WO2017118028A1 - Surge protector device - Google Patents

Surge protector device Download PDF

Info

Publication number
WO2017118028A1
WO2017118028A1 PCT/CN2016/095630 CN2016095630W WO2017118028A1 WO 2017118028 A1 WO2017118028 A1 WO 2017118028A1 CN 2016095630 W CN2016095630 W CN 2016095630W WO 2017118028 A1 WO2017118028 A1 WO 2017118028A1
Authority
WO
WIPO (PCT)
Prior art keywords
well layer
surge
protection device
well
deep
Prior art date
Application number
PCT/CN2016/095630
Other languages
French (fr)
Chinese (zh)
Inventor
骆生辉
Original Assignee
深圳市槟城电子有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市槟城电子有限公司 filed Critical 深圳市槟城电子有限公司
Publication of WO2017118028A1 publication Critical patent/WO2017118028A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/87Thyristor diodes, e.g. Shockley diodes, break-over diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H9/00Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
    • H02H9/04Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess voltage

Definitions

  • the present invention relates to the field of overvoltage protection products, and more particularly to a surge protection device.
  • TSS transient suppression diode
  • TVS is a voltage clamp type protection device.
  • THYRISTOR SURGE SUPPRESSOR (TSS) is a voltage switching protection device.
  • the unidirectional TVS needs to be used in series with the TSS.
  • the unidirectional TVS clamps the surge voltage to the Protects the electronics from operating within the normal operating voltage range; when subjected to a reverse surge, the TSS releases the surge voltage close to a short circuit, preventing the protected electronic device from being damaged by excessive reverse voltage.
  • the object of the present invention is to provide a surge protection device capable of providing forward surge protection and reverse surge protection for a circuit, and having higher integration, simple structure and low cost.
  • an embodiment of the present invention provides a surge protection device, including:
  • the N-type substrate is provided with a back surface P well layer on the entire back surface, a front surface P well layer on the front surface of the N type substrate, and an N+ implantation region on one side of the front surface P well layer.
  • the front P well layer is a front deep P well layer and a front shallow P well layer respectively located on both sides, and the front shallow P well layer is disposed on a side where the N+ implant region is provided.
  • a front deep N-well is disposed under the front shallow P-well layer.
  • the back surface P well layer is a back surface deep P well layer and a back surface shallow P well layer respectively located on both sides, and the back surface deep P well layer is disposed on a side where the N+ implant region is provided.
  • a back deep N-well is provided on the back shallow P well layer.
  • the back deep P well layer is provided with a plurality of separate deep P wells.
  • the N+ injection zone is provided in plurality.
  • a short circuit hole is disposed between the plurality of N+ implant regions, and the short circuit hole has a large impedance.
  • the surge protection device of the present invention integrates TVS and TSS together, and exhibits TVS characteristics when subjected to a forward surge; and exhibits TSS characteristics when subjected to a negative surge, completely solving the needs in the application.
  • the surge protection device has high integration degree and low product cost, and is convenient for connecting external circuits and being simple in application.
  • FIG. 1 is a schematic cross-sectional view of a surge protection device according to Embodiment 1 of the present invention.
  • FIG. 2 is an equivalent circuit diagram of a surge protection device according to an embodiment of the present invention.
  • FIG. 3 is a schematic cross-sectional view of a surge protection device according to Embodiment 2 of the present invention.
  • FIG. 4 is a cross-sectional view showing a surge protection device according to Embodiment 3 of the present invention.
  • FIG. 5 is a cross-sectional view showing a surge protection device according to Embodiment 4 of the present invention.
  • FIG. 6 is a cross-sectional view of a surge protection device according to a fifth embodiment of the present invention.
  • FIG. 1 is a cross-sectional view of a surge protection device according to Embodiment 1 of the present invention.
  • the surge protection device 1 of the present embodiment includes: a metal layer 11 of an external conductor, an N-type substrate, and a back surface P well layer on the entire back surface of the N-type substrate, the N-type substrate
  • the front side is provided with a front P-well layer, and one side of the front P-well layer is provided with an N+ implanted region.
  • the N+ implant region is provided with a plurality of electrodes for adjusting the sustain current and the sustain voltage of the device.
  • a short circuit hole 12 is provided between the plurality of N+ implant regions, and the short circuit hole 12 has a large impedance. The shorting holes are used to improve the anti-interference ability of the device. Since the device area is too large, if there is no short-circuit hole, the device will concentrate current in one part, while the other part has no current, which will adversely affect the performance of the device.
  • FIG. 2 is an equivalent circuit diagram of a surge protection device according to an embodiment of the present invention. The working process of the surge protection device provided by the present invention will be described below with reference to FIG. 1 and FIG.
  • the reverse PN junction formed by the N-type substrate-back P well undergoes avalanche breakdown, thereby discharging the surge current.
  • the structure on the right side of the device is N+ implant-front P-type-substrate-back P-well, which will not turn on due to high withstand voltage. So when a positive surge comes, the surge is vented through the front P-well-N-substrate-back P-well region on the left side of the device. At this point, the device exhibits TVS performance. When the surge is over, the device shuts down immediately and there is no problem with freewheeling.
  • the reverse diode formed by the N+ implant-front P well has a high withstand voltage
  • the reverse diode formed by the N-type substrate-front P well has a low withstand voltage
  • the N-type liner Avalanche breakdown occurs in the bottom-front P-well, and a leakage current forms a voltage drop through the short-circuit hole after breakdown.
  • the voltage drop is greater than the forward voltage drop of the front P-well-N+ implant, the PNPN structure formed by the backside P-well-N-substrate-front P-well-N+ implant produces positive feedback.
  • the surge passes, the device is turned off immediately due to the low potential of the back P-well, and there is no problem of freewheeling.
  • the working circuit of the device is equivalent to the circuit in which TVS and TSS are connected in parallel in FIG.
  • the surge protection device of the present invention integrates TVS and TSS together, and exhibits TVS characteristics when subjected to a forward surge; and exhibits TSS characteristics when subjected to a negative surge, completely solving the needs in the application.
  • the surge protection device has high integration degree and low product cost, and is convenient for connecting external circuits and being simple in application.
  • FIG. 3 is a cross-sectional view of a surge protection device according to Embodiment 2 of the present invention.
  • the surge protection device of this embodiment includes: an N-type substrate having a back surface P well layer on the entire back surface, and a front surface P well layer on the front surface of the N type substrate
  • the front P well layer is a front deep P well layer and a front shallow P well layer respectively located on both sides, and the front shallow P well layer is disposed on the side where the N+ implant region is provided.
  • the first embodiment corresponding to FIG. 1 has the following differences: the front P-well layer is a front deep P well layer and a front shallow P well layer on both sides, and the front shallow P well layer is disposed on the N+ implant. The side of the district. The remaining components are the same as those in the first embodiment, and are not described herein again.
  • the advantages are:
  • the reverse PN junction formed by the N-type substrate-back P well undergoes avalanche breakdown, thereby discharging the surge current.
  • the front deep P-well-N-substrate-backside P-well structure has a small negative-resistance characteristic, which can effectively reduce the residual voltage and improve the surge discharge capability.
  • the structure on the right side of the device is N+ implant-front shallow P-well-N-substrate-back P-well, which will not turn on due to high withstand voltage. So when a positive surge comes, the surge is vented through the front deep P-well-N-substrate-back P-well region on the left side of the device. At this point, the device exhibits TVS performance. When the surge is over, the device shuts down immediately and there is no problem with freewheeling.
  • the reverse diode formed by the N+ implant-front deep P-well has a high withstand voltage
  • the reverse diode formed by the N-type substrate-front shallow P-well has a low withstand voltage
  • N The substrate-formal shallow P-well undergoes avalanche breakdown, and a leakage current forms a voltage drop through the short-circuit hole after breakdown.
  • the PNPN structure formed by the backside P-N-substrate-front shallow P-N+ implant produces positive feedback.
  • the surge passes, the device is turned off immediately due to the low potential of the back P-well, and there is no problem of freewheeling.
  • the surge protection device of the present invention integrates TVS and TSS together, and exhibits TVS characteristics when subjected to a forward surge; and exhibits TSS characteristics when subjected to a negative surge, completely solving the needs in the application.
  • the surge protection device has high integration degree and low product cost, and is convenient for connecting external circuits and being simple in application.
  • FIG. 4 is a cross-sectional view of a surge protection device according to Embodiment 3 of the present invention.
  • the surge protection device of this embodiment includes: an N-type substrate having a back surface P well layer on the entire back surface, and a front surface P well layer on the front surface of the N type substrate An N+ implant region is disposed on a right side of the front P well layer, and the back P well layer is a back deep P well layer and a back shallow P well layer respectively disposed on both sides, and the back deep P well layer is disposed There is the side of the N+ injection zone.
  • the embodiment 1 corresponding to FIG. 1 has the following difference: the back surface P well layer is a back surface deep P well layer and a back surface shallow P well layer respectively located on both sides, and the back surface deep P well layer is disposed in the The side of the N+ injection zone.
  • the remaining components are the same as those in the first embodiment, and are not described herein again.
  • the advantage is that when the device is affected In the case of a reverse surge, the deep P-well layer on the back side can increase the surge bleed capacity of the device and reduce residual voltage.
  • the back deep P well layer is provided with a plurality of separate deep P wells.
  • the advantage is that the junction area of the back deep P-well-N substrate is increased, and the reverse surge bleed capability of the device is further improved.
  • the surge protection device of the present invention integrates TVS and TSS together, and exhibits TVS characteristics when subjected to a forward surge; and exhibits TSS characteristics when subjected to a negative surge, completely solving the needs in the application.
  • the surge protection device has high integration degree and low product cost, and is convenient for connecting external circuits and being simple in application.
  • FIG. 6 is a cross-sectional view of a surge protection device according to Embodiment 5 of the present invention.
  • the surge protection device of this embodiment includes: an N-type substrate, and the back surface of the N-type substrate is provided with a back deep P well layer and a back shallow P well layer respectively on both sides, a back deep P well layer is disposed on a side where the N+ implant region is disposed, and the front surface of the N type substrate is provided with a front deep P well layer and a front shallow P well layer respectively on both sides, and the front shallow P well layer An N+ implant region is disposed thereon, and a front deep N well is disposed under the front shallow P well layer, and a back deep N well is disposed on the back shallow P well layer.
  • the third embodiment corresponding to FIG. 4 has the following difference: a front deep N well is disposed under the front shallow P well layer, and a back deep N well is disposed on the back shallow P well layer.
  • the remaining components are the same as those in the third embodiment, and are not described here.
  • the advantage is that the breakdown voltage when the device is subjected to the reverse surge can be adjusted by adjusting the front deep N-well; the breakdown voltage when the device is subjected to the forward surge can be adjusted by adjusting the back deep N-well, At the same time, the forward surge capability of the device is further improved, and the residual voltage is reduced.
  • the surge protection device of the present invention integrates TVS and TSS together, and exhibits TVS characteristics when subjected to a forward surge; and exhibits TSS characteristics when subjected to a negative surge, completely solving the needs in the application.
  • the surge protection device has high integration degree and low product cost, and is convenient for connecting external circuits and being simple in application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Emergency Protection Circuit Devices (AREA)

Abstract

A surge protector device comprises: an N-type substrate having a rear P-well layer over the entirety of a rear surface thereof and a front P-well layer on a front surface of the N-type substrate, wherein a side of the front P-well layer is provided with N+ implant regions. A TVS and a TSS are integrated, such that the device displays TVS characteristics when subjected to a forward surge, and displays TSS characteristics when subjected to a reverse surge, thus solving the problem in applications in which a TVS and a TSS connected in series are required to be employed. The surge protector device has a high level of integration and a low product cost, facilitates connection to an external circuit, and can be easily and conveniently applied.

Description

一种浪涌防护器件Surge protection device
本申请要求于2016年1月5日提交中国专利局、申请号为201610009821.0、发明名称为“一种浪涌防护器件”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。This application claims the priority of the Chinese Patent Application, filed on Jan. 5, 2016, the application Serial No.
技术领域Technical field
本发明涉及过压保护产品领域,特别是涉及一种浪涌防护器件。The present invention relates to the field of overvoltage protection products, and more particularly to a surge protection device.
背景技术Background technique
目前,通常作为浪涌防护器件使用的半导体器件主要有以下两种:一是瞬态抑制二极管(英文译为TRANSIENT VOLTAGE SUPPRESSOR,简称TVS),TVS是一种电压钳位型保护器件,当其两端的电压超过反向击穿电压时,TVS迅速的由高阻态变为低阻态,将电压稳定在钳位电压,从而保护了与其并联的其他电子器件;二是半导体放电管(英文译为THYRISTOR SURGE SUPPRESSOR,简称TSS),TSS是一种电压开关型保护器件,当其两端的电压超过反向击穿电压时,TSS迅速的由高阻态变为低阻态,将电压下降到几乎为零,从而保护了与其并联的其他电子器件。At present, there are two main types of semiconductor devices commonly used as surge protection devices: one is a transient suppression diode (English translated as TRANSENT VOLTAGE SUPPRESSOR, TVS for short), and TVS is a voltage clamp type protection device. When the voltage at the terminal exceeds the reverse breakdown voltage, the TVS rapidly changes from a high-impedance state to a low-resistance state, and the voltage is stabilized at the clamp voltage, thereby protecting other electronic devices connected in parallel thereto. The second is a semiconductor discharge tube. THYRISTOR SURGE SUPPRESSOR (TSS) is a voltage switching protection device. When the voltage across it exceeds the reverse breakdown voltage, the TSS rapidly changes from a high-impedance state to a low-resistance state, reducing the voltage to almost Zero, thus protecting other electronic devices in parallel with it.
在具体的应用场景,需要根据被保护电子器件的工作性能,选择适当的浪涌防护器件。例如,在浪涌电压既可能为正向也可能为反向的情况下,需要将单向TVS与TSS串联起来使用,当经受正向浪涌时,单向TVS将浪涌电压钳位至被保护电子器件的正常工作电压范围内;当经受反向浪涌时,TSS将浪涌电压释放至接近于短路,使被保护电子器件不致于承受过大的反向电压而损坏。而同时,为了使电路更加简化和集成化,目前普遍的做法是:将需要串联起来的单向TVS与TSS的晶片手工叠起来进行封装,该封装件结构复杂,成本高。In a specific application scenario, it is necessary to select an appropriate surge protection device according to the working performance of the protected electronic device. For example, in the case where the surge voltage may be either positive or negative, the unidirectional TVS needs to be used in series with the TSS. When subjected to a forward surge, the unidirectional TVS clamps the surge voltage to the Protects the electronics from operating within the normal operating voltage range; when subjected to a reverse surge, the TSS releases the surge voltage close to a short circuit, preventing the protected electronic device from being damaged by excessive reverse voltage. At the same time, in order to make the circuit more simplified and integrated, it is common practice to manually stack the unidirectional TVS and TSS wafers that need to be connected in series, and the package has a complicated structure and high cost.
发明内容Summary of the invention
本发明的目的在于提供一种浪涌防护器件,既能够为电路提供正向浪涌防护和反向浪涌防护,且集成度更高,结构简单,成本低廉。The object of the present invention is to provide a surge protection device capable of providing forward surge protection and reverse surge protection for a circuit, and having higher integration, simple structure and low cost.
有鉴于此,本发明实施例提供了一种浪涌防护器件,包括:In view of this, an embodiment of the present invention provides a surge protection device, including:
N型衬底,所述N型衬底整个背面设有背面P阱层,所述N型衬底的正面设有正面P阱层,所述正面P阱层的一侧设有N+注入区。 The N-type substrate is provided with a back surface P well layer on the entire back surface, a front surface P well layer on the front surface of the N type substrate, and an N+ implantation region on one side of the front surface P well layer.
进一步的,所述正面P阱层为分别位于两侧的正面深P阱层和正面浅P阱层,所述正面浅P阱层设置在设有N+注入区的那一侧。Further, the front P well layer is a front deep P well layer and a front shallow P well layer respectively located on both sides, and the front shallow P well layer is disposed on a side where the N+ implant region is provided.
进一步的,所述正面浅P阱层下方设有正面深N阱。Further, a front deep N-well is disposed under the front shallow P-well layer.
进一步的,所述背面P阱层为分别位于两侧的背面深P阱层和背面浅P阱层,所述背面深P阱层设置在设有N+注入区的那一侧。Further, the back surface P well layer is a back surface deep P well layer and a back surface shallow P well layer respectively located on both sides, and the back surface deep P well layer is disposed on a side where the N+ implant region is provided.
进一步的,在所述背面浅P阱层上设有背面深N阱。Further, a back deep N-well is provided on the back shallow P well layer.
进一步的,所述背面深P阱层设有多个分开的深P阱。Further, the back deep P well layer is provided with a plurality of separate deep P wells.
进一步的,所述N+注入区设有多个。Further, the N+ injection zone is provided in plurality.
进一步的,所述多个N+注入区之间设有短路孔,所述短路孔阻抗大。Further, a short circuit hole is disposed between the plurality of N+ implant regions, and the short circuit hole has a large impedance.
本发明的浪涌防护器件由于将TVS、TSS集成在了一起,其在经受正向浪涌时,表现为TVS特性;经受到负向浪涌时,表现为TSS特性,完全解决了应用中需要用一颗TVS和一颗TSS串联使用的问题。而且该浪涌防护器件集成度高、产品成本较低,方便连接外部电路、应用简便。The surge protection device of the present invention integrates TVS and TSS together, and exhibits TVS characteristics when subjected to a forward surge; and exhibits TSS characteristics when subjected to a negative surge, completely solving the needs in the application. The problem of using a TVS in series with a TSS. Moreover, the surge protection device has high integration degree and low product cost, and is convenient for connecting external circuits and being simple in application.
附图说明DRAWINGS
为了使本发明的内容更容易被清楚的理解,下面根据本发明的具体实施例并结合附图,对本发明作进一步详细的说明,其中In order to make the content of the present invention easier to understand, the present invention will be further described in detail below with reference to the accompanying drawings
图1是本发明实施例一提供的浪涌防护器件的剖面示意图;1 is a schematic cross-sectional view of a surge protection device according to Embodiment 1 of the present invention;
图2是本发明实施例提供的浪涌防护器件的等效电路图;2 is an equivalent circuit diagram of a surge protection device according to an embodiment of the present invention;
图3是本发明实施例二提供的浪涌防护器件的剖面示意图;3 is a schematic cross-sectional view of a surge protection device according to Embodiment 2 of the present invention;
图4是本发明实施例三提供的浪涌防护器件的剖面示意图;4 is a cross-sectional view showing a surge protection device according to Embodiment 3 of the present invention;
图5是本发明实施例四提供的浪涌防护器件的剖面示意图;5 is a cross-sectional view showing a surge protection device according to Embodiment 4 of the present invention;
图6是本发明实施例五提供的浪涌防护器件的剖面示意图。6 is a cross-sectional view of a surge protection device according to a fifth embodiment of the present invention.
具体实施方式detailed description
以下将结合附图,使用以下实施例对本发明进行进一步阐述。The invention will be further illustrated by the following examples in conjunction with the accompanying drawings.
请参阅图1,图1是本发明实施例一提供的浪涌防护器件的剖面示意图。如图1所示,本实施例的浪涌防护器件1包括:外接导线的金属层11,N型衬底,所述N型衬底整个背面设有背面P阱层,所述N型衬底的正面设有正面P阱层,所述正面P阱层的一侧设有N+注入区。Please refer to FIG. 1. FIG. 1 is a cross-sectional view of a surge protection device according to Embodiment 1 of the present invention. As shown in FIG. 1, the surge protection device 1 of the present embodiment includes: a metal layer 11 of an external conductor, an N-type substrate, and a back surface P well layer on the entire back surface of the N-type substrate, the N-type substrate The front side is provided with a front P-well layer, and one side of the front P-well layer is provided with an N+ implanted region.
优选的,所述N+注入区设有多个,用来调节器件的维持电流和维持电压。 在另一优选实施例中,所述多个N+注入区之间设有短路孔12,所述短路孔12阻抗大。所述短路孔用来提高该器件的抗干扰能力。由于器件面积过大,如果没有短路孔,器件会出现电流集中在某一部分,而另一部分没有电流通过,对器件的性能也会产生不利影响。Preferably, the N+ implant region is provided with a plurality of electrodes for adjusting the sustain current and the sustain voltage of the device. In another preferred embodiment, a short circuit hole 12 is provided between the plurality of N+ implant regions, and the short circuit hole 12 has a large impedance. The shorting holes are used to improve the anti-interference ability of the device. Since the device area is too large, if there is no short-circuit hole, the device will concentrate current in one part, while the other part has no current, which will adversely affect the performance of the device.
请结合参阅图2,图2是本发明实施例提供的浪涌防护器件的等效电路图,以下将结合图1与图2来描述本发明提供的浪涌防护器件的工作过程:Referring to FIG. 2, FIG. 2 is an equivalent circuit diagram of a surge protection device according to an embodiment of the present invention. The working process of the surge protection device provided by the present invention will be described below with reference to FIG. 1 and FIG.
1、当器件受到正向浪涌冲击时,N型衬底-背面P阱所形成的反向PN结发生雪崩击穿,从而泄放掉浪涌电流。同时,器件右边的结构为N+注入-正面P阱-N型衬底-背面P阱,由于耐压高,将不会开启。所以当正向浪涌来临时,浪涌通过器件左边的正面P阱-N型衬底-背面P阱区域泄放掉。此时,该器件表现出的是TVS性能。当浪涌结束后,器件马上关断,不会出现续流的问题。1. When the device is subjected to a forward surge, the reverse PN junction formed by the N-type substrate-back P well undergoes avalanche breakdown, thereby discharging the surge current. At the same time, the structure on the right side of the device is N+ implant-front P-type-substrate-back P-well, which will not turn on due to high withstand voltage. So when a positive surge comes, the surge is vented through the front P-well-N-substrate-back P-well region on the left side of the device. At this point, the device exhibits TVS performance. When the surge is over, the device shuts down immediately and there is no problem with freewheeling.
2、当器件受到负向浪涌冲击时,由于N+注入-正面P阱形成的反向二极管耐压高,而N型衬底-正面P阱形成的反向二极管耐压低,所以N型衬底-正面P阱发生雪崩击穿,发生击穿后漏电流通过短路孔形成压降。当该压降大于正面P阱-N+注入的正向压降时,背面P阱-N型衬底-正面P阱-N+注入形成的PNPN结构发生正反馈。当浪涌通过后,由于背面P阱接在低电位,器件马上关断,也不会出现续流的问题。2. When the device is subjected to a negative surge, the reverse diode formed by the N+ implant-front P well has a high withstand voltage, and the reverse diode formed by the N-type substrate-front P well has a low withstand voltage, so the N-type liner Avalanche breakdown occurs in the bottom-front P-well, and a leakage current forms a voltage drop through the short-circuit hole after breakdown. When the voltage drop is greater than the forward voltage drop of the front P-well-N+ implant, the PNPN structure formed by the backside P-well-N-substrate-front P-well-N+ implant produces positive feedback. When the surge passes, the device is turned off immediately due to the low potential of the back P-well, and there is no problem of freewheeling.
通过上述描述可见,该器件的工作电路就等效于图2中TVS与TSS并联的电路。As can be seen from the above description, the working circuit of the device is equivalent to the circuit in which TVS and TSS are connected in parallel in FIG.
本实施例具有以下优点:This embodiment has the following advantages:
本发明的浪涌防护器件由于将TVS、TSS集成在了一起,其在经受正向浪涌时,表现为TVS特性;经受到负向浪涌时,表现为TSS特性,完全解决了应用中需要用一颗TVS和一颗TSS串联使用的问题。而且该浪涌防护器件集成度高、产品成本较低,方便连接外部电路、应用简便。The surge protection device of the present invention integrates TVS and TSS together, and exhibits TVS characteristics when subjected to a forward surge; and exhibits TSS characteristics when subjected to a negative surge, completely solving the needs in the application. The problem of using a TVS in series with a TSS. Moreover, the surge protection device has high integration degree and low product cost, and is convenient for connecting external circuits and being simple in application.
请参阅图3,图3是本发明实施例二提供的浪涌防护器件的剖面示意图。如图3所示,本实施例的浪涌防护器件包括:N型衬底,所述N型衬底整个背面设有背面P阱层,所述N型衬底的正面设有正面P阱层,所述正面P阱层为分别位于两侧的正面深P阱层和正面浅P阱层,所述正面浅P阱层设置在设有N+注入区的那一侧。 Please refer to FIG. 3. FIG. 3 is a cross-sectional view of a surge protection device according to Embodiment 2 of the present invention. As shown in FIG. 3, the surge protection device of this embodiment includes: an N-type substrate having a back surface P well layer on the entire back surface, and a front surface P well layer on the front surface of the N type substrate The front P well layer is a front deep P well layer and a front shallow P well layer respectively located on both sides, and the front shallow P well layer is disposed on the side where the N+ implant region is provided.
本实施例与图1对应的实施例一具有以下区别:正面P阱层为分别位于两侧的正面深P阱层和正面浅P阱层,所述正面浅P阱层设置在设有N+注入区的那一侧。其余部件均与实施例一相同,此处不再赘述。其优点在于:The first embodiment corresponding to FIG. 1 has the following differences: the front P-well layer is a front deep P well layer and a front shallow P well layer on both sides, and the front shallow P well layer is disposed on the N+ implant. The side of the district. The remaining components are the same as those in the first embodiment, and are not described herein again. The advantages are:
1、当器件受到正向浪涌冲击时,N型衬底-背面P阱所形成的反向PN结发生雪崩击穿,从而泄放掉浪涌电流。正面深P阱-N型衬底-背面P阱形成的三极管结构有较小的负阻特性,可以有效的降低残压和提高浪涌泄放能力。同时,器件右边的结构为N+注入-正面浅P阱-N型衬底-背面P阱,由于耐压高,将不会开启。所以当正向浪涌来临时,浪涌通过器件左边的正面深P阱-N型衬底-背面P阱区域泄放掉。此时,该器件表现出的是TVS性能。当浪涌结束后,器件马上关断,不会出现续流的问题。1. When the device is subjected to a forward surge, the reverse PN junction formed by the N-type substrate-back P well undergoes avalanche breakdown, thereby discharging the surge current. The front deep P-well-N-substrate-backside P-well structure has a small negative-resistance characteristic, which can effectively reduce the residual voltage and improve the surge discharge capability. At the same time, the structure on the right side of the device is N+ implant-front shallow P-well-N-substrate-back P-well, which will not turn on due to high withstand voltage. So when a positive surge comes, the surge is vented through the front deep P-well-N-substrate-back P-well region on the left side of the device. At this point, the device exhibits TVS performance. When the surge is over, the device shuts down immediately and there is no problem with freewheeling.
2、当器件受到负向浪涌冲击时,由于N+注入-正面深P阱形成的反向二极管耐压高,而N型衬底-正面浅P阱形成的反向二极管耐压低,所以N型衬底-正面浅P阱发生雪崩击穿,发生击穿后漏电流通过短路孔形成压降。当该压降大于正面浅P阱-N+注入的正向压降时,背面P阱-N型衬底-正面浅P阱-N+注入形成的PNPN结构发生正反馈。当浪涌通过后,由于背面P阱接在低电位,器件马上关断,也不会出现续流的问题。2. When the device is subjected to a negative surge, the reverse diode formed by the N+ implant-front deep P-well has a high withstand voltage, and the reverse diode formed by the N-type substrate-front shallow P-well has a low withstand voltage, so N The substrate-formal shallow P-well undergoes avalanche breakdown, and a leakage current forms a voltage drop through the short-circuit hole after breakdown. When the voltage drop is greater than the forward voltage drop of the front shallow P-N+ implant, the PNPN structure formed by the backside P-N-substrate-front shallow P-N+ implant produces positive feedback. When the surge passes, the device is turned off immediately due to the low potential of the back P-well, and there is no problem of freewheeling.
本实施例具有以下优点:This embodiment has the following advantages:
本发明的浪涌防护器件由于将TVS、TSS集成在了一起,其在经受正向浪涌时,表现为TVS特性;经受到负向浪涌时,表现为TSS特性,完全解决了应用中需要用一颗TVS和一颗TSS串联使用的问题。而且该浪涌防护器件集成度高、产品成本较低,方便连接外部电路、应用简便。The surge protection device of the present invention integrates TVS and TSS together, and exhibits TVS characteristics when subjected to a forward surge; and exhibits TSS characteristics when subjected to a negative surge, completely solving the needs in the application. The problem of using a TVS in series with a TSS. Moreover, the surge protection device has high integration degree and low product cost, and is convenient for connecting external circuits and being simple in application.
请参阅图4,图4是本发明实施例三提供的浪涌防护器件的剖面示意图。如图4所示,本实施例的浪涌防护器件包括:N型衬底,所述N型衬底整个背面设有背面P阱层,所述N型衬底的正面设有正面P阱层,所述正面P阱层的右侧设有N+注入区,所述背面P阱层为分别位于两侧的背面深P阱层和背面浅P阱层,所述背面深P阱层设置在设有N+注入区的那一侧。Please refer to FIG. 4. FIG. 4 is a cross-sectional view of a surge protection device according to Embodiment 3 of the present invention. As shown in FIG. 4, the surge protection device of this embodiment includes: an N-type substrate having a back surface P well layer on the entire back surface, and a front surface P well layer on the front surface of the N type substrate An N+ implant region is disposed on a right side of the front P well layer, and the back P well layer is a back deep P well layer and a back shallow P well layer respectively disposed on both sides, and the back deep P well layer is disposed There is the side of the N+ injection zone.
本实施例与图1对应的实施例一具有以下区别:所述背面P阱层为分别位于两侧的背面深P阱层和背面浅P阱层,所述背面深P阱层设置在设有N+注入区的那一侧。其余部件均与实施例一相同,此处不再赘述。其优点在于,当器件受 到反向浪涌冲击时,背面深P阱层的设置可以提高器件的浪涌泄放能力,以及降低残压。The embodiment 1 corresponding to FIG. 1 has the following difference: the back surface P well layer is a back surface deep P well layer and a back surface shallow P well layer respectively located on both sides, and the back surface deep P well layer is disposed in the The side of the N+ injection zone. The remaining components are the same as those in the first embodiment, and are not described herein again. The advantage is that when the device is affected In the case of a reverse surge, the deep P-well layer on the back side can increase the surge bleed capacity of the device and reduce residual voltage.
在另一优选实施例四中,请结合参考图5,所述背面深P阱层设有多个分开的深P阱。其优点在于:增加背面深P阱-N型衬底的结面积,进一步提高器件的反向浪涌泄放能力。In another preferred embodiment 4, referring to FIG. 5, the back deep P well layer is provided with a plurality of separate deep P wells. The advantage is that the junction area of the back deep P-well-N substrate is increased, and the reverse surge bleed capability of the device is further improved.
其工作过程与图1所述实施例相同,此处不再赘述。The working process is the same as that of the embodiment shown in FIG. 1, and details are not described herein again.
本实施例具有以下优点:This embodiment has the following advantages:
本发明的浪涌防护器件由于将TVS、TSS集成在了一起,其在经受正向浪涌时,表现为TVS特性;经受到负向浪涌时,表现为TSS特性,完全解决了应用中需要用一颗TVS和一颗TSS串联使用的问题。而且该浪涌防护器件集成度高、产品成本较低,方便连接外部电路、应用简便。The surge protection device of the present invention integrates TVS and TSS together, and exhibits TVS characteristics when subjected to a forward surge; and exhibits TSS characteristics when subjected to a negative surge, completely solving the needs in the application. The problem of using a TVS in series with a TSS. Moreover, the surge protection device has high integration degree and low product cost, and is convenient for connecting external circuits and being simple in application.
请参阅图6,图6是本发明实施例五提供的浪涌防护器件的剖面示意图。如图5所示,本实施例的浪涌防护器件包括:N型衬底,所述N型衬底整个背面设有分别位于两侧的背面深P阱层和背面浅P阱层,所述背面深P阱层设置在设有N+注入区的那一侧,所述N型衬底正面设有分别位于两侧的正面深P阱层和正面浅P阱层,所述正面浅P阱层上设有N+注入区,所述正面浅P阱层下方设有正面深N阱,所述背面浅P阱层上设有背面深N阱。Referring to FIG. 6, FIG. 6 is a cross-sectional view of a surge protection device according to Embodiment 5 of the present invention. As shown in FIG. 5, the surge protection device of this embodiment includes: an N-type substrate, and the back surface of the N-type substrate is provided with a back deep P well layer and a back shallow P well layer respectively on both sides, a back deep P well layer is disposed on a side where the N+ implant region is disposed, and the front surface of the N type substrate is provided with a front deep P well layer and a front shallow P well layer respectively on both sides, and the front shallow P well layer An N+ implant region is disposed thereon, and a front deep N well is disposed under the front shallow P well layer, and a back deep N well is disposed on the back shallow P well layer.
本实施例与图4对应的实施例三具有以下区别:所述正面浅P阱层下方设有正面深N阱,所述背面浅P阱层上设有背面深N阱。其余部件均与实施例三相同,此处不再赘述。其优点在于,可以通过调节所述正面深N阱,调节器件经受反向涌浪时的击穿电压;可以通过调节所述背面深N阱,调节器件经受正向涌浪时的击穿电压,同时进一步提高器件的正向浪涌泄放能力,以及降低残压。The third embodiment corresponding to FIG. 4 has the following difference: a front deep N well is disposed under the front shallow P well layer, and a back deep N well is disposed on the back shallow P well layer. The remaining components are the same as those in the third embodiment, and are not described here. The advantage is that the breakdown voltage when the device is subjected to the reverse surge can be adjusted by adjusting the front deep N-well; the breakdown voltage when the device is subjected to the forward surge can be adjusted by adjusting the back deep N-well, At the same time, the forward surge capability of the device is further improved, and the residual voltage is reduced.
其工作过程与图1所述实施例相同,此处不再赘述。The working process is the same as that of the embodiment shown in FIG. 1, and details are not described herein again.
本实施例具有以下优点:This embodiment has the following advantages:
本发明的浪涌防护器件由于将TVS、TSS集成在了一起,其在经受正向浪涌时,表现为TVS特性;经受到负向浪涌时,表现为TSS特性,完全解决了应用中需要用一颗TVS和一颗TSS串联使用的问题。而且该浪涌防护器件集成度高、产品成本较低,方便连接外部电路、应用简便。The surge protection device of the present invention integrates TVS and TSS together, and exhibits TVS characteristics when subjected to a forward surge; and exhibits TSS characteristics when subjected to a negative surge, completely solving the needs in the application. The problem of using a TVS in series with a TSS. Moreover, the surge protection device has high integration degree and low product cost, and is convenient for connecting external circuits and being simple in application.
显然,上述实施例仅仅是为清楚地说明所作的举例,而并非对实施方式的 限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引伸出的显而易见的变化或变动仍处于本发明创造的保护范围之中。 Obviously, the above embodiments are merely examples for clarity of explanation, and are not for the embodiments. limited. Other variations or modifications of the various forms may be made by those skilled in the art in light of the above description. There is no need and no way to exhaust all of the implementations. Obvious changes or variations resulting therefrom are still within the scope of the invention.

Claims (8)

  1. 一种浪涌防护器件,其特征在于,包括:A surge protection device, comprising:
    N型衬底,所述N型衬底整个背面设有背面P阱层,所述N型衬底的正面设有正面P阱层,所述正面P阱层的一侧设有N+注入区。The N-type substrate is provided with a back surface P well layer on the entire back surface, a front surface P well layer on the front surface of the N type substrate, and an N+ implantation region on one side of the front surface P well layer.
  2. 根据权利要求1所述的浪涌防护器件,其特征在于:The surge protection device of claim 1 wherein:
    所述正面P阱层为分别位于两侧的正面深P阱层和正面浅P阱层,所述正面浅P阱层设置在设有N+注入区的那一侧。The front P well layer is a front deep P well layer and a front shallow P well layer respectively located on both sides, and the front shallow P well layer is disposed on the side where the N+ implant region is provided.
  3. 根据权利要求2所述的浪涌防护器件,其特征在于:The surge protection device of claim 2 wherein:
    所述正面浅P阱层下方设有正面深N阱。A front deep N-well is disposed under the front shallow P-well layer.
  4. 根据权利要求1所述的浪涌防护器件,其特征在于:The surge protection device of claim 1 wherein:
    所述背面P阱层为分别位于两侧的背面深P阱层和背面浅P阱层,所述背面深P阱层设置在设有N+注入区的那一侧。The back surface P well layer is a back surface deep P well layer and a back surface shallow P well layer respectively located on both sides, and the back surface deep P well layer is disposed on the side where the N+ implant region is provided.
  5. 根据权利要求4所述的浪涌防护器件,其特征在于:A surge protection device according to claim 4, wherein:
    在所述背面浅P阱层上设有背面深N阱。A back deep N well is provided on the back shallow P well layer.
  6. 根据权利要求4所述的浪涌防护器件,其特征在于:A surge protection device according to claim 4, wherein:
    所述背面深P阱层设有多个分开的深P阱。The back deep P well layer is provided with a plurality of separate deep P wells.
  7. 根据权利要求1所述的浪涌防护器件,其特征在于:The surge protection device of claim 1 wherein:
    所述N+注入区设有多个。The N+ injection zone is provided in plurality.
  8. 根据权利要求7所述的浪涌防护器件,其特征在于:The surge protection device of claim 7 wherein:
    所述多个N+注入区之间设有短路孔,所述短路孔阻抗大。 A short-circuit hole is disposed between the plurality of N+ implant regions, and the short-circuit hole has a large impedance.
PCT/CN2016/095630 2016-01-05 2016-08-17 Surge protector device WO2017118028A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610009821.0 2016-01-05
CN201610009821.0A CN105552873B (en) 2016-01-05 2016-01-05 Surge protection device

Publications (1)

Publication Number Publication Date
WO2017118028A1 true WO2017118028A1 (en) 2017-07-13

Family

ID=55831887

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/095630 WO2017118028A1 (en) 2016-01-05 2016-08-17 Surge protector device

Country Status (2)

Country Link
CN (1) CN105552873B (en)
WO (1) WO2017118028A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108922885A (en) * 2018-08-06 2018-11-30 上海长园维安微电子有限公司 A kind of high-power unidirectional TVS device
CN110459593A (en) * 2019-08-01 2019-11-15 富芯微电子有限公司 A kind of unidirectional TVS device of low clamp voltage and its manufacturing method
CN112614782A (en) * 2020-12-15 2021-04-06 扬州杰利半导体有限公司 Manufacturing method of unidirectional negative resistance surge protection chip

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105552873B (en) * 2016-01-05 2024-03-29 深圳市槟城电子股份有限公司 Surge protection device
CN106783949A (en) * 2016-12-19 2017-05-31 东莞市阿甘半导体有限公司 Unidirectional TVS structures and its manufacture method
CN108428697A (en) * 2017-11-09 2018-08-21 上海长园维安微电子有限公司 A kind of low-capacitance bidirectional band negative resistance TVS device
CN117116936B (en) * 2023-09-25 2024-04-26 深圳长晶微电子有限公司 Unidirectional surge protection device and manufacturing method thereof

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2181754Y (en) * 1994-01-19 1994-11-02 东南大学 Plane type surge-proof silicon device
US5401984A (en) * 1991-06-11 1995-03-28 Texas Instruments Incorporated Semiconductor component for transient voltage limiting
WO2004004007A2 (en) * 2002-06-29 2004-01-08 Bourns Ltd Overvoltage protection
CN101552465A (en) * 2008-04-04 2009-10-07 半导体元件工业有限责任公司 Transient voltage suppressor and methods
CN102496619A (en) * 2011-12-26 2012-06-13 天津环联电子科技有限公司 Protector chip of light emitting diode and production technology thereof
CN104505341A (en) * 2014-12-18 2015-04-08 常熟市聚芯半导体科技有限公司 Manufacturing method of semiconductor discharge tube
CN105552873A (en) * 2016-01-05 2016-05-04 深圳市槟城电子有限公司 Surge protection device
CN105609549A (en) * 2016-01-15 2016-05-25 上海瞬雷电子科技有限公司 Bi-directional discharge tube chip and manufacturing method thereof
CN205283121U (en) * 2016-01-05 2016-06-01 深圳市槟城电子有限公司 Surge protection device
CN205385026U (en) * 2016-01-15 2016-07-13 上海瞬雷电子科技有限公司 Two -way discharge tube chip

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101640414B (en) * 2009-08-26 2011-06-15 苏州晶讯科技股份有限公司 Programmable semiconductor anti-surge protective device with deep trap structure
CN103384063B (en) * 2013-07-08 2016-01-20 电子科技大学 A kind of surge protection circuit and manufacture method thereof
CN104377673A (en) * 2013-08-13 2015-02-25 中兴通讯股份有限公司 Surge protective device and method
CN104953575A (en) * 2014-03-27 2015-09-30 林争 Special lightning protection device for highway entrance/exit
CN203932997U (en) * 2014-04-30 2014-11-05 湖南威普讯通信科技有限公司 With the surge protection apparatus of sense light device unit
CN104269835A (en) * 2014-09-19 2015-01-07 华为技术有限公司 Protection device, electronic equipment and power supply

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5401984A (en) * 1991-06-11 1995-03-28 Texas Instruments Incorporated Semiconductor component for transient voltage limiting
CN2181754Y (en) * 1994-01-19 1994-11-02 东南大学 Plane type surge-proof silicon device
WO2004004007A2 (en) * 2002-06-29 2004-01-08 Bourns Ltd Overvoltage protection
CN101552465A (en) * 2008-04-04 2009-10-07 半导体元件工业有限责任公司 Transient voltage suppressor and methods
CN102496619A (en) * 2011-12-26 2012-06-13 天津环联电子科技有限公司 Protector chip of light emitting diode and production technology thereof
CN104505341A (en) * 2014-12-18 2015-04-08 常熟市聚芯半导体科技有限公司 Manufacturing method of semiconductor discharge tube
CN105552873A (en) * 2016-01-05 2016-05-04 深圳市槟城电子有限公司 Surge protection device
CN205283121U (en) * 2016-01-05 2016-06-01 深圳市槟城电子有限公司 Surge protection device
CN105609549A (en) * 2016-01-15 2016-05-25 上海瞬雷电子科技有限公司 Bi-directional discharge tube chip and manufacturing method thereof
CN205385026U (en) * 2016-01-15 2016-07-13 上海瞬雷电子科技有限公司 Two -way discharge tube chip

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108922885A (en) * 2018-08-06 2018-11-30 上海长园维安微电子有限公司 A kind of high-power unidirectional TVS device
CN110459593A (en) * 2019-08-01 2019-11-15 富芯微电子有限公司 A kind of unidirectional TVS device of low clamp voltage and its manufacturing method
CN110459593B (en) * 2019-08-01 2024-05-28 富芯微电子有限公司 Low-clamping-voltage unidirectional TVS device and manufacturing method thereof
CN112614782A (en) * 2020-12-15 2021-04-06 扬州杰利半导体有限公司 Manufacturing method of unidirectional negative resistance surge protection chip

Also Published As

Publication number Publication date
CN105552873B (en) 2024-03-29
CN105552873A (en) 2016-05-04

Similar Documents

Publication Publication Date Title
WO2017118028A1 (en) Surge protector device
US11482519B2 (en) Transient voltage suppressor and method for manufacturing the same
TWI713189B (en) Low capacitance transient voltage suppressor
KR101784061B1 (en) Transient voltage protection circuits and devices
US6919603B2 (en) Efficient protection structure for reverse pin-to-pin electrostatic discharge
TWI422005B (en) Electrostatic discharge protection device structure
KR101944189B1 (en) Electrostatic Discharge Protection Device
US20120104459A1 (en) Bi-directional scr esd device
TW202008588A (en) Transient voltage suppression device with improved electrostatic discharge (ESD) robustness
EP3367436B1 (en) Electrostatic discharge (esd) protection device and method for operating an esd protection device
TW201926726A (en) Transient voltage suppressor
TWI712148B (en) Vertical transient voltage suppression device
TWI756539B (en) Semiconductor device with diode and scr
TW202008600A (en) Heat dissipating Zener diode
US10861843B2 (en) Electrostatic discharge protection device
TWI683414B (en) Improved transient voltage suppression device
TW201717351A (en) A semiconductor device
TWI506908B (en) Transient voltage suppressor
US10290628B2 (en) Electrostatic discharge protection circuit
CN107546223B (en) Waffle-shaped island type diode-triggered silicon controlled electrostatic protection device
TWI763442B (en) Transient voltage suppression device
US20080137243A1 (en) Esd protection circuit for an integrated circuit with a negative voltage input terminal
Li et al. Transient voltage suppressor based on diode-triggered low-voltage silicon controlled rectifier
US10580765B1 (en) Semiconductor structure for electrostatic discharge protection
TW201926727A (en) Transient voltage suppressor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16883159

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 14/11/2018)

122 Ep: pct application non-entry in european phase

Ref document number: 16883159

Country of ref document: EP

Kind code of ref document: A1