family

ID=76349846

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110203369.2A Active CN112973653B (zh) 2021-02-23 2021-02-23 基于聚偕胺肟的Mxene膜吸附材料的制备方法及提铀方法

Country Status (1)

Country Link
CN (1) CN112973653B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113413776B (zh) * 2021-06-21 2022-11-25 东华理工大学 一种基于聚偕胺肟为界层的纳滤膜的制备方法
CN114606652B (zh) * 2022-02-17 2023-07-21 苏州美森无纺科技有限公司 一种光热调控型可高效油吸附擦拭布及其制备方法
CN115050586B (zh) * 2022-06-27 2024-04-12 陕西科技大学 一种MXene纳米片-黑曲霉菌炭化碳复合材料及其制备方法和应用
CN115364780B (zh) * 2022-07-20 2024-01-26 西南科技大学 衍生二氧化钛/还原氧化石墨烯复合气凝胶的制备及应用
CN115945174A (zh) * 2022-12-26 2023-04-11 西北师范大学 一种偕胺肟化磁性MXene基复合材料的制备及在铀酰吸附中的应用
CN116440862A (zh) * 2023-02-15 2023-07-18 浙江理工大学 仿“宣纸”结构的偕胺肟化MXene多孔纤维膜吸附材料的制备及提铀方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105304154A (zh) * 2014-07-03 2016-02-03 中国科学院宁波材料技术与工程研究所 二维过渡族金属碳化物纳米片作为放射性核素吸附剂的应用
CN111192703A (zh) * 2020-01-13 2020-05-22 西南科技大学 利用KGM-rGO海绵处理放射性废水的方法
CN111285359A (zh) * 2020-01-14 2020-06-16 武汉理工大学 一种单层/少层MXene二维材料的制备方法
CN111484644A (zh) * 2020-04-17 2020-08-04 东华理工大学 一种聚偕胺肟/石墨烯纳米带复合气凝胶制备及分离与富集铀的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105304154A (zh) * 2014-07-03 2016-02-03 中国科学院宁波材料技术与工程研究所 二维过渡族金属碳化物纳米片作为放射性核素吸附剂的应用
CN111192703A (zh) * 2020-01-13 2020-05-22 西南科技大学 利用KGM-rGO海绵处理放射性废水的方法
CN111285359A (zh) * 2020-01-14 2020-06-16 武汉理工大学 一种单层/少层MXene二维材料的制备方法
CN111484644A (zh) * 2020-04-17 2020-08-04 东华理工大学 一种聚偕胺肟/石墨烯纳米带复合气凝胶制备及分离与富集铀的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
功能化二维金属碳化物对放射性核素的吸附研究;张鹏程;《中国优秀博硕士学位论文全文数据库(硕士) 工程科技Ⅰ辑》;20210115(第01期);第9页最后1段,第10-11页第2.2节,第11页第2.2.5节 *

Also Published As

Publication number Publication date
CN112973653A (zh) 2021-06-18

Similar Documents

Publication Publication Date Title
CN112973653B (zh) 基于聚偕胺肟的Mxene膜吸附材料的制备方法及提铀方法
CN109174023B (zh) 一种纳米纤维素交联石墨烯/壳聚糖气凝胶及其制备方法、应用
CN107081078B (zh) 一种纳米结构复合超滤膜的制备方法
WO2017107658A1 (zh) 一种蒽醌功能化的聚偏氟乙烯膜及其制备方法与应用
CN111286068B (zh) 一种表面接枝两性离子制备亲水-疏水复合膜的方法
WO2018129859A1 (zh) 一种螯合微滤膜的制备方法、再生方法和应用
CN113019137B (zh) MXene@COF复合膜的制备及其应用
CN113600147A (zh) 一种重金属离子吸附纤维膜材料的制备方法
CN113600037A (zh) 一种具有吸附功能的可再生pvdf膜及其制备方法
CN112808244A (zh) 一种偕胺肟化吸附材料及其制备方法和应用
CN114230719B (zh) 一种冷等离子体制备的双重交联纤维素基水凝胶及其制备方法与应用
CN115055170A (zh) 一种具有高吸附性能的木材基改性纳米纤维素净水材料及其制备方法和应用
CN109110886B (zh) 一种用于电渗析处理氨氮废水的阳离子交换膜及制备方法
CN110124735A (zh) 一种亲水导电性水凝胶阴极催化膜及其制备方法和应用
CN108905647B (zh) 一种亲水性聚偏二氟乙烯微滤膜的制备方法
CN108159902B (zh) 一种螯合型聚丙烯腈中空纤维膜的制备方法
CN112225382A (zh) 一种废水中药品和个人护理品的去除方法
CN108126678B (zh) 一种可再生的纳米碳材料涂覆纤维吸附剂及其制备方法
CN112791598B (zh) 一种具有光热响应的玻璃纤维改性材料的制备方法及其应用
CN110026160B (zh) 一种弱碱型离子交换纤维的制备方法
CN112831063A (zh) 一种功能化纤维素接枝聚丙烯酸复合水凝胶的制法和应用
CN110064380B (zh) 一种氮/硫共掺杂的多孔纤维素吸附剂及制备方法与应用
CN111569668A (zh) 一种高水通量高韧性纳滤膜的制备方法
CN110559870A (zh) 一种功能化石墨烯/聚苯胺复合过滤膜及制备方法
CN114307685B (zh) 一种基于小分子醇自由基的聚酰胺复合膜高通量改性方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant