TW201717351A - A semiconductor device - Google Patents

A semiconductor device Download PDF

Info

Publication number
TW201717351A
TW201717351A TW104137321A TW104137321A TW201717351A TW 201717351 A TW201717351 A TW 201717351A TW 104137321 A TW104137321 A TW 104137321A TW 104137321 A TW104137321 A TW 104137321A TW 201717351 A TW201717351 A TW 201717351A
Authority
TW
Taiwan
Prior art keywords
type
doped region
region
lightly doped
well
Prior art date
Application number
TW104137321A
Other languages
Chinese (zh)
Inventor
洪根剛
Original Assignee
洪根剛
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 洪根剛 filed Critical 洪根剛
Priority to TW104137321A priority Critical patent/TW201717351A/en
Publication of TW201717351A publication Critical patent/TW201717351A/en

Links

Landscapes

  • Semiconductor Integrated Circuits (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

A semiconductor device applied for ESD protection in VLSI includes a first TYPE_II lightly doped region, a second TYPE_II lightly doped region, a third TYPE_II lightly doped region and a fourth TYPE_II lightly doped region. The TYPE_II lightly doped regions are disposed sequentially and disconnected with each other in a TYPE_I semiconductor region. A first TYPE_I doped region is disposed in the first TYPE_II lightly doped region, a first TYPE_II doped region is disposed in the second TYPE_II lightly doped region, a second TYPE_I doped region is disposed in the third TYPE_II lightly doped region, and a second TYPE_II doped region is disposed in the fourth TYPE_II lightly doped region. The TYPE_I doped region is connected to ground, the first TYPE_II doped region and the second TYPE_I doped region are connected together to an I/O port, and the second TYPE_II-type region is connected to a terminal.

Description

一種半導體裝置 Semiconductor device

本發明乃是關於一種半導體裝置,特別是指一種提供積積體電路靜電放電防護電路之半導體裝置。 The present invention relates to a semiconductor device, and more particularly to a semiconductor device that provides an integrated circuit electrostatic discharge protection circuit.

靜電對電子產品的傷害一直是存在的問題,電子產品一但受到靜電的放電(ESD)的作用時,常會出現一些不穩定的現象,如功能突然失常情形等,輕者須重開機才能排除,有時電子產品內的電子元件會不堪承受靜電的電壓或電流而損壞。為確保電子產品的功能,國際知名廠商都要求代工的產品必須符合國際規範IES61000-4-2 ESD測試才會接受。然而欲使電子產品具靜電防制能力,除了從半導體元件的防護更需從產品系統設計防制技術等兩方面著手,才能發揮靜電的防護功能。 The damage of static electricity to electronic products has always been a problem. When electronic products are subjected to electrostatic discharge (ESD), there are often some unstable phenomena, such as sudden malfunction of functions, etc., lighter must be restarted to eliminate, Sometimes electronic components in electronic products can be damaged by static voltage or current. In order to ensure the function of electronic products, internationally renowned manufacturers require OEM products to comply with international standards IES61000-4-2 ESD test will be accepted. However, in order to make the electronic products have the ability to prevent static electricity, in addition to the protection of the semiconductor components, it is necessary to start from the two aspects of product system design and prevention technology, in order to exert the electrostatic protection function.

積體電路係藉由瞬態電壓抑制器(transient voltage suppressing circuit:TVS)以用來保護積體電路,以避免受到因為產生異常過電壓而衝擊至積體電路內所導致的損害。然而,在靜電放電(electrostatic discharge,ESD)、快速電力暫態(electrical fast transient,EFT)與閃爍(lightning)的狀況下,一無法預期與控制的高電壓可能意外地撞擊到電路;因此,藉由暫態電壓抑制元件可提供積體電路內部核心(core)電路保護功能,以避免可能因為過電壓的問題而導致 在積體電路不可回覆的損害。又隨著在積體電路中所實現的元件數目逐漸地增加,以及低功率核心電路的使用,這些低功率核心元件更容易受到過電壓的損害,因此對於暫態電壓抑制器的需求與依賴也隨之增加。暫態電壓抑制器的典型應用係在於通用序列匯流排式的電源、資料線保護、數位影像界面、高速乙太網路、筆記型電腦、顯示裝置與平面式面板顯示器等。 The integrated circuit is used to protect the integrated circuit by a transient voltage suppressing circuit (TVS) to avoid damage caused by the impact of the abnormal overvoltage on the integrated circuit. However, in the case of electrostatic discharge (ESD), electrical fast transient (EFT) and lightning, a high voltage that cannot be expected and controlled may accidentally hit the circuit; therefore, borrow The internal circuit core protection function of the integrated circuit can be provided by the transient voltage suppression component to avoid possible problems due to overvoltage. Unrecoverable damage in the integrated circuit. With the gradual increase in the number of components implemented in integrated circuits and the use of low-power core circuits, these low-power core components are more susceptible to overvoltage damage, so the need and dependence on transient voltage suppressors is also It will increase. Typical applications for transient voltage suppressors are general-purpose serial bus power supplies, data line protection, digital image interfaces, high-speed Ethernet, notebook computers, display devices, and flat panel displays.

本發明之一態樣係一半導體裝置,包含一甲型半導體輕摻雜區,一第一乙型輕摻雜區、一第二乙型輕摻雜區、一第三乙型輕摻雜區與一第四乙型輕摻雜區,上述第一至第四乙型輕摻雜區依置於甲型半導體輕摻雜區中且依序排列,彼此之間未接觸。一第一甲型摻雜區置於第一乙型輕摻雜區中,一第一乙型摻雜區置於第二乙型輕摻雜區中,一第二甲型摻雜區置於第三乙型輕摻雜區中,一第二乙型摻雜區置於第四乙型輕摻雜區中,其中第一甲型摻雜區電性連接至一接地點,第一乙型摻雜區與第二甲型摻雜區電性連接至一訊號輸出入端,第二乙型摻雜區電性連接至一端點。 One aspect of the present invention is a semiconductor device comprising a light-doped region of a type A semiconductor, a first type B lightly doped region, a second type B lightly doped region, and a third type B lightly doped region. And the first to fourth B-type lightly doped regions are disposed in the light-doped region of the A-type semiconductor and are sequentially arranged without contact with each other. A first type A doped region is disposed in the first type B lightly doped region, a first type B doped region is disposed in the second type B lightly doped region, and a second type A doped region is disposed In the third type B lightly doped region, a second type B doped region is disposed in the fourth type B lightly doped region, wherein the first type A doped region is electrically connected to a ground point, the first type B The doped region and the second type A doped region are electrically connected to a signal input and output end, and the second type B doped region is electrically connected to an end point.

根據本發明之一或多個實施方式,上述的半導體裝置,更包含:一第一甲型輕摻雜區,置於甲型半導體輕摻雜區中,其中第一甲型輕摻雜區緊鄰第四乙型輕摻雜區,且與第四乙型輕摻雜區相隔一第一間距。一第三乙型摻雜區與一第四乙型摻雜區置於第一甲型輕摻雜區中,其中第三乙型摻雜區與第四乙型摻雜區之間有一隔離結構。 According to one or more embodiments of the present invention, the semiconductor device further includes: a first type A lightly doped region disposed in the lightly doped region of the semiconductor semiconductor, wherein the first type A lightly doped region is in close proximity The fourth type B lightly doped region is separated from the fourth type B lightly doped region by a first pitch. A third B-type doped region and a fourth B-type doped region are disposed in the first type A lightly doped region, wherein an isolation structure exists between the third B-type doped region and the fourth B-type doped region .

根據本發明一或多個實施方式,第二乙型輕摻雜區與第三乙型輕摻雜區之間有一隔離結構。根據本發明一或多個實施方式,第一乙型輕摻雜區、第二乙型輕摻雜區、第三乙型輕摻雜區與第四乙型輕摻雜區彼此之間各有一隔離結構。 According to one or more embodiments of the present invention, there is an isolation structure between the second B-type lightly doped region and the third B-type lightly doped region. According to one or more embodiments of the present invention, the first B-type lightly doped region, the second B-type lightly doped region, the third B-type lightly doped region, and the fourth B-type lightly doped region have a Isolation structure.

根據本發明一或多個實施方式,更包含一乙型半導體基底,其中甲型半導體區井置於乙型半導體基底中。根據本發明一或多個實施方式,該第二乙型輕摻雜區與該第三乙型輕摻雜區之間有一隔離結構。根據本發明一或多個實施方式,第一乙型輕摻雜區、第二乙型輕摻雜區、第三乙型輕摻雜區與第四乙型輕摻雜區彼此之間各有一隔離結構。 According to one or more embodiments of the present invention, a B-type semiconductor substrate is further included, wherein the A-type semiconductor well is placed in the B-type semiconductor substrate. According to one or more embodiments of the present invention, the second type B lightly doped region and the third type B lightly doped region have an isolation structure. According to one or more embodiments of the present invention, the first B-type lightly doped region, the second B-type lightly doped region, the third B-type lightly doped region, and the fourth B-type lightly doped region have a Isolation structure.

本發明之一另一態樣係一半導體裝置,包含:一乙型半導體基底;一第一甲型輕摻雜區與一第二甲型輕摻雜區,置於乙型半導體基底中,其中第一甲型輕摻雜區與第二甲型輕摻雜區未接觸。一第一乙型輕摻雜區與一第二乙型輕摻雜區,置於第一甲型輕摻雜區中,其中第一乙型輕摻雜區與第二乙型輕摻雜區未接觸。一第三乙型輕摻雜區與一第四乙型輕摻雜區,置於第二甲型輕摻雜區中,其中第三乙型輕摻雜區與第四乙型輕摻雜區未接觸。一第一甲型摻雜區置於第一乙型輕摻雜區中,一第一乙型摻雜區置於第二乙型輕摻雜區中,一第二甲型摻雜區置於第三乙型輕摻雜區中,一第二乙型摻雜區置於第四乙型輕摻雜區中。第一甲型摻雜區電性連接至一接地點,第一乙型摻雜區與第二甲型摻雜區電性連接至一訊號輸出入端,第二乙型摻雜區電性連接至一端點。 Another aspect of the present invention is a semiconductor device comprising: a B-type semiconductor substrate; a first A-type lightly doped region and a second A-type lightly doped region, disposed in the B-type semiconductor substrate, wherein The first type A lightly doped region is not in contact with the second type A lightly doped region. a first type B lightly doped region and a second type B lightly doped region are disposed in the first type A lightly doped region, wherein the first type B lightly doped region and the second type B lightly doped region Not in contact. a third type B lightly doped region and a fourth type B lightly doped region are disposed in the second type A lightly doped region, wherein the third type B lightly doped region and the fourth type B lightly doped region Not in contact. A first type A doped region is disposed in the first type B lightly doped region, a first type B doped region is disposed in the second type B lightly doped region, and a second type A doped region is disposed In the third B-type lightly doped region, a second B-type doped region is placed in the fourth B-type lightly doped region. The first type A doped region is electrically connected to a ground point, the first type B doped region and the second type A doped region are electrically connected to a signal output end, and the second type B doped region is electrically connected To an endpoint.

根據本發明一或多個實施方式,第一甲型輕摻雜區與第二甲型輕摻雜區之間有一隔離結構。根據本發明一或多個實施方式,第一乙型輕摻雜區與第二乙型輕摻雜區之間有一隔離結構,第三乙型輕摻雜區與第四乙型輕摻雜區之間有一隔離結構。 According to one or more embodiments of the present invention, there is an isolation structure between the first type A lightly doped region and the second type A lightly doped region. According to one or more embodiments of the present invention, there is an isolation structure between the first B-type lightly doped region and the second B-type lightly doped region, and the third B-type lightly doped region and the fourth B-type lightly doped region There is an isolation structure between them.

根據本發明一或多個實施方式,所述甲型為P型半導體,所述乙型為N型半導體。 According to one or more embodiments of the present invention, the type A is a P-type semiconductor, and the type B is an N-type semiconductor.

根據本發明一或多個實施方式,所述甲型為N型半導體,所述乙型為P型半導體 According to one or more embodiments of the present invention, the type A is an N-type semiconductor, and the type B is a P-type semiconductor.

10 100 200 300‧‧‧積體電路 10 100 200 300‧‧‧Integrated circuits

11 12 21 22 31‧‧‧靜電保護元件 11 12 21 22 31‧‧‧Electrostatic protection components

41 42‧‧‧電路核心 41 42‧‧‧ circuit core

111 211 311‧‧‧第一P型摻雜區 111 211 311‧‧‧First P-doped region

112 212 312‧‧‧第一N型摻雜區 112 212 312‧‧‧First N-doped region

113 213 313‧‧‧第二P型摻雜區 113 213 313‧‧‧Second P-doped region

114 214 314‧‧‧第二N型摻雜區 114 214 314‧‧‧Second N-doped region

116 216 316‧‧‧第三N型摻雜區 116 216 316‧‧‧Third N-doped region

118 218 318‧‧‧第四N型摻雜區 118 218 318‧‧‧Four N-doped region

122 222 322‧‧‧第一N型井/輕摻雜區 122 222 322‧‧‧First N-type well/lightly doped area

224 324‧‧‧第二N型井/輕摻雜區 224 324‧‧‧Second N-type well/lightly doped area

226‧‧‧第三N型井/輕摻雜區 226‧‧‧Third N-type well/lightly doped area

228‧‧‧第四N型井/輕摻雜區 228‧‧‧Four N-type well/lightly doped area

230‧‧‧P型半導體井區 230‧‧‧P type semiconductor well area

330‧‧‧N型半導體井區 330‧‧‧N type semiconductor well area

131 221 231 321‧‧‧第一P型井/輕摻雜區 131 221 231 321‧‧‧First P-well/lightly doped zone

133 233 323‧‧‧第二P型井 133 233 323‧‧‧Second P-well

325‧‧‧第三P型井 325‧‧‧ Third P-well

327‧‧‧第四P型井 327‧‧‧Four P-type well

329‧‧‧第五P型井 329‧‧‧ Fifth P-well

240‧‧‧N型半導體基底 240‧‧‧N type semiconductor substrate

350‧‧‧P型半導體基底 350‧‧‧P type semiconductor substrate

290‧‧‧隔離結構 290‧‧‧Isolation structure

I/O I/O1 I/O2‧‧‧訊號輸出輸入端 I/O I/O1 I/O2‧‧‧ signal output input

Vcc‧‧‧電源端 Vcc‧‧‧ power terminal

GND‧‧‧接地點 GND‧‧‧ Grounding point

VR‧‧‧逆向偏壓VR VR‧‧‧Reverse bias VR

Vt‧‧‧觸發電壓 Vt‧‧‧ trigger voltage

Vh‧‧‧保持電壓Vh Vh‧‧‧Pressure voltage Vh

為讓本發明之上述和其他目的、特徵、優點與實施例能更明顯易懂,所附圖式之詳細說明如下:第1圖繪示包含ESD防護電路之積體電路示意圖;第2圖繪示ESD防護電路之積體電路剖面示意圖;第3圖繪示ESD防護電路放電之電流-電壓特性曲線圖;第4圖繪示ESD防護電路之積體電路剖面示意圖;第5圖繪示ESD防護電路放電之電流-電壓特性曲線圖;第6圖繪示ESD防護電路之積體電路剖面示意圖;第7圖繪示ESD防護電路之積體電路剖面示意圖;第8圖繪示ESD防護電路之積體電路剖面示意圖;第9圖繪示ESD防護電路之積體電路剖面示意圖;第10圖繪示ESD防護電路之積體電路剖面示意圖;第11圖繪示ESD防護電路之積體電路剖面示意圖; 第12圖繪示ESD防護電路之積體電路剖面示意圖。 The above and other objects, features, advantages and embodiments of the present invention will become more <RTIgt; <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; The schematic diagram of the integrated circuit of the ESD protection circuit; the third diagram shows the current-voltage characteristic curve of the ESD protection circuit discharge; the fourth diagram shows the schematic diagram of the integrated circuit of the ESD protection circuit; and the fifth figure shows the ESD protection The current-voltage characteristic diagram of the circuit discharge; the sixth diagram shows the schematic diagram of the integrated circuit of the ESD protection circuit; the seventh diagram shows the schematic diagram of the integrated circuit of the ESD protection circuit; and the figure 8 shows the product of the ESD protection circuit. FIG. 9 is a cross-sectional view showing the integrated circuit of the ESD protection circuit; FIG. 10 is a schematic cross-sectional view showing the integrated circuit of the ESD protection circuit; and FIG. 11 is a schematic cross-sectional view showing the integrated circuit of the ESD protection circuit; Figure 12 is a cross-sectional view showing the integrated circuit of the ESD protection circuit.

以下將以圖式揭露本發明之複數個實施方式,為明確說明起見,許多實務上的細節將在以下敘述中一併說明。然而,應瞭解到,這些實務上的細節不應用以限制本發明。也就是說,在本發明部分實施方式中,這些實務上的細節是非必要的。此外,為簡化圖式起見,一些習知慣用的結構與元件在圖式中將以簡單示意的方式繪示之。 The embodiments of the present invention are disclosed in the following drawings, and the details of However, it should be understood that these practical details are not intended to limit the invention. That is, in some embodiments of the invention, these practical details are not necessary. In addition, some of the conventional structures and elements are shown in the drawings in a simplified schematic manner in order to simplify the drawings.

第1圖所示為一積體電路10示意圖,其包含電源端Vcc,接地點GND,訊號輸出輸入端I/O1 I/O2,靜電保護元件11 12 21 22 31,電路核心41 42。在一實施例中,電路核心41 42為一數位邏輯電路或類比電路,其工作在較低的電壓工作範圍,例如20伏特以下,一般數位邏輯電路的工作電壓為5V,3.3V,2.5V,1.8V或者更低,類比電路則可能工作在較高的電壓範圍,如幾十伏特。數位電路或類比電路的構成元件一般為金氧化半導體元件MOS,或雙極性半導體元件BJT。在積體電路10尚未工作的情況下,可能遭遇到外來或本身累積的靜電高壓,一般為幾千伏特或上萬伏特,當積體電路10的某一接腳接觸到接地(Ground)時,累積在積體電路10本身上的高壓靜電(Static Electricity)會放電(Discharge)至接地點,這放電過程中,很容易造成電路核心41 42內的半導體元件不可恢復的損壞。在另一實施例中,當積體電路10在工作時,也可能 遭遇到外來的高壓突波(surge),造成電路核心41 42內的半導體元件損壞。 1 is a schematic diagram of an integrated circuit 10 including a power supply terminal Vcc, a grounding point GND, a signal output input terminal I/O1 I/O2, an electrostatic protection component 11 12 21 22 31, and a circuit core 41 42. In one embodiment, the circuit core 41 42 is a digital logic circuit or analog circuit that operates at a lower voltage operating range, such as below 20 volts. Typically, the digital logic circuit operates at 5V, 3.3V, 2.5V, At 1.8V or lower, the analog circuit may operate at a higher voltage range, such as tens of volts. The constituent elements of the digital circuit or the analog circuit are generally a gold oxide semiconductor device MOS or a bipolar semiconductor device BJT. In the case where the integrated circuit 10 has not been operated, an electrostatic high voltage which is externally or self-accumulated may be encountered, typically several thousand volts or tens of thousands of volts, when a pin of the integrated circuit 10 contacts ground (Ground), The static electricity accumulated on the integrated circuit 10 itself is discharged to the ground point, which is liable to cause irreparable damage to the semiconductor elements in the circuit core 41 42 during the discharge. In another embodiment, when the integrated circuit 10 is in operation, it is also possible An external high voltage surge is encountered, causing damage to the semiconductor components within the circuit core 41 42.

在一實施例中,積體電路10包含靜電放電(Electrostatic Discharge:ESD)防護電路以保護電路核心41 42免於上述靜電高壓或高壓突波所造成的損壞。在第1圖所示之實施例中,靜電放電防護電路包含靜電保護元件11 12 21 22 31。在一實施例中,靜電保護元件11 12 21 22為二極體,但不限於此;在另一實施例中,靜電保護元件11 12 21 22包含金氧化半導體元件MOS,雙極性半導體元件BJT或其他半導體元件所形成的P/N接面。在一實施例中,靜電保護元件31為一齊納二極體(Zener diode),但不限於此;在另一實施例中靜電保護元件31包含金氧化半導體元件MOS,雙極性半導體元件BJT或其他半導體元件所形成的P/N接面。 In one embodiment, the integrated circuit 10 includes an Electrostatic Discharge (ESD) protection circuit to protect the circuit core 41 42 from damage caused by the electrostatic high voltage or high voltage surge described above. In the embodiment shown in Figure 1, the ESD protection circuit comprises an electrostatic protection element 11 12 21 22 31. In an embodiment, the electrostatic protection component 11 12 21 22 is a diode, but is not limited thereto; in another embodiment, the electrostatic protection component 11 12 21 22 includes a gold oxide semiconductor component MOS, a bipolar semiconductor component BJT or P/N junction formed by other semiconductor components. In one embodiment, the electrostatic protection element 31 is a Zener diode, but is not limited thereto; in another embodiment, the electrostatic protection element 31 comprises a gold oxide semiconductor component MOS, a bipolar semiconductor component BJT or the like. A P/N junction formed by a semiconductor device.

依第1圖所示之實施例,在實際應用裡,積體電路10尚未接上電源時,當有一正的高壓靜電接觸訊號輸出輸入端I/O1時,該正的高壓靜電會經由靜電保護元件11、電源端Vcc(此時電源端Vcc尚未連接至外部電源),及靜電保護元件31放電至接地點GND,此時靜電保護元件11為正向偏壓,靜電保護元件31為逆向崩潰後的保持電壓(holding voltage:Vh),上述的保持電壓值Vh不會造成電路核心41的損壞,且靜電保護元件31亦有足夠大的界面面積可以釋放瞬間的大電流。相對地,當負的高壓靜電接觸訊號輸出輸入端I/O1時,則負高壓靜電經由順偏壓的靜電 保護元件12放電,順偏壓的靜電保護元件12的導通電壓值不會造成電路核心41的損壞,且順向偏壓的靜電保護元件12可以釋放瞬間的大電流。經由上述說明可以理解當外界靜電接觸到積體電路10的任何一根訊號輸出輸入端時,將同上述原理可以保護電路核心41 42不會受到靜電的損壞。 According to the embodiment shown in FIG. 1, in the actual application, when the integrated circuit 10 is not connected to the power supply, when there is a positive high-voltage electrostatic contact signal output input I/O1, the positive high-voltage static electricity is protected by static electricity. The component 11, the power supply terminal Vcc (when the power supply terminal Vcc is not connected to the external power supply), and the electrostatic protection component 31 are discharged to the grounding point GND, at which time the electrostatic protection component 11 is forward biased, and the electrostatic protection component 31 is reversely collapsed. The holding voltage (Vh), the above-mentioned holding voltage value Vh does not cause damage to the circuit core 41, and the electrostatic protection element 31 also has a sufficiently large interface area to release an instantaneous large current. In contrast, when a negative high-voltage electrostatic contact signal is output to the input I/O1, the negative high-voltage static electricity passes through the biased static electricity. The protection element 12 is discharged, the on-voltage value of the biased electrostatic protection element 12 does not cause damage to the circuit core 41, and the forward-biased electrostatic protection element 12 can discharge an instantaneous large current. It can be understood from the above description that when any external electrostatic contact is made to any one of the signal output terminals of the integrated circuit 10, the above principle can protect the circuit core 41 42 from electrostatic damage.

接著請看第2圖,第2圖顯示第1圖之靜電保護元件11 12 31在實際半導體晶片100上的剖面圖,為方更解說ESD防護原理,第2圖省略了靜電保護元件21 22以及電路核心41 42的剖面圖。由第2圖所示,第一P型井131包含了第1圖所示的靜電保護元件12,第一N型井122包含了靜電保護元件11,第二P型井133包含了靜電保護元件31。第一P型摻雜區111與第一N型摻雜區112置於第一P型井131中,第二P型摻雜區113與第二N型摻雜區114置於第一N型井122中,第三N型摻雜區116與第四N型摻雜區118置於第二P型井133中。在一實施中,第一P型摻雜區111連接至接地點GND;第一N型摻雜區112與第二P型摻雜區113共同連接至一訊號輸出輸入端I/O1;第二N型摻雜區114與第三N型摻雜區116共同連接至端點1,在一實施例中,端點1連接到電源端Vcc,第四N型摻雜區118連接至接地點GND。 Next, please refer to FIG. 2, which shows a cross-sectional view of the electrostatic protection element 11 12 31 of FIG. 1 on the actual semiconductor wafer 100, to explain the principle of ESD protection, and FIG. 2 omits the electrostatic protection element 21 22 and A cross-sectional view of circuit core 41 42. As shown in Fig. 2, the first P-type well 131 includes the electrostatic protection element 12 shown in Fig. 1, the first N-type well 122 includes the electrostatic protection element 11, and the second P-type well 133 includes the electrostatic protection element. 31. The first P-type doping region 111 and the first N-type doping region 112 are disposed in the first P-type well 131, and the second P-type doping region 113 and the second N-type doping region 114 are disposed in the first N-type well In well 122, third N-type doped region 116 and fourth N-type doped region 118 are placed in second P-type well 133. In one implementation, the first P-type doping region 111 is connected to the ground point GND; the first N-type doping region 112 and the second P-type doping region 113 are commonly connected to a signal output input terminal I/O1; The N-type doped region 114 and the third N-type doped region 116 are commonly connected to the terminal 1 . In one embodiment, the terminal 1 is connected to the power supply terminal Vcc and the fourth N-type doped region 118 is connected to the ground GND. .

在一實施例中,當半導體晶片100未工作時,端點1尚未連接至電源端Vcc,此時若正靜電接觸到訊號輸出輸入端I/O1時,第二P型摻雜區113與第一N型井122形成正偏的P/N界面,等其等效電路如第1圖所示的靜電保護元件11。正靜電電流流經第二P型摻雜區113與第一N型井 122後,由第二N型摻雜區114流出至端點1,再由第三N型摻雜區116流入第二P型井133後,經由第四N型摻雜區118流出到接地點。當可發現此時的第三N型摻雜區116與第二P型井133形成一逆向偏壓的N/P界面,其等效電路如第1圖所示的靜電保護元件31。上述逆向偏壓N/P(116/113)界面的崩潰電壓為靜電保護元件31的觸發電壓(Trigger voltage:Vt),如第3圖所示,一旦逆向偏壓VR超過觸發電壓Vt時,逆向偏壓的N/P(116/113)界面開始產生逆向電流IR,並經由順向偏壓的P/N界面(133/118)流出,此時整個電流路徑為第二P型摻雜區113/第一N型井122/第二N型摻雜區114/第三N型摻雜區116/第二P型井133/第四N型摻雜區118,其為P/N/P/N結構,而形成SCR元件。 In an embodiment, when the semiconductor wafer 100 is not in operation, the terminal 1 is not connected to the power supply terminal Vcc. At this time, if the static electricity contacts the signal output input terminal I/O1, the second P-type doping region 113 and the first An N-type well 122 forms a positively biased P/N interface, and its equivalent circuit is such as the electrostatic protection element 11 shown in FIG. After the positive electrostatic current flows through the second P-type doping region 113 and the first N-type well 122, the second N-type doping region 114 flows out to the terminal 1 and then flows into the second N-type doping region 116. After the P-type well 133, it flows out to the ground point via the fourth N-type doping region 118. When it can be found that the third N-type doping region 116 and the second P-type well 133 at this time form a reverse biased N/P interface, the equivalent circuit thereof is the electrostatic protection element 31 shown in FIG. The breakdown voltage of the reverse bias N/P (116/113) interface is the trigger voltage of the electrostatic protection element 31 (Trigger voltage: Vt). As shown in FIG. 3, once the reverse bias voltage V R exceeds the trigger voltage Vt, The reverse biased N/P (116/113) interface begins to generate a reverse current I R and flows out through the forward biased P/N interface (133/118), where the entire current path is the second P-type doping. Zone 113 / first N-type well 122 / second N-type doped region 114 / third N-type doped region 116 / second P-type well 133 / fourth N-type doped region 118, which is P / N / The P/N structure forms an SCR element.

SCR元件的電流-電壓特性如第3圖所示,逆向偏壓VR超過觸發電壓Vt時,先呈正電阻狀態,電壓仍隨著逆向電流的增加而微幅增加,當逆向電壓再高過一個臨界值(未繪示)時,SCR元件呈負電阻狀態,電壓隨著電流的增加而快速變小,一直到保持電壓Vh後,SCR又呈現一很小的正電阻元件,可以通過很大的電流而僅有微幅的電壓改變,在此區間釋放大量的靜電。然SCR元件的缺點是有一負電阻狀態區間,此一負電阻狀態可能造成積體電路因正回授效應而產生振盪,且其觸發電壓Vt可能過高,而無法保護到電路核心41 42。 The current-voltage characteristic of the SCR component is as shown in Fig. 3. When the reverse bias voltage V R exceeds the trigger voltage Vt, it first assumes a positive resistance state, and the voltage still increases slightly with the increase of the reverse current. When the reverse voltage is higher than one. When the critical value (not shown), the SCR component is in a negative resistance state, and the voltage rapidly decreases with the increase of the current. After the voltage Vh is maintained, the SCR presents a small positive resistance component, which can pass a large The current has only a slight voltage change, releasing a large amount of static electricity in this interval. A disadvantage of the SCR component is that it has a negative resistance state interval, which may cause the integrated circuit to oscillate due to the positive feedback effect, and its trigger voltage Vt may be too high to protect to the circuit core 41 42.

相反地,當負的高壓靜電接觸到訊號輸出輸入端I/O時,負高壓靜電使靜電保護元件12順向導通,藉由 順向偏壓的P/N界面釋放負靜電荷,在第2圖中,第一P型摻雜區111/第一P型井131與第一N型摻雜區112為順向偏壓的P/N界面,而釋放負高壓靜電。其負高靜電壓放電的電流-電壓特性曲線為一正偏的P/N界面二極體的電流-電壓特性曲線(未繪示)。可發現負高靜電壓放電的電流-電壓特性曲線與正負高靜電壓放電不同。 Conversely, when the negative high voltage static electricity contacts the signal output input I/O, the negative high voltage static electricity causes the electrostatic protection element 12 to pass the conduction. The forward biased P/N interface releases a negative electrostatic charge. In FIG. 2, the first P-type doped region 111 / the first P-type well 131 and the first N-type doped region 112 are forward biased. P/N interface, while releasing negative high voltage static electricity. The current-voltage characteristic curve of the negative high static voltage discharge is a current-voltage characteristic curve (not shown) of a positively biased P/N interface diode. It can be found that the current-voltage characteristic curve of the negative high static voltage discharge is different from the positive and negative high static voltage discharge.

第4圖揭示本發明之一實施例,為方便說明ESD防護原理,本實施例中,半導體晶片200僅繪示ESD防護元件的剖面圖,電路核心予以省略。請同時參考第1圖,以更容易理解本實施例之說明,在本實施例中ESD保護電路包含一P型半導體井區230,第一N型井222、第二N型井224、第三N型井226、第四N型井228及第一P型井221,其皆置於P型半導體井區230中。在另一實施例中,P型半導體井區230包含一P型半導體基底(substrate),一P型半導體井(P well),P型半導體磊晶層(epitaxy layer)。其中,第一P型摻雜區211置於第一N型井222中,第一N型摻雜區212置於第二N型井224中,第二P型摻雜區213置於第三N型井226中,第二N型摻雜區214置於第四N型井228中,第三N型摻雜區216與第四N型摻雜區218均置於第一P型井221中。 FIG. 4 illustrates an embodiment of the present invention. To facilitate the description of the ESD protection principle, in the present embodiment, the semiconductor wafer 200 only shows a cross-sectional view of the ESD protection component, and the circuit core is omitted. Please refer to FIG. 1 at the same time to better understand the description of the embodiment. In this embodiment, the ESD protection circuit includes a P-type semiconductor well region 230, a first N-type well 222, a second N-type well 224, and a third. N-well 226, fourth N-well 228, and first P-well 221 are all placed in P-type semiconductor well region 230. In another embodiment, the P-type semiconductor well region 230 comprises a P-type semiconductor substrate, a P-type semiconductor well, and a P-type semiconductor epitaxial layer. The first P-type doping region 211 is disposed in the first N-type well 222, the first N-type doping region 212 is disposed in the second N-type well 224, and the second P-type doping region 213 is placed in the third In the N-well 226, the second N-type doping region 214 is placed in the fourth N-type well 228, and the third N-type doping region 216 and the fourth N-type doping region 218 are both placed in the first P-type well 221 in.

在一實施例中,第四N型井228與第一P型井221有一間距,此間距可依適用的ESD範圍而調整。在一實施例中,第三N型摻雜區216與第四N型摻雜區218有一間距,此間距可依適用的ESD範圍而調整。在一實施例中,第 一N型井222、第二N型井224、第三N型井226與第四N型井228彼此之間均各有一間距,其彼此之間的間距大小不一定相等,可依適用的ESD範圍而調整。 In one embodiment, the fourth N-well 228 has a spacing from the first P-well 221 that is adjustable in accordance with the applicable ESD range. In one embodiment, the third N-type doped region 216 has a spacing from the fourth N-type doped region 218, which spacing can be adjusted according to the applicable ESD range. In an embodiment, the first An N-type well 222, a second N-type well 224, a third N-type well 226 and a fourth N-type well 228 have a spacing from each other, and the spacing between them is not necessarily equal, depending on the applicable ESD. Adjust by scope.

在一實施中,第一P型摻雜區211與第一N型井222的邊界有一距離,且該距離可依實際應用而調整。在一實施例中,第一N型摻雜區212與第二N型井224的邊界有一距離,且該距離可依實際應用而調整。在一實施例中,第二P型摻雜區213與第三N型井226的邊界有一距離,且該距離可依實際應用而調整。在一實施例中,第二N型摻雜區214與第四N型井228的邊界有一距離,且該距離可依實際應用而調整。在一實施例中,第三N型摻雜區216、第四N型摻雜區218與第一P型井221的邊界有一距離,且該距離可依實際應用而調整。 In one implementation, the first P-type doped region 211 has a distance from the boundary of the first N-type well 222, and the distance can be adjusted depending on the actual application. In one embodiment, the first N-type doped region 212 has a distance from the boundary of the second N-type well 224, and the distance can be adjusted depending on the application. In one embodiment, the second P-type doped region 213 has a distance from the boundary of the third N-type well 226, and the distance can be adjusted depending on the application. In one embodiment, the second N-doped region 214 has a distance from the boundary of the fourth N-well 228, and the distance can be adjusted depending on the application. In one embodiment, the third N-type doped region 216 and the fourth N-type doped region 218 have a distance from the boundary of the first P-type well 221, and the distance can be adjusted according to practical applications.

在一實施例中,第一P型摻雜區211連接到接地點GND;第一N型摻雜區212與第二P型摻雜區213共同連接到一輸出輸入端I/O;第二N型摻雜區214與第三N型摻雜區216共同連接到一端點1;第四N型摻雜區218連接到接地點GND。當半導體晶片200未工作時,端點1尚未連接至電源端Vcc,第二P型摻雜區213與第三N型井226形成P/N界面,等其等效電路如第1圖所示的靜電保護元件11;第一N型摻雜區212/第二N型井224與P型半導體井區230形成N/P界面,等其等效電路如靜電保護元件12;第三N型摻雜區216與第一P型井221形成N/P界面,等其等效電路如靜電保護元件31。 In an embodiment, the first P-type doping region 211 is connected to the grounding point GND; the first N-type doping region 212 and the second P-type doping region 213 are commonly connected to an output input terminal I/O; The N-type doping region 214 and the third N-type doping region 216 are commonly connected to an end point 1; the fourth N-type doping region 218 is connected to the grounding point GND. When the semiconductor wafer 200 is not in operation, the terminal 1 is not connected to the power supply terminal Vcc, and the second P-type doping region 213 forms a P/N interface with the third N-type well 226, and its equivalent circuit is as shown in FIG. The electrostatic protection element 11; the first N-type doping region 212 / the second N-type well 224 and the P-type semiconductor well region 230 form an N/P interface, and the equivalent circuit thereof such as the electrostatic protection element 12; the third N-type doping The miscellaneous region 216 forms an N/P interface with the first P-well 221, and its equivalent circuit such as the electrostatic protection element 31.

在一實施例中,第4圖所示之第一N型井222、第二N型井224、第三N型井226、第四N型井228與第一P型井221,不限於半導體領域所界定的井(well),上述等井更廣義的說,其為相對於第一N型摻雜區212、第二N型摻雜區214、第三N型摻雜區216、第四N型摻雜區218、第一P型摻雜區211與第二P型摻雜區213摻雜濃度較輕的區域,在一實施例上述第一、第二、第三、第四N型井與第一P型井222/224/226/228/221可為第一、第二、第三、第四N型與第一P型輕摻雜區222/224/226/228/221。而上述N型及P型等摻雜區,更廣義的意思為相對於上述等井為摻雜濃度較重的區。 In one embodiment, the first N-well 222, the second N-well 224, the third N-well 226, the fourth N-well 228, and the first P-well 221 shown in FIG. 4 are not limited to semiconductors. A well defined by the field, which is more generally referred to as a first N-type doped region 212, a second N-type doped region 214, a third N-type doped region 216, and a fourth The N-doped region 218, the first P-doped region 211, and the second P-doped region 213 are doped with a lighter concentration region, in one embodiment, the first, second, third, and fourth N-types described above. The well and first P-well 222/224/226/228/221 may be first, second, third, fourth N-type and first P-type lightly doped regions 222/224/226/228/221. The above-mentioned N-type and P-type doping regions, in a broader sense, mean a region having a relatively high doping concentration with respect to the above-mentioned wells.

請同時參考第5圖,在一實施例中,第二P型摻雜區213、第三N型井226與P型半導體井區230形成一寄生的PNP界面。當正的靜電接觸到訊號輸出輸入端I/O時,第二N型井224及第三N型井226與P型半導體井區230為反向偏壓;當正的靜電大於觸發電壓Vt時,電流的放電路徑由第二P型摻雜區213,經第三N型井226、P型半導體井區230、第一N型井222與第一P型摻雜區211至接地點GND。由於上述電流路徑有等效電阻,當放電電流增大時,P型半導體井區230電壓隨之增加,進而導通第一P型井221與第四N型摻雜區218之間的P/N界面,進一步釋放更大的靜電電流。如第5圖所示,在此實施例中,由正高壓靜電放電的電流-電壓特性可發現本實例至少具有兩項優點:一、沒有負電阻區域,其不會造成積體電路200產生振湯的可能;二、沒有 低於觸發電壓Vt的保持電壓Vh,其不會有保持電壓Vh落入積體電路200的工作電壓範圍內的可能性。 Referring also to FIG. 5, in an embodiment, the second P-type doping region 213, the third N-type well 226, and the P-type semiconductor well region 230 form a parasitic PNP interface. When positive static electricity contacts the signal output input I/O, the second N-well 224 and the third N-well 226 and the P-type semiconductor well region 230 are reverse biased; when positive static electricity is greater than the trigger voltage Vt The discharge path of the current is from the second P-type doping region 213, through the third N-type well 226, the P-type semiconductor well region 230, the first N-type well 222, and the first P-type doped region 211 to the ground point GND. Since the current path has an equivalent resistance, when the discharge current increases, the voltage of the P-type semiconductor well region 230 increases, thereby turning on the P/N between the first P-type well 221 and the fourth N-type doped region 218. The interface further releases a larger electrostatic current. As shown in Fig. 5, in this embodiment, the current-voltage characteristic of the positive high voltage electrostatic discharge can be found to have at least two advantages: First, there is no negative resistance region, which does not cause the integrated circuit 200 to vibrate. The possibility of soup; second, no The holding voltage Vh lower than the trigger voltage Vt does not have the possibility that the holding voltage Vh falls within the operating voltage range of the integrated circuit 200.

相反地,當負的高壓靜電接觸到訊號輸出輸入端I/O時(請同時參考第1圖),負高壓靜電使靜電保護元件12順向導通,藉由順向偏壓的P/N界面釋放負靜電荷,在第4圖中,P型半導體井區230與第二N型井224為順向偏壓的P/N界面;然第一N型井222與P型半導體井區230為逆向偏壓的N/P界面,但尚負靜電壓高於負的觸發電壓Vt時,第一P型摻雜區211與第一N型井222產生穿隧效應,而釋放負高壓靜電。可發現本實施例的另一優點是,正高壓靜電與負高靜電壓放電有相似的電流-電壓特性曲線,其均無負電阻區間。 Conversely, when the negative high-voltage static electricity contacts the signal output input I/O (please refer to FIG. 1 at the same time), the negative high-voltage static electricity causes the electrostatic protection component 12 to pass through, and the forward biased P/N interface The negative electrostatic charge is released. In FIG. 4, the P-type semiconductor well region 230 and the second N-well 224 are forward biased P/N interfaces; however, the first N-well 222 and the P-type semiconductor well region 230 are When the N/P interface is reverse biased, but the negative voltage is higher than the negative trigger voltage Vt, the first P-type doping region 211 and the first N-type well 222 generate a tunneling effect, and release the negative high-voltage static electricity. Another advantage of this embodiment is that positive high voltage statics have similar current-voltage characteristics as negative high static voltage discharges, all of which have no negative resistance intervals.

在一實例中,第一P型摻雜區211置於第一N型井222的中央區域,上述置於中央區域意謂第一P型摻雜區211的兩側邊界距離第一N型井222的兩側邊界有實質上相同的間距。同樣地在一實施例中,第一N型摻雜區212置於第二N型井224的中央區域。在一實施例中,第二P型摻雜區213置於第三N型井226的中央區域。在另數個實施例中,第一P型摻雜區211、第一N型摻雜區212、第二P型摻雜區213與第二N型摻雜區214也可分別不置於其所在的第一、第二、第三與第四N型井222/224/226/228的中央區域,其可偏向於其所在N型區的任何一側。 In one example, the first P-type doping region 211 is disposed in a central region of the first N-type well 222, and the placing in the central region means that the two sides of the first P-type doping region 211 are separated from the first N-type well. The two side boundaries of 222 have substantially the same spacing. Also in an embodiment, the first N-type doped region 212 is placed in a central region of the second N-type well 224. In an embodiment, the second P-type doping region 213 is disposed in a central region of the third N-type well 226. In other embodiments, the first P-type doping region 211, the first N-type doping region 212, the second P-type doping region 213, and the second N-type doping region 214 may also not be placed therein. The central regions of the first, second, third, and fourth N-type wells 222/224/226/228 may be biased toward either side of the N-type region in which they are located.

在一實施例中,第二N型井224與第三N型井226之間有一隔離結構290,及/或第四N型井228與第一P 型井221之間有一隔離結構290。在一實施例中,第一N型井222與第二N型井224之間有一隔離結構290,及/或第三N型井226與第四N型井228之間有一隔離結構290。隔離結構290包含淺溝糟隔離(shallow trench isolation:STI),場氧化層(Field oxide:FOX)。在一實施例中,第一P型井221區內的P/N界面係由電晶體(MOS,但不限於此)的寄生P/N界面所構成。 In one embodiment, there is an isolation structure 290 between the second N-well 224 and the third N-well 226, and/or the fourth N-well 228 and the first P There is an isolation structure 290 between the wells 221. In one embodiment, there is an isolation structure 290 between the first N-well 222 and the second N-well 224, and/or an isolation structure 290 between the third N-well 226 and the fourth N-well 228. The isolation structure 290 includes shallow trench isolation (STI) and field oxide (FOX). In one embodiment, the P/N interface within the first P-well 221 is comprised of a parasitic P/N interface of a transistor (MOS, but not limited thereto).

為方便說明起見,以下本發明的實施例於第6~9圖中僅繪示第一、第二、第三及第四N型井222/224/226/228/於P型半導體井區230中的示意圖。請參考第6圖,在一實施例中,P型半導體井區230可置於一N型半導體基底240中,在一實施例中,第二N型井224與第三N型井226之間包含一隔離結構290。如第7圖所示,在一實施例中,第一N型井222與第二N型井224之間包含一隔離結構290,第三N型井226與第四N型井228之間包含一隔離結構290。 For convenience of description, the following embodiments of the present invention only show the first, second, third, and fourth N-type wells 222/224/226/228/ in the P-type semiconductor well region in FIGS. 6-9. Schematic diagram in 230. Referring to FIG. 6, in an embodiment, the P-type semiconductor well region 230 can be disposed in an N-type semiconductor substrate 240. In an embodiment, between the second N-well 224 and the third N-well 226 An isolation structure 290 is included. As shown in FIG. 7, in an embodiment, an isolation structure 290 is included between the first N-well 222 and the second N-well 224, and the third N-well 226 and the fourth N-well 228 are included. An isolation structure 290.

第8圖所示為本發明之另一實施例,與第6,7圖實施例之差異為把原第6,7圖實施例中的P型半導體井區230分為兩個間隔開的第一P型井231與第二P型井233。第一、第二P型井置於N型半導體基底240中且兩個P型井間隔一間距;第一N型井222與第二N型井224置於第一P型井231中,第三N型井226與第四N型井228置於第二P型井233中。第二N型井224右側邊界與第一P型井231右側邊界有一第一距離,第三N型井226左側邊界與第二P型井233左側邊 界有一第二距離。可調整一間距、第一距離及/或第二距離以調整靜電防護電路的觸發電壓Vt。 Fig. 8 is a view showing another embodiment of the present invention, and the difference from the embodiment of Figs. 6 and 7 is that the P-type semiconductor well region 230 in the first embodiment of Fig. 6, 7 is divided into two spaced apart sections. A P-well 231 and a second P-well 233. The first and second P-type wells are placed in the N-type semiconductor substrate 240 and the two P-type wells are spaced apart by a spacing; the first N-type well 222 and the second N-type well 224 are placed in the first P-type well 231, A three N-well 226 and a fourth N-well 228 are placed in the second P-well 233. The right side boundary of the second N-type well 224 has a first distance from the right side boundary of the first P-type well 231, and the left side boundary of the third N-type well 226 and the left side of the second P-type well 233 There is a second distance in the boundary. A pitch, a first distance, and/or a second distance may be adjusted to adjust the trigger voltage Vt of the static electricity protection circuit.

在一實施例中,第一P型井231與第二P型井233之間包含一隔離結構290。在另一實施例中,如第9圖所示,第一N型井222與第二N型井224之間包含一隔離結構290,第三N型井226與第四N型井228之間包含一隔離結構290。 In an embodiment, an isolation structure 290 is included between the first P-well 231 and the second P-well 233. In another embodiment, as shown in FIG. 9, an isolation structure 290 is included between the first N-well 222 and the second N-well 224, and between the third N-well 226 and the fourth N-well 228. An isolation structure 290 is included.

在一實施例中,ESD防護電路半導體結構中的N型或P型半導體型態可以改變,如第10圖所示之ESD防護電路半導體結構,其與第4圖所示實施例的差異主要為N型與P型半導體型態的改變。在本實施例中ESD保護電路包含第一P型井321、第二P型井323、第三P型井325、第四P型井327及第五P型井329,其皆置於N型半導體井區330中。在另一實施例中,N型半導體井區330可為一N型半導體基底(substrate),一N型半導體井(N well),N型半導體磊晶層(epitaxy layer)。其中,第一N型摻雜區312置於第一P型井321中,第一P型摻雜區311置於第二P型井323中,第二N型摻雜區314置於第三P型井325中,第二P型摻雜區313置於第四P型井327中,第三N型摻雜區316與第四N型摻雜區318均置於第五P型井329中。 In an embodiment, the N-type or P-type semiconductor type in the ESD protection circuit semiconductor structure may be changed, such as the ESD protection circuit semiconductor structure shown in FIG. 10, and the difference from the embodiment shown in FIG. 4 is mainly Changes in N-type and P-type semiconductor types. In this embodiment, the ESD protection circuit includes a first P-type well 321, a second P-type well 323, a third P-type well 325, a fourth P-type well 327, and a fifth P-type well 329, all of which are placed in an N-type. In the semiconductor well area 330. In another embodiment, the N-type semiconductor well region 330 can be an N-type semiconductor substrate, an N-type semiconductor well (N well), and an N-type semiconductor epitaxial layer. The first N-type doping region 312 is disposed in the first P-type well 321 , the first P-type doping region 311 is disposed in the second P-type well 323 , and the second N-type doping region 314 is disposed in the third In the P-well 325, the second P-type doping region 313 is placed in the fourth P-type well 327, and the third N-type doping region 316 and the fourth N-type doping region 318 are both placed in the fifth P-type well 329. in.

在一實施例中,第10圖所示之第一P型井321、第二P型井323、第三P型井325、第四P型井327與第五P型井329,不限於半導體領域所界定的井(well),上述等井更廣義的說,其為相對於第一N型摻雜區312、第二N型摻雜 區314、第三N型摻雜區316、第四N型摻雜區318、第一P型摻雜區311與第二P型摻雜區313摻雜濃度較輕的區域。而上述N型及P型等摻雜區,更廣義的意思為相對於上述等井為摻雜濃度較重的區。 In one embodiment, the first P-type well 321 , the second P-type well 323 , the third P-type well 325 , the fourth P-type well 327 and the fifth P-type well 329 shown in FIG. 10 are not limited to semiconductors. Wells defined by the field, which are more broadly described as being opposite to the first N-type doped region 312, the second N-type doping The region 314, the third N-type doped region 316, the fourth N-type doped region 318, the first P-type doped region 311, and the second P-type doped region 313 are doped with a lighter concentration region. The above-mentioned N-type and P-type doping regions, in a broader sense, mean a region having a relatively high doping concentration with respect to the above-mentioned wells.

在一實施例中,第一N型摻雜區312連接到端點1;第一P型摻雜區311與第二N型摻雜區314共同連接到一輸出輸入端I/O;第二P型摻雜區313連接到接地點,第三N型摻雜區316連接到端點1;第四N型摻雜區318連接到接地點GND。當半導體晶片300未工作時,端點1尚未連接至電源端Vcc。 In one embodiment, the first N-type doping region 312 is connected to the terminal 1; the first P-type doping region 311 and the second N-type doping region 314 are commonly connected to an output input terminal I/O; The P-type doping region 313 is connected to the ground point, the third N-type doping region 316 is connected to the terminal 1; and the fourth N-type doping region 318 is connected to the grounding point GND. When the semiconductor wafer 300 is not operating, the terminal 1 is not yet connected to the power supply terminal Vcc.

當正的靜電接觸到訊號輸出輸入端I/O時,第一P型摻雜區311/第二P型井323與N型半導體井區330呈正向偏壓,但N型半導體井區330與第四P型井327呈反向偏壓;當正的靜電大於觸發電壓Vt時,電流的放電路徑由第一P型摻雜區311、第二P型井323,經由N型半導體井區330、第四P型井327與第二P型摻雜區313至接地點GND。相反地,當負的靜電接觸到訊號輸出輸入端I/O時,N型半導體井區330與第二及第三P型井323 325呈反向偏壓,當負的靜電大於觸發電壓Vt時,電流的放電路徑由第二N型摻雜區314/第三P型井325,經由N型半導體井區330、第四P型井327與第二P型摻雜區313至接地點GND。 When positive static electricity contacts the signal output input I/O, the first P-type doping region 311 / the second P-type well 323 and the N-type semiconductor well region 330 are forward biased, but the N-type semiconductor well region 330 and The fourth P-well 327 is reverse biased; when the positive static electricity is greater than the trigger voltage Vt, the current discharge path is from the first P-type doping region 311 and the second P-type well 323 via the N-type semiconductor well region 330. The fourth P-type well 327 and the second P-type doped region 313 are connected to the ground point GND. Conversely, when negative static electricity contacts the signal output input I/O, the N-type semiconductor well region 330 is reverse biased with the second and third P-wells 323 325, when the negative static electricity is greater than the trigger voltage Vt. The discharge path of the current is from the second N-type doped region 314 / the third P-type well 325 via the N-type semiconductor well region 330, the fourth P-type well 327 and the second P-type doped region 313 to the ground point GND.

值得注意的是,本說明書所述之負的靜電大於觸發電壓Vt係以電壓的絕對值大小比較。換言之,其係指負靜電壓的絕對值大於觸發電壓Vt的絕對值。 It is worth noting that the negative static electricity described in this specification is greater than the trigger voltage Vt compared with the absolute value of the voltage. In other words, it means that the absolute value of the negative static voltage is greater than the absolute value of the trigger voltage Vt.

為方便說明起見,第11圖與第12圖的實施例僅繪示第一、第二、第三及第四P型井321/323/325/327於N型半導體井區330中的示意圖。請參考第11圖,在一實施例中,N型半導體井區330可置於一P型半導體基底350中。請參考第12圖,在一實施例中,第11圖實施例中的N型半導體井區330分為兩個間隔開的第一N型井322與第二N型井324。第一、第二N型井322 324置於P型半導體基底350中且兩個N型井間隔一間距;第一P型井321與第二P型井323置於第一N型井322中,第三P型井325與第四P型井327置於第二N型井324中。 For convenience of description, the embodiments of FIGS. 11 and 12 only show schematic diagrams of the first, second, third, and fourth P-type wells 321/323/325/327 in the N-type semiconductor well region 330. . Referring to FIG. 11, in an embodiment, the N-type semiconductor well region 330 can be placed in a P-type semiconductor substrate 350. Referring to FIG. 12, in an embodiment, the N-type semiconductor well region 330 in the embodiment of FIG. 11 is divided into two spaced apart first N-type wells 322 and second N-type wells 324. The first N-type well 322 324 is placed in the P-type semiconductor substrate 350 and the two N-type wells are spaced apart by a spacing; the first P-type well 321 and the second P-type well 323 are placed in the first N-type well 322. The third P-well 325 and the fourth P-well 327 are placed in the second N-well 324.

值得注意的是,本發明所述之P型或N半導體井區,P型或N型井,係指摻雜濃度較低的半導體區,而可在此低摻雜濃度的半導體區裡形成不同型態的半導體區;例如在N型低摻雜濃度的半導體區裡形成另一P型低摻雜濃度的半導體區,或相反。或者在此低摻雜濃度的半導體區裡形成摻雜濃度較重的摻雜區,此重摻雜濃度的摻雜區可做為MOS元件的源極、汲極,或者上述低摻雜濃度半導體區對外部的接點區,以降低接觸電阻。換言之,摻雜濃度較低的半導體區可以是半導體領域通常知識者所知的井(well),其係使用離子佈植,然後高溫擴散而形成的低摻雜濃度半導體區,若者使用磊晶技術或其他種方法所形成的低摻雜濃度半導體區,其均為本發明所述”井”的均等範圍。 It should be noted that the P-type or N-semiconductor well region of the present invention, the P-type or N-type well, refers to a semiconductor region having a lower doping concentration, and can be formed differently in the semiconductor region with low doping concentration. A semiconductor region of the type; for example, another P-type low doping concentration semiconductor region is formed in the N-type low doping concentration semiconductor region, or vice versa. Or forming a heavily doped doped region in the low doping concentration semiconductor region, and the doped region having the heavily doped concentration can be used as a source, a drain, or a low doping concentration semiconductor of the MOS device. Zone to external contact area to reduce contact resistance. In other words, the semiconductor region having a lower doping concentration may be a well known to those skilled in the semiconductor art, which is a low doping concentration semiconductor region formed by ion implantation and then high temperature diffusion, if an epitaxial technique is used. Or a low doping concentration semiconductor region formed by other methods, which are all equal ranges of the "well" of the present invention.

雖然本發明已以實施方式揭露如上,然其並非用以限定本發明,任何熟習此技藝者,在不脫離本發明之精神和 範圍內,當可作各種之更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。 Although the present invention has been disclosed in the above embodiments, it is not intended to limit the invention, and those skilled in the art, without departing from the spirit of the invention, In the scope of the invention, the scope of the invention is defined by the scope of the appended claims.

200‧‧‧積體電路 200‧‧‧ integrated circuit

211‧‧‧第一P型摻雜區 211‧‧‧First P-doped region

212‧‧‧第一N型摻雜區 212‧‧‧First N-doped region

213‧‧‧第二P型摻雜區 213‧‧‧Second P-doped region

214‧‧‧第二N型摻雜區 214‧‧‧Second N-doped region

216‧‧‧第三N型摻雜區 216‧‧‧Third N-doped region

218‧‧‧第四N型摻雜區 218‧‧‧4th N-doped region

222‧‧‧第一N型井/輕摻雜區 222‧‧‧First N-type well/lightly doped area

224‧‧‧第二N型井/輕摻雜區 224‧‧‧Second N-type well/lightly doped area

226‧‧‧第三N型井/輕摻雜區 226‧‧‧Third N-type well/lightly doped area

228‧‧‧第四N型井/輕摻雜區 228‧‧‧Four N-type well/lightly doped area

221‧‧‧第一P型井/輕摻雜區 221‧‧‧First P-well/lightly doped zone

230‧‧‧P型半導體井區 230‧‧‧P type semiconductor well area

290‧‧‧隔離結構 290‧‧‧Isolation structure

I/O‧‧‧訊號輸出輸入端 I/O‧‧‧ signal output input

Vcc‧‧‧電源端 Vcc‧‧‧ power terminal

GND‧‧‧接地點 GND‧‧‧ Grounding point

Claims (10)

一種半導體裝置,包含:一甲型半導體輕摻雜區;一第一乙型輕摻雜區,置於該甲型半導體輕摻雜區中;一第二乙型輕摻雜區,置於該甲型半導體輕摻雜區中;一第三乙型輕摻雜區,置於該甲型半導體輕摻雜區中;一第四乙型輕摻雜區,置於該甲型半導體輕摻雜區中,其中該第一、第二、第三及第四乙型輕摻雜區在該甲型半導體輕摻雜區中依序排列,且彼此之間未接觸;一第一甲型摻雜區置於該第一乙型輕摻雜區中;一第一乙型摻雜區置於該第二乙型輕摻雜區中;一第二甲型摻雜區置於該第三乙型輕摻雜區中;一第二乙型摻雜區置於該第四乙型輕摻雜區中,其中該第一甲型摻雜區電性連接至一接地點,該第一乙型摻雜區與該第二甲型摻雜區電性連接至一訊號輸出入端,該第二乙型摻雜區電性連接至一端點。 A semiconductor device comprising: a light-doped region of a type A semiconductor; a first type B lightly doped region disposed in the lightly doped region of the type A semiconductor; and a second type B lightly doped region disposed therein a light-doped region of the semiconductor A; a third B-type lightly doped region disposed in the light-doped region of the semiconductor; a fourth B-type lightly doped region disposed in the light-doped semiconductor In the region, wherein the first, second, third, and fourth B-type lightly doped regions are sequentially arranged in the light-doped region of the semiconductor semiconductor, and are not in contact with each other; a first type A doping a region is disposed in the first B-type lightly doped region; a first B-type doped region is disposed in the second B-type lightly doped region; and a second B-type doped region is disposed in the third B-type region In the lightly doped region, a second type B doped region is disposed in the fourth type B lightly doped region, wherein the first type A doped region is electrically connected to a ground point, and the first type B is doped The impurity region and the second type-doped region are electrically connected to a signal output terminal, and the second type B doping region is electrically connected to an end point. 如請求項1所述的半導體裝置,其中該第二乙型輕摻雜區與該第三乙型輕摻雜區之間有一隔離結構。 The semiconductor device of claim 1, wherein the second type B lightly doped region and the third type B lightly doped region have an isolation structure. 如請求項1所述的半導體裝置,更包含一乙型半導體基底,其中該甲型半導體區井置於該乙型 半導體基底中。 The semiconductor device of claim 1, further comprising a type B semiconductor substrate, wherein the type A semiconductor region is placed in the type B In a semiconductor substrate. 如請求項3所述的半導體裝置,其中該第二乙型輕摻雜區與該第三乙型輕摻雜區之間有一隔離結構。 The semiconductor device of claim 3, wherein the second type B lightly doped region and the third type B lightly doped region have an isolation structure. 如請求項1~4任一項所述之半導體裝置,其中該甲型為P型,該乙型為N型。 The semiconductor device according to any one of claims 1 to 4, wherein the type A is a P type, and the type B is an N type. 如請求項1~4任一項所述之半導體裝置,其中該甲型為N型,該乙型為P型 The semiconductor device according to any one of claims 1 to 4, wherein the type A is an N type, and the type B is a P type 一種半導體裝置,包含:一乙型半導體基底;一第一甲型輕摻雜區,置於該乙型半導體基底中;一第二甲型輕摻雜區,置於該乙型半導體基底中,其中該第一甲型輕摻雜區與該第二甲型輕摻雜區未接觸;一第一乙型輕摻雜區,置於該第一甲型輕摻雜區中;一第二乙型輕摻雜區,置於該第一甲型輕摻雜區中,其中該第一乙型輕摻雜區與該第二乙型輕摻雜區未接觸;一第三乙型輕摻雜區,置於該第二甲型輕摻雜區中;一第四乙型輕摻雜區,置於該第二甲型輕摻雜區中,其中該第三乙型輕摻雜區與該第四乙型輕摻雜區未接觸;一第一甲型摻雜區置於該第一乙型輕摻雜區中; 一第一乙型摻雜區置於該第二乙型輕摻雜區中;一第二甲型摻雜區置於該第三乙型輕摻雜區中;一第二乙型摻雜區置於該第四乙型輕摻雜區中,其中該第一甲型摻雜區電性連接至一接地點,該第一乙型摻雜區與該第二甲型摻雜區電性連接至一訊號輸出入端,該第二乙型摻雜區電性連接至一端點。 A semiconductor device comprising: a B-type semiconductor substrate; a first type A lightly doped region disposed in the B-type semiconductor substrate; and a second type A lightly doped region disposed in the B-type semiconductor substrate Wherein the first type A lightly doped region is not in contact with the second type A lightly doped region; a first type B lightly doped region is disposed in the first type A lightly doped region; a lightly doped region disposed in the first type A lightly doped region, wherein the first type B lightly doped region is not in contact with the second type B lightly doped region; a third type B lightly doped region a region, disposed in the second type A lightly doped region; a fourth type B lightly doped region disposed in the second type A lightly doped region, wherein the third type B lightly doped region and the The fourth type B lightly doped region is not in contact; a first type A doped region is disposed in the first type B lightly doped region; a first type B doped region is disposed in the second type B lightly doped region; a second type A doped region is disposed in the third type B lightly doped region; and a second type B doped region And being disposed in the fourth type B lightly doped region, wherein the first type A doped region is electrically connected to a ground point, and the first type B doped region is electrically connected to the second type A doped region The second B-type doping region is electrically connected to an end point to the signal input and output terminals. 如請求項8所述的半導體裝置,其中該第一甲型輕摻雜區與該第二甲型輕摻雜區之間有一隔離結構。 The semiconductor device of claim 8, wherein the first type A lightly doped region and the second type A lightly doped region have an isolation structure. 如請求項7或8所述之半導體裝置,其中該甲型為P型,該乙型為N型。 The semiconductor device according to claim 7 or 8, wherein the type A is a P type, and the type B is an N type. 如請求項7或8所述之半導體裝置,其中該甲型為N型,該乙型為P型 The semiconductor device according to claim 7 or 8, wherein the type A is an N type, and the type B is a type P
TW104137321A 2015-11-12 2015-11-12 A semiconductor device TW201717351A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW104137321A TW201717351A (en) 2015-11-12 2015-11-12 A semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW104137321A TW201717351A (en) 2015-11-12 2015-11-12 A semiconductor device

Publications (1)

Publication Number Publication Date
TW201717351A true TW201717351A (en) 2017-05-16

Family

ID=59366911

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104137321A TW201717351A (en) 2015-11-12 2015-11-12 A semiconductor device

Country Status (1)

Country Link
TW (1) TW201717351A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI714214B (en) * 2018-09-06 2020-12-21 晶焱科技股份有限公司 Transient voltage suppressor
TWI755334B (en) * 2021-01-22 2022-02-11 立錡科技股份有限公司 Zener diode and manufacturing method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI714214B (en) * 2018-09-06 2020-12-21 晶焱科技股份有限公司 Transient voltage suppressor
TWI755334B (en) * 2021-01-22 2022-02-11 立錡科技股份有限公司 Zener diode and manufacturing method thereof

Similar Documents

Publication Publication Date Title
US7554839B2 (en) Symmetric blocking transient voltage suppressor (TVS) using bipolar transistor base snatch
US7638857B2 (en) Structure of silicon controlled rectifier
US20030042498A1 (en) Method of forming a substrate-triggered SCR device in CMOS technology
TWI422005B (en) Electrostatic discharge protection device structure
KR101315990B1 (en) Electrostatic discaharge Protection Device
US20160141287A1 (en) Electrostatic discharge protection circuit, structure and method of making the same
KR101944189B1 (en) Electrostatic Discharge Protection Device
KR102142156B1 (en) Dual Structure Electrostatic Discharge Protection Device with High Holding Voltage
US11476243B2 (en) Floating base silicon controlled rectifier
WO2017118028A1 (en) Surge protector device
TWI511262B (en) Latch-up free esd protection
US8859361B1 (en) Symmetric blocking transient voltage suppressor (TVS) using bipolar NPN and PNP transistor base snatch
US9991253B2 (en) Protection element, protection circuit, and semiconductor integrated circuit
JP6398696B2 (en) Electrostatic protection circuit and semiconductor integrated circuit device
EP2846359B1 (en) LVTSCR device
TW201717351A (en) A semiconductor device
JP6405986B2 (en) Electrostatic protection circuit and semiconductor integrated circuit device
CN111009524A (en) NMOS ESD protection device with gate boosting
US20170085078A1 (en) Hot plug immunity for circuit protecting against electrostatic discharge events
US9407089B2 (en) Electrical discharge protection circuit and method of use
CN107579065B (en) High-maintenance voltage silicon controlled rectifier electrostatic protection device
Dai et al. Study on ESD protection design with stacked low-voltage devices for high-voltage applications
CN107293537B (en) Electrostatic discharge protection device, memory element and electrostatic discharge protection method
CN109671702B (en) Electrostatic discharge protection device
CN111046623B (en) Layout design method of ESD diode