WO2019213999A1 - 一种污/废水处理用微米级无机玄武岩纤维载体表面改性方法 - Google Patents

一种污/废水处理用微米级无机玄武岩纤维载体表面改性方法 Download PDF

Info

Publication number
WO2019213999A1
WO2019213999A1 PCT/CN2018/088939 CN2018088939W WO2019213999A1 WO 2019213999 A1 WO2019213999 A1 WO 2019213999A1 CN 2018088939 W CN2018088939 W CN 2018088939W WO 2019213999 A1 WO2019213999 A1 WO 2019213999A1
Authority
WO
WIPO (PCT)
Prior art keywords
basalt fiber
sewage
micron
carrier
wastewater treatment
Prior art date
Application number
PCT/CN2018/088939
Other languages
English (en)
French (fr)
Inventor
吴智仁
张晓颖
罗志军
韦静
李姗蔚
周向同
荣新山
Original Assignee
江苏大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏大学 filed Critical 江苏大学
Publication of WO2019213999A1 publication Critical patent/WO2019213999A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C25/00Surface treatment of fibres or filaments made from glass, minerals or slags
    • C03C25/10Coating
    • C03C25/24Coatings containing organic materials
    • C03C25/40Organo-silicon compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/34Biological treatment of water, waste water, or sewage characterised by the microorganisms used
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C25/00Surface treatment of fibres or filaments made from glass, minerals or slags
    • C03C25/10Coating
    • C03C25/465Coatings containing composite materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Definitions

  • the invention belongs to the technical field of sewage/wastewater treatment biofilm carrier, and relates to the modification of micron-scale inorganic basalt fiber carrier, in particular to a method for surface modification of micro-scale inorganic basalt fiber carrier for sewage/wastewater treatment.
  • the biofilm method has the advantages of small footprint, large biomass, and diverse biological species, and is widely used in sewage/wastewater treatment processes.
  • the biofilm carrier is the core of the biofilm process and directly affects the effectiveness of the wastewater/wastewater treatment process.
  • the amount of microbial adsorption on the surface of the biofilm carrier and the rate of formation of the biofilm are closely related to the material of the carrier.
  • the hydrophilicity, surface potential and charge of the surface of the material have an important correlation with the adhesion and biological activity of the bacteria. Since the bacterial cell membrane contains a large number of functional groups such as carboxyl groups and phosphate groups, most of the bacteria in the biofilm exhibit a negative potential under neutral conditions.
  • the traditional carrier material also exhibits a negative potential, so the interaction barrier between the carrier and the microorganism is higher, and the microorganism can only adsorb on the surface of the carrier only by overcoming the barrier barrier of the surface.
  • basalt fiber BF
  • the Chinese patent "A Biological Carrier for Purifying Water Body” CN104176822A reveals that basalt fiber can be used as a biofilm carrier material for water purification, and has the advantages of long service life, large specific surface area, and high utilization efficiency of fiber filament.
  • the object of the present invention is to overcome the deficiencies of the existing BF carrier technology, and obtain a hydrophilic/electrophilic micron-sized inorganic basalt fiber carrier material by surface modification of the BF carrier material. It can reduce the interaction barrier with microorganisms, improve its bio-affinity and microbial adhesion, and realize the rapid film-hanging of BF carrier materials.
  • a method for surface modification of a micron-sized inorganic basalt fiber carrier for sewage/wastewater treatment comprising the following steps:
  • Pretreatment Soxhlet extraction method, the solvent is petroleum ether or acetone, the extraction temperature is 65-80 ° C, the extraction time is 24-48 h, and the original infiltrated coating on the surface of the commercially available basalt fiber is removed; Soaked in a dilute alkali solution, soaked at 30 to 45 ° C for 0.5 to 2 h, the temperature is preferably 40 ° C, and the time is preferably 1 h; then the alkali-etched fiber is immersed in an aqueous solution of hydrogen peroxide for activation, soaking time is 1 to 3 h, preferably 2 h. , the immersion temperature is 100-140 ° C, preferably 125 ° C, to obtain pre-treated basalt fiber;
  • the basalt fiber after spraying or infiltration is dried at 60-80 ° C, and the drying temperature is preferably 75 ° C.
  • the surface of the basalt fiber after activation has a large amount of hydroxyl groups.
  • the hydroxyl group is connected to the coupling agent in the coating layer to graft the coating onto the surface of the basalt fiber to obtain a stable micron-sized inorganic basalt fiber carrier for sewage/wastewater treatment.
  • the dilute alkali solution in the step (1) is any one of NaOH and KOH solutions, preferably a NaOH solution, and the concentration is 0.5 to 2 mol/L, preferably 1 mol/L; The concentration is 30%.
  • the hydrophilic cationic reagent in the step (2) is a cationic reagent such as an amine salt or a quaternary ammonium salt having a hydrophilic group, such as cationic polyacrylamide (CPAM), Hexyltrimethylammonium chloride (CTAC) or cetyltrimethylammonium bromide (CTAB), preferably CTAC, preferably having a mass fraction of 0.50%;
  • a cationic reagent such as an amine salt or a quaternary ammonium salt having a hydrophilic group, such as cationic polyacrylamide (CPAM), Hexyltrimethylammonium chloride (CTAC) or cetyltrimethylammonium bromide (CTAB), preferably CTAC, preferably having a mass fraction of 0.50%;
  • CPAM cationic polyacrylamide
  • CTAC Hexyltrimethylammonium chloride
  • CTAB cetyltrimethylammonium bromide
  • the binder is an aqueous polyurethane emulsion or an epoxy resin emulsion, preferably an epoxy resin, preferably having a mass fraction of 5.00%;
  • the coupling agent is a silane coupling agent, preferably ⁇ -methacryloxypropyltrimethoxysilane (KH-570), and the mass fraction is preferably 0.80%.
  • the binder is an organic resin emulsion, and in addition to having good transparency and stability, the mechanical properties of the basalt fiber can be improved;
  • the hydrophilic cationic reagent contains a weak positive Electrolytic hydrophilic groups, microorganisms are more likely to adhere to the surface of the modified basalt fiber carrier, greatly shortening the start-up time of the bioreactor. Therefore, the hydrophilic/electrophilic micro-scale inorganic basalt fiber carrier material prepared by the method of the invention has excellent mechanical properties, good bio-affinity, fast film-hanging speed, and good sewage/wastewater treatment effect.
  • micron-sized inorganic basalt fiber is commercially available, Jiangsu Greenwood Valley New Material Technology Development Co., Ltd.; NaOH, KOH, analytical pure, Sinopharm Chemical Reagent Co., Ltd.; H 2 O 2 aqueous solution, analytical pure, Sinopharm Group Chemical Reagent Co., Ltd.; Waterborne Epoxy Resin Emulsion (BH-652), Dongguan Guangtong Chemical Products Co., Ltd.; Waterborne Polyurethane Emulsion (WPUA), Guangdong Yuemei Chemical Co., Ltd.; Silane Coupling Agent, Analytical Pure, Nanjing Quanxi Chemical Co., Ltd.
  • cationic polyacrylamide analytical grade, Tianjin Guangfu Fine Chemical Research Institute, cetyltrimethylammonium chloride (CTAC), cetyltrimethylammonium bromide (CTAB), analytical grade , Shandong Yousuo Chemical Technology Co., Ltd.
  • the invention adopts Soxhlet extraction to remove the original coating on the surface of inorganic micron-sized basalt fiber, and uses surface modification of inorganic micron-sized basalt fiber carrier by dilute alkali etching, hydrogen peroxide activation and grafting of hydrophilic cationic polymer to make basalt
  • the fiber carrier material has closer to the ideal surface characteristics (hydrophilic and has a weak positive potential), reduces the interaction barrier between the carrier and the microorganism, and improves the biological affinity of the micron-sized inorganic basalt fiber, and the microorganism is more likely to adhere to the surface of the carrier.
  • the basalt fiber carrier is loaded with more biomass, which encourages more microorganisms to participate in the purification process of sewage/wastewater and improve the efficiency of water purification.
  • the method of the invention is simple and easy to popularize, and the hydrophilic/electrophilic inorganic micron-sized basalt fiber carrier material can be applied to sewage/wastewater treatment, and is suitable for industrial production.
  • Example 1 is a graph showing the effect of the basalt fiber before modification in Example 3, wherein a is BF and b is MBF-3.
  • Example 2 is a diagram showing the effect of the modified basalt fiber in Example 3, wherein a is BF and b is MBF-3.
  • the micron-sized inorganic basalt fiber is placed in a Soxhlet extractor, the solvent is acetone, the siphon is controlled once for 30 minutes, the reaction time is 24h, the original coating on the surface of the basalt fiber is removed; the naked wire is immersed in 1mol/L NaOH In the solution, immersed at 30 ° C for 0.5 h to obtain alkali-etched basalt fiber; the alkali-etched basalt fiber was placed in a 30% H 2 O 2 solution, and immersed at 100 ° C for 1 h to obtain activated basalt fiber;
  • Basalt fiber carrier (MBF-1).
  • the micron-sized inorganic basalt fiber is placed in the Soxhlet extractor, the solvent is petroleum ether, the siphon is controlled once for 30 minutes, the reaction time is 48h, and the original coating on the surface of the basalt fiber is removed; the bare wire is placed at 0.5mol/L.
  • the KOH solution was immersed at 40 ° C for 1 h to obtain alkali-etched basalt fiber; the alkali-etched basalt fiber was placed in a 30% H 2 O 2 solution and immersed at 120 ° C for 2 h to obtain activation.
  • the micron-sized inorganic basalt fiber is placed in the Soxhlet extractor, the solvent is acetone, the siphon is controlled once for 30 minutes, the reaction time is 24h, the original coating on the surface of the basalt fiber is removed; the basalt fiber is placed in the 1mol/L NaOH In the solution, immersed at 40 ° C for 1 h to obtain alkali-etched basalt fiber; the alkali-etched basalt fiber was placed in a 30% H 2 O 2 solution and immersed at 125 ° C for 2 h to obtain activated basalt fiber. ;
  • the micron-sized inorganic basalt fiber was placed in a Soxhlet extractor, the solvent was acetone, the siphon was controlled for 30 min, the reaction time was 48 h, and the original coating on the surface of the basalt fiber was removed; the basalt fiber was placed in 2 mol/L NaOH. In the solution, immersed at 45 ° C for 2 h to obtain alkali-etched basalt fiber; the alkali-etched basalt fiber was placed in a 30% H 2 O 2 solution, and immersed at 140 ° C for 3 h to obtain activated basalt fiber. ;
  • the contact angle and zeta potential of the modified basalt fiber were analyzed, and the results are shown in Table 1. It can be seen from Table 1 that the contact angle of the modified basalt fiber (MBF) is lower than that of the unmodified BF, and the hydrophilicity is obviously improved; the zeta potential is increased from negative to weak positive, indicating MBF and The interaction barrier between microorganisms is reduced, which promotes the initial adhesion behavior of microorganisms and the formation of subsequent biofilms.
  • the membrane experiment was carried out with basalt fiber carrier before and after modification.
  • the inoculated sludge was taken from a sewage treatment plant in Zhenjiang. Two 1000 mL beakers were used to place micron-sized BF and MBF carriers respectively. After continuous aeration for 72 hours, they were taken out and dried to constant weight. The microbial adhesion was expressed by the film-hanging rate. Another group of basalt fiber carriers before and after modification were subjected to a film-hanging experiment.
  • the surface-modified basalt fiber carrier can increase the loading of BF and the adhesion ability of microorganisms and the efficiency of sewage/wastewater treatment, among which MBF-3 is the best effect diagram, as shown in Fig. 1.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Microbiology (AREA)
  • Composite Materials (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Biological Treatment Of Waste Water (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)

Abstract

一种污/废水处理用微米级无机玄武岩纤维载体的表面改性的方法,其首先用索氏萃取法去除纤维原涂层,然后用稀碱溶液刻蚀,再用30%双氧水溶液浸泡1~3h活化,用亲水性阳离子溶液在20~60℃喷涂或浸润,最后经接枝干燥即得。通过对玄武岩纤维载体表面改性,使玄武岩纤维载体材料亲水性且带有弱正电位,降低载体与微生物间的相互作用势垒,使微生物更易附着在载体表面,提高其生物亲和性,使载体负载更多的生物量,促使更多的微生物参与到污/废水的净化过程中,提高净化效率。

Description

一种污/废水处理用微米级无机玄武岩纤维载体表面改性方法 技术领域
本发明属于污/废水处理生物膜载体技术领域,涉及微米级无机玄武岩纤维载体的改性,尤其涉及一种污/废水处理用微米级无机玄武岩纤维载体表面改性的方法。
背景技术
生物膜法具有占地面积小、生物量大、生物种类多样化等优点而广泛应用于污/废水处理工艺中。生物膜载体是生物膜法的核心,可直接影响污/废水处理工艺的效能。生物膜载体表面上的微生物吸附量和生物膜的形成速度与载体的材质息息相关。材质表面的亲水性、表面电位和电荷量对细菌的附着、生物活性有着重要的关联性。由于细菌细胞膜中含有大量的羧基和磷酸基团等官能团,生物膜中的大多数细菌在中性条件下表现为负电位。而传统的载体材料也表现为负电位,因此载体与微生物间的相互作用势垒较高,而微生物只有克服表面的势垒屏障才可以吸附在载体表面。同其他传统的纤维类载体材料相比,玄武岩纤维(BF)具有纤维类载体材料和无机载体材料二者的优点,是一种新型环保的微米级无机纤维材料。中国专利《一种水体净化用生物载体》(CN104176822A)揭示了玄武岩纤维可作为水质净化用生物膜载体材料,且具有使用寿命长、比表面积大、纤维丝的利用效率高等优点。然而,BF表面较光滑、呈现疏水性(接触角为120°左右)、电负性(Zeta电位=-17.64mv),这些因素均不利于微生物的初始粘附及其后续生物膜的形成。如何实现BF载体的快速挂膜、提高BF的生物亲和性仍是一个亟待解决的难题。因此,本发明提出通过对BF进行表面改性处理,使得BF表面同时具有较好的亲水性和弱正电性,降低BF载体表面与微生物间的作用势能,提升BF的生物亲和性,实现BF表面的快速挂膜,缩短生物反应器的启动时间,负载更多的微生物,使得更多微生物参与到水质净化中,提高污/废水处理效能。
发明内容
针对上述现有技术中存在的不足,本发明的目的在于克服现有BF载体技术的不足,通过对BF载体材料的表面改性,获得亲水/亲电型的微米级无机玄武岩纤维载体材料,可降低与微生物间的相互作用势垒,提高其生物亲和性和微生物的附着能力,实现BF载体材料的快速挂膜。
为了达到上述目的,本发明采用的技术方案如下:
一种污/废水处理用微米级无机玄武岩纤维载体表面改性的方法,包括如下步骤:
(1)预处理:采用索氏萃取法,溶剂为石油醚或丙酮,萃取温度为65~80℃,萃取时间为24~48h,去除市售玄武岩纤维表面原有的浸润涂层;然后将其浸泡在稀碱溶液中,30~45℃下浸泡0.5~2h,温度优选40℃,时间优选1h;随后将碱刻蚀后的纤维浸泡在双氧水溶液中活化,浸泡时间为1~ 3h,优选2h,浸泡温度为100~140℃,优选125℃,得到预处理后的玄武岩纤维;
(2)喷涂或浸润:将0.01~1.50wt.%亲水性阳离子型试剂、4.00~15.00wt.%粘合剂、0.50~1.00wt.%硅烷偶联剂和去离子水搅拌混合均匀,得到亲水性阳离子溶液;将预处理后的玄武岩纤维喷涂或浸润在所述亲水性阳离子溶液中形成涂层,使纤维表面呈现亲水性且带弱正电性,所述涂层厚度0.01~1μm,温度为20~60℃,优选45℃;
(3)接枝干燥:将喷涂或浸润后的玄武岩纤维置于60~80℃下恒温烘干,干燥温度优选75℃,在干燥过程中,因活化后的玄武岩纤维表面带有大量的羟基,羟基与涂层中的偶联剂相连,从而将涂层接枝到玄武岩纤维表面,得到稳定的污/废水处理用微米级无机玄武岩纤维载体。
本发明较优公开例中,步骤(1)中所述稀碱溶液为NaOH、KOH溶液中的任一种,优选NaOH溶液,浓度为0.5~2mol/L,优选1mol/L;所述双氧水溶液的浓度为30%。
本发明较优公开例中,步骤(2)中所述亲水性阳离子型试剂为带有亲水基团的胺盐、季铵盐等阳离子试剂,如阳离子型聚丙烯酰胺(CPAM)、十六烷基三甲基氯化铵(CTAC)或十六烷基三甲基溴化铵(CTAB),优选CTAC,质量分数优选0.50%;
所述粘合剂为水性聚氨酯乳液或环氧树脂乳液,优选环氧树脂,质量分数优选5.00%;
所述偶联剂为硅烷偶联剂,优选γ-甲基丙烯酰氧基丙基三甲氧基硅烷(KH-570),质量分数优选0.80%。
本发明所公开的亲水性阳离子溶液中,粘合剂为有机树脂乳液,除具有良好的透明性和稳定性外,还可提高玄武岩纤维的力学性能;亲水性阳离子试剂中含有带弱正电性的亲水基团,微生物更易附着于改性后的玄武岩纤维载体表面,极大地缩短了生物反应器的启动时间。因而,采用本发明所述方法制得的亲水/亲电型微米级无机玄武岩纤维载体材料机械性能优异、生物亲和性好、挂膜速度快、污/废水处理效果好。
本发明所用试剂:微米级无机玄武岩纤维为市售,江苏绿材谷新材料科技发展有限公司;NaOH、KOH,分析纯,国药集团化学试剂有限公司;H 2O 2水溶液,分析纯,国药集团化学试剂有限公司;水性环氧树脂乳液(BH-652),东莞广通化工制品有限公司;水性聚氨酯乳液(WPUA),广东粤美化工有限公司;硅烷偶联剂,分析纯,南京全希化工有限公司;阳离子型聚丙烯酰胺,分析纯,天津市光复精细化工研究所,十六烷基三甲基氯化铵(CTAC)、十六烷基三甲基溴化铵(CTAB),分析纯,山东优索化工科技有限公司。
有益效果
本发明采用索氏萃取去除无机微米级玄武岩纤维表面原有涂层,利用稀碱刻蚀、双氧水活化和亲水性阳离子聚合物的接枝对无机微米级玄武岩纤维载体进行表面改性,使得玄武岩纤维载体材料具有 更接近理想的表面特性(亲水且带有弱正电位),降低载体与微生物间的相互作用势垒,提高微米级无机玄武岩纤维的生物亲和性,微生物更易附着在载体表面,使得玄武岩纤维载体负载更多的生物量,促使更多的微生物参与到污/废水的净化过程中,提高水质净化效率。本发明所述方法操作简便,易于推广,所制得亲水/亲电型无机微米级玄武岩纤维载体材料可应用于污/废水处理,适于工业化生产。
附图说明
图1为实施例3中改性前玄武岩纤维的挂膜效果图,其中,a为BF,b为MBF-3。
图2为实施例3中改性后玄武岩纤维的挂膜效果图,其中,a为BF,b为MBF-3。
具体实施方式
下面结合实施例对本发明进行详细说明,以使本领域技术人员更好地理解本发明,但本发明并不局限于以下实施例。
实施例1
(1)将微米级无机玄武岩纤维置于索氏提取器中,溶剂采用丙酮,控制30min虹吸一次,反应时间为24h,去除玄武岩纤维表面原有涂层;将裸丝浸泡在1mol/L的NaOH溶液中,在30℃下浸泡0.5h,获得碱刻蚀的玄武岩纤维;将碱刻蚀后的玄武岩纤维置于30%的H 2O 2溶液中,在100℃下浸泡1h,得到活化后玄武岩纤维;
(2)将CPAM(0.1%)、KH-570(0.50%)、水性环氧树脂乳液(5.00%)和去离子水(余量)搅拌均匀,将混合乳液置于喷雾器中,混合摇匀,对玄武岩纤维进行喷涂处理,涂层控制在0.2μm,环境温度控制在40℃,使涂层粘附玄武岩纤维表面;
(3)将喷涂后的玄武岩纤维置于60℃下恒温干燥箱中烘干,烘干过程中纤维表面的羟基与涂层中的偶联剂发生化学接枝反应,从而制得稳定的改性玄武岩纤维载体(MBF-1)。
实施例2
(1)将微米级无机玄武岩纤维置于索氏提取器中,溶剂采用石油醚,控制30min虹吸一次,反应时间为48h,去除玄武岩纤维表面原有涂层;将裸丝置于0.5mol/L的KOH溶液中,在40℃下浸泡1h,获得碱刻蚀的玄武岩纤维;将碱刻蚀后的玄武岩纤维置于30%的H 2O 2溶液中,在120℃下浸泡2h,得到活化后玄武岩纤维;
(2)将CPAM(0.5%)、KH-570(0.80%)、水性聚氨酯乳液(10.00%)和去离子水(余量)搅拌均匀,将玄武岩纤维浸泡在混合乳液中,对玄武岩纤维进行浸润处理,涂层控制在0.4μm,环境温度控制在25℃,使涂层粘附玄武岩纤维表面;
(3)将浸润后的玄武岩纤维置于60℃下恒温干燥箱中烘干,烘干过程中纤维表面的羟基与涂层中的偶联剂发生化学接枝反应,从而制得稳定改性玄武岩纤维载体(MBF-2)。
实施例3
(1)将微米级无机玄武岩纤维置于索氏提取器中,溶剂采用丙酮,控制30min虹吸一次,反应时间为24h,去除玄武岩纤维表面原有涂层;将玄武岩纤维置于1mol/L的NaOH溶液中,在40℃下浸泡1h,获得碱刻蚀的玄武岩纤维;将碱刻蚀后的玄武岩纤维置于30%的H 2O 2溶液中,在125℃下浸泡2h,得到活化后玄武岩纤维;
(2)将CTAC(0.5%)、KH-570(0.80%)、水性环氧树脂乳液(5.00%)和去离子水(余量)搅拌均匀,将混合乳液置于喷雾器中,混合摇匀,对玄武岩纤维进行喷涂处理,涂层控制在0.4μm,环境温度控制在45℃,使涂层粘附玄武岩纤维表面;
(3)将喷涂后的玄武岩纤维置于75℃下恒温干燥箱中烘干,烘干过程中纤维表面的羟基与涂层中的偶联剂发生化学接枝反应,从而制得稳定改性玄武岩纤维载体(MBF-3)。
实施例4
(1)将微米级无机玄武岩纤维置于索氏提取器中,溶剂采用丙酮,控制30min虹吸一次,反应时间为48h,去除玄武岩纤维表面原有涂层;将玄武岩纤维置于2mol/L的NaOH溶液中,在45℃下浸泡2h,获得碱刻蚀的玄武岩纤维;将碱刻蚀后的玄武岩纤维置于30%的H 2O 2溶液中,在140℃下浸泡3h,得到活化后玄武岩纤维;
(2)将CTAB(1.00%)、KH-570(1.00%)、水性环氧树脂乳液(15.00%)和去离子水(余量)搅拌均匀,将混合乳液置于喷雾器中,混合摇匀,对玄武岩纤维进行喷涂处理,涂层控制在1μm,环境温度控制在30℃,使涂层粘附玄武岩纤维表面;
(3)将喷涂后的玄武岩纤维置于80℃下恒温干燥箱中烘干,烘干过程中纤维表面的羟基与涂层中的偶联剂发生化学接枝反应,从而制得稳定的改性玄武岩纤维载体(MBF-4)。
接触角和Zeta电位分析
对改性玄武岩纤维的接触角和Zeta电位进行分析,结果如表1所示。表1可以看出,改性后玄武岩纤维(MBF)的接触角均低于未改性BF的接触角,亲水性得到明显的改善;Zeta电位由负电提升为弱正电性,说明MBF与微生物间的相互作用势垒降低,可促进微生物的初始粘附行为和后续生物膜的形成。
挂膜实验分析
用改性前后的玄武岩纤维载体进行挂膜实验,废水为合成有机废水,葡萄糖为碳源、氯化铵和磷酸二氢钾提供N和P,其中C:N:P=100:5:1,接种污泥取自镇江某污水处理厂,采用两个1000mL的烧杯分别放置微米级BF和MBF载体,连续曝气72h后取出,烘干至恒重,微生物附着量以挂膜率表示。将另一组改性前后的玄武岩纤维载体进行挂膜实验,连续曝气72h后取出,采用PBS缓冲溶 液缓慢冲洗,然后将其置于超声仪中超声震荡15min,超声频率为40KHz,15min后取出烘干至恒重,微生物的附着能力由残余挂膜率表示。
由表1可知,表面改性玄武岩纤维载体可提高BF的负载量和微生物的附着能力和污/废水处理效能,其中MBF-3为最优效果图,如图1所示。
表1 BF和MBF的性能数据
Figure PCTCN2018088939-appb-000001
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (10)

  1. 一种污/废水处理用微米级无机玄武岩纤维载体的表面改性方法,其特征在于,包括如下步骤:
    (1)预处理:采用索氏萃取法,溶剂为石油醚或丙酮,萃取温度为65~80℃,萃取时间为24~48h,去除市售玄武岩纤维表面原有的浸润涂层;然后将其浸泡在稀碱溶液中,30~45℃下浸泡0.5~2h;随后,将碱刻蚀后的纤维浸泡在双氧水溶液中活化,浸泡时间为1~3h,浸泡温度为100~140℃,得到预处理后的玄武岩纤维;
    (2)喷涂或浸润:将0.01~1.50wt.%亲水性阳离子型试剂、5.00~15.00wt.%粘合剂、0.50~1.00wt.%硅烷偶联剂和去离子水搅拌混合均匀,得到亲水性阳离子溶液;将预处理后的玄武岩纤维喷涂或浸润在所述亲水性阳离子溶液中形成涂层,使纤维表面呈现亲水性且带弱正电性,所述涂层厚度为0.01~1μm,温度为20~60℃;
    其中,所述亲水性阳离子型试剂为带有亲水基团的胺盐、季铵盐等阳离子试剂,如阳离子型聚丙烯酰胺、十六烷基三甲基氯化铵或十六烷基三甲基溴化铵;
    所述粘合剂为水性聚氨酯乳液或环氧树脂乳液;
    所述偶联剂为硅烷偶联剂;
    (3)接枝干燥:将喷涂或浸润后的玄武岩纤维于60~80℃下恒温烘干。
  2. 根据权利要求1所述的污/废水处理用微米级无机玄武岩纤维载体的表面改性方法,其特征在于:步骤(1)中所述稀碱溶液为NaOH、KOH中的任一种,浓度为0.5~2mol/L。
  3. 根据权利要求2所述的污/废水处理用微米级无机玄武岩纤维载体的表面改性方法,其特征在于:步骤(1)中所述稀碱溶液为NaOH溶液,浓度为1mol/L。
  4. 根据权利要求1所述的污/废水处理用微米级无机玄武岩纤维载体的表面改性方法,其特征在于:步骤(1)中所述将其浸泡在稀碱溶液中,40℃浸泡1h。
  5. 根据权利要求1所述的污/废水处理用微米级无机玄武岩纤维载体的表面改性方法,其特征在于:步骤(1)中所述双氧水溶液的浓度为30%,浸泡时间2h,浸泡温度为125℃。
  6. 根据权利要求1所述的污/废水处理用微米级无机玄武岩纤维载体的表面改性方法,其特征在于:步骤(2)中所述将预处理后的玄武岩纤维喷涂或浸润在所述亲水性阳离子溶液中形成涂层,所述涂层厚度为0.01~1μm,温度为45℃。
  7. 根据权利要求1所述的污/废水处理用微米级无机玄武岩纤维载体的表面改性方法,其特征在于:步骤(2)中所述亲水性阳离子型试剂为十六烷基三甲基氯化铵,质量分数0.50%。
  8. 根据权利要求1所述的污/废水处理用微米级无机玄武岩纤维载体的表面改性方法,其特征在于:步骤(2)中所述粘合剂为环氧树脂乳液,质量分数5.00%。
  9. 根据权利要求1所述的污/废水处理用微米级无机玄武岩纤维载体的表面改性方法,其特征在于:步骤(2)中所述偶联剂为γ-甲基丙烯酰氧基丙基三甲氧基硅烷,质量分数0.80%。
  10. 根据权利要求1所述的污/废水处理用微米级无机玄武岩纤维载体的表面改性方法,其特征在 于:步骤(3)中所述将喷涂或浸润后的玄武岩纤维于75℃恒温烘干。
PCT/CN2018/088939 2018-05-07 2018-05-30 一种污/废水处理用微米级无机玄武岩纤维载体表面改性方法 WO2019213999A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810430830.6A CN108751746B (zh) 2018-05-07 2018-05-07 一种污/废水处理用微米级无机玄武岩纤维载体表面改性方法
CN201810430830.6 2018-05-07

Publications (1)

Publication Number Publication Date
WO2019213999A1 true WO2019213999A1 (zh) 2019-11-14

Family

ID=64010345

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/088939 WO2019213999A1 (zh) 2018-05-07 2018-05-30 一种污/废水处理用微米级无机玄武岩纤维载体表面改性方法

Country Status (2)

Country Link
CN (1) CN108751746B (zh)
WO (1) WO2019213999A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114130372A (zh) * 2021-11-30 2022-03-04 北京北环之星智能环保科技有限公司 一种玄武岩纤维改性吸附填料及其制备方法
CN114685004A (zh) * 2020-12-31 2022-07-01 江苏艾特克环境工程设计研究院有限公司 一种含硫印染废水的生化处理系统及方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110565364B (zh) * 2019-08-09 2022-01-28 天津大学 一种醌改性玄武岩纤维载体及其制备方法、应用
CN113860759A (zh) * 2021-10-20 2021-12-31 吉林大学 一种以水性聚氨酯为成膜剂的玄武岩纤维浸润剂制备方法
CN114409198A (zh) * 2022-01-29 2022-04-29 东南大学 一种基于改性玄武岩纤维填料和生物处理剂的食品废水处理方法
CN114855456A (zh) * 2022-06-08 2022-08-05 德阳科吉高新材料有限责任公司 一种玄武岩纤维布表面涂敷热塑性弹性体的工艺处理方法
CN115057526A (zh) * 2022-07-06 2022-09-16 江苏大学 一种改性玄武岩纤维生物填料的制备方法及其应用
CN116495870A (zh) * 2023-06-28 2023-07-28 江苏省环境工程技术有限公司 一种适用于污废水处理的镁改性玄武岩纤维填料制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013184879A (ja) * 2012-03-09 2013-09-19 Nichias Corp ガラス繊維用集束剤
CN107640913A (zh) * 2017-08-22 2018-01-30 江苏大学 一种玄武岩纤维表面改性涂层的制备方法及其应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013184879A (ja) * 2012-03-09 2013-09-19 Nichias Corp ガラス繊維用集束剤
CN107640913A (zh) * 2017-08-22 2018-01-30 江苏大学 一种玄武岩纤维表面改性涂层的制备方法及其应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PENG, JIAO: "Research on Surface Modification and Characteristics of Basalt Fiber Biological Carrier", CHINA DISS. DATABASE, 12 October 2015 (2015-10-12), pages 11, 12, 20, - 21, 49, 50 *
WANG, XIAODONG ET AL.: "Advances in Basalt Fiber-reinforced Composites Modified by Silane Coupling Agents", MATERIALS REVIEW, vol. 31, no. 5, 26 May 2017 (2017-05-26), pages 79 - 81, XP055651288 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114685004A (zh) * 2020-12-31 2022-07-01 江苏艾特克环境工程设计研究院有限公司 一种含硫印染废水的生化处理系统及方法
CN114130372A (zh) * 2021-11-30 2022-03-04 北京北环之星智能环保科技有限公司 一种玄武岩纤维改性吸附填料及其制备方法

Also Published As

Publication number Publication date
CN108751746A (zh) 2018-11-06
CN108751746B (zh) 2021-02-12

Similar Documents

Publication Publication Date Title
WO2019213999A1 (zh) 一种污/废水处理用微米级无机玄武岩纤维载体表面改性方法
Hou et al. Enzymatic degradation of bisphenol-A with immobilized laccase on TiO2 sol–gel coated PVDF membrane
CN108286187B (zh) 一种硅烷偶联剂辅助电泳沉积引发氧化石墨烯改性碳纤维的制备方法
CN112246108B (zh) 一种聚吡咯-镍导电复合分离膜及其制备方法与应用
CN111632581B (zh) 一种仿树莓状超疏水亲油棉纤维油水吸附/分离膜及其制备方法和应用
CN109967322B (zh) 一种超疏水复合涂层的制备方法及超疏水复合材料
CN112973653B (zh) 基于聚偕胺肟的Mxene膜吸附材料的制备方法及提铀方法
CN108330686A (zh) 亲水性壳聚糖改性玄武岩纤维载体的制备方法
CN113522047B (zh) 一种d-氨基酸化学接枝改性水处理超滤膜及其制备方法
CN111100321B (zh) 一种对聚氨酯表面改性促进挂膜效果的方法
CN108837714A (zh) 一种聚多巴胺/二氧化锰复合膜及其制备方法
Bao et al. Time-gradient nitric acid modification of CF biofilm-carrier and surface nature effects on microorganism immobilization behavior in wastewater
CN110433671B (zh) 一种可见光诱导自清洁碳纤维膜的制备方法及其用途
CN108854595A (zh) 一种纳米生物炭改性pvdf平板膜及其制备方法与应用
CN114932061A (zh) 一种超亲水抗粘附涂层及其制备方法
CN102409531B (zh) 一种含纳米钯颗粒的静电纺复合纳米纤维毡的制备方法
CN1851108A (zh) 一种提高碳纤维表面活性的方法
CN113387592B (zh) 一种玻璃表面的水下超疏油复合镀层及其制备方法
CN112791598B (zh) 一种具有光热响应的玻璃纤维改性材料的制备方法及其应用
CN116078191A (zh) 一种基于多巴胺涂层负载纳米金改性聚砜膜的制备方法
CN110450250B (zh) 一种疏水薄膜结构及其制备方法、防霉型木材
CN110565364B (zh) 一种醌改性玄武岩纤维载体及其制备方法、应用
CN112480750A (zh) 一种用于细胞培养的超亲水涂层及制备方法
CN114618324B (zh) 一种复合交联氧化石墨烯膜的制备方法及其产品
CN112142190A (zh) 一种印染排放水处理用碳纤维生物填料及制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18917777

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18917777

Country of ref document: EP

Kind code of ref document: A1