CN113527828B - 一种两性聚电解质光热水凝胶、其制备和应用 - Google Patents

一种两性聚电解质光热水凝胶、其制备和应用 Download PDF

Info

Publication number
CN113527828B
CN113527828B CN202010296844.0A CN202010296844A CN113527828B CN 113527828 B CN113527828 B CN 113527828B CN 202010296844 A CN202010296844 A CN 202010296844A CN 113527828 B CN113527828 B CN 113527828B
Authority
CN
China
Prior art keywords
photothermal
hydrogel
polyelectrolyte
amphoteric
photo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010296844.0A
Other languages
English (en)
Other versions
CN113527828A (zh
Inventor
张连斌
胥敬维
朱锦涛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huazhong University of Science and Technology
Shenzhen Huazhong University of Science and Technology Research Institute
Original Assignee
Huazhong University of Science and Technology
Shenzhen Huazhong University of Science and Technology Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huazhong University of Science and Technology, Shenzhen Huazhong University of Science and Technology Research Institute filed Critical Huazhong University of Science and Technology
Priority to CN202010296844.0A priority Critical patent/CN113527828B/zh
Publication of CN113527828A publication Critical patent/CN113527828A/zh
Application granted granted Critical
Publication of CN113527828B publication Critical patent/CN113527828B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • C02F1/048Purification of waste water by evaporation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • C02F1/14Treatment of water, waste water, or sewage by heating by distillation or evaporation using solar energy
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F120/00Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F120/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F120/10Esters
    • C08F120/38Esters containing sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/38Esters containing sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F230/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal
    • C08F230/02Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
    • C08J2333/14Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing halogen, nitrogen, sulfur, or oxygen atoms in addition to the carboxy oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2343/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing boron, silicon, phosphorus, selenium, tellurium or a metal; Derivatives of such polymers
    • C08J2343/02Homopolymers or copolymers of monomers containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2479/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2461/00 - C08J2477/00
    • C08J2479/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/041Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/042Graphene or derivatives, e.g. graphene oxides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/138Water desalination using renewable energy
    • Y02A20/142Solar thermal; Photovoltaics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/20Controlling water pollution; Waste water treatment
    • Y02A20/208Off-grid powered water treatment
    • Y02A20/212Solar-powered wastewater sewage treatment, e.g. spray evaporation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Dispersion Chemistry (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

本发明属于功能高分子材料领域,更具体地,涉及一种两性聚电解质光热水凝胶、其制备和应用。该两性聚电解质光热水凝胶包括两性聚电解质水凝胶和光热材料,其中所述光热材料分散在所述两性聚电解质水凝胶中;该两性聚电解质光热水凝胶由两性聚电解质单体、交联剂、引发剂和光热材料混合物通过共聚合得到。本发明利用两性聚电解质水凝胶具有的防生物污染能力,克服了传统光热蒸汽转化材料在处理高浓盐水、海水、工业废水等污水时材料表面易污染的缺点,延长其在光热蒸汽转化应用中的使用寿命。

Description

一种两性聚电解质光热水凝胶、其制备和应用
技术领域
本发明属于功能高分子材料领域,更具体地,涉及一种两性聚电解质光热水凝胶、其制备和应用。
背景技术
目前,全球四分之一的人口面临着水资源短缺问题,水资源短缺问题也影响到了很多领域的运作和发展。近年来,太阳能已经被用来光热产水、光热发电等诸多领域。其中,界面太阳能加热蒸发水技术由于具有解决水污染和淡水资源匮乏的巨大潜力,并且其效率高、成本低、易操作等优势得到科研人员的关注。
在界面太阳能加热蒸发水领域,光热转化材料是实现高效率太阳能-热能转化的关键。目前,研究者们关注最多的光热转化材料是金属和半导体类、碳基材料及其复合材料,虽然这些材料具备较好的光学吸收,在太阳能收集利用方面有很大的潜力,但在利用它们进行长时间的污水处理和海水淡化等实际操作时,传统光转换材料难免会暴露稳定性差、盐结垢、微生物污染等缺点。因此,开发一种防污染、可大规模制备光热蒸汽产生材料的技术并将其应用于水蒸发具有很重要的意义。
水凝胶光热材料基于水凝胶的三维网络结构和亲水特性,在界面加热蒸发水师时能提供强大的供水能力,可以有效抑制蒸发界面处因盐溶液过饱和导致的盐结晶问题。Liu等利用合成的水凝胶基光热材料实现了高效地蒸发性能并具有良好的海水淡化能力,然而,该水凝胶基光热材料在用于水蒸发过程中防污性能和长期稳定性较差。
发明内容
针对现有技术的以上缺陷或改进需求,本发明提供了一种两性聚电解质光热水凝胶、其制备和应用,其由两性聚电解质单体、交联剂、引发剂和光热材料混合物通过共聚合得到,由于两性聚电解质极强的水化能力从而实现光热材料水蒸发过程中的防污功能,做到真正的环保高效的光热水凝胶,由此解决现有技术的水凝胶基光热材料用于水蒸发过程中防污性能较差的技术问题。
为实现上述目的,按照本发明的一个方面,提供了一种两性聚电解质光热水凝胶,包括两性聚电解质水凝胶和光热材料,其中所述光热材料分散在所述两性聚电解质水凝胶中;
该两性聚电解质光热水凝胶由两性聚电解质单体、交联剂、引发剂和光热材料混合物通过共聚合得到。
优选地,所述光热材料为聚吡咯纳米粒子、聚苯胺纳米粒子、炭黑、碳纳米管、石墨烯、氧化石墨烯、金纳米粒子和银纳米粒子中的一种或几种。
优选地,所述两性聚电解质单体为[2-(甲基丙烯酰基氧基)乙基]二甲基-(3-磺酸丙基)氢氧化铵、[3-(N-2-甲基丙烯酰氧基乙基-N,N-二甲基)氨基丙磺酸盐]、2-甲基丙烯酰氧乙基磷酰胆碱、3-磺丙基十六烷基二甲基铵、N,N-二甲基-N-十六烷基季氨基丁基硫酸酯、3-[N,N-二甲基,N-十八烷基]铵基和2-羟基丙磺酸盐中的一种或几种的混合物。
优选地,所述交联剂为N,N-亚甲基双丙烯酰胺、戊二醛、过氧化二苯甲酰、二乙烯基苯和聚乙二醇二丙烯酸酯中的一种或几种的混合物。
优选地,该两性聚电解质光热水凝胶中所述两性聚电解质单体和光热材料的质量比为(10-60):(0.01-10)。
按照本发明的另一个方面,提供了一种所述的两性聚电解质光热水凝胶的制备方法,包括如下步骤:
(1)将两性聚电解质单体、交联剂、引发剂和光热材料分散在水中,得到预聚混合物;
(2)将步骤(1)所述预聚混合物通过加热或光照方式实现共聚合;
(3)用水浸泡洗去未反应的原料,从而得到两性聚电解质光热水凝胶。
优选地,所述两性聚电解质单体在所述预聚混合物中的浓度为10wt.%~60wt.%。
优选地,所述光热材料在所述预聚混合物中的浓度为0.01wt.%~10wt.%,所述光热材料的尺寸为5-500nm。
优选地,所述光热材料在所述预聚混合物中的浓度为0.5wt.%~2wt.%。
按照本发明的另一个方面,提供了一种所述的两性聚电解质光热水凝胶的应用,用于太阳能光热加热水体表面。
总体而言,通过本发明所构思的以上技术方案与现有技术相比,能够取得下列有益效果:
(1)本发明提供的一种两性聚电解质光热水凝胶,包括两性聚电解质水凝胶和光热材料,其中所述光热材料分散在所述两性聚电解质水凝胶中;该两性聚电解质光热水凝胶由两性聚电解质单体、交联剂、引发剂和光热材料混合物通过共聚合得到。利用水凝胶基光热材料起到增强水蒸发作用,又由于两性聚电解质极强的水化能力从而实现光热材料水蒸发过程中的防污功能,做到真正的环保高效的光热水凝胶。
(2)在太阳能转化加热蒸发水领域,水凝胶聚合物链网能够与水通过毛细作用、渗透和水化作用相互联系,有利于光热材料水内部运输,保证了光热水凝胶在蒸发水的可持续性,同时引入氧化石墨烯等光热材料可提供光热性能和提高水凝胶的机械强度,使其在水处理领域也得到了很大的利用。
(3)本发明两性离子聚合物的链间缔合可以提供物理交联以增强水凝胶的机械性能,两性离子聚合物超强的亲水性能使其在材料表面形成紧密结合的水化层,从而有效阻碍生物分子的吸附。同时,两性离子聚合物独特的“抗聚电解质”效应,具有良好的防污效果。这些特性使得两性聚合物光热水凝胶在进行含盐废水等污水的加热水蒸发时,具有抗菌、脱盐和防污性,克服了传统光热蒸汽产生材料在处理高浓盐水、海水、工业废水等污水时材料表面易污染的缺点。
附图说明
图1是本发明实施例两性聚电解质光热水凝胶的简易制备流程图;
图2是本发明实施例两性聚电解质光热水凝胶的实物图。
图3是本发明实施例1两性聚电解质光热水凝胶的吸收光谱。
图4是本发明实施例1两性聚电解质光热水凝胶的FTIR图谱。
图5是本发明实施例1两性聚电解质光热水凝胶的扫描照片。
图6是本发明实施例1两性聚电解质光热水凝胶的水蒸发质量损失曲线。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
本发明提供了一种两性聚电解质光热水凝胶,包括两性聚电解质水凝胶和光热材料,其中所述光热材料分散在所述两性聚电解质水凝胶中;
该两性聚电解质光热水凝胶由两性聚电解质单体、交联剂、引发剂和光热材料混合物通过共聚合得到。
一些实施例中,所述光热材料为聚吡咯纳米粒子、聚苯胺纳米粒子、炭黑、碳纳米管、石墨烯、氧化石墨烯、金纳米粒子和银纳米粒子中的一种或几种。
一些实施例中,所述两性聚电解质单体为[2-(甲基丙烯酰基氧基)乙基]二甲基-(3-磺酸丙基)氢氧化铵、[3-(N-2-甲基丙烯酰氧基乙基-N,N-二甲基)氨基丙磺酸盐]、2-甲基丙烯酰氧乙基磷酰胆碱、3-磺丙基十六烷基二甲基铵、N,N-二甲基-N-十六烷基季氨基丁基硫酸酯、3-[N,N-二甲基,N-十八烷基]铵基和2-羟基丙磺酸盐中的一种或几种的混合物。
本发明采用的交联剂和引发剂为用于在光照或加热条件下引发所述两性聚电解质单体发生交联聚合的交联剂和引发剂,原则上只要能够满足上述条件的引发剂和交联剂均可。本发明一些实施例中,所述交联剂为N,N-亚甲基双丙烯酰胺、戊二醛、过氧化二苯甲酰、二乙烯基苯和聚乙二醇二丙烯酸酯中的一种或几种的混合物。所述引发剂为过硫酸铵。
一些实施例中,该两性聚电解质光热水凝胶中所述光热材料和两性聚电解质的质量比为(0.01-10):(10-60)。交联剂和引发剂的质量比为(0.1-1):1。一些实施例中,两性聚电解质单体、交联剂、引发剂和光热材料的质量比为(10-60):(0.01-0.1):0.1:(0.01-10)。
本发明还提供了一种所述的两性聚电解质光热水凝胶的制备方法,包括如下步骤:
(1)将两性聚电解质单体、交联剂、引发剂和光热材料分散在水中,得到预聚混合物;
(2)将步骤(1)所述预聚混合物通过加热或光照方式实现共聚合;
(3)用水浸泡洗去未反应的原料,从而得到两性聚电解质光热水凝胶。
本发明两性聚电解质光热水凝胶的制备方法中,加料顺序不限。步骤(1)可以分别先获得光热材料在水中的分散液,以及两性聚电解质单体、交联剂和引发剂在水中的分散液,再进行混合;或者将两性聚电解质单体、交联剂和引发剂按照一定的质量比加入光热材料的水分散液中。
一些实施例中,所述两性聚电解质单体在所述预聚混合物中的浓度为10wt.%~60wt.%,优选为30wt.%~40wt.%。
一些实施例中,所述光热材料在所述预聚混合物中的浓度为0.01wt.%~10wt.%,优选为0.5wt.%~2wt.%,所述光热材料的尺寸为5-500nm。
一些实施例中,步骤(2)预聚混合物加热温度40-50℃加热5-10小时,或采用波长为380-400nm的紫外光进行光照4-6小时,实现共聚合。
本发明所述的两性聚电解质光热水凝胶,可以吸收太阳光并转化为热量,且具有的防生物污染能力,可用于太阳能光热加热水体表面,包括光热太阳能界面加热蒸汽转化方面,比如用于海水淡化、污水处理等领域。
本发明所述的两性聚电解质光热水凝胶由两性聚电解质水凝胶和光热材料组成。所述的两性聚电解质光热水凝胶可以吸收太阳光并转化为热量。本发明利用两性聚电解质水凝胶具有的防生物污染能力,克服了传统光热蒸汽转化材料在处理高浓盐水、海水、工业废水等污水时材料表面易污染的缺点,延长其在光热蒸汽转化应用中的使用寿命。
以下为实施例:
实施例1
一种两性聚电解质光热水凝胶的制备方法,如图1所示,包括如下步骤:
第一步:在烧杯里,氧化石墨烯均匀分散在去离子水中,得到浓度为0.5wt.%氧化石墨烯分散液,并于常温下在20mL去离子水中加入8g[2-(甲基丙烯酰基氧基)乙基]二甲基-(3-磺酸丙基)氢氧化铵(SBMA),搅拌使其溶解,得到40wt.%质量浓度的SBMA溶液;
第二步:在第一步SBMA溶液中加入氧化石墨烯分散液、0.03g交联剂N,N-亚甲基双丙烯酰胺和0.1g引发剂过硫酸铵,氧化石墨烯分散液加入量为SBMA溶液质量的10wt.%,交联剂用量为SBMA溶液的0.1wt.%。
第三步:将第二步的预聚物在50℃条件下反应6h,直至形成黑色的两性聚电解质水凝胶,如图2所示,产物在去离子水中浸泡除去未反应物。
第四步:在烧杯中倒入一定浓度盐水,将第三步得到的两性聚电解质光热水凝胶置于盐水表面,在氙灯照射下进行太阳能加热蒸发水的测试,用连接电脑的电子天平实时监测光照过程中水质量的损失。
第五步:在上一步水蒸发实验结束后,观察两性聚电解质水凝胶表面是否有盐结晶现象。
图3是本实施例制备得到的两性聚电解质光热水凝胶的吸收光谱。其中如箭头所示,曲线由上至下分别为纯两性聚电解质水凝胶(PSB)和光热材料浓度由低到高的两性聚电解质光热水凝胶(PSB/rGO-1,2,3分别对应0.5wt%、1wt%、2wt%的光热材料分散液),可以看出两性聚电解质光热水凝胶在250-2500nm波长范围的高吸光率。
图4是本实施例两性聚电解质光热水凝胶的FTIR图谱。其中如箭头所示,曲线由上至下分别为纯两性聚电解质水凝胶(PSB)和光热材料浓度由低到高的两性聚电解质光热水凝胶(PSB/rGO-1,2,3分别对应0.5wt%、1wt%、2wt%的光热材料分散液),可以看出光热材料浓度不同的两性聚电解质光热水凝胶的成功制备。
图5是本实施例两性聚电解质光热水凝胶的扫描照片。可以看出两性聚电解质光热水凝胶内部多孔的网络结构,有利于水蒸发应用时的水运输。
图6是本实施例两性聚电解质光热水凝胶的水蒸发质量损失曲线。可以看出两性聚电解质光热水凝胶具有良好的蒸发性能,最终的蒸发效率可以达到87.5%。
实施例2
一种两性聚电解质光热水凝胶的制备方法,包括如下步骤:
第一步:在烧杯里,聚吡咯均匀分散在去离子水中,得到浓度为10mg/mL聚吡咯分散液,并于常温下在20mL去离子水中加入8g[2-(甲基丙烯酰基氧基)乙基]二甲基-(3-磺酸丙基)氢氧化铵(SBMA),搅拌使其溶解,得到40wt.%质量浓度的SBMA溶液;
第二步:在第一步SBMA溶液中加入聚吡咯分散液、0.03g交联剂N,N-亚甲基双丙烯酰胺和0.1g引发剂过硫酸铵,氧化石墨烯分散液加入量为SBMA溶液质量的10wt.%,交联剂用量为SBMA溶液的0.1wt.%。
第三步:将第二步的预聚物在50℃条件下反应6h,直至形成黑色的两性聚电解质水凝胶,产物在去离子水中浸泡除去未反应物。
第四步:在烧杯中倒入一定浓度盐水,将第三步得到的两性聚电解质光热水凝胶置于盐水表面,在氙灯照射下进行太阳能加热蒸发水的测试,用连接电脑的电子天平实时监测光照过程中水质量的损失。
第五步:在上一步水蒸发实验结束后,观察两性聚电解质水凝胶表面是否有盐结晶现象。
实施例3
一种两性聚电解质光热水凝胶的制备方法,包括如下步骤:
第一步:在烧杯里,氧化石墨烯均匀分散在去离子水中,得到浓度为0.5wt.%氧化石墨烯分散液,并于常温下在20mL去离子水中加入8g 2-甲基丙烯酰氧乙基磷酰胆碱,搅拌使其溶解,得到40wt.%质量浓度的2-甲基丙烯酰氧乙基磷酰胆碱溶液;
第二步:在第一步溶液中加入氧化石墨烯分散液、0.03g交联剂N,N-亚甲基双丙烯酰胺和0.1g引发剂过硫酸铵,氧化石墨烯分散液加入量为2-甲基丙烯酰氧乙基磷酰胆碱溶液质量的10wt.%,交联剂用量为溶液的1.0wt.%。
第三步:将第二步的预聚物在50℃条件下反应6h,直至形成黑色的两性聚电解质水凝胶,产物在去离子水中浸泡除去未反应物。
第四步:在烧杯中倒入一定浓度盐水,将第三步得到的两性聚电解质光热水凝胶置于盐水表面,在氙灯照射下进行太阳能加热蒸发水的测试,用连接电脑的电子天平实时监测光照过程中水质量的损失。
第五步:在上一步水蒸发实验结束后,观察两性聚电解质水凝胶表面是否有盐结晶现象。
实施例4
一种两性聚电解质光热水凝胶的制备方法,包括如下步骤:
第一步:在烧杯里,碳纳米管均匀分散在去离子水中,得到浓度为2.0wt.%碳纳米管分散液,并于常温下在20mL去离子水中加入8g[2-(甲基丙烯酰基氧基)乙基]二甲基-(3-磺酸丙基)氢氧化铵(SBMA),搅拌使其溶解,得到20wt.%质量浓度的SBMA溶液;
第二步:在第一步SBMA溶液中加入碳纳米管分散液、0.03g交联剂戊二醛和0.1g引发剂过硫酸铵,碳纳米管分散液加入量为SBMA溶液质量的20wt.%,交联剂用量为SBMA溶液的0.5wt.%。
第三步:将第二步的预聚物在50℃条件下反应5h,直至形成两性聚电解质水凝胶,产物在去离子水中浸泡除去未反应物。
第四步:在烧杯中倒入一定浓度盐水,将第三步得到的两性聚电解质光热水凝胶置于盐水表面,在氙灯照射下进行太阳能加热蒸发水的测试,用连接电脑的电子天平实时监测光照过程中水质量的损失。
第五步:在上一步水蒸发实验结束后,观察两性聚电解质水凝胶表面是否有盐结晶现象。
本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (8)

1.一种通过阻碍生物分子吸附防污染的两性聚电解质光热水凝胶用于太阳能光热加热水体表面的应用,其特征在于,该两性聚电解质光热水凝胶包括两性聚电解质水凝胶和光热材料,其中所述光热材料分散在所述两性聚电解质水凝胶中;
将两性聚电解质单体、交联剂、引发剂和光热材料分散在水中,得到预聚混合物,所述光热材料在所述预聚混合物中的浓度为0.045wt.%~0.33wt.%;
该两性聚电解质光热水凝胶由两性聚电解质单体、交联剂、引发剂和光热材料混合物通过共聚合得到。
2.如权利要求1所述的应用,其特征在于,所述光热材料为聚吡咯纳米粒子、聚苯胺纳米粒子、炭黑、碳纳米管、石墨烯、氧化石墨烯、金纳米粒子和银纳米粒子中的一种或几种。
3.如权利要求1所述的应用,其特征在于,所述两性聚电解质单体为[2-(甲基丙烯酰基氧基)乙基]二甲基-(3-磺酸丙基)氢氧化铵、[3-(N-2-甲基丙烯酰氧基乙基-N,N-二甲基)氨基丙磺酸盐]、2-甲基丙烯酰氧乙基磷酰胆碱、3-磺丙基十六烷基二甲基铵、N,N-二甲基-N-十六烷基季氨基丁基硫酸酯、3-[N,N-二甲基,N-十八烷基]铵基和2-羟基丙磺酸盐中的一种或几种的混合物。
4.如权利要求1所述的应用,其特征在于,所述交联剂为N,N-亚甲基双丙烯酰胺、戊二醛、过氧化二苯甲酰、二乙烯基苯和聚乙二醇二丙烯酸酯中的一种或几种的混合物。
5.如权利要求1所述的应用,其特征在于,该两性聚电解质光热水凝胶中所述两性聚电解质单体和光热材料的质量比为(10-60):(0.01-10)。
6.如权利要求1所述的应用,其特征在于,所述两性聚电解质光热水凝胶通过以下步骤制备得到:
(1)将两性聚电解质单体、交联剂、引发剂和光热材料分散在水中,得到预聚混合物;
(2)将步骤(1)所述预聚混合物通过加热或光照方式实现共聚合;
(3)用水浸泡洗去未反应的原料,从而得到两性聚电解质光热水凝胶。
7.如权利要求6所述的应用,其特征在于,所述两性聚电解质单体在所述预聚混合物中的浓度为10wt.%~60wt.%。
8.如权利要求6所述的应用,其特征在于,所述光热材料的尺寸为5-500nm。
CN202010296844.0A 2020-04-15 2020-04-15 一种两性聚电解质光热水凝胶、其制备和应用 Active CN113527828B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010296844.0A CN113527828B (zh) 2020-04-15 2020-04-15 一种两性聚电解质光热水凝胶、其制备和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010296844.0A CN113527828B (zh) 2020-04-15 2020-04-15 一种两性聚电解质光热水凝胶、其制备和应用

Publications (2)

Publication Number Publication Date
CN113527828A CN113527828A (zh) 2021-10-22
CN113527828B true CN113527828B (zh) 2023-02-14

Family

ID=78088271

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010296844.0A Active CN113527828B (zh) 2020-04-15 2020-04-15 一种两性聚电解质光热水凝胶、其制备和应用

Country Status (1)

Country Link
CN (1) CN113527828B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114381018B (zh) * 2022-01-12 2023-05-16 大连理工大学 一种聚吡咯/聚两性离子导电水凝胶的制备方法及其应用
CN114605591B (zh) * 2022-02-21 2023-05-26 上海忒尔苏斯环境科技合伙企业(有限合伙) 一种盐敏光热凝胶及其制备和应用
CN114456308B (zh) * 2022-02-28 2023-03-17 华中科技大学 一种光热水凝胶、制备方法及其应用、光热转化蒸发器
CN114870412B (zh) * 2022-04-02 2024-04-30 深圳大学 一种太阳能蒸发器及其制备方法和应用
CN114805673A (zh) * 2022-05-26 2022-07-29 成都芯跳医疗科技有限责任公司 一种天然高分子导电水凝胶及其制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105295073A (zh) * 2015-10-29 2016-02-03 温州医科大学 一种高柔韧性两性离子水凝胶制备方法
CN107814881A (zh) * 2017-11-14 2018-03-20 西南石油大学 一种温敏盐敏共聚物凝胶及其制备方法
CN109206553A (zh) * 2018-08-28 2019-01-15 深圳大学 一种太阳能光热转换材料及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105295073A (zh) * 2015-10-29 2016-02-03 温州医科大学 一种高柔韧性两性离子水凝胶制备方法
CN107814881A (zh) * 2017-11-14 2018-03-20 西南石油大学 一种温敏盐敏共聚物凝胶及其制备方法
CN109206553A (zh) * 2018-08-28 2019-01-15 深圳大学 一种太阳能光热转换材料及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Wang, ZN等;Zwitterionic Hydrogel Incorporated Graphene Oxide Nanosheets wit;《Langmuir》;20190903;第35卷(第35期);第11452-11462页 *
Zwitterionic Hydrogel Incorporated Graphene Oxide Nanosheets wit.Wang, ZN等.《Langmuir》.2019,第35卷(第35期), *

Also Published As

Publication number Publication date
CN113527828A (zh) 2021-10-22

Similar Documents

Publication Publication Date Title
CN113527828B (zh) 一种两性聚电解质光热水凝胶、其制备和应用
Guo et al. Engineering hydrogels for efficient solar desalination and water purification
Zhao et al. Boosting solar-powered interfacial water evaporation by architecting 3D interconnected polymetric network in CNT cellular structure
Wen et al. Architecting Janus hydrogel evaporator with polydopamine-TiO2 photocatalyst for high-efficient solar desalination and purification
Zhou et al. Highly efficient and long-term stable solar-driven water purification through a rechargeable hydrogel evaporator
Pi et al. Sustainable MXene/PDA hydrogel with core-shell structure tailored for highly efficient solar evaporation and long-term desalination
Loo et al. 3D photothermal cryogels for solar-driven desalination
Chen et al. Photothermal membrane of CuS/polyacrylamide–carboxymethyl cellulose for solar evaporation
Liang et al. Direction-limited water transport and inhibited heat convection loss of gradient-structured hydrogels for highly efficient interfacial evaporation
CN111892742A (zh) 一种光热转化高分子太阳能吸收材料及其制备方法和应用
WO2023108868A1 (zh) 一种碳纳米管/聚丙烯酸水凝胶的制备方法及其产品与应用
CN113772667B (zh) 可高效产生太阳能蒸汽的氧化石墨烯基多孔光热材料及其制备方法和应用
Chu et al. Sustainable self-cleaning evaporators for highly efficient solar desalination using a highly elastic sponge-like hydrogel
Ma et al. Polypyrrole–dopamine nanofiber light-trapping coating for efficient solar vapor generation
Zhu et al. Excellent dual-photothermal freshwater collector with high performance in large-scale evaporation
Li et al. Highly efficient carbonization of nanocellulose to biocarbon aerogels with ultrahigh light absorption efficiency and evaporation rate as bifunctional solar/electric driven steam generator for water purification
Li et al. A hierarchical porous aerohydrogel for enhanced water evaporation
Zhao et al. Robust and versatile polypyrrole supramolecular network packed photothermal aerogel for solar-powered desalination
Xing et al. Synthesis of polypyrrole-modified gelatin/poly (acrylic acid) semi-interpenetrating network hydrogel and its controlled release of agrochemicals based on helix–coil transition of gelatin
Jing et al. Hydrogels as promising platforms for solar-driven water evaporators
Sun et al. Sustainable β-cyclodextrin modified polyacrylamide hydrogel for highly efficient solar-driven water purification
CN112707391A (zh) 一种复合水凝胶基的自供水型光热水蒸发装置
An et al. Hydrogel-based solar-driven interfacial evaporation: current progress and future challenges
CN116535565A (zh) 一种海藻糖改性光热水凝胶及其制备方法和应用
Tarek et al. Tailoring surface topography of biochar-based hydrogel for hazardous pollutants removal from contaminated seawater through simultaneous steam-electricity generation

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant