WO2023108868A1 - 一种碳纳米管/聚丙烯酸水凝胶的制备方法及其产品与应用 - Google Patents

一种碳纳米管/聚丙烯酸水凝胶的制备方法及其产品与应用 Download PDF

Info

Publication number
WO2023108868A1
WO2023108868A1 PCT/CN2022/074852 CN2022074852W WO2023108868A1 WO 2023108868 A1 WO2023108868 A1 WO 2023108868A1 CN 2022074852 W CN2022074852 W CN 2022074852W WO 2023108868 A1 WO2023108868 A1 WO 2023108868A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyacrylic acid
carbon nanotube
acid hydrogel
hydrogel
carbon nano
Prior art date
Application number
PCT/CN2022/074852
Other languages
English (en)
French (fr)
Inventor
李乐凡
王頔
李承勇
王文华
赖学辉
李程鹏
胡章
吴湛霞
李思东
Original Assignee
广东海洋大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东海洋大学 filed Critical 广东海洋大学
Priority to US18/331,175 priority Critical patent/US11958946B2/en
Publication of WO2023108868A1 publication Critical patent/WO2023108868A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/04Acids; Metal salts or ammonium salts thereof
    • C08F220/06Acrylic acid; Methacrylic acid; Metal salts or ammonium salts thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D1/00Evaporating
    • B01D1/0011Heating features
    • B01D1/0029Use of radiation
    • B01D1/0035Solar energy
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • C02F1/043Details
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • C02F1/14Treatment of water, waste water, or sewage by heating by distillation or evaporation using solar energy
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/04Polymerisation in solution
    • C08F2/10Aqueous solvent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/04Acids, Metal salts or ammonium salts thereof
    • C08F20/06Acrylic acid; Methacrylic acid; Metal salts or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/041Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/02Ingredients treated with inorganic substances
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/08Seawater, e.g. for desalination
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/02Homopolymers or copolymers of acids; Metal or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/20Controlling water pollution; Waste water treatment
    • Y02A20/208Off-grid powered water treatment
    • Y02A20/212Solar-powered wastewater sewage treatment, e.g. spray evaporation

Definitions

  • the invention belongs to the technical field of solar seawater desalination, and in particular relates to a preparation method of carbon nanotube/polyacrylic acid hydrogel and its product and application.
  • seawater desalination is an important direction to solve the problem of water shortage.
  • great progress has been made in seawater desalination, and reverse osmosis and multi-stage flash technology have successfully realized industrial applications.
  • these technologies have limited their development due to high investment, high energy consumption, and equipment pollution and corrosion problems.
  • solar-driven seawater desalination technology is considered to be a method with great development potential.
  • Materials for desalination of seawater by solar interface evaporation are a key technology in solar-driven seawater desalination.
  • three issues need to be considered: First, construct photothermal materials with broadband absorption , to improve the solar thermal conversion capacity; second, local heating in the evaporation area to reduce heat loss; third, to build a porous structure to provide sufficient water transport to support continuous evaporation.
  • Various photothermal materials such as metal nanoparticles and semiconductor materials, have been developed as photothermal agents for the preparation of solar-driven seawater desalination materials due to their high solar-to-thermal conversion performance.
  • the object of the present invention is to provide a preparation method of carbon nanotube/polyacrylic acid hydrogel and its products and applications, so as to further improve the evaporation rate and evaporation efficiency of solar seawater desalination.
  • the present invention provides the following technical solutions:
  • a method for preparing a carbon nanotube/polyacrylic acid hydrogel is characterized in that it comprises the following steps:
  • carboxylated carbon nanotubes in step (1) are formed by oxidation of carbon nanotubes through a concentrated acid solution.
  • the concentrated acid solution is a mixture of concentrated sulfuric acid and concentrated nitric acid, the volume ratio of concentrated sulfuric acid to concentrated nitric acid is 3:1, and the mass ratio of the carbon nanotubes to the concentrated acid solution is 1:200 ⁇ 400, the oxidation temperature is 50-95° C., and the oxidation time is 2-8 hours. After the oxidation is completed, the product is washed with water until the pH value is 6-8.
  • the concentrated sulfuric acid is common commercially available concentrated sulfuric acid with a mass fraction of about 98.3%
  • the concentrated nitric acid is common commercially available concentrated nitric acid with a mass fraction of about 68%.
  • the dispersing treatment in step (1) is ultrasonic dispersing treatment, and the time of the ultrasonic dispersing treatment is 10-30 min.
  • the cross-linking agent described in the step (2) is N, N-methylenebisacrylamide
  • the initiator is ammonium persulfate
  • the temperature of the in-situ polymerization is 30 ⁇ 85°C
  • the time is 10 ⁇ 80min.
  • the second technical solution of the present invention is a carbon nanotube/polyacrylic acid hydrogel prepared according to the above preparation method.
  • the third technical solution of the present invention is the application of the above-mentioned carbon nanotube/polyacrylic acid hydrogel in seawater desalination.
  • the carbon nanotube/polyacrylic acid hydrogel button is pasted on the polyurethane sponge base to form a carbon nanotube/polyacrylic acid hydrogel steam generator, and the carbon nanotube/polyacrylic acid hydrogel steam
  • the generator is placed floating on the seawater, so that its top is irradiated by sunlight, driven by solar energy to evaporate, and collects the fresh water brought out by evaporation.
  • the fourth technical solution of the present invention is a carbon nanotube/polyacrylic acid hydrogel steam generator, which is composed of the above-mentioned carbon nanotube/polyacrylic acid hydrogel and a polyurethane sponge base.
  • Polyurethane sponge has a low density, and using it as a base can make carbon nanotube/polyacrylic acid hydrogel completely float on the water surface, and polyurethane sponge is a hydrophilic material with good water transport, which can transport more water to the water faster and faster. under the gel.
  • the height of the polyurethane sponge base is 20 mm, and the height of the carbon nanotube/polyacrylic acid hydrogel is 10 mm.
  • the thickness of the carbon nanotube/polyacrylic acid hydrogel layer should not be too thin or too thick. If it is too thin, it will contain less photothermal agent and the water evaporation rate will be slower. If it is too thick, it will be unfavorable for the efficient evaporation of water. 10mm is more suitable thickness of.
  • the present invention has the following beneficial effects:
  • the present invention uses carboxylated carbon nanotubes as a photothermal agent, and ultrasonically disperses it in an aqueous acrylic acid polymerization system. Under the action of an initiator and a co-initiator, an in-situ polymerization reaction occurs to obtain carbon nanotubes/polyacrylic acid water gel. Carboxylation of carbon nanotubes can improve their water dispersibility and increase their compatibility with polyacrylic acid hydrogel. Both polyacrylic acid and carboxylated carbon nanotubes have carboxyl groups, which have good compatibility and are conducive to the formation of porous and arrayed hydrogel structures.
  • the carbon nanotube/polyacrylic acid hydrogel prepared by the present invention has a uniform porous structure, which is conducive to the rapid transmission and supply of water.
  • the carbon nanotubes in the hydrogel are in an array structure, which can fully receive solar energy and produce high-efficiency water. light-to-heat conversion.
  • the present invention sticks the carbon nanotube/polyacrylic acid hydrogel on the polyurethane sponge base to form a solar-driven carbon nanotube/polyacrylic acid hydrogel steam generator, and the polyurethane sponge base can ensure that the hydrogel floats On the surface of seawater, the largest area receives sunlight and can transmit sufficient water to the hydrogel.
  • the upper hydrogel has a uniform porous structure, which can quickly absorb the moisture transmitted from the base of the polyurethane sponge.
  • the hydrogel The carbon nanotubes in an array structure can fully receive solar energy and produce high-efficiency light-to-heat conversion.
  • the combination of carbon nanotubes/polyacrylic acid hydrogel and polyurethane sponge integrates enhanced heat management functions and sufficient water supply functions. Into a single solar evaporator, the water evaporation rate and evaporation efficiency are effectively improved; the invention uses solar energy to drive the photothermal conversion of the hydrogel, which is energy-saving, environmentally friendly, simple and practical.
  • Fig. 1 is the scanning electron micrograph (SEM picture) of the carbon nanotube/polyacrylic acid hydrogel that embodiment 1 makes, and wherein (a) is the overall structure of hydrogel; (b) is the carbon nanotube in hydrogel The structure of the tube.
  • the concentrated sulfuric acid used in the following examples and comparative examples is common commercially available concentrated sulfuric acid with a mass fraction of about 98.3%, and the concentrated nitric acid used is common commercially available concentrated nitric acid with a mass fraction of about 68%.
  • Ammonium persulfate, triethanolamine, and N,N-methylenebisacrylamide were then added for in-situ polymerization, and the polymerization reaction was carried out at a polymerization temperature of 55° C. for 45 minutes to obtain a carbon nanotube/polyacrylic acid hydrogel.
  • Ammonium persulfate, triethanolamine, and N, N-methylenebisacrylamide were then added for in-situ polymerization, and the polymerization reaction was carried out at a polymerization temperature of 65° C. for 35 minutes to obtain a carbon nanotube/polyacrylic acid hydrogel.
  • the hydrogel steam generator was placed in a beaker filled with seawater and floated on the water surface.
  • a solar simulator with an optical density of 1kW m -2 was used to simulate a solar irradiation sample.
  • For the water evaporation rate use an electronic analytical balance to measure the weight change of water evaporation with an accuracy of 0.1 mg. Calculate the weight of water evaporated by the hydrogel steam generator per unit area within a unit time, which is the final evaporation rate.
  • s is the evaporation rate (kg/m 2 h)
  • H is the phase change enthalpy (0.423Wh/g)
  • q is the intensity of one sun (1kW/m 2 )
  • c is the number of suns (1).
  • Example 1 8.48 5.41 1.93 1.75
  • Example 2 8.56 5.49 1.88 1.78
  • Example 3 8.42 5.39 1.82 1.73

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Environmental & Geological Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Dispersion Chemistry (AREA)
  • Toxicology (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

本发明公开了一种碳纳米管/聚丙烯酸水凝胶的制备方法及其产品与应用,属于太阳能海水淡化技术领域。所述制备方法包括以下步骤:将碳纳米管氧化为羧基化碳纳米管后与丙烯酸、氢氧化钠、过硫酸铵、三乙醇胺、N,N-亚甲基双丙烯酰胺经原位聚合,得到碳纳米管/聚丙烯酸水凝胶。该水凝胶呈均匀的多孔结构,有利于水分的快速传输与供给,水凝胶中的碳纳米管呈阵列结构,可以充分接收太阳能,产生高效率的光热转换。将其紧贴在聚氨酯海绵底座上形成太阳能驱动的碳纳米管/聚丙烯酸水凝胶光热转化蒸汽生成器,用于太阳能海水淡化,可进一步提高太阳能海水淡化的蒸发速率和蒸发效率,且具有节能环保、简单实用等优点。

Description

一种碳纳米管/聚丙烯酸水凝胶的制备方法及其产品与应用 技术领域
本发明属于太阳能海水淡化技术领域,具体涉及一种碳纳米管/聚丙烯酸水凝胶的制备方法及其产品与应用。
背景技术
随着社会经济发展和人口增长,水资源供需矛盾日益突出,水资源短缺已经成为一个全球性问题。海水淡化是解决水资源短缺问题的一个重要方向。在最近几十年,海水淡化取得了巨大的进步,反渗透和多级闪蒸技术成功实现了工业应用。但这些技术由于高投资、高能耗和设备污染腐蚀问题限制了其发展。从环境友好的能源供应和高效的能量转换效率考虑,太阳能驱动的海水淡化技术被认为是很有发展潜力的方法。
用于太阳能界面蒸发海水淡化的材料是太阳能驱动海水淡化中的一项关键技术,设计高性能的可用于太阳能界面蒸发海水淡化的材料需要考虑三个问题:一是构建具有宽带吸收的光热材料,以提高太阳能光热转换能力;二是在蒸发区局部加热以减少热量损失;三是构筑多孔结构提供足够的水输送,以支持连续蒸发。各种光热材料,如金属纳米粒子、半导体材料,由于其高的太阳能光热转换性能,已经被开发作为光热剂,用于制备太阳能驱动的海水淡化材料。现有的用于太阳能界面蒸发海水淡化的材料虽然在提高蒸发速率、蒸发效率和阻止盐析方面取得了一定的进展,但其蒸发速率和蒸发效率依然较 低,难以满足现阶段太阳能海水淡化的需求,且现有的材料无法实现高效的热量管理能力和高效的供水功能的统一。如何将增强的热量管理功能和充足的供水功能集成到一个单一的太阳能蒸发器中以保持高蒸发速率和蒸发效率,进一步提高太阳能海水淡化的蒸发速率和蒸发效率仍然是一个巨大的挑战。是本领域技术人员亟待解决的难题。
发明内容
本发明的目的提供一种碳纳米管/聚丙烯酸水凝胶的制备方法及其产品与应用,进一步提高太阳能海水淡化的蒸发速率和蒸发效率。
为实现上述目的,本发明提供如下的技术方案:
本发明的技术方案之一,一种碳纳米管/聚丙烯酸水凝胶的制备方法,其特征在于,包括以下步骤:
(1)将羧基化碳纳米管、丙烯酸和碱加入水中分散处理,得到碳纳米管/丙烯酸水分散液;
(2)在碳纳米管/丙烯酸水分散液中加入交联剂、引发剂和助引发剂,原位聚合,得到所述碳纳米管/聚丙烯酸水凝胶。
进一步地,步骤(1)中所述羧基化碳纳米管由碳纳米管经过浓酸溶液氧化而成。
碳纳米管很难均匀地分散于水中,羧基化处理大大改善了其水分散性。
进一步地,所述浓酸溶液为浓硫酸和浓硝酸的混合液,浓硫酸与浓硝酸的体积比为3:1,所述碳纳米管与所述浓酸溶液的质量比为1:200~400,所述氧化温度为50~95℃,氧化时间为2~8h,氧化完 成后将产物水洗至pH值为6~8。
进一步地,所述浓硫酸为普通市售浓硫酸,质量分数约为98.3%,所述浓硝酸为普通市售浓硝酸,质量分数约为68%。
进一步地,步骤(1)中所述碱为氢氧化钠,按质量比计,羧基化碳纳米管:丙烯酸:氢氧化钠:水=0.1~2.5:10~20:5~10:80~120。
进一步地,步骤(1)中所述分散处理为超声波分散处理,所述超声波分散处理的时间为10~30min。
进一步地,步骤(2)中所述交联剂为N,N-亚甲基双丙烯酰胺,所述引发剂为过硫酸铵,所述助引发剂为三乙醇胺,按质量比计,丙烯酸:过硫酸铵:三乙醇胺:N,N-亚甲基双丙烯酰胺=10~20:0.05~0.15:0.05~0.15:0.002~0.02,所述原位聚合的温度为30~85℃,时间为10~80min。
本发明的技术方案之二,一种根据上述制备方法制备得到的碳纳米管/聚丙烯酸水凝胶。
本发明的技术方案之三,上述碳纳米管/聚丙烯酸水凝胶在海水淡化中的应用。
进一步地,将所述碳纳米管/聚丙烯酸水凝胶扣贴在聚氨酯海绵底座上,形成碳纳米管/聚丙烯酸水凝胶蒸汽生成器,将所述碳纳米管/聚丙烯酸水凝胶蒸汽生成器漂浮放置在海水上,使其顶部接受太阳光的照射,受太阳能驱动进行蒸发,收集被蒸发带出的淡水。
本发明的技术方案之四,一种碳纳米管/聚丙烯酸水凝胶蒸汽生成器,由上述碳纳米管/聚丙烯酸水凝胶和聚氨酯海绵底座组成。
聚氨酯海绵密度小,以其作为底座可以使碳纳米管/聚丙烯酸水凝胶完全漂浮于水面,且聚氨酯海绵是亲水性材料,输水性好,可以将水更多更快地输送到水凝胶的下面。
进一步地,所述聚氨酯海绵底座的高度为20mm,所述碳纳米管/聚丙烯酸水凝胶的高度为10mm。
碳纳米管/聚丙烯酸水凝胶层的厚度不能太薄也不能太厚,太薄其中含有的光热剂较少,水蒸发速率较慢,太厚对水的高效蒸发不利,10mm为比较合适的厚度。
与现有技术相比,本发明具有以下有益效果:
(1)本发明以羧基化碳纳米管作为光热剂,将其超声分散于丙烯酸水溶液聚合体系,在引发剂和助引发剂的作用下发生原位聚合反应,得到碳纳米管/聚丙烯酸水凝胶。对碳纳米管进行羧基化处理能够改善其水分散性,增加与聚丙烯酸水凝胶的相容性。聚丙烯酸与羧基化碳纳米管都有羧基,相容性好,有利于形成多孔和阵列的水凝胶结构。本发明制得的碳纳米管/聚丙烯酸水凝胶呈均匀的多孔结构,有利于水分的快速传输与供给,水凝胶中的碳纳米管呈阵列结构,可以充分接收太阳能,产生高效率的光热转换。
(2)本发明提供的碳纳米管/聚丙烯酸水凝胶的制备方法简单,碳纳米管/聚丙烯酸水凝胶的结构容易控制。
(3)本发明将碳纳米管/聚丙烯酸水凝胶贴在聚氨酯海绵底座上,形成太阳能驱动的碳纳米管/聚丙烯酸水凝胶蒸汽生成器,聚氨酯海绵底座既能保证使水凝胶漂浮在海水表面,最大面积地接收太阳 光的照射,又能向水凝胶传输充足的水分,上部的水凝胶呈均匀的多孔结构,能够快速吸收聚氨酯海绵底座中传输过来的水分,水凝胶中呈阵列结构的碳纳米管则能够充分接收太阳能,产生高效率的光热转换,碳纳米管/聚丙烯酸水凝胶和聚氨酯海绵二者结合,将增强的热量管理功能和充足的供水功能集成到一个单一的太阳能蒸发器中,有效提高了水蒸发速率和蒸发效率;本发明利用太阳能驱动水凝胶光热转化,节能环保、简单实用。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为实施例1制得的碳纳米管/聚丙烯酸水凝胶的扫描电子显微镜图(SEM图),其中(a)为水凝胶的整体结构;(b)为水凝胶中碳纳米管的结构。
具体实施方式
现详细说明本发明的多种示例性实施方式,该详细说明不应认为是对本发明的限制,而应理解为是对本发明的某些方面、特性和实施方案的更详细的描述。
应理解本发明中所述的术语仅仅是为描述特别的实施方式,并非用于限制本发明。另外,对于本发明中的数值范围,应理解为具体公 开了该范围的上限和下限之间的每个中间值。在任何陈述值或陈述范围内的中间值以及任何其他陈述值或在所述范围内的中间值之间的每个较小的范围也包括在本发明内。这些较小范围的上限和下限可独立地包括或排除在范围内。
除非另有说明,否则本文使用的所有技术和科学术语具有本发明所述领域的常规技术人员通常理解的相同含义。虽然本发明仅描述了优选的方法和材料,但是在本发明的实施或测试中也可以使用与本文所述相似或等同的任何方法和材料。本说明书中提到的所有文献通过引用并入,用以公开和描述与所述文献相关的方法和/或材料。在与任何并入的文献冲突时,以本说明书的内容为准。
在不背离本发明的范围或精神的情况下,可对本发明说明书的具体实施方式做多种改进和变化,这对本领域技术人员而言是显而易见的。由本发明的说明书得到的其他实施方式对技术人员而言是显而易见的。本发明说明书和实施例仅是示例性的。
关于本文中所使用的“包含”、“包括”、“具有”、“含有”等等,均为开放性的用语,即意指包含但不限于。
以下实施例和对比例中所用浓硫酸为普通市售浓硫酸,质量分数约为98.3%,所用浓硝酸为普通市售浓硝酸,质量分数约为68%。
实施例1
(1)羧基化碳纳米管的制备:将碳纳米管与由浓硫酸和浓硝酸组成的混合液(3:1,v/v)按质量比为1:200混合,在85℃下氧化反应3h,将产物水洗至pH值为7。
(2)碳纳米管/聚丙烯酸水凝胶的制备:按羧基化碳纳米管0.5g,丙烯酸12g,氢氧化钠8g,过硫酸铵0.06g,三乙醇胺0.06g,N,N-亚甲基双丙烯酰胺0.01g,水82g称取各原料。先将羧基化碳纳米管、丙烯酸、氢氧化钠加入水中,超声波分散处理20min(超声波功率为1000W),得到水分散液。再加入过硫酸铵、三乙醇胺、N,N-亚甲基双丙烯酰胺,进行原位聚合,以45℃的聚合温度聚合反应55min,得到碳纳米管/聚丙烯酸水凝胶。对本实施例制得的碳纳米管/聚丙烯酸水凝胶进行电子显微镜扫描分析(SEM),其SEM图像如图1所示,其中(a)为水凝胶的整体结构,(b)为水凝胶中碳纳米管的结构,由(a)可知,水凝胶呈均匀的多孔结构,有利于水分的快速传输与供给,由(b)可知,碳纳米管呈阵列结构,可以充分接收太阳能,产生高效率的光热转换。
实施例2
(1)羧基化碳纳米管的制备:将碳纳米管与由浓硫酸和浓硝酸组成的混合液(3:1,v/v)按质量比为1:300混合,在80℃下反应3.5h,将产物水洗至pH值为7。
(2)碳纳米管/聚丙烯酸水凝胶的制备:按羧基化碳纳米管0.7g,丙烯酸12g,氢氧化钠8g,过硫酸铵0.06g,三乙醇胺0.06g,N,N-亚甲基双丙烯酰胺0.01g,水82g称取各原料。先将羧基化碳纳米管、丙烯酸、氢氧化钠加入水中,超声波分散处理20min(超声波功率为1000W),得到水分散液。再加入过硫酸铵、三乙醇胺、N,N-亚甲基双丙烯酰胺,进行原位聚合,以55℃的聚合温度聚合反应45min, 得到碳纳米管/聚丙烯酸水凝胶。
实施例3
(1)羧基化碳纳米管的制备:将碳纳米管与由浓硫酸和浓硝酸组成的混合液(3:1,v/v)按质量比为1:400混合,在75℃下反应4h,将产物水洗至pH值为7。
(2)碳纳米管/聚丙烯酸水凝胶的制备:按羧基化碳纳米管0.9g,丙烯酸12g,氢氧化钠8g,过硫酸铵0.06g,三乙醇胺0.06g,N,N-亚甲基双丙烯酰胺0.01g,水82g称取各原料。先将羧基化碳纳米管、丙烯酸、氢氧化钠加入水中,超声波分散处理20min(超声波功率为1000W),得到水分散液。再加入过硫酸铵、三乙醇胺、N,N-亚甲基双丙烯酰胺,进行原位聚合,以65℃的聚合温度聚合反应35min,得到碳纳米管/聚丙烯酸水凝胶。
效果验证
(1)太阳能驱动的碳纳米管/聚丙烯酸水凝胶蒸汽生成器的制备:分别将实施例1-3制得的碳纳米管/聚丙烯酸水凝胶贴在聚氨酯海绵底座上,形成对应的太阳能驱动的碳纳米管/聚丙烯酸水凝胶蒸汽生成器。聚氨酯海绵底座的高度为20mm,长宽为100×100mm。水凝胶紧密扣贴在聚氨酯海绵底座上,高度为10mm,长宽为100×100mm。
(2)碳纳米管/聚丙烯酸水凝胶蒸汽生成器在海水淡化中的应用:分别将利用实施例1-3制得的碳纳米管/聚丙烯酸水凝胶进一步制得的蒸汽生成器放置于装有海水的容器中,漂浮在海水上,海水浸到 水凝胶与聚氨酯海绵连接处,用模拟太阳光对蒸汽生成器的顶部进行持续照射,随着蒸发的进行,淡水被蒸发带出和收集,从而实现对海水的淡化。测试此过程中的蒸发速率和蒸发效率,具体方法如下:
(a)蒸发速率
将水凝胶蒸汽生成器放在装有海水的烧杯中,漂浮在水面上,采用光密度为1kW·m -2的太阳能模拟器模拟1个太阳辐照样品,在稳态条件下测定60min的水蒸发速率,用电子分析天平测量水分蒸发的重量变化,精度为0.1mg,计算单位面积的水凝胶蒸汽生成器在单位时间内蒸发掉的水的重量即为最终的蒸发速率。
(b)蒸发效率
蒸发效率计算公式为:Q=(sH)/(qc)×100%
式中,s为蒸发速率(kg/m 2h),H为相变焓(0.423Wh/g),q为一个太阳的强度(1kW/m 2),c为太阳数(1个)。
测试结果如表1所示:
表1 蒸发速率和蒸发效率
  蒸发速率(kg/m 2h) 蒸发效率(%)
实施例1 2.02 85.4
实施例2 2.08 88.0
实施例3 2.15 90.9
另外,分别检测淡化处理前的海水和经蒸汽生成器蒸发淡化后收集的水中钠离子、镁离子、钾离子、钙离子的浓度,结果如表2所示:
表2 四种主要金属离子的浓度(ppm)
  钠离子 镁离子 钾离子 钙离子
未处理海水 11712 6534 438 362
实施例1 8.48 5.41 1.93 1.75
实施例2 8.56 5.49 1.88 1.78
实施例3 8.42 5.39 1.82 1.73
由表2可知,经蒸汽生成器蒸发淡化后收集的水盐去除率达到99.9%。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种碳纳米管/聚丙烯酸水凝胶的制备方法,其特征在于,包括以下步骤:
    (1)将羧基化碳纳米管、丙烯酸和碱加入水中分散处理,得到碳纳米管/丙烯酸水分散液;
    (2)在碳纳米管/丙烯酸水分散液中加入交联剂、引发剂和助引发剂,原位聚合,得到所述碳纳米管/聚丙烯酸水凝胶。
  2. 根据权利要求1所述的碳纳米管/聚丙烯酸水凝胶的制备方法,其特征在于,步骤(1)中所述羧基化碳纳米管由碳纳米管经过浓酸溶液氧化而成。
  3. 根据权利要求2所述的碳纳米管/聚丙烯酸水凝胶的制备方法,其特征在于,所述浓酸溶液为浓硫酸和浓硝酸的混合液,浓硫酸与浓硝酸的体积比为3:1,所述碳纳米管与所述浓酸溶液的质量比为1:200~400,所述氧化温度为50~95℃,氧化时间为2~8h,氧化完成后将产物水洗至pH值为6~8。
  4. 根据权利要求1所述的碳纳米管/聚丙烯酸水凝胶的制备方法,其特征在于,步骤(1)中所述碱为氢氧化钠,按质量比计,羧基化碳纳米管:丙烯酸:氢氧化钠:水=0.1~2.5:10~20:5~10:80~120。
  5. 根据权利要求1所述的碳纳米管/聚丙烯酸水凝胶的制备方法,其特征在于,步骤(1)中所述分散处理为超声波分散处理,所述超声波分散处理的时间为10~30min。
  6. 根据权利要求1所述的碳纳米管/聚丙烯酸水凝胶的制备方 法,其特征在于,步骤(2)中所述交联剂为N,N-亚甲基双丙烯酰胺,所述引发剂为过硫酸铵,所述助引发剂为三乙醇胺,按质量比计,丙烯酸:过硫酸铵:三乙醇胺:N,N-亚甲基双丙烯酰胺=10~20:0.05~0.15:0.05~0.15:0.002~0.02,所述原位聚合的温度为30~85℃,时间为10~80min。
  7. 一种根据权利要求1-6任一项所述的制备方法制备得到的碳纳米管/聚丙烯酸水凝胶。
  8. 一种根据权利要求7所述的碳纳米管/聚丙烯酸水凝胶在海水淡化中的应用。
  9. 一种碳纳米管/聚丙烯酸水凝胶蒸汽生成器,其特征在于,由权利要求7所述的碳纳米管/聚丙烯酸水凝胶和聚氨酯海绵底座组成。
  10. 根据权利要求9所述的碳纳米管/聚丙烯酸水凝胶蒸汽生成器,其特征在于,所述碳纳米管/聚丙烯酸水凝胶扣贴在所述聚氨酯海绵底座上,所述聚氨酯海绵底座的高度为20mm,所述碳纳米管/聚丙烯酸水凝胶的高度为10mm。
PCT/CN2022/074852 2021-12-13 2022-01-29 一种碳纳米管/聚丙烯酸水凝胶的制备方法及其产品与应用 WO2023108868A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/331,175 US11958946B2 (en) 2021-12-13 2023-06-08 Method for preparing carbon nanotube/polyacrylic acid hydrogel, product and application thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111514809.2A CN114031710B (zh) 2021-12-13 2021-12-13 一种碳纳米管/聚丙烯酸水凝胶的制备方法及其产品与应用
CN202111514809.2 2021-12-13

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/331,175 Continuation US11958946B2 (en) 2021-12-13 2023-06-08 Method for preparing carbon nanotube/polyacrylic acid hydrogel, product and application thereof

Publications (1)

Publication Number Publication Date
WO2023108868A1 true WO2023108868A1 (zh) 2023-06-22

Family

ID=80146652

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/074852 WO2023108868A1 (zh) 2021-12-13 2022-01-29 一种碳纳米管/聚丙烯酸水凝胶的制备方法及其产品与应用

Country Status (5)

Country Link
US (1) US11958946B2 (zh)
CN (1) CN114031710B (zh)
LU (1) LU502100B1 (zh)
WO (1) WO2023108868A1 (zh)
ZA (1) ZA202203513B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114891266B (zh) * 2022-07-13 2022-09-27 广东海洋大学 一种复合水凝胶海绵及其制备方法和应用、太阳能海水淡化装置
CN116139831A (zh) * 2023-01-04 2023-05-23 西北师范大学 一种用于吸附式大气集水的复合吸湿材料及其制备方法和应用
CN116161729B (zh) * 2023-04-23 2023-08-29 江苏恒力化纤股份有限公司 一种风力辅助增强的太阳能驱动水蒸气生成装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107774237A (zh) * 2017-11-03 2018-03-09 吉林大学 碳纳米管水凝胶的制备方法及用途
US20180105617A1 (en) * 2015-04-10 2018-04-19 South China University Of Technology Hydrogel capable of being used for seawater desalination and preparation method therefor
CN109206553A (zh) * 2018-08-28 2019-01-15 深圳大学 一种太阳能光热转换材料及其制备方法
CN110028680A (zh) * 2019-04-12 2019-07-19 燕山大学 碳纳米管复合水凝胶的制备方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007138109A (ja) * 2005-11-22 2007-06-07 Fujifilm Corp カーボンナノチューブ分散物の製造方法
CN103408683B (zh) * 2013-07-15 2015-08-12 东华大学 一种物理/化学交联的光热响应水凝胶的制备方法
CN105418859A (zh) * 2015-12-14 2016-03-23 苏州大学张家港工业技术研究院 一种用于氚防护过滤的碳纳米管复合水凝胶及其制备方法
CN111072088B (zh) * 2018-10-18 2022-05-31 中国科学院宁波材料技术与工程研究所 一种海水蒸发器及其应用
CN110511558B (zh) * 2019-09-02 2021-12-31 哈尔滨工业大学(威海) 一种基于聚氨酯泡沫的海水淡化材料的制备方法
CN111841456B (zh) * 2020-07-23 2022-05-17 中国科学院苏州纳米技术与纳米仿生研究所 一种极端耐受的碳纳米管水凝胶其制备方法与应用
CN111825859A (zh) * 2020-07-23 2020-10-27 陕西科技大学 一种具有自修复功能的仿生电子皮肤医用支架材料及其制备方法
CN112625769A (zh) * 2020-11-30 2021-04-09 青岛科技大学 一种碳纳米管复合水凝胶促进甲烷水合物快速生成的方法
CN112934129B (zh) * 2021-01-28 2022-08-23 江西省纳米技术研究院 一种高效光热水蒸发碳纳米管水凝胶及其制备方法与应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180105617A1 (en) * 2015-04-10 2018-04-19 South China University Of Technology Hydrogel capable of being used for seawater desalination and preparation method therefor
CN107774237A (zh) * 2017-11-03 2018-03-09 吉林大学 碳纳米管水凝胶的制备方法及用途
CN109206553A (zh) * 2018-08-28 2019-01-15 深圳大学 一种太阳能光热转换材料及其制备方法
CN110028680A (zh) * 2019-04-12 2019-07-19 燕山大学 碳纳米管复合水凝胶的制备方法

Also Published As

Publication number Publication date
US20230312840A1 (en) 2023-10-05
CN114031710B (zh) 2022-08-02
ZA202203513B (en) 2022-10-26
CN114031710A (zh) 2022-02-11
US11958946B2 (en) 2024-04-16
LU502100B1 (en) 2023-06-26

Similar Documents

Publication Publication Date Title
WO2023108868A1 (zh) 一种碳纳米管/聚丙烯酸水凝胶的制备方法及其产品与应用
Liu et al. Nanofiber based origami evaporator for multifunctional and omnidirectional solar steam generation
CN110090603A (zh) 一种MXene与氧化石墨烯复合气凝胶及其制备方法和应用
CN111573787B (zh) 一种利用温差发电技术进行电化学连续除盐的方法
CN113527828B (zh) 一种两性聚电解质光热水凝胶、其制备和应用
CN112707391B (zh) 一种复合水凝胶基的自供水型光热水蒸发装置
CN110003509A (zh) 一种具有光热转化功能的石墨烯/纳米纤维杂化凝胶膜的制备方法
CN113860413B (zh) 一种基于生物质水凝胶/纳米碳材的太阳能蒸发器及其应用
CN111584980A (zh) 一种基于镁空气燃料电池回收尿液中磷资源和电能的方法
CN111892742A (zh) 一种光热转化高分子太阳能吸收材料及其制备方法和应用
CN115490285B (zh) 一种巧克力棒状复合太阳能蒸发器及其制备方法与应用
WO2024011748A1 (zh) 一种复合水凝胶海绵及其制备方法和应用、太阳能海水淡化装置
Du et al. Janus film evaporator with improved light-trapping and gradient interfacial hydrophilicity toward sustainable solar-driven desalination and purification
Zhu et al. Excellent dual-photothermal freshwater collector with high performance in large-scale evaporation
Li et al. An upcycled wood sponge adsorbent for drinking water purification by solar steam generation
CN113877492A (zh) 一种多孔MoS2水凝胶、制备方法及其应用
CN111635604B (zh) 一种天然胶体复合的水凝胶及其制备方法、应用
CN115975499B (zh) 一种用于太阳能界面蒸发的光热涂层复合材料的制备方法
Liu et al. Cotton fiber-based composite aerogel derived from waste biomass for high-performance solar-driven interfacial evaporation
CN115282892B (zh) 一种三明治式长效阻盐的凝胶光热蒸发器的制备方法
CN110407273A (zh) 一种基于六硼化镧纳米粒子的光热表面水蒸发器件的设计
CN106946239A (zh) 一种由面巾纸制备碳气凝胶的方法及应用
CN113908780A (zh) 一种石墨烯-凹凸棒土复合弹性气凝胶及其在海水淡化中的应用
CN110127669A (zh) 一种还原氧化石墨烯和四氧化三锰纳米粒子杂化气凝胶的制备方法
CN114381028B (zh) 光热转换材料及其制备方法和应用以及海水淡化、污水处理、水净化或溶液提纯的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22905640

Country of ref document: EP

Kind code of ref document: A1