CN112791598B - 一种具有光热响应的玻璃纤维改性材料的制备方法及其应用 - Google Patents

一种具有光热响应的玻璃纤维改性材料的制备方法及其应用 Download PDF

Info

Publication number
CN112791598B
CN112791598B CN202011621850.5A CN202011621850A CN112791598B CN 112791598 B CN112791598 B CN 112791598B CN 202011621850 A CN202011621850 A CN 202011621850A CN 112791598 B CN112791598 B CN 112791598B
Authority
CN
China
Prior art keywords
glass fiber
modified material
water
photo
pyrrole monomer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011621850.5A
Other languages
English (en)
Other versions
CN112791598A (zh
Inventor
张旺
张书倩
袁洋
傅思齐
赵鑫坤
张荻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Jiaotong University
Original Assignee
Shanghai Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Jiaotong University filed Critical Shanghai Jiaotong University
Priority to CN202011621850.5A priority Critical patent/CN112791598B/zh
Publication of CN112791598A publication Critical patent/CN112791598A/zh
Application granted granted Critical
Publication of CN112791598B publication Critical patent/CN112791598B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/04Glass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0079Manufacture of membranes comprising organic and inorganic components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/58Other polymers having nitrogen in the main chain, with or without oxygen or carbon only
    • B01D71/62Polycondensates having nitrogen-containing heterocyclic rings in the main chain
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • C02F1/14Treatment of water, waste water, or sewage by heating by distillation or evaporation using solar energy
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/08Seawater, e.g. for desalination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/138Water desalination using renewable energy
    • Y02A20/142Solar thermal; Photovoltaics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/20Controlling water pollution; Waste water treatment
    • Y02A20/208Off-grid powered water treatment
    • Y02A20/212Solar-powered wastewater sewage treatment, e.g. spray evaporation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Hydrology & Water Resources (AREA)
  • Organic Chemistry (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Manufacturing & Machinery (AREA)
  • Reinforced Plastic Materials (AREA)
  • Laminated Bodies (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)

Abstract

本发明提供了一种具有光热响应的玻璃纤维改性材料的制备方法及其应用,涉及玻璃纤维材料的改性及其光热水蒸发应用技术领域。该方法包括如下步骤:S1、将玻璃纤维加热预处理后,浸渍于吡咯单体溶液中;S2、向步骤S1的吡咯单体溶液中加入FeCl3·6H2O的水溶液,搅拌混合均匀后反应,即得。本发明制备的玻璃纤维改性材料具有宽谱光吸收能力,从而具有一定的光热效应;同时,其光热水蒸发性能得到了较大的提升,在盐水中也可以保持稳定高速的蒸发速率。本发明操作简单,不需要基体导电,无需昂贵和复杂的制备仪器,且不会对周围环境造成不利影响,能够满足工业化生产的需求,具有较好的规模化制备应用前景。

Description

一种具有光热响应的玻璃纤维改性材料的制备方法及其应用
技术领域
本发明涉及玻璃纤维的改性方法及其光热水蒸发应用技术领域,尤其涉及一种具有光热响应的玻璃纤维改性材料的制备方法及其应用。
背景技术
随着我国经济社会的快速发展和人口增多水,水资源缺乏已成为制约经济社会发展的瓶颈之一。据统计,超过三分之一的世界人口面临着饮用水短缺的压力,而且预计到2025年这一数字将增长至三分之二。海水淡化技术通过去除盐分和固体杂质取得淡水成为淡水资源短缺问题的最佳解决途径之一,因此得到了人们持续的关注和研究。海水淡化常用的方法可以归为两大类:热法海水与淡化膜法海水淡化共同的缺点是能耗巨大、成本高,同时有二氧化碳(CO2)温室气体排放。直接利用太阳能进行光热海水淡化,一方面可以解决能耗问题,另一方面由于阳光免费、易得,光热海水淡化的成本将大幅度降低,并且由于装置和操作简单,光热海水淡化的设备对安装地区、尤其是硬件不发达地区包容性高,将具有良好的应用前景。
专利文献CN111072083A公开了一种海水蒸发淡化膜材料,包括支撑层以及设置于所述支撑层上的聚合物-纳米粒子复合薄膜层,所述聚合物-纳米粒子复合薄膜层包括聚合物薄膜层以及与所述聚合物薄膜层复合的纳米粒子。所述制备方法包括:将支撑层依次与氧化剂的溶液、聚合物材料溶液和纳米粒子材料溶液接触,反应获得海水蒸发淡化膜材料。但该方法较为复杂,需进行高分子的共聚以及后续修饰的步骤,且采用的聚合物材料溶液制备体系为具有毒性的有机溶剂体系,不利于环保。
发明内容
针对现有技术中的不足,本发明的目的是提供一种具有光热响应的玻璃纤维改性材料的制备方法和应用,通过形貌调控使具有光热响应的玻璃纤维改性材料能用于光热水蒸发。
本发明的目的是通过以下技术方案实现的:
本发明提供了一种具有光热响应的玻璃纤维改性材料的制备方法,包括如下步骤:
S1、将玻璃纤维材料加热预处理后,浸渍于吡咯单体溶液中;
S2、向步骤S1的吡咯单体溶液中加入FeCl3·6H2O的水溶液,搅拌混合均匀后反应,得具有光热响应的玻璃纤维改性材料。
优选地,步骤S1中,所述玻璃纤维材料在120-180℃下加热预处理3-5h;所述玻璃纤维材料包括玻璃纤维毡布、玻璃纤维织物中的至少一种。更优选玻璃纤维毡布。
优选地,步骤S1中,所述吡咯单体溶液的配制方法为:将吡咯单体滴加于溶剂中,搅拌混合均匀,即得;所述溶剂为水或水和乙醇的混合溶液。
优选地,所述吡咯单体与溶剂的体积比为0.55:100。
优选地,所述水和乙醇的混合体积比为25:75~100:0。更优选体积比为50:50。
优选地,所述浸渍时间为30min-3h。
优选地,步骤S2中,所述FeCl3·6H2O的水溶液的配制方法为:将FeCl3·6H2O搅拌溶解于二次蒸馏水中,即得;
所述FeCl3·6H2O与二次蒸馏水的质量体积比为5-10g:100ml。
优选地,步骤S2中,所述吡咯单体溶液与FeCl3·6H2O的水溶液的体积比为1:1,反应时间为2-5h。
优选地,步骤S2中,所述具有光热响应的玻璃纤维改性材料的蒸发量为1.5kg/m2/h以上,蒸发效率为90.4%以上。
本发明还提供了一种根据前述方法制备的具有光热响应的玻璃纤维改性材料在制备海水蒸发淡化膜材料中的应用。
本发明首次将玻璃纤维作为海水蒸发淡化膜的基材,所需反应物简单,制备方法简单;且采用的制备体系为水体系或者水-乙醇体系,更为环保。
与现有技术相比,本发明具有如下的有益效果:
第一,本发明使用化学氧化方法制备,相对于其他方法如电镀法、化学气相沉积法,化学氧化法操作简单,不需要基体导电,无需昂贵和复杂的制备仪器,且不会对周围环境造成不利影响,能够满足工业化生产的需求,具有较好的规模化制备应用前景。
第二,由于本发明制备的具有光热响应的玻璃纤维改性材料在250nm-2500nm波长范围内具有较强的光吸收性能,能有效利用可见光及近红外波段的光热效应,光热水蒸发性能得到提升。
第三,本发明通过改变吡咯溶液溶剂中配制水和乙醇的混合溶液中水和乙醇的体积比,调控聚吡咯的表面形貌,从而提高具有光热响应的玻璃纤维改性材料的光吸收特性。前驱体溶剂全部为水时,吡咯均匀地吸附到玻璃纤维的表面,然后被氧化剂氧化成均匀的聚吡咯膜,样品的表面变得更粗糙。当溶剂中加入乙醇时,乙醇分子与玻璃纤维的结合力比水弱,与吡咯的结合力比水强。因此,吡咯在玻璃纤维的表面上参差排列,因此氧化后的表面变得粗糙。粗糙的表面利于增加光的散射,增强光的吸收。而当乙醇含量继续增加,吡咯分子难以附着在玻璃纤维的表面上,氧化后的聚吡咯颗粒不能完全覆盖在玻璃纤维表面,从而吸收降低。由此得到了光吸收性能最好的前驱体溶剂中水和乙醇的体积比。
第四,本发明制备的具有光热响应的玻璃纤维改性材料的光热水蒸发性能得到了较大的提升,在盐水中也可以保持稳定高速的蒸发速率。该具有光热响应的玻璃纤维改性材料的在纯水中蒸发量为1.5kg/m2/h以上,蒸发效率为90.4%以上;所述海水蒸发淡化膜材料对海水中离子的截留率在99.5%以上,所述离子包括Na+、Mg2+、Ca2+、K+、B3+中的任意一种或两种以上的组合;所述海水蒸发淡化膜材料对有机染料的几乎完全去除。
附图说明
通过阅读参照以下附图对非限制性实施例所作的详细描述,本发明的其它特征、目的和优点将会变得更明显:
图1是本发明制备的具有光热响应的玻璃纤维改性材料的微观形貌图;
图2是本发明实施例1、2、3、4所得产物及对比原始玻璃纤维材料在250-2500nm光波段的吸收光谱图;
图3是本发明实施例3采用的原始玻璃纤维材料和所制备的具有光热响应的玻璃纤维改性材料的图片;其中图3a为原始玻璃纤维材料;图3b为玻璃纤维改性材料;
图4是本发明实施例3所制备的海水蒸发淡化膜材料经过不同条件处理后的机械性能测试结果示意图;
图5是本发明实施例3原始玻璃纤维材料和所制备的具有光热响应的玻璃纤维改性材料用于海水淡化实验的纯水蒸发量结果示意图;
图6是本发明实施例3原始玻璃纤维材料和所制备的具有光热响应的玻璃纤维改性材料用于海水淡化实验的3.5%盐水蒸发量结果示意图;
图7是本发明实施例3所制备的具有光热响应的玻璃纤维改性材料用于海水淡化实验;其中图7a为不同浓度的离子的截留率示意图;图7b为不同有机染料的去除效果。
具体实施方式
下面结合具体实施例对本发明进行详细说明。以下实施例将有助于本领域的技术人员进一步理解本发明,但不以任何形式限制本发明。应当指出的是,对本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进。这些都属于本发明的保护范围。
以下实施例提供了一种具有光热响应的玻璃纤维改性材料的制备方法,包括如下步骤:
S1、将玻璃纤维材料加热预处理后,浸渍于吡咯单体溶液中;
S2、向步骤S1的吡咯单体溶液中加入FeCl3·6H2O的水溶液,搅拌混合均匀后反应,得具有光热响应的玻璃纤维改性材料。
步骤S1中,所述玻璃纤维材料在120-180℃下加热预处理3-5h;所述玻璃纤维材料包括玻璃纤维毡布、玻璃纤维织物中的至少一种。
步骤S1中,所述吡咯单体溶液的配制方法为:将吡咯单体滴加于溶剂中,搅拌混合均匀,即得;所述溶剂为水或水和乙醇的混合溶液。
所述吡咯单体与溶剂的体积比为0.55:100。
所述水和乙醇的混合体积比为25:75~100:0。
所述浸渍时间为30min-3h。
步骤S2中,所述FeCl3·6H2O的水溶液的配制方法为:将FeCl3·6H2O搅拌溶解于二次蒸馏水中,即得;
所述FeCl3·6H2O与二次蒸馏水的质量体积比为5-10g:100ml。
步骤S2中,所述吡咯单体溶液与FeCl3·6H2O的水溶液的体积比为1:1,反应时间为2-5h。
在以上条件下,都能制备得到具有光热响应的玻璃纤维改性材料。
实施例1
本实施例以吡咯前驱体溶液中,溶剂为100ml水为例对本发明的技术方案进行详细说明。
本实施例的具有光热响应的玻璃纤维改性材料的制备方法,包括以下步骤:
A.将玻璃纤维毡布在烘箱中120℃处理3h;
B.取吡咯单体0.55ml滴加于100ml水中,搅拌混合均匀,得到吡咯单体溶液;
C.将原始玻璃纤维材料浸渍于步骤B制备的均匀吡咯单体溶液中30min;
D.配制FeCl3·6H2O的水溶液,取8.65g FeCl3·6H2O,搅拌溶解于100ml去离子水中。
E.向步骤B处理后的吡咯单体溶液中滴加入FeCl3·6H2O的水溶液100ml,搅拌混合均匀后反应2h即得到黑色的聚吡咯-玻璃纤维毡布。
F.将聚吡咯-玻璃纤维毡布用去离子水和乙醇清洗多次至水中无残余黑色颗粒,于室温中晾干,命名为PPy/GFF-100。
上述所得具有光热响应的玻璃纤维改性材料PPy/GFF-100的微观形貌图如图1a所示,聚吡咯均匀地覆盖在玻璃纤维表面层,表面光滑。
图2为PPy/GFF-100在250nm-2500nm波长范围内的光吸收图谱,可以发现,原始玻璃纤维毡布(图2所示的Pristine GFF)只在紫外光(<400nm)波长范围内具有很弱的光吸收,在可见光及红外光区域内几乎不具备光吸收能力。本发明制得的PPy/GFF-100在全光谱范围内具有很强的光吸收,吸收率达96.6%,极大提高了太阳能的利用率,为光热水蒸发提供保障。
实施例2
本实施例以吡咯前驱体溶液中,溶剂为75ml水和25ml乙醇为例对本发明的技术方案进行详细说明。
本实施例的具有光热响应的玻璃纤维改性材料的制备方法,包括以下步骤:
A.将玻璃纤维毡布在烘箱中120℃处理3h;
B.配制75ml水和25ml乙醇的混合溶液为溶剂;
C.取吡咯单体0.55ml滴加于溶剂中,搅拌混合均匀,得到吡咯单体溶液;
D.将原始玻璃纤维材料浸渍于步骤C制备的均匀吡咯单体溶液中30min;
E.配制FeCl3·6H2O的水溶液,取8.65g FeCl3·6H2O,搅拌溶解于100ml去离子水中。
F.向步骤C处理后的吡咯单体溶液中滴加入FeCl3·6H2O的水溶液100ml,搅拌混合均匀后反应2h即得到黑色的聚吡咯-玻璃纤维毡布。
G.将聚吡咯-玻璃纤维毡布用去离子水和乙醇清洗多次至水中无残余黑色颗粒,于室温中晾干,命名为PPy/GFF-75。
上述所得具有光热响应的玻璃纤维改性材料PPy/GFF-75的微观形貌图如图1b所示,聚吡咯均匀地覆盖在玻璃纤维表面层,表面和PPy/GFF-100相比稍显粗糙。
图2为PPy/GFF-75在250nm-2500nm波长范围内的光吸收图谱,可以发现,原始玻璃纤维毡布(图2所示的Pristine GFF)只在紫外光(<400nm)波长范围内具有很弱的光吸收,在可见光及红外光区域内几乎不具备光吸收能力。本发明制得的PPy/GFF-75在全光谱范围内具有很强的光吸收,吸收率达97.0%,高于PPy/GFF-100,极大提高了太阳能的利用率,为光热水蒸发提供保障。
实施例3
本实施例以吡咯前驱体溶液中,溶剂为50ml水和50ml乙醇为例对本发明的技术方案进行详细说明。
本实施例的具有光热响应的玻璃纤维改性材料的制备方法,包括以下步骤:
A.将玻璃纤维毡布在烘箱中120℃处理3h;
B.配制50ml水和50ml乙醇的混合溶液为溶剂;
C.取吡咯单体0.55ml滴加于溶剂中,搅拌混合均匀,得到吡咯单体溶液;
D.将原始玻璃纤维材料浸渍于步骤C制备的均匀吡咯单体溶液中30min;
E.配制FeCl3·6H2O的水溶液,取8.65g FeCl3·6H2O,搅拌溶解于100ml去离子水中。
F.向步骤C处理后的吡咯单体溶液中滴加入FeCl3·6H2O的水溶液100ml,搅拌混合均匀后反应2h即得到黑色的聚吡咯-玻璃纤维毡布。
G.将聚吡咯-玻璃纤维毡布用去离子水和乙醇清洗多次至水中无残余黑色颗粒,于室温中晾干,命名为PPy/GFF-50。
上述所得具有光热响应的玻璃纤维改性材料PPy/GFF-50的微观形貌图如图1c所示,聚吡咯均匀地覆盖在玻璃纤维表面层,表面比PPy/GFF-100和PPy/GFF-75相比稍显粗糙。随着乙醇含量在溶剂中的增加,样品表面逐渐粗糙。
图2为PPy/GFF-50在250nm-2500nm波长范围内的光吸收图谱,可以发现,原始玻璃纤维毡布(图2所示的Pristine GFF)只在紫外光(<400nm)波长范围内具有很弱的光吸收,在可见光及红外光区域内几乎不具备光吸收能力。本发明制得的PPy/GFF-50在全光谱范围内具有很强的光吸收,吸收率达97.4%,高于PPy/GFF-100和PPy/GFF-75,极大提高了太阳能的利用率,为光热水蒸发提供保障。
图3为原始玻璃纤维毡布(图3a)和所制备的PPy/GFF-50(图3b)量产的照片,说明其能够满足工业化生产的需求,具有较好的规模化制备应用前景。
图4为PPy/GFF-50分别经过超声2h,在pH为1和pH为14的溶液中浸泡48h后的效果,仍能保持样品完整无损坏,机械性能良好。
图5是原始玻璃纤维材料(Pristine GFF)和所制备的具有光热响应的玻璃纤维改性材料(PPy/GFF-50)用于海水淡化实验的蒸发量结果示意图。PPy/GFF-50蒸发量远高于Pristine GFF,蒸发量为1.5kg/m2/h,蒸发效率为90.4%;
图6是所制备的具有光热响应的玻璃纤维改性材料用于海水淡化实验的3.5%盐水蒸发量结果示意图。蒸发量为1.47kg/m2/h,蒸发效率为88.2%,在60h连续工作下无盐析出在材料表面,蒸发速率保持稳定。
图7a是所制备的PPy/GFF-50用于海水淡化实验,对海水中离子的截留率在99.5%以上,所述离子包括Na+、Mg2+、Ca2+、K+、B3+
图7b是所制备的PPy/GFF-50用于海水淡化实验,对于有机染料甲基橙和亚甲基蓝几乎完全去除。
实施例4
本实施例以吡咯前驱体溶液中,溶剂为25ml水和75ml乙醇为例对本发明的技术方案进行详细说明。
本实施例的具有光热响应的玻璃纤维改性材料的制备方法,包括以下步骤:
A.将玻璃纤维毡布在烘箱中120℃处理3h;
B.配制25ml水和75ml乙醇的混合溶液为溶剂;
C.取吡咯单体0.55ml滴加于溶剂中,搅拌混合均匀,得到吡咯单体溶液;
D.将原始玻璃纤维材料浸渍于步骤A制备的均匀吡咯单体溶液中30min;
E.配制FeCl3·6H2O的水溶液,取8.65g FeCl3·6H2O,搅拌溶解于100ml去离子水中。
F.向吡咯单体溶液中滴加入FeCl3·6H2O的水溶液100ml,搅拌混合均匀后反应2h即得到黑色的聚吡咯-玻璃纤维毡布。
G.将聚吡咯-玻璃纤维毡布用去离子水和乙醇清洗多次至水中无残余黑色颗粒,于室温中晾干,命名为PPy/GFF-25。
上述所得具有光热响应的玻璃纤维改性材料PPy/GFF-25的微观形貌图如图1d所示,聚吡咯均匀地覆盖在玻璃纤维表面层,表面较为粗糙,但是开始有聚吡咯颗粒脱离玻璃纤维基体表面。
图2为PPy/GFF-25在250nm-2500nm波长范围内的光吸收图谱,可以发现,原始玻璃纤维毡布(图2所示的Pristine GFF)只在紫外光(<400nm)波长范围内具有很弱的光吸收,在可见光及红外光区域内几乎不具备光吸收能力。本发明制得的PPy/GFF-25在全光谱范围内具有较强的光吸收,吸收率达95.5%,但是低于PPy/GFF-50,表明了吸收率最高的样品为PPy/GFF-50。
上述的对实施例的描述是为便于该技术领域的普通技术人员能理解和使用发明。熟悉本领域技术的人员显然可以容易地对这些实施例做出各种修改,并把在此说明的一般原理应用到其他实施例中而不必经过创造性的劳动。因此,本发明不限于上述实施例,本领域技术人员根据本发明的揭示,不脱离本发明范畴所做出的改进和修改都应该在本发明的保护范围之内。

Claims (7)

1.一种具有光热响应的玻璃纤维改性材料的制备方法,其特征在于,包括如下步骤:
S1、将玻璃纤维材料加热预处理后,浸渍于吡咯单体溶液中;
S2、向步骤S1的吡咯单体溶液中加入FeCl3·6H2O的水溶液,搅拌混合均匀后反应,得具有光热响应的玻璃纤维改性材料;
步骤S1中,所述玻璃纤维材料在120-180℃下加热预处理3-5h;所述玻璃纤维材料包括玻璃纤维毡布、玻璃纤维织物中的至少一种;
步骤S1中,所述吡咯单体溶液的配制方法为:将吡咯单体滴加于溶剂中,搅拌混合均匀,即得;所述溶剂为水和乙醇的混合溶液;
所述水和乙醇的混合体积比为25:75~100:0。
2.根据权利要求1所述的具有光热响应的玻璃纤维改性材料的制备方法,其特征在于,所述吡咯单体与溶剂的体积比为0.55:100。
3.根据权利要求1所述的具有光热响应的玻璃纤维改性材料的制备方法,其特征在于,所述浸渍时间为30min-3h。
4.根据权利要求1所述的具有光热响应的玻璃纤维改性材料的制备方法,其特征在于,步骤S2中,所述FeCl3·6H2O的水溶液的配制方法为:将FeCl3·6H2O搅拌溶解于二次蒸馏水中,即得;
所述FeCl3·6H2O与二次蒸馏水的质量体积比为5-10g:100ml。
5.根据权利要求1所述的具有光热响应的玻璃纤维改性材料的制备方法,其特征在于,步骤S2中,所述吡咯单体溶液与FeCl3·6H2O的水溶液的体积比为1:1,反应时间为2-5h。
6.根据权利要求1所述的具有光热响应的玻璃纤维改性材料的制备方法,其特征在于,步骤S2中,所述具有光热响应的玻璃纤维改性材料的蒸发量为1.5kg/m2/h以上,蒸发效率为90.4%以上。
7.一种根据权利要求1-6任一项所述方法制备的具有光热响应的玻璃纤维改性材料在制备海水蒸发淡化膜材料中的应用。
CN202011621850.5A 2020-12-30 2020-12-30 一种具有光热响应的玻璃纤维改性材料的制备方法及其应用 Active CN112791598B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011621850.5A CN112791598B (zh) 2020-12-30 2020-12-30 一种具有光热响应的玻璃纤维改性材料的制备方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011621850.5A CN112791598B (zh) 2020-12-30 2020-12-30 一种具有光热响应的玻璃纤维改性材料的制备方法及其应用

Publications (2)

Publication Number Publication Date
CN112791598A CN112791598A (zh) 2021-05-14
CN112791598B true CN112791598B (zh) 2022-03-25

Family

ID=75805064

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011621850.5A Active CN112791598B (zh) 2020-12-30 2020-12-30 一种具有光热响应的玻璃纤维改性材料的制备方法及其应用

Country Status (1)

Country Link
CN (1) CN112791598B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114409003A (zh) * 2022-01-29 2022-04-29 东莞理工学院 一种太阳能驱动的盐提取蒸发器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104613659A (zh) * 2015-01-28 2015-05-13 上海交通大学 一种光热转换和热管效应相结合的太阳能光热设备
CN107829330A (zh) * 2017-11-17 2018-03-23 哈尔滨工业大学 一种光热蒸馏膜的制备方法及含有该光热蒸馏膜的高效太阳能脱盐装置
CN108569811A (zh) * 2018-04-26 2018-09-25 清华大学 基于光热转换材料利用太阳能进行污水净化的装置
CN109850973A (zh) * 2019-04-04 2019-06-07 南京大学 一种海水淡化与污水处理装置及其制备方法
CN110240213A (zh) * 2018-03-09 2019-09-17 中国科学院青岛生物能源与过程研究所 一种具有卷筒状结构的高效光热转化材料及其制备方法和应用
CN110747692A (zh) * 2018-07-24 2020-02-04 中国科学院青岛生物能源与过程研究所 一种聚吡咯基光热转化薄膜及其制备方法和应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180221829A1 (en) * 2017-02-04 2018-08-09 The Texas A&M University System In-situ solar-to-heat coating for drinking water purification, seawater desalination, and wastewater treatment

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104613659A (zh) * 2015-01-28 2015-05-13 上海交通大学 一种光热转换和热管效应相结合的太阳能光热设备
CN107829330A (zh) * 2017-11-17 2018-03-23 哈尔滨工业大学 一种光热蒸馏膜的制备方法及含有该光热蒸馏膜的高效太阳能脱盐装置
CN110240213A (zh) * 2018-03-09 2019-09-17 中国科学院青岛生物能源与过程研究所 一种具有卷筒状结构的高效光热转化材料及其制备方法和应用
CN108569811A (zh) * 2018-04-26 2018-09-25 清华大学 基于光热转换材料利用太阳能进行污水净化的装置
CN110747692A (zh) * 2018-07-24 2020-02-04 中国科学院青岛生物能源与过程研究所 一种聚吡咯基光热转化薄膜及其制备方法和应用
CN109850973A (zh) * 2019-04-04 2019-06-07 南京大学 一种海水淡化与污水处理装置及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
纳米过渡金属氧族化合物的太阳能光热蒸汽转化研究;常宇虹;《中国优秀博硕士学位论文全文数据库(博士) 工程科技Ⅰ辑》;20190915;B020-63 *

Also Published As

Publication number Publication date
CN112791598A (zh) 2021-05-14

Similar Documents

Publication Publication Date Title
Cai et al. Cationic modification of ramie fibers in liquid ammonia
WO2019213999A1 (zh) 一种污/废水处理用微米级无机玄武岩纤维载体表面改性方法
CN104854034B (zh) 在液体基质中的污染物的去除中使用的材料
CN113527828B (zh) 一种两性聚电解质光热水凝胶、其制备和应用
CN112064363B (zh) 一种聚苯胺/MXene复合织物的制备方法及其在印染废水处理中的应用
CN110003509B (zh) 一种具有光热转化功能的石墨烯/纳米纤维杂化凝胶膜的制备方法
CN112973653B (zh) 基于聚偕胺肟的Mxene膜吸附材料的制备方法及提铀方法
CN106378108A (zh) 一种纳米纤维素基重金属吸附材料的制备方法
Gan et al. UV-filtering cellulose nanocrystal/carbon quantum dot composite films for light conversion in glass windows
CN112791598B (zh) 一种具有光热响应的玻璃纤维改性材料的制备方法及其应用
CN110433671B (zh) 一种可见光诱导自清洁碳纤维膜的制备方法及其用途
CN114196066A (zh) 一种热响应型智能海绵及其制备方法和应用
Qiao et al. Fabrication of monopile polymer foams via rotating gas foaming: hybrid applications in solar‐powered interfacial evaporation and water remediation
CN105153456A (zh) 一种具有湿度响应变色特性的光子晶体材料及其制备方法
CN114560701A (zh) 铋基光热转换纳米纤维材料及其制备方法
Sun et al. Adsorption efficiency of ordered mesoporous carboxyl-functionalized tube bundles in functional wood toward heavy metal ions: Optimization, performance and chemiluminescence reuse after adsorption
CN112452165A (zh) 一种Ag/AgBr/AgVO3复合纳米纤维过滤膜及其制备方法和应用
CN112452310B (zh) 一种氮掺杂碳吸附剂及其制备方法和对有机染料的吸附应用
CN114163663A (zh) 一种功能化聚乙烯醇-聚乙二醇双网络水凝胶和合成工艺
Maity et al. Polypyrrole coated textiles as photothermal material for interfacial solar evaporation
Li et al. Graphene oxide composite membrane accelerates organic pollutant degradation by Shewanella bacteria
Panhwar et al. Rapid and high adsorption of methylene blue dye onto graphene coated nonwoven fabric using vacuum infusion coating
Ren et al. Fabrication of sandwich structure membrane and its performance for photocatalytic reduction of Cr (VI)
Chen et al. Covalently doping polyaniline-based photothermal fabric for continuous recovery of salt and freshwater from seawater via solar-driven interfacial evaporation
CN116285469B (zh) 一种蛋白质基超黑吸光涂层材料及其光热转化应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant