WO2017114312A1 - 一种氧化铈的制备方法及其在cmp中的应用 - Google Patents

一种氧化铈的制备方法及其在cmp中的应用 Download PDF

Info

Publication number
WO2017114312A1
WO2017114312A1 PCT/CN2016/111761 CN2016111761W WO2017114312A1 WO 2017114312 A1 WO2017114312 A1 WO 2017114312A1 CN 2016111761 W CN2016111761 W CN 2016111761W WO 2017114312 A1 WO2017114312 A1 WO 2017114312A1
Authority
WO
WIPO (PCT)
Prior art keywords
cerium
cerium oxide
precipitation
polishing
preparing
Prior art date
Application number
PCT/CN2016/111761
Other languages
English (en)
French (fr)
Inventor
尹先升
贾长征
Original Assignee
安集微电子科技(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 安集微电子科技(上海)有限公司 filed Critical 安集微电子科技(上海)有限公司
Publication of WO2017114312A1 publication Critical patent/WO2017114312A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/20Compounds containing only rare earth metals as the metal element
    • C01F17/247Carbonates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/20Compounds containing only rare earth metals as the metal element
    • C01F17/206Compounds containing only rare earth metals as the metal element oxide or hydroxide being the only anion
    • C01F17/224Oxides or hydroxides of lanthanides
    • C01F17/235Cerium oxides or hydroxides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • C09G1/02Polishing compositions containing abrasives or grinding agents

Definitions

  • the invention discloses a preparation method of cerium oxide powder, in particular to a preparation method of cerium oxide abrasive particles applied in an STI polishing slurry.
  • cerium oxide has been widely used as an abrasive for shallow trench isolation (STI) process polishing.
  • STI shallow trench isolation
  • patent 201310495424.5 reports a chemical mechanical polishing (CMP) composition for shallow trench isolation (STI) process.
  • CMP chemical mechanical polishing
  • the composition uses cerium oxide as an abrasive and requires a high silicon oxide/silicon nitride polishing selection ratio for polishing;
  • Patent 200510069987.3 discloses a chemical mechanical polishing slurry and a method for polishing a substrate, wherein the polishing film is a silicon oxide layer.
  • This type of material requires a polishing solution with a high polishing rate and low defect for silicon oxide, and a low polishing rate for silicon nitride to achieve a high silicon oxide/silicon nitride polishing selectivity ratio.
  • cerium oxide is generally obtained by calcining a cerium carbonate precursor at a high temperature.
  • the conventional cerium carbonate preparation process requires a soluble salt capable of forming carbonate or bicarbonate as a precipitating agent, such as ammonium carbonate, ammonium hydrogencarbonate, sodium carbonate, potassium carbonate. Wait. In the process of preparing cerium carbonate by using these precipitating agents, a large amount of waste water is inevitably generated, which causes pollution harm to the environment and increases the production cost of the enterprise.
  • the invention provides an innovative method for synthesizing strontium carbonate, which uses carbon dioxide as a precipitating agent, does not produce ammonia nitrogen wastewater during the precipitation reaction, and obtains high-purity cerium oxide powder after being simply washed by reaction, and is obtained by dispersion treatment. After that, it can be effectively applied to integrated circuit polishing applications.
  • An object of the present invention is to provide a method for preparing cerium oxide, which comprises:
  • Step 1 preparing a cerium carbonate precursor by a crystallization reaction by a precipitation method
  • Step 2 calcining the cerium carbonate precursor at a high temperature to prepare cerium oxide powder.
  • step one includes:
  • the solution of the hydrazine source is heated to the temperature of the precipitation reaction, and the precipitant is introduced into the hydrazine source aqueous solution by bubbling until the end of the precipitation;
  • the aqueous solution of cerium source may be one or several aqueous solutions of cerium nitrate, cerium chloride or cerium acetate, preferably cerium nitrate, cerium acetate, and the molar concentration of the cerium source aqueous solution is 0.05-1.0M. .
  • the precipitating agent used in the precipitation method is carbon dioxide gas or carbon dioxide mixed with other gases.
  • the precipitation reaction temperature ranges from 60 to 100 °C.
  • the precipitation end point of the precipitation method is that the precipitant is continuously added, and no new precipitate is precipitated in the reaction system; after the precipitation is finished, the mixture is further kept warm for 1-24 hours.
  • the obtained cerium carbonate precipitate is separated, dehydrated, washed, and dried to obtain a cerium carbonate precursor.
  • the cerium carbonate precursor is calcined at a calcination temperature of 400-900 ° C and a calcination time of 0.5-10 hours.
  • the prepared cerium oxide crystal is further subjected to a dispersion treatment, and the dispersion treatment process is not particularly limited, and may be mechanical grinding such as ball milling, jet milling, etc., and an organic dispersing agent may be added during the dispersion, the organic dispersing agent It can be polyacrylic acid and its salts.
  • the cerium oxide prepared by the invention can be applied to the field of STI polishing, and can achieve a higher TEOS polishing rate and a TEOS/SiN polishing selection ratio.
  • the reagents and starting materials used in the present invention are commercially available.
  • cerium oxide powder is obtained; by adding 0.01% polyacrylic acid as a dispersing agent, the obtained cerium oxide powder is subjected to ball-milling dispersion treatment, and by controlling the ball-milling dispersion time, a cerium oxide abrasive which can be applied to STI polishing is obtained.
  • cerium oxide powder is obtained; by adding polyacrylic acid as a dispersing agent, the obtained cerium oxide powder is subjected to ball-milling dispersion treatment, and by controlling the ball-milling dispersion time, a cerium oxide abrasive which can be applied to STI polishing is obtained.
  • the cerium oxide powder is obtained; the obtained cerium oxide powder is subjected to ball-milling dispersion treatment by adding polyacrylic acid as a dispersing agent, and the ball milling dispersion time is controlled to obtain It can be applied to STI polished cerium oxide abrasives.
  • the cerium oxide prepared by using the above comparative examples and 1-4 in the examples was used as an abrasive, and a polishing liquid slurry having a cerium oxide content of 0.5% and a pH of 5.0 was prepared by adding a 0.5% PAA (molecular weight of 4000). And the polishing rate and polishing selection ratio of the polishing liquid corresponding to the above embodiment were tested.
  • the wafer slices used for polishing are all sliced from commercially available (for example, SVTC, USA) 8-inch coated wafers.
  • the thickness of the metal film on the metal film wafers used for polishing was measured by the NTPSON RT-7O/RG-7B tester.
  • the film thickness of TEOS and SiN was RT-7O/RG-7B produced by TEOS NANO Matrics. Tested by the tester.
  • the metal film removal rate was obtained by dividing the difference in thickness measured before and after polishing by the polishing time, and the polishing time was 1 minute. TEOS surface defects after polishing were observed under an optical microscope
  • Table 1 shows the results of the polishing test. The results show that the synthesized cerium oxide abrasive can achieve higher TEOS polishing rate and TEOS/SiN polishing selectivity.
  • the prepared cerium oxide has good STI polishing application characteristics.
  • wt% of the present invention refers to the mass percentage.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

提供一种氧化铈粉体的制备方法及应用。该方法包括向铈源溶液中鼓泡加入二氧化碳,经沉淀制备碳酸铈,晶化反应后高温焙烧该碳酸铈得到氧化铈。该方法的优点在于在制备过程中不产生氨氮废水,所得氧化铈颗粒通过机械力易分散于液相。该氧化铈作为磨料的化学机械抛光液(CMP)在浅沟槽隔离(STI)抛光应用中显示出优良的平坦化抛光效率。

Description

一种氧化铈的制备方法及其CMP应用 技术领域
本发明公开了氧化铈粉体的制备方法,尤其涉及一种应用于STI抛光浆料中的氧化铈研磨颗粒的制备方法。
背景技术
目前,氧化铈作为磨料应用于浅沟槽隔离(STI)工艺抛光研究已有大量报道,如专利201310495424.5报道了一种用于浅沟槽隔离(STI)工艺的化学机械抛光(CMP)组合物,组合物以氧化铈为磨料,抛光要求达到高的氧化硅/氮化硅抛光选择比;专利200510069987.3公开了一种化学机械抛光浆料及抛光基板的方法,所涉及的抛光薄膜为氧化硅层,该类材料要求抛光液对氧化硅具有高的抛光速率和低的缺陷产生,对氮化硅显示低的抛光速率,从而达到高的氧化硅/氮化硅抛光选择比。
氧化铈的制备一般通过高温焙烧碳酸铈前驱体得到,传统的碳酸铈制备过程需要以能够生成碳酸根或碳酸氢根的可溶性盐作为沉淀剂,如碳酸铵、碳酸氢铵、碳酸钠、碳酸钾等。以这些沉淀剂制备碳酸铈的过程中,不可避免地产生大量废水,对环境造成污染危害,也增加了企业的生产成本。
本发明提出了一种创新性的碳酸铈合成方法,以二氧化碳为沉淀剂,沉淀反应过程中不产生氨氮废水,反应得到碳酸铈经简单洗涤后,焙烧得到高纯度氧化铈粉体,经分散处理后,可有效应用于集成电路抛光应用。
发明内容
本发明的目的是提供一种氧化铈的制备方法,该制备方法包括:
步骤一:通过沉淀法,进一步由晶化反应制备碳酸铈前驱体;
步骤二:高温焙烧所述碳酸铈前驱体制备氧化铈粉体。
其中,所述步骤一包括:
-配制铈源水溶液,加热并持续搅拌;
-待铈源水溶液升温至沉淀反应温度,以鼓泡方式向铈源水溶液引入沉淀剂直至沉淀终点;
-保温并持续搅拌上述反应溶液,经进一步的晶化反应制得碳酸铈前驱体。
在前述的步骤一操作流程中,铈源水溶液可以为硝酸铈、氯化铈、醋酸铈中一种或几种水溶液,优选为硝酸铈、醋酸铈,铈源水溶液的摩尔浓度为0.05-1.0M。
在前述的步骤一操作流程中,所述沉淀法使用的沉淀剂为二氧化碳气体或二氧化碳与其它气体混合。
在前述的步骤一操作流程中,所述沉淀反应温度范围为60-100℃。
在前述的步骤一操作流程中,所述沉淀法的沉淀终点为,持续加入所述的沉淀剂,反应体系中再无新沉淀物析出;沉淀结束后,继续保温搅拌1-24小时。且将所得的碳酸铈沉淀物分离脱水、洗涤、干燥得到碳酸铈前驱体。
在前述的步骤二中,对前述碳酸铈前驱体进行焙烧,焙烧温度为400-900℃,焙烧时间为0.5-10小时。
优选地,对所制得的氧化铈晶体进一步经分散处理,所述分散处理过程无特殊限定,可以是机械研磨如球磨、气流粉碎等,分散过程中可以添加有机分散剂,所述有机分散剂可以为聚丙烯酸及其盐类。
本发明所制备的氧化铈可应用于STI抛光领域,可以达到较高的TEOS抛光速率和TEOS/SiN抛光选择比。
具体实施方式
下面通过具体实施例进一步阐述本发明的优点,但本发明的保护范围不仅仅局限于下述实施例。
本发明所用试剂及原料均市售可得。
实施例1
在室温条件下,首先配制0.05M硝酸铈溶液,在100℃搅拌条件下,向上述溶液中鼓泡加入纯二氧化碳气体,同时搅拌混合液,当不再有新的沉淀析出,停止鼓泡,继续保温搅拌1小时晶化反应,将所得沉淀物经纯水洗涤3次后、过滤得到滤饼烘干后得到碳酸铈粉体;所得碳酸铈粉体进一步在400℃静态空气中焙烧10小时,冷却后得到氧化铈粉体;通过添加0.01%聚丙烯酸作为分散剂,对所得氧化铈粉体进行球磨分散处理,通过控制球磨分散时间,得到可应用于STI抛光的氧化铈磨料。
实施例2
在室温条件下,首先配制0.5M醋酸铈溶液,在60℃搅拌条件下,向上述溶液中鼓泡加入纯二氧化碳气体,同时搅拌混合液,当不再有新的沉淀析出,停止鼓泡,继续保温搅拌24小时晶化反应,将所得沉淀物经纯水洗涤3次后、过滤得到滤饼烘干后得到碳酸铈粉体;所得碳酸铈粉体进一步在900℃静态空气中焙烧0.5小时,冷却后得到氧化铈粉体;通过添加聚丙烯酸作为分散剂,对所得氧化铈粉体进行球磨分散处理,通过控制球磨分散时间,得到可应用于STI抛光的氧化铈磨料。
实施例3
在室温条件下,首先配制1.0M醋酸铈溶液,在90℃搅拌条件下,向上述溶液中鼓泡加入纯二氧化碳气体,同时搅拌混合液,当不再有新的沉淀析出,停止鼓泡,继续保温搅拌24小时晶化反应,将所得沉淀物经纯水洗涤3次后、过滤得到滤饼烘干后得到碳酸铈粉体;所得碳酸铈粉体进一步在600℃静态空气中焙烧4小时,冷却后得到氧化铈粉体;通过添加聚丙烯酸作为分散剂,对所得氧化铈粉体进行球磨分散处理,通过控制球磨分散时间,得到 可应用于STI抛光的氧化铈磨料。
实施例4
在室温条件下,首先配制0.5M醋酸铈溶液,在90℃搅拌条件下,向上述溶液中鼓泡加入二氧化碳(占50%体积分数)和氮气(占50%体积分数)混合气体,同时搅拌混合液,当不再有新的沉淀析出,停止鼓泡,继续保温搅拌24小时晶化反应,将所得沉淀物经纯水洗涤3次后、过滤得到滤饼烘干后得到碳酸铈粉体;所得碳酸铈粉体进一步在700℃静态空气中焙烧3小时,冷却后得到氧化铈粉体;通过添加聚丙烯酸作为分散剂,对所得氧化铈粉体进行球磨分散处理,通过控制球磨分散时间,得到可应用于STI抛光的氧化铈磨料。
对比实施例
在室温条件下,首先配制0.5M醋酸铈溶液,在60℃搅拌条件下,向上述溶液中鼓泡加入纯二氧化碳气体,同时搅拌混合液,当不再有新的沉淀析出,停止鼓泡,将所得沉淀物经纯水洗涤3次后、过滤得到滤饼烘干后得到碳酸铈粉体;所得碳酸铈粉体进一步在900℃静态空气中焙烧0.5小时,冷却后得到氧化铈粉体;通过添加聚丙烯酸作为分散剂,对所得氧化铈粉体进行球磨分散处理,通过控制球磨分散时间,得到可应用于STI抛光的氧化铈磨料。
实施例效果
分别用上述对比例和实施例中1-4制备得到的氧化铈为磨料,通过添加0.5%含量的PAA(分子量为4000),配制氧化铈固含量为0.5%,pH为5.0的抛光液浆料,并测试上述实施例对应抛光液的抛光速率和抛光选择比。
分别用上述对比例和实施例中1-4配制的抛光液对空白晶片进行抛光, 抛光条件相同,抛光参数如下:Logitech抛光垫,向下压力3psi,转盘转速/抛光头转速=60/80rpm,抛光时间60s,化学机械抛浆料流速100mL/min。抛光所用晶圆切片均由市售(例如美国SVTC公司生产的)8英寸镀膜晶圆切片而成。抛光所用的金属薄膜晶圆切片上金属薄膜层厚度由NAPSON公司生产的RT-7O/RG-7B测试仪测得,TEOS和SiN的薄膜厚度由TEOS NANO Matrics公司生产的RT-7O/RG-7B测试仪测得。用抛光前后测得的厚度差值除以抛光耗用时间即得金属薄膜去除速率,抛光时间为1分钟。抛光后TEOS表面缺陷通过光学显微镜100倍放大下观察。
表1为抛光测试结果,结果表明,所合成氧化铈磨料可以达到较高的TEOS抛光速率和TEOS/SiN抛光选择比,所制备的氧化铈具有良好的STI抛光应用特性。
表1 本发明的化学机械抛光液对比例和实施例抛光效果
Figure PCTCN2016111761-appb-000001
应当理解的是,本发明所述wt%均指的是质量百分含量。
以上对本发明的具体实施例进行了详细描述,但其只是作为范例,本发明并不限制于以上描述的具体实施例。对于本领域技术人员而言,任何对本发明进行的等同修改和替代也都在本发明的范畴之中。因此,在不脱离本发明的精神和范围下所作的均等变换和修改,都应涵盖在本发明的范围内。

Claims (10)

  1. 一种氧化铈的制备方法,该制备方法包括:
    步骤一:通过沉淀法,进一步由晶化反应制备碳酸铈前驱体;
    步骤二:高温焙烧所述碳酸铈前驱体制备氧化铈粉体。
  2. 如权利要求1所述的氧化铈的制备方法,所述步骤一包括:
    -配制铈源水溶液,加热并持续搅拌;
    -待铈源水溶液升温至沉淀反应温度,以鼓泡方式向铈源水溶液引入沉淀剂直至沉淀终点;
    -保温并持续搅拌所述沉淀反应溶液,经进一步的晶化反应制得碳酸铈前驱体。
  3. 如权利要求2所述的氧化铈的制备方法,所述沉淀反应温度为60-100℃。
  4. 如权利要求2所述的氧化铈的制备方法,所述铈源水溶液为硝酸铈、氯化铈、醋酸铈中的一种或几种。
  5. 如权利要求2所述的氧化铈的制备方法,所述沉淀法使用的沉淀剂为二氧化碳气体或二氧化碳与其它气体混合。
  6. 如权利要求2所述的氧化铈的制备方法,所述铈源水溶液中铈离子的摩尔浓度为0.05-1.0M。
  7. 如权利要求2所述的氧化铈的制备方法,所述沉淀法的沉淀终点为,持续加入所述的沉淀剂,反应体系中再无新沉淀物析出。
  8. 如权利要求2所述的氧化铈的制备方法,所述保温的时间为1.0-24小时。
  9. 如权利要求1所述的氧化铈的制备方法,所述高温焙烧的温度为400-900℃,所述焙烧的时间为0.5-10小时。
  10. 一种如权利要求1-9任一项所述制备方法而得的氧化铈磨料在STI表面平坦化的抛光应用。
PCT/CN2016/111761 2015-12-31 2016-12-23 一种氧化铈的制备方法及其在cmp中的应用 WO2017114312A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201511026614.8A CN106927495A (zh) 2015-12-31 2015-12-31 一种氧化铈的制备方法及其cmp应用
CN201511026614.8 2015-12-31

Publications (1)

Publication Number Publication Date
WO2017114312A1 true WO2017114312A1 (zh) 2017-07-06

Family

ID=59224506

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/111761 WO2017114312A1 (zh) 2015-12-31 2016-12-23 一种氧化铈的制备方法及其在cmp中的应用

Country Status (3)

Country Link
CN (1) CN106927495A (zh)
TW (1) TWI723107B (zh)
WO (1) WO2017114312A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113120942A (zh) * 2019-12-30 2021-07-16 安集微电子科技(上海)股份有限公司 一种纺锤形碳酸铈及其氧化铈的合成方法
CN114524450A (zh) * 2022-03-21 2022-05-24 南京科技职业学院 一种纳米氧化铈紫外吸收剂的制备方法
CN115259205A (zh) * 2022-08-25 2022-11-01 兰州兰石中科纳米科技有限公司 一种纳米氧化铈的制备方法和应用
CN115557527A (zh) * 2022-09-29 2023-01-03 包头市安德窑炉科技有限公司 一种利用废料回收的氯化镧铈溶液制备的辐射材料
CN115595585A (zh) * 2022-11-10 2023-01-13 江西省科学院应用物理研究所(Cn) 一种易氧化金属专用金相抛光剂的制备方法
CN115851137A (zh) * 2022-12-20 2023-03-28 青岛福禄泰科表面材料科技有限公司 一种用于半导体材料的抛光液及其制备方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109251674B (zh) * 2017-07-13 2021-12-17 安集微电子科技(上海)股份有限公司 一种化学机械抛光液
CN110128950A (zh) * 2019-06-18 2019-08-16 拓米(成都)应用技术研究院有限公司 一种玻璃抛光剂及其制备方法、抛光毛刷

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1093059A (zh) * 1993-03-29 1994-10-05 中国科学院长春应用化学研究所 碳酸盐沉淀法制备稀土氧化物超微粉末
CN1417127A (zh) * 2002-12-16 2003-05-14 中国科学院长春应用化学研究所 稀土纳米氧化物的制备方法
CN101787438A (zh) * 2009-01-23 2010-07-28 胡建康 采用二氧化碳沉淀稀土的方法
CN102816930A (zh) * 2012-08-13 2012-12-12 南昌大学 一种气相沉淀稀土的方法
CN104745092A (zh) * 2013-12-26 2015-07-01 安集微电子(上海)有限公司 一种应用于sti领域的化学机械抛光液及其使用方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8333815B2 (en) * 2007-05-03 2012-12-18 Lg Chem, Ltd. Cerium oxide powder for abrasive and CMP slurry comprising the same
CN102978398B (zh) * 2012-12-12 2014-06-18 南昌大学 一种能显著降低碳酸稀土结晶过程氯根夹带量的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1093059A (zh) * 1993-03-29 1994-10-05 中国科学院长春应用化学研究所 碳酸盐沉淀法制备稀土氧化物超微粉末
CN1417127A (zh) * 2002-12-16 2003-05-14 中国科学院长春应用化学研究所 稀土纳米氧化物的制备方法
CN101787438A (zh) * 2009-01-23 2010-07-28 胡建康 采用二氧化碳沉淀稀土的方法
CN102816930A (zh) * 2012-08-13 2012-12-12 南昌大学 一种气相沉淀稀土的方法
CN104745092A (zh) * 2013-12-26 2015-07-01 安集微电子(上海)有限公司 一种应用于sti领域的化学机械抛光液及其使用方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113120942A (zh) * 2019-12-30 2021-07-16 安集微电子科技(上海)股份有限公司 一种纺锤形碳酸铈及其氧化铈的合成方法
CN114524450A (zh) * 2022-03-21 2022-05-24 南京科技职业学院 一种纳米氧化铈紫外吸收剂的制备方法
CN114524450B (zh) * 2022-03-21 2024-01-19 南京科技职业学院 一种纳米氧化铈紫外吸收剂的制备方法
CN115259205A (zh) * 2022-08-25 2022-11-01 兰州兰石中科纳米科技有限公司 一种纳米氧化铈的制备方法和应用
CN115259205B (zh) * 2022-08-25 2023-07-28 兰州兰石中科纳米科技有限公司 一种纳米氧化铈的制备方法和应用
CN115557527A (zh) * 2022-09-29 2023-01-03 包头市安德窑炉科技有限公司 一种利用废料回收的氯化镧铈溶液制备的辐射材料
CN115557527B (zh) * 2022-09-29 2023-08-18 包头市安德窑炉科技有限公司 一种利用废料回收的氯化镧铈溶液制备的辐射材料
CN115595585A (zh) * 2022-11-10 2023-01-13 江西省科学院应用物理研究所(Cn) 一种易氧化金属专用金相抛光剂的制备方法
CN115851137A (zh) * 2022-12-20 2023-03-28 青岛福禄泰科表面材料科技有限公司 一种用于半导体材料的抛光液及其制备方法

Also Published As

Publication number Publication date
CN106927495A (zh) 2017-07-07
TWI723107B (zh) 2021-04-01
TW201723114A (zh) 2017-07-01

Similar Documents

Publication Publication Date Title
WO2017114312A1 (zh) 一种氧化铈的制备方法及其在cmp中的应用
TWI743161B (zh) 表面改性膠體二氧化鈰拋光粒子、其製造方法及包括此的拋光料漿組合物
TWI229117B (en) Aqueous dispersion containing cerium oxide-coated silicon powder, process for the production thereof and use
JP3457144B2 (ja) 研磨用組成物
CN106915761B (zh) 一种氧化铈制备方法及其在sti化学机械抛光中的应用
TWI676717B (zh) 氧化鈰晶體的製備方法及其cmp拋光應用
TW200914379A (en) Method for preparing cerium carbonate powder and cerium oxide powder
KR20170004462A (ko) Sti 연마용 슬러리 조성물
WO2015170436A1 (ja) Cmp研磨剤及びその製造方法、並びに基板の研磨方法
KR20150024876A (ko) 산화세륨 입자 제조 방법, 이에 의한 산화세륨 입자 및 이를 포함하는 연마 슬러리
KR20170077492A (ko) 세륨계 복합 연마입자의 제조방법, 그에 의한 세륨계 복합 연마입자 및 그 세륨계 복합 연마입자를 포함하는 슬러리 조성물
CN105800664A (zh) 一种氧化铈磨料制备方法及其cmp抛光应用
CN108249468A (zh) 一种氧化铈晶体的制备方法及其在化学机械抛光液中的应用
KR101492234B1 (ko) 산화세륨 입자 제조 방법, 이에 의한 산화세륨 입자 및 이를 포함하는 연마 슬러리
KR102660018B1 (ko) 합성석영유리기판용의 연마제 및 그의 제조방법, 그리고 합성석영유리기판의 연마방법
KR101082620B1 (ko) 연마용 슬러리
CN106915760B (zh) 一种氧化铈的制备方法及其在sti抛光领域的应用
JP2016098351A (ja) 研磨剤粒子の製造方法、研磨剤粒子及び研磨剤スラリー
KR20160048471A (ko) 산화세륨계 연마재
JP2002265932A (ja) 酸化セリウム研磨粒子を合成するための組成物及び方法
WO2023125884A1 (zh) 一种合成氧化铈的方法及一种化学机械抛光液
CN108249469A (zh) 一种氧化铈制备方法及含有该氧化铈的cmp抛光液
TWI523943B (zh) A method for producing abrasive material, abrasive material and grinding method
KR100637403B1 (ko) 연마 입자, 연마용 슬러리 및 이의 제조 방법
TW202428519A (zh) 氧化鈰合成方法、氧化鈰及其用途

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16881101

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16881101

Country of ref document: EP

Kind code of ref document: A1