WO2015170436A1 - Cmp研磨剤及びその製造方法、並びに基板の研磨方法 - Google Patents

Cmp研磨剤及びその製造方法、並びに基板の研磨方法 Download PDF

Info

Publication number
WO2015170436A1
WO2015170436A1 PCT/JP2015/001729 JP2015001729W WO2015170436A1 WO 2015170436 A1 WO2015170436 A1 WO 2015170436A1 JP 2015001729 W JP2015001729 W JP 2015001729W WO 2015170436 A1 WO2015170436 A1 WO 2015170436A1
Authority
WO
WIPO (PCT)
Prior art keywords
polishing
cmp
film
abrasive
substrate
Prior art date
Application number
PCT/JP2015/001729
Other languages
English (en)
French (fr)
Inventor
光人 高橋
Original Assignee
信越化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越化学工業株式会社 filed Critical 信越化学工業株式会社
Priority to CN201580024264.3A priority Critical patent/CN106459732B/zh
Priority to KR1020167028471A priority patent/KR102366907B1/ko
Priority to US15/303,564 priority patent/US10246620B2/en
Publication of WO2015170436A1 publication Critical patent/WO2015170436A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1409Abrasive particles per se
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1454Abrasive powders, suspensions and pastes for polishing
    • C09K3/1463Aqueous liquid suspensions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/04Lapping machines or devices; Accessories designed for working plane surfaces
    • B24B37/042Lapping machines or devices; Accessories designed for working plane surfaces operating processes therefor
    • B24B37/044Lapping machines or devices; Accessories designed for working plane surfaces operating processes therefor characterised by the composition of the lapping agent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/04Lapping machines or devices; Accessories designed for working plane surfaces
    • B24B37/07Lapping machines or devices; Accessories designed for working plane surfaces characterised by the movement of the work or lapping tool
    • B24B37/10Lapping machines or devices; Accessories designed for working plane surfaces characterised by the movement of the work or lapping tool for single side lapping
    • B24B37/105Lapping machines or devices; Accessories designed for working plane surfaces characterised by the movement of the work or lapping tool for single side lapping the workpieces or work carriers being actively moved by a drive, e.g. in a combined rotary and translatory movement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/11Lapping tools
    • B24B37/20Lapping pads for working plane surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B7/00Machines or devices designed for grinding plane surfaces on work, including polishing plane glass surfaces; Accessories therefor
    • B24B7/20Machines or devices designed for grinding plane surfaces on work, including polishing plane glass surfaces; Accessories therefor characterised by a special design with respect to properties of the material of non-metallic articles to be ground
    • B24B7/22Machines or devices designed for grinding plane surfaces on work, including polishing plane glass surfaces; Accessories therefor characterised by a special design with respect to properties of the material of non-metallic articles to be ground for grinding inorganic material, e.g. stone, ceramics, porcelain
    • B24B7/228Machines or devices designed for grinding plane surfaces on work, including polishing plane glass surfaces; Accessories therefor characterised by a special design with respect to properties of the material of non-metallic articles to be ground for grinding inorganic material, e.g. stone, ceramics, porcelain for grinding thin, brittle parts, e.g. semiconductors, wafers
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/20Compounds containing only rare earth metals as the metal element
    • C01F17/206Compounds containing only rare earth metals as the metal element oxide or hydroxide being the only anion
    • C01F17/224Oxides or hydroxides of lanthanides
    • C01F17/235Cerium oxides or hydroxides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D125/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Coating compositions based on derivatives of such polymers
    • C09D125/02Homopolymers or copolymers of hydrocarbons
    • C09D125/04Homopolymers or copolymers of styrene
    • C09D125/08Copolymers of styrene
    • C09D125/12Copolymers of styrene with unsaturated nitriles
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • C09G1/02Polishing compositions containing abrasives or grinding agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • C09G1/04Aqueous dispersions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/30625With simultaneous mechanical treatment, e.g. mechanico-chemical polishing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/31051Planarisation of the insulating layers
    • H01L21/31053Planarisation of the insulating layers involving a dielectric removal step
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/76224Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using trench refilling with dielectric materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer

Definitions

  • the present invention relates to a CMP abrasive, a method for producing the same, and a method for polishing a substrate.
  • a coating technique of a resin such as polyimide, an etch back technique for a metal and an insulating film, a reflow technique for a metal and an insulating film, and a chemical mechanical polishing (CMP) technique are known. Yes.
  • the chemical mechanical polishing (CMP) process is performed by using a polishing pad mounted on a polishing apparatus by introducing a slurry containing abrasive particles onto a substrate. At this time, the abrasive particles mechanically polish the surface under pressure from the polishing apparatus, and the chemical components contained in the slurry chemically react with the surface of the substrate, thereby chemically modifying the surface portion of the substrate. Will be removed.
  • CMP chemical mechanical polishing
  • abrasive particles used there are silica (SiO 2 ), ceria (CeO 2 ), alumina (Al 2 O 3 ), titania (TiO 2 ), zirconia (ZrO 2 ), etc., which are selected according to the film to be polished. Can be used.
  • silica-based slurry is generally considered as a slurry for chemical mechanical polishing (CMP) for planarizing an insulating film such as a silicon oxide film.
  • CMP chemical mechanical polishing
  • the silica-based slurry is produced by growing silica particles by thermal decomposition of silicon tetrachloride and adjusting the pH with an alkali solution containing no alkali metal such as ammonia.
  • CMP chemical mechanical polishing
  • an inorganic insulating film such as a silicon oxide film (silicon oxide film)
  • a ceria slurry containing ceria particles as polishing particles is used. Since ceria particles have a lower hardness than silica particles and alumina particles, defects such as scratches are hardly generated on the surface of the film after polishing.
  • ceria particles are known as strong oxidants and have chemically active properties, so ceria slurry is applied to chemical mechanical polishing (CMP) for inorganic insulating films such as silicon oxide films. (See, for example, Patent Document 1 and Patent Document 2).
  • a polishing process using a silicon nitride film as a hard mask is performed. After forming a silicon nitride film on the substrate, a trench is formed in a predetermined region of the silicon nitride film and the substrate, a silicon oxide film is formed so that the trench is buried, and then the silicon oxide film is polished to form a trench portion. An element isolation film is formed. At this time, the silicon oxide film is polished until the silicon nitride film is exposed using a dry ceria slurry or the like that can ensure a high polishing selectivity between the silicon oxide film and the silicon nitride film.
  • a polysilicon film may be used as a polishing stopper film.
  • the polysilicon film has a lower hardness than the silicon nitride film, there is a problem that defects such as scratches are likely to occur on the surface of the polysilicon film after CMP polishing.
  • a defect such as a scratch occurs on the surface after CMP, a fine transistor or wiring disconnection failure or short-circuit failure occurs.
  • wet ceria can be applied as polishing abrasive grains in the CMP process. This is because the wet ceria has a polyhedral structure, so that scratch defects can be greatly improved.
  • the use of wet ceria improves defects such as scratches, the polishing selectivity of the silicon oxide film and the polysilicon film is not sufficient, and when chemical mechanical polishing (CMP) is used, There is a problem that the silicon film is excessively polished, and improvement of the CMP abrasive is required.
  • Patent Document 3 discloses a polishing agent containing polyoxyethylene amine ether as a polishing finish for polishing a polysilicon film
  • Patent Document 4 discloses cationized polyvinyl alcohol and amino sugar or derivatives thereof.
  • An abrasive containing at least one saccharide selected from the group consisting of polysaccharides having amino sugars and derivatives thereof is disclosed.
  • these abrasives do not have a sufficient protection function for the polysilicon film, and there is a problem in the cleaning properties after CMP polishing, and improvement of the CMP abrasive is required.
  • the present invention has been made in view of the above-described problems.
  • the substrate can be polished with low polishing scratches, and further, an abrasive having high polishing selectivity, a method for producing the abrasive, and polishing thereof. It is an object to provide a method for polishing a substrate using an agent.
  • a CMP abrasive having an average molecular weight of 500 or more and 20000 or less is provided.
  • the polishing selectivity which is the ratio of the polishing rate of the insulating film and the polishing stopper film, is particularly large. Therefore, it becomes easy to stop polishing when the polishing stopper film is exposed, the polishing stopping property can be improved, and the ability to reduce defects such as scratches is particularly good. It is suitable for polishing.
  • the abrasive particles are preferably wet ceria particles. If the abrasive particles are wet ceria particles, the occurrence of defects such as scratches can be more reliably suppressed.
  • the copolymer of styrene and acrylonitrile may be blended in an amount of 0.1 to 5 parts by mass with respect to 100 parts by mass of the abrasive particles. If it is such, it will become an abrasive
  • the pH of the CMP abrasive is preferably 3 or more and 7 or less. If it is such, it will become an abrasive
  • the CMP abrasive is preferably a CMP abrasive for polishing an insulating film. Since the polishing agent of the present invention has high polishing selectivity and can polish the insulating film with high accuracy, it is particularly suitable to be used for polishing the insulating film.
  • the present invention provides a polishing formed on the substrate while supplying the above-mentioned CMP abrasive on a polishing pad for polishing the substrate, which is affixed on a surface plate.
  • a method for polishing a substrate characterized in that the insulating film is polished by relatively moving the substrate and the surface plate while pressing and pressing the insulating film on the stop film against a polishing pad.
  • the substrate polishing method using the CMP abrasive of the present invention With the substrate polishing method using the CMP abrasive of the present invention, a high polishing selection ratio of the insulating film to the polishing stopper film can be obtained, and the polishing stopper film is not excessively polished and is highly accurate. Polishing becomes possible. Further, defects such as scratches are hardly generated on the polished surface of the substrate.
  • the polishing stopper film can be a polysilicon film, and the insulating film can be a silicon oxide film.
  • the polishing method of the present invention is particularly suitable for polishing an insulating film of a substrate having a silicon oxide film as an insulating film and a polysilicon film as a polishing stopper film. Ratio can be obtained, and the occurrence of defects such as scratches on the polished surface can be further reduced.
  • the present invention is a method for producing the above-described CMP abrasive, wherein a copolymer of styrene and acrylonitrile having an average molecular weight of 500 or more and 20000 or less is added as a protective film forming agent.
  • a method for producing a CMP abrasive comprising the steps of:
  • a high polishing selectivity can be obtained in the CMP process, and high-precision polishing can be performed. Further, the generation of scratches on the polished surface of the substrate can be suppressed.
  • polishing agent of this invention contains the copolymer of styrene and acrylonitrile whose weight average molecular weight is 500-20000.
  • a substrate in which the insulating film is a silicon oxide film and the polishing stopper film is a polysilicon film is polished.
  • An example will be described below.
  • the above effect has a difference in the degree of interaction between the styrene and acrylonitrile copolymer on the silicon oxide film and the interaction between the styrene and acrylonitrile copolymer on the polysilicon film. For this reason, it is estimated that a high polishing selectivity of the silicon oxide film to the polysilicon film can be obtained.
  • FIG. 1 shows the relationship of the zeta potential to the pH of the silicon oxide film and the polysilicon film.
  • the polysilicon film has a more positive potential than the silicon oxide film in the range of pH 3 to pH 7. Therefore, the negatively polarized styrene-acrylonitrile copolymer nitrile group interacts effectively with the polysilicon film having a more positive potential, so that the copolymer of styrene and acrylonitrile. Becomes a protective film for the polysilicon film.
  • the styrene chain which is a hydrophobic part, effectively interacts with the hydrophobic polysilicon film, thereby providing a protective film for the polysilicon film, hindering polishing of the polysilicon film, and preventing the silicon oxide film from being polished. Therefore, it is estimated that a difference occurs in the polishing rate.
  • the pH of the CMP abrasive is preferably 3 or more and 7 or less.
  • polishing agent of this invention contains abrasive particles, a protective film forming agent, and water.
  • a protective film formation agent the copolymer of styrene and acrylonitrile is included, The average molecular weight of the copolymer is 500 or more and 20000 or less.
  • the abrasive particles contained in the abrasive of the present invention are preferably wet ceria particles.
  • Wet ceria particles are preferable in that particles having a large secondary particle size are not generated and have a polyhedral structure, and therefore polishing scratches such as micro scratches can be improved.
  • the average particle size of the wet ceria particles is preferably in the range of 5 nm to 200 nm, more preferably in the range of 20 nm to 100 nm. More preferably, it is used in the range of 40 nm to 70 nm. If it is such, the average particle diameter of wet ceria particles is not too small, and the polishing rate for the film to be polished is not too low. Moreover, since the average particle diameter of the wet ceria particles is not too large, the generation of polishing scratches such as micro scratches can be suppressed.
  • polishing agent it is preferable that it is 0.1 mass part or more with respect to 100 mass parts of abrasive
  • the upper limit concentration of the abrasive particles is preferably 20 parts by mass or less, more preferably 10 parts by mass or less, and still more preferably 5 parts by mass or less from the viewpoint that the storage stability of the abrasive can be further increased.
  • a method for producing wet ceria particles As a method for producing wet ceria particles, a method of producing wet ceria particles by mixing and heating with a basic solution using cerium salt as a precursor material is preferable. Hereinafter, this manufacturing method will be specifically described.
  • a cerium salt which is a precursor of wet ceria particles, is mixed with ultrapure water to produce a cerium aqueous solution.
  • Cerium salt and ultrapure water can be mixed, for example, in a ratio of 2: 1 to 4: 1.
  • the cerium salt at least one of a Ce (III) salt and a Ce (IV) salt can be used. That is, at least one Ce (III) salt is mixed with ultrapure water, or at least one Ce (IV) salt is mixed with ultrapure water, or at least one Ce (III) salt and at least One Ce (IV) salt can be mixed with ultrapure water.
  • Ce (III) salt examples include cerium chloride (III), cerium fluoride (III), cerium sulfate (III), cerium nitrate (III), cerium carbonate (III), cerium perchlorate (III), odor Cerium (III) chloride, cerium sulfide (III), cerium (III) iodide, cerium (III) oxalate, cerium (III) acetate, and the like can be mixed. Further, as the Ce (IV) salt, cerium sulfate (IV), ammonium cerium nitrate (IV), cerium hydroxide (IV) and the like can be mixed. Of these, cerium (III) nitrate is preferably used as the Ce (III) salt, and ammonium cerium (IV) nitrate is preferably used as the Ce (IV) salt.
  • an acidic solution can be mixed to stabilize the cerium aqueous solution produced by mixing with ultrapure water.
  • the acidic solution and the cerium solution can be mixed at a ratio of 1: 1 to 1: 100.
  • the acid solution that can be used here include hydrogen peroxide, nitric acid, acetic acid, hydrochloric acid, and sulfuric acid.
  • the pH of the cerium solution mixed with the acid solution can be adjusted to 0.01, for example.
  • a basic solution is produced separately from the cerium solution.
  • the basic solution ammonia, sodium hydroxide, potassium hydroxide or the like can be used, and it is mixed with ultrapure water and diluted to an appropriate concentration.
  • the basic substance and ultrapure water can be diluted at a ratio of 1: 1 to 1: 100.
  • the diluted basic solution can be adjusted to a pH of, for example, 11-13.
  • a cerium aqueous solution is mixed with the diluted basic solution at a speed of, for example, 0.1 liter per second or more.
  • heat treatment is performed at a predetermined temperature.
  • the heat treatment can be performed at a heat treatment temperature of 100 ° C. or less, for example, 60 ° C. or more and 100 ° C. or less, and the heat treatment time can be 2 hours or more, for example, 2 hours to 10 hours.
  • the rate of temperature increase from room temperature to the heat treatment temperature can be increased at a rate of 0.2 ° C. to 1 ° C. per minute, preferably 0.5 ° C. per minute.
  • the mixed solution subjected to the heat treatment is cooled to room temperature.
  • a mixed liquid in which wet ceria particles having a primary particle size, for example, 100 nm or less are produced is produced.
  • a mixture of an aqueous cerium salt precursor solution and a diluted basic solution is heated.
  • the cerium salt in the mixed solution reacts in the temperature process to generate ceria (CeO 2 ) fine nuclei, and crystals can be grown around these fine nuclei, for example, produced with crystal grains of 5 nm to 100 nm can do.
  • the CMP polishing agent of the present invention is characterized by containing a copolymer of styrene and acrylonitrile as a protective film forming agent.
  • the protective film forming agent here is mainly used for polishing a substrate. It refers to a substance that forms a protective film by adsorbing to the surface of a portion other than the target film and suppresses excessive polishing of the portion other than the target film.
  • the copolymer of styrene and acrylonitrile contained as a protective film forming agent increases the polishing selectivity of the film to be polished to the film to be non-polished, particularly when the polysilicon film is used as a polishing stopper film. There is an effect of further suppressing the occurrence of polishing scratches on the polysilicon film.
  • a styrene chain and a nitrile group which are hydrophobic parts of a copolymer of styrene and acrylonitrile, interact with a non-polishing target film such as a polysilicon film, thereby forming a protective film on the surface of the non-polishing target film. It is thought that this is because it can be formed and polishing scratches can be suppressed.
  • the average molecular weight of the copolymer of styrene and acrylonitrile to be used is 500 to 20000, but when the average molecular weight exceeds 20000, the dispersibility in the abrasive becomes poor and the stability of the abrasive tends to decrease. If it is less than 500, the formation of the protective film is insufficient.
  • the molar ratio of styrene and acrylonitrile in the copolymer is preferably 10/90 to 90/10 for styrene / acrylonitrile.
  • polishing agent the range of 0.01 mass part to 1 mass part with respect to 100 mass parts of abrasive
  • the copolymer of styrene and acrylonitrile is in the range of 0.01 to 1 part by mass with respect to 100 parts by mass of the abrasive, the formation of a protective film is sufficient and a high protective effect is obtained.
  • the copolymer of styrene and acrylonitrile is mix
  • the abrasive of the present invention can contain other additives in addition to the above-mentioned copolymer of styrene and acrylonitrile for the purpose of adjusting the polishing characteristics.
  • additives can include anionic surfactants and amino acids that can convert the surface potential of the abrasive particles to a negative value.
  • anionic surfactant examples include monoalkyl sulfate, alkyl polyoxyethylene sulfate, alkylbenzene sulfonate, monoalkyl phosphate, lauryl sulfate, polycarboxylic acid, polyacrylate, and polymethacrylate.
  • amino acids include arginine, lysine, aspartic acid, glutamic acid, asparagine, glutamine, histidine, proline, tyrosine, serine, tryptophan, threonine, glycine, alanine, methionine, cysteine, phenylalanine, leucine, valine, and isoleucine. .
  • the concentration of the additive in the abrasive is preferably contained in the range of 0.01 to 0.1 parts by mass based on 1 part by mass of the abrasive particles. More preferably, it is contained in the range of 0.02 parts by mass to 0.06 parts by mass. If content is 0.01 mass part or more on the basis of 1 mass part of abrasive particles, the fall of the dispersion stability of an abrasive
  • the pH of the abrasive of the present invention is preferably in the range of 3.0 or more and 7.0 or less from the viewpoint of excellent storage stability of the abrasive and polishing rate.
  • the lower limit of the pH affects the dispersion stability of the abrasive, and is preferably 4.0 or more, more preferably 6.0 or more.
  • the upper limit affects the polishing rate and is preferably 7.0 or less. If the pH is 7.0 or less, the polishing rate of the polysilicon film does not increase rapidly due to basicity, and the polishing selectivity of the silicon oxide film to the polysilicon film does not decrease.
  • the pH of the abrasive is adjusted with inorganic acids such as hydrochloric acid, nitric acid, sulfuric acid and phosphoric acid, organic acids such as formic acid, acetic acid, citric acid and oxalic acid, ammonia, sodium hydroxide, potassium hydroxide and tetramethyl. It can be adjusted by adding a base such as ammonium hydroxide (TMAH).
  • inorganic acids such as hydrochloric acid, nitric acid, sulfuric acid and phosphoric acid
  • organic acids such as formic acid, acetic acid, citric acid and oxalic acid
  • ammonia sodium hydroxide
  • potassium hydroxide potassium hydroxide
  • tetramethyl tetramethyl
  • TMAH ammonium hydroxide
  • the single-side polishing apparatus may be a single-side polishing apparatus 6 including a surface plate 3 to which a polishing pad 4 is attached, an abrasive supply mechanism 5, a polishing head 2, and the like. it can.
  • the semiconductor substrate W is held by the polishing head 2
  • the CMP polishing agent 1 of the present invention is supplied from the polishing agent supply mechanism 5 onto the polishing pad 4, and the surface plate 3 and the polishing head 2 are connected. Polishing is performed by rotating the substrate W and bringing the surface of the substrate W into sliding contact with the polishing pad 4.
  • polishing pad non-woven fabric, polyurethane foam, porous resin, etc. can be used. Further, during the polishing, it is preferable to continuously supply the CMP abrasive 1 with the abrasive supply mechanism 5 equipped with a pump or the like so that the pad surface is always covered with the abrasive.
  • the polishing method according to the present invention is such that the insulating film on the polishing stopper film formed on the substrate W is supplied to the polishing pad while supplying the CMP polishing agent 1 of the present invention onto the polishing pad 4 attached on the surface plate.
  • the insulating film is polished by moving the substrate W and the surface plate 3 relative to each other while pressing against the pressure.
  • the substrate W to be polished here is a substrate related to semiconductor element manufacturing, for example, a substrate in which an insulating film and a polishing stopper film are formed on a semiconductor substrate on which an STI pattern, a wiring pattern, etc. are formed. It is done.
  • the film to be polished is an insulating film formed on these patterns, and examples thereof include a silicon oxide film.
  • An example of the polishing stop film is a polysilicon film.
  • the polishing method using the polishing agent of the present invention is particularly suitable for polishing a substrate whose polishing stopper film on the lower side (base substrate side) such as an insulating film made of silicon oxide or the like is a polysilicon film.
  • a substrate include a NAND flash memory device substrate.
  • polishing agent of this invention is applied to the CMP process of this NAND flash memory element substrate is demonstrated.
  • a plurality of trenches are formed by etching the base substrate 10 from a conductive film 30 and a tunnel oxide film 20 in a predetermined region to a predetermined depth, and the trenches are buried.
  • An insulating film 40 is formed so as to be formed.
  • the conductive film 30 can be formed of a polysilicon film or the like to be a floating gate, and in this case, also serves as a polishing stopper film.
  • the insulating film 40 is made of an oxide film-based material, such as a BPSG film, a PSG film, an HDP film, a TEOS film, a USG film, a PETEOS film, or a HARP film.
  • the insulating film 40 is formed by a PVD method, a CVD method, an MOCVD method, an ALD method, or the like.
  • Examples of the base substrate 10 include a silicon substrate.
  • a NAND flash memory device substrate having a base substrate 10 with an insulating film 40 buried in a trench as shown in FIG. 3 is set in a polishing apparatus as shown in FIG. 2, and then the abrasive of the present invention is used.
  • the insulating film 40 is removed by polishing to form an STI isolation film 50.
  • the polishing selection ratio of the insulating film 40 to the conductive film 30 is preferably 10 or more.
  • the polishing selection ratio is less than 10, the difference between the polishing rates of the insulating film 40 and the conductive film 30 is reduced, and it becomes difficult to detect a predetermined polishing stop position, and the insulating film 40 and the conductive film 30 are excessively polished. This may increase the occurrence of defects. If the polishing selection ratio is 10 or more, it is easy to detect the polishing stop position, which is more suitable for the formation of the STI separation film. And if it is this invention, the grinding
  • an abrasive containing a copolymer of styrene and acrylonitrile having an average molecular weight of 500 to 20000 is applied to CMP polishing of the insulating film 40 when the conductive film 30 is applied to the polishing stopper film.
  • a high polishing selection ratio of the insulating film 40 to the conductive film 30 can be obtained.
  • the present invention is applied to STI formation, an STI film with few defects such as polishing scratches can be formed.
  • a high polishing selectivity can be obtained in the CMP process, and high-precision polishing can be performed. Further, the generation of scratches on the polished surface of the substrate can be suppressed.
  • a silicon substrate on which a silicon oxide film produced by plasma CVD was formed was set on the polishing head of the single-side polishing apparatus shown in FIG. 2 with the surface of the silicon oxide film facing down. Then, the polishing pad (IC1000 / SubaIV CMP pad: Dowchemical) was supplied while supplying the polishing weight of 6 psi (pound per square inch), the rotation speed of the surface plate and the polishing head at 70 rpm, and the prepared CMP abrasive at 100 ml per minute. And polishing was performed for 60 seconds. After completion of polishing, the substrate was removed from the polishing head, washed with pure water, further subjected to ultrasonic cleaning, and dried at 80 ° C. using a dryer.
  • the polishing pad IC1000 / SubaIV CMP pad: Dowchemical
  • the polishing rate was calculated by measuring the change in film thickness before and after polishing with a spectroscopic ellipsometer. Similarly, the polishing rate was calculated by polishing a silicon substrate with a polysilicon film produced by a low pressure CVD method under the same conditions and measuring the change in film thickness before and after polishing. Further, the number of polishing scratches generated on the polished polysilicon film surface was determined by a scanning electron microscope.
  • Example 1 500 g of the prepared wet ceria particles, 15 g of a styrene / acrylonitrile copolymer having an average molecular weight of 600, and 5000 g of pure water were mixed and subjected to ultrasonic dispersion for 60 minutes with stirring, and then filtered through a 0.5 micron filter. It was further diluted with pure water to prepare a CMP abrasive containing a ceria particle concentration of 1 part by mass and a styrene / acrylonitrile copolymer of 0.15 part by mass. The resulting CMP abrasive had a pH of 6.3. As a result of measuring the particle size distribution with an ultrasonic attenuation type particle size distribution meter (Zeta-APS: manufactured by Matec), the average particle size was 0.10 microns.
  • Zeta-APS manufactured by Matec
  • Example 2 A CMP abrasive was prepared by the same procedure as in Example 1 except that a copolymer of styrene and acrylonitrile having an average molecular weight of 8000 was added. The resulting CMP abrasive had a pH of 6.5. As a result of measuring the particle size distribution with an ultrasonic attenuation type particle size distribution meter (Zeta-APS: manufactured by Matec), the average particle size was 0.11 micron.
  • Zeta-APS ultrasonic attenuation type particle size distribution meter
  • Example 3 A CMP abrasive was prepared by the same procedure as in Example 1 except that a copolymer of styrene and acrylonitrile having an average molecular weight of 16000 was added. The resulting CMP abrasive had a pH of 6.5. As a result of measuring the particle size distribution with an ultrasonic attenuation type particle size distribution meter (Zeta-APS: manufactured by Matec), the average particle size was 0.10 microns.
  • Zeta-APS ultrasonic attenuation type particle size distribution meter
  • Example 4 A CMP abrasive was prepared by the same procedure as in Example 1 except that a copolymer of styrene and acrylonitrile having an average molecular weight of 20000 was added. The resulting CMP abrasive had a pH of 6.5. As a result of measuring the particle size distribution with an ultrasonic attenuation type particle size distribution meter (Zeta-APS: manufactured by Matec), the average particle size was 0.10 microns.
  • Zeta-APS ultrasonic attenuation type particle size distribution meter
  • Example 5 A CMP abrasive was prepared by the same procedure as in Example 1 except that a copolymer of styrene and acrylonitrile having an average molecular weight of 500 was added. The resulting CMP abrasive had a pH of 6.5. As a result of measuring the particle size distribution with an ultrasonic attenuation type particle size distribution meter (Zeta-APS: manufactured by Matec), the average particle size was 0.10 microns.
  • Zeta-APS ultrasonic attenuation type particle size distribution meter
  • Example 1 A CMP abrasive was prepared by the same procedure as in Example 1 except that a copolymer of styrene and acrylonitrile having an average molecular weight of 300 was added. The pH of the obtained CMP abrasive was 6.4. As a result of measuring the particle size distribution with an ultrasonic attenuation type particle size distribution meter (Zeta-APS: manufactured by Matec), the average particle size was 0.11 micron.
  • Zeta-APS ultrasonic attenuation type particle size distribution meter
  • Example 2 A CMP abrasive was prepared by the same procedure as in Example 1 except that a copolymer of styrene and acrylonitrile having an average molecular weight of 25000 was added. The pH of the obtained CMP abrasive was 6.4. As a result of measuring the particle size distribution with an ultrasonic attenuation type particle size distribution meter (Zeta-APS: manufactured by Matec), the average particle size was 0.11 micron.
  • Zeta-APS ultrasonic attenuation type particle size distribution meter
  • Example 3 A CMP abrasive was prepared by the same procedure as in Example 1 except that no copolymer of styrene and acrylonitrile was added. The resulting CMP abrasive had a pH of 6.5. As a result of measuring the particle size distribution with an ultrasonic attenuation type particle size distribution meter (Zeta-APS: manufactured by Matec), the average particle size was 0.13 microns.
  • Example 4 A CMP abrasive was prepared by the same procedure as in Example 1 except that polyacrylic acid ammonium salt having an average molecular weight of 10,000 was added instead of the copolymer of styrene and acrylonitrile.
  • the pH of the obtained CMP abrasive was 6.1.
  • Zeta-APS manufactured by Matec
  • the substrate was set in a polishing apparatus, and CMP polishing was performed for 60 seconds under the polishing conditions.
  • the polishing rate of the silicon oxide film and the polysilicon film was calculated by measuring the change in film thickness before and after polishing. The results are shown in Table 1.
  • the numbers in the table are average values of five substrates subjected to CMP polishing in the examples and comparative examples.
  • Table 1 summarizes the results of the examples and comparative examples.
  • Example 1 to Example 5 From the results of Example 1 to Example 5 shown in Table 1, it is possible to suppress the occurrence of scratches on the film surface due to polishing by polishing using the CMP abrasive of the present invention. A very high polishing selectivity ratio of 30 or more was obtained for the insulating film (silicon oxide film) to the polishing stopper film (polysilicon film).
  • the CMP abrasive polishing agent of the comparative example 1
  • the average molecular weight of the copolymer of styrene and acrylonitrile is as small as less than 500
  • formation of the protective film with respect to a polysilicon film becomes inadequate, and polish with respect to the polysilicon film of a silicon oxide film
  • the selection ratio was low. Further, the number of polishing scratches generated was more than double that of Examples 1 to 5.
  • the CMP abrasive of Comparative Example 2 has a molecular weight of the copolymer of styrene and acrylonitrile larger than 20000, so the dispersibility in the abrasive is poor. As a result, the interaction with the polysilicon film is reduced, The polishing selectivity with respect to the silicon film and the number of occurrences of polishing flaws were inferior to those of the examples.
  • polishing agent of the comparative example 3 which does not add a protective film formation agent has a result with many generation
  • the polishing selectivity with respect to the polysilicon film is improved and the polishing scratches are reduced.
  • the result was greatly inferior to the abrasive
  • the CMP polishing agent of the present invention by performing the CMP polishing using the polysilicon film as a polishing stopper film by the CMP polishing agent of the present invention, a high polishing selection ratio with respect to the polysilicon film can be obtained, and polishing can be performed with less generation of polishing flaws. it can.
  • the present invention is not limited to the above embodiment.
  • the above-described embodiment is an exemplification, and the present invention has any configuration that has substantially the same configuration as the technical idea described in the claims of the present invention and that exhibits the same effects. Are included in the technical scope.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Geology (AREA)
  • Wood Science & Technology (AREA)
  • Dispersion Chemistry (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

 本発明は、研磨粒子、保護膜形成剤、及び水を含むCMP研磨剤であって、前記保護膜形成剤は、スチレンとアクリロニトリルの共重合体であり、その平均分子量が500以上20000以下のものであることを特徴とするCMP研磨剤である。これにより、CMP工程において、絶縁膜を低研磨傷で研磨でき、さらに絶縁膜の研磨停止膜に対する高い研磨選択性を有する研磨剤及び該研磨剤の製造方法、並びにその研磨剤を用いた基板の研磨方法が提供される。

Description

CMP研磨剤及びその製造方法、並びに基板の研磨方法
 本発明は、CMP研磨剤及びその製造方法、並びに基板の研磨方法に関する。
 半導体大規模集積回路の集積度の向上、高性能化のためには高密度化が必要であり、高密度化に対応するため配線パターンの微細化に伴う加工線幅の低減、及び配線の多層化が要求されている。このような多層配線構造は、導電膜や絶縁膜の製膜とエッチングを数回にわたって繰り返し形成されるため、表面の段差が大きくなる傾向にある。一方で、配線のパターンニングのために用いるレジストの焦点深度は、配線の微細化に伴って浅くなる傾向にあり、表面の段差がパターンニングに及ぼす影響が大きくなり問題視されている。そのためパターンニングを容易に行うために表面の段差を解消させるための広域的な平坦化が必要とされている。
 このような広域的な平坦化技術として、ポリイミド等の樹脂のコーティング技術、金属及び絶縁膜に対するエッチバック技術、金属及び絶縁膜に対するリフロー技術、そして、化学機械的研磨(CMP)技術が知られている。
 化学機械的研磨(CMP)工程は、研磨粒子が含まれているスラリーを基板上に投入して研磨装置に装着された研磨パッドを使用して行うことになる。この時、研磨粒子は、研磨装置からの圧力を受けて機械的に表面を研磨するようになり、スラリーに含まれる化学成分が基板の表面を化学的に反応させて、基板の表面部位を化学的に除去することになる。
 一般に、化学機械的研磨(CMP)に用いられるスラリーは、除去対象膜の種類や特性によって多様な種類がある。使用される研磨粒子としては、シリカ(SiO)、セリア(CeO)、アルミナ(Al)、チタニア(TiO)、ジルコニア(ZrO)などがあり、研磨対象膜に応じて選択的に使用することができる。
 従来、酸化ケイ素膜等の絶縁膜を平坦化するための化学機械的研磨(CMP)用スラリーとして、一般的にシリカ系のスラリーの使用が検討されている。シリカ系のスラリーは、シリカ粒子を四塩化ケイ素の熱分解により粒成長させ、アンモニア等のアルカリ金属を含まないアルカリ溶液でpH調整を行って製造している。
 また、酸化ケイ素膜(シリコン酸化膜)等の無機絶縁膜の化学機械的研磨(CMP)スラリーとして、研磨粒子としてセリア粒子を含むセリアスラリーが使用されている。セリア粒子は、シリカ粒子やアルミナ粒子に比べ硬度が低いため、研磨後の膜表面にキズ等の欠陥が発生し難く有用とされている。また、セリア粒子は強酸化剤として知られており、化学的に活性な性質を有しているため、セリアスラリーは酸化ケイ素膜等の無機絶縁膜用の化学機械的研磨(CMP)への適用に有用とされている(例えば、特許文献1、特許文献2参照)。
 また、従来のSTI(Shallow Trench Isolation)を形成する工程においては、窒化ケイ素膜をハードマスクとする研磨工程が実施される。基板上に窒化ケイ素膜を形成した後、窒化ケイ素膜と基板の所定領域にトレンチを形成し、トレンチが埋め立てされるように酸化ケイ素膜を形成した後、酸化ケイ素膜を研磨してトレンチ部分に素子分離膜が形成される。この時、酸化ケイ素膜と窒化ケイ素膜の高い研磨選択比を確保することが出来る乾式セリアスラリー等を用いて、窒化ケイ素膜が露出するまで酸化ケイ素膜を研磨する。
 その一方では、窒化ケイ素膜をハードマスクとして用いる代わりにポリシリコン膜を研磨停止膜として利用する場合がある。この場合、ポリシリコン膜は窒化ケイ素膜に比べ硬度が低いため、CMP研磨後のポリシリコン膜表面に傷等の欠陥が発生しやすくなる問題がある。ここで、CMP研磨後の表面に傷等の欠陥が生じると、微細なトランジスタや配線の断線不良や短絡不良等が発生する。
 そこで、傷等の欠陥を抑制するために、例えば湿式セリアをCMP工程に研磨砥粒として適用することができる。これは、湿式セリアは多面体構造を有しているため、スクラッチ欠陥を大幅に改善することができるからである。
 しかしながら、湿式セリアの使用によりスクラッチ等の欠陥に関しては改善されるものの、酸化ケイ素膜とポリシリコン膜の研磨選択比が十分ではなく、化学機械的研磨(CMP)した場合、研磨停止膜であるポリシリコン膜が過剰に研磨されてしまう問題があり、CMP研磨剤の改善が要求されている。
 例えば、特許文献3では、ポリシリコン膜の研磨の研磨仕上げ剤としてポリオキシエチレンアミンエーテルを含有した研磨剤が開示されており、特許文献4では、カチオン化ポリビニルアルコールと、アミノ糖、またはその誘導体、アミノ糖を持つ多糖類、及びその誘導体からなる群より選ばれる少なくとも一種の糖類を含有した研磨剤が開示されている。しかし、これらの研磨剤はポリシリコン膜の保護機能が十分ではなく、また、CMP研磨後の洗浄性に問題があり、CMP研磨剤の改善が必要とされている。
特開平08-022970号公報 特開平10-106994号公報 特表2011-529269号報 特許第4894981号
 本発明は前述のような問題に鑑みてなされたもので、CMP工程において、基板を低研磨傷で研磨でき、更に、高い研磨選択性を有する研磨剤及び該研磨剤の製造方法、並びにその研磨剤を用いた基板の研磨方法を提供することを目的とする。
 上記目的を達成するために、本発明によれば、研磨粒子、保護膜形成剤、及び水を含むCMP研磨剤であって、前記保護膜形成剤は、スチレンとアクリロニトリルの共重合体であり、その平均分子量が500以上20000以下のものであることを特徴とするCMP研磨剤を提供する。
 このようなものであれば、研磨対象の膜の非研磨対象の膜に対する高い研磨選択比を得ることができ、基板を過剰に研磨してしまうことなく、精度の高い研磨をすることができる。さらに研磨後の基板の研磨面における傷を低減することができる。また、例えば絶縁膜として酸化ケイ素膜を、研磨停止膜としてポリシリコン膜を有する基板の絶縁膜を研磨する場合には、絶縁膜と研磨停止膜の研磨速度の比である研磨選択比が特に大きくなるため、研磨停止膜が露出した際に研磨を停止するのが容易になり、研磨停止性を高めることができるし、傷等の欠陥の低減力が特に良好なものとなり、このような基板の研磨に好適なものとなる。
 このとき、前記研磨粒子が、湿式セリア粒子であることが好ましい。
 研磨粒子が湿式セリア粒子であれば、傷等の欠陥の発生をより確実に抑制することができる。
 またこのとき、前記スチレンとアクリロニトリルの共重合体が、前記研磨粒子100質量部に対して0.1質量部以上5質量部以下で配合されたものとすることができる。
 このようなものであれば、より研磨選択比が高く、且つ、より傷等の欠陥の発生を抑制できる研磨剤となる。
 このとき、前記CMP研磨剤のpHが、3以上7以下であることが好ましい。
 このようなものであれば、より研磨選択比が高く、且つ、より傷等の欠陥の発生を抑制できる研磨剤となる。
 またこのとき、前記CMP研磨剤は絶縁膜の研磨用のCMP研磨剤であることが好ましい。
 本発明の研磨剤は、高い研磨選択性を有するため絶縁膜を精度よく研磨できるので、特に絶縁膜の研磨に使用されることが好適なものとなる。
 更に、上記目的を達成するために、本発明は、定盤上に貼られた、基板を研磨するための研磨パッド上に、上記のCMP研磨剤を供給しながら、前記基板に形成された研磨停止膜上の絶縁膜を研磨パッドに押し当て加圧しつつ、前記基板と前記定盤とを相対的に動かすことで前記絶縁膜を研磨することを特徴とする基板の研磨方法を提供する。
 本発明のCMP研磨剤を使用した基板の研磨方法であれば、絶縁膜の研磨停止膜に対する高い研磨選択比を得ることができ、研磨停止膜を過剰に研磨してしまうことが無く精度の高い研磨が可能となる。また、基板の研磨面に傷等の欠陥が発生することがほとんど無い。
 このとき、前記研磨停止膜をポリシリコン膜とし、前記絶縁膜を酸化ケイ素膜とすることができる。
 本発明の研磨方法は、特に、絶縁膜として酸化ケイ素膜を、研磨停止膜としてポリシリコン膜を有する基板の絶縁膜を研磨する場合に好適であり、酸化ケイ素膜のポリシリコン膜に対する高い研磨選択比が得られ、更に、研磨面における傷等の欠陥の発生をより一層低減できる。
 更に、上記目的を達成するために、本発明は、上記のCMP研磨剤の製造方法であって、保護膜形成剤として、平均分子量が500以上20000以下のスチレンとアクリロニトリルの共重合体を添加する工程を含むことを特徴とするCMP研磨剤の製造方法を提供する。
 このようにすれば、高い選択性を有し、研磨による傷等の欠陥の発生を抑制できるCMP研磨剤を確実に得ることができる。
 本発明のCMP研磨剤によれば、CMP工程において、高い研磨選択比を得ることができ、精度の高い研磨をすることができる。さらに基板の研磨面における傷の発生を抑制することができる。
ポリシリコン膜と酸化ケイ素膜のpHに対するゼータ電位を示す図である。 本発明の研磨方法において使用できる片面研磨装置の一例を示した概略図である。 導電膜を研磨停止膜とした半導体素子の断面図である。 本発明の研磨剤により絶縁膜をCMP研磨した後の半導体素子の断面図である。
 以下、本発明について実施の形態を説明するが、本発明はこれに限定されるものではない。
 本発明のCMP研磨剤は、重量平均分子量が500以上20000以下であるスチレンとアクリロニトリルの共重合体を含有することを特徴とする。
 ここで、本発明の効果の1つである、高い研磨速度比(研磨選択比)が得られる機構について、絶縁膜が酸化ケイ素膜、研磨停止膜がポリシリコン膜である基板の研磨を行う場合を例に以下に説明する。
 本発明者の知見によれば、上記効果は酸化ケイ素膜に対するスチレンとアクリロニトリルの共重合体間との相互作用と、ポリシリコン膜に対するスチレンとアクリロニトリルの共重合体間との相互作用に程度差があるために、酸化シリコン膜のポリシリコン膜に対する高い研磨選択比が得られるものと推測される。
 図1に酸化ケイ素膜とポリシリコン膜のpHに対するゼータ電位の関係を示す。図1を参照すると、ポリシリコン膜は、pH3~pH7の範囲においては、酸化ケイ素膜に比べてよりプラス側の電位を有していることがわかる。従って、マイナスに分極しているスチレンとアクリロニトリルの共重合体のニトリル基が、よりプラス側の電位を有しているポリシリコン膜に効果的に相互作用することで、スチレンとアクリロニトリルの共重合体がポリシリコン膜に対する保護膜となる。また更に、疎水性部であるスチレン鎖が、疎水性のポリシリコン膜に効果的に相互作用することで、ポリシリコン膜に対する保護膜となり、ポリシリコン膜の研磨を阻害し、酸化ケイ素膜に対して研磨速度に差が生じると推測される。
 従って、本発明においてCMP研磨剤のpHは、3以上7以下であることが好ましい。
 以下、本発明の研磨剤及びその製造方法、並びに本発明の研磨剤による基板の研磨方法についてより詳細に説明する。
 上記のように本発明のCMP研磨剤は研磨粒子、保護膜形成剤、及び水を含む。そして、保護膜形成剤として、スチレンとアクリロニトリルの共重合体を含み、その共重合体の平均分子量が500以上20000以下のものである。
 ここで、本発明の研磨剤に含まれる研磨粒子が、湿式セリア粒子であることが好ましい。
 湿式セリア粒子は、2次粒径が大きな粒子が生成されず、多面体構造を持っているため、マイクロスクラッチ等の研磨傷を改善出来る点で好ましい。
 また、本発明において、湿式セリア粒子の平均粒径は、5nm~200nmの範囲のものとすることが好ましく、より好ましくは、20nm~100nmの範囲で使用されることが好ましい。更に好ましくは、40nm~70nmの範囲で使用されることが好ましい。
 このようなものであれば、湿式セリア粒子の平均粒径が小さすぎず、研磨対象膜に対する研磨速度が低くなり過ぎない。また、湿式セリア粒子の平均粒径が大きすぎないので、マイクロスクラッチ等の研磨傷の発生を抑制できる。
 研磨剤中の研磨粒子の濃度には特に制限はないが、好適な絶縁膜に対する研磨速度が得られる点から、研磨剤100質量部に対して0.1質量部以上であることが好ましく、0.5質量部以上であることがより好ましく、1質量部以上であることが更に好ましい。また、研磨粒子の上限濃度としては、研磨剤の保存安定性をより高くできる観点から、20質量部以下が好ましく、10質量部以下がより好ましく、5質量部以下が更に好ましい。
 湿式セリア粒子の製造方法としては、セリウム塩を前駆体物資として、塩基性溶液と混合・加熱処理することにより湿式セリア粒子を製造する方法が好ましい。以下、具体的にこの製造方法について説明する。
 まず、湿式セリア粒子の前駆体であるセリウム塩を超純水と混合してセリウム水溶液を製造する。セリウム塩と超純水は、例えば、2:1から4:1の割合で混合することが出来る。ここでセリウム塩としては、Ce(III)塩、及びCe(IV)塩の少なくともいずれかを利用することができる。つまり、少なくとも一つのCe(III)塩を超純水と混合するか、または、少なくとも一つのCe(IV)塩を超純水と混合するか、または、少なくとも一つのCe(III)塩と少なくとも一つのCe(IV)塩を超純水と混合することができる。
 Ce(III)塩としては、例えば、塩化セリウム(III)、フッ化セリウム(III)、硫酸セリウム(III)、硝酸セリウム(III)、炭酸セリウム(III)、過塩素酸セリウム(III)、臭化セリウム(III)、硫化セリウム(III)、ヨウ化セリウム(III)、シュウ酸セリウム(III)、酢酸セリウム(III)などを混合することができる。
 また、Ce(IV)塩としては、硫酸セリウム(IV)、硝酸アンモニウムセリウム(IV)、水酸化セリウム(IV)などを混合することができる。なかでも、Ce(III)塩としては硝酸セリウム(III)が、Ce(IV)塩として硝酸アンモニウムセリウム(IV)が使いやすさの面で好適に使用される。
 さらに、超純水と混合して製造されたセリウム水溶液の安定化のために酸性溶液を混合することができる。ここで、酸性溶液とセリウム溶液は、1:1から1:100の割合で混合することができる。ここで使用できる酸溶液としては、過酸化水素、硝酸、酢酸、塩酸、硫酸などがあげられる。酸溶液と混合されたセリウム溶液は、pHを例えば0.01に調整することができる。
 ここで、セリウム溶液とは別に塩基性溶液を製造する。塩基性溶液としては、アンモニア、水酸化ナトリウム、水酸化カリウムなどを使用することができ、超純水と混合して適切な濃度に希釈して使用される。希釈する割合としては、塩基性物質と超純水を1:1から1:100の割合で希釈することができる。希釈された塩基性溶液は、pHをたとえば11~13に調整することができる。
 次に、希釈された塩基性溶液を反応容器に移した後、窒素、アルゴン、ヘリウムなどの不活性ガス雰囲気下で、例えば5時間以下攪拌を行う。そして、希釈された塩基性溶液にセリウム水溶液を、例えば毎秒0.1リットル以上の速度で混合する。そして引き続き、所定の温度で熱処理を行う。この時の熱処理温度は、100℃以下、例えば60℃以上100℃以下の温度で加熱処理をすることができ、熱処理時間は、2時間以上、例えば2時間~10時間行うことができる。また、常温から熱処理温度までの昇温速度は、毎分0.2℃~1℃、好ましくは毎分0.5℃の速度で昇温することができる。
 最後に、熱処理を実施した混合溶液を、室温まで冷却する。このような過程を経て、1次粒径、例えば100nm以下の湿式セリア粒子が生成された混合液が製造される。
 以上のように、湿式セリア粒子は、セリウム塩の前駆体水溶液と希釈された塩基性溶液の混合液を、適切な昇温速度で昇温して、適切な範囲の熱処理温度で加熱すると、昇温過程で混合液内のセリウム塩が反応して、セリア(CeO)の微細核が生成され、これらの微細核を中心に結晶が成長させることができ、例えば5nm~100nmの結晶粒子で製造することができる。
 また、本発明のCMP研磨剤は、保護膜形成剤としてスチレンとアクリロニトリルの共重合体を含有することを特徴とするが、ここでいう保護膜形成剤とは、基板の研磨において、主に研磨対象となる膜以外の部分の表面に吸着することで保護膜を形成し、研磨対象となる膜以外の部分が過剰に研磨されることを抑制する役割を果たす物質のことをいう。
 本発明に、保護膜形成剤として含まれるスチレンとアクリロニトリルの共重合体は、研磨対象の膜の非研磨対象の膜に対する研磨選択比を高くし、特にポリシリコン膜を研磨停止膜とした場合にポリシリコン膜に対して研磨傷の発生をより抑制する効果がある。これは、スチレンとアクリロニトリルの共重合体の疎水性部であるスチレン鎖及びニトリル基が例えばポリシリコン膜等の非研磨対象の膜と相互作用することにより、非研磨対象膜の表面に保護膜を形成し、研磨傷を抑制できるためであると考えられる。
 使用するスチレンとアクリロニトリルの共重合体の平均分子量は、500~20000であるが、これは平均分子量が20000を超えると研磨剤への分散性が悪くなり研磨剤の安定性が低下し易くなり、500未満では保護膜形成が不十分になるからである。
 また、共重合体中のスチレンとアクリロニトリルのモル比は、スチレン/アクリロニトリルが10/90から90/10であることが好ましい。
 また、研磨剤中での濃度としては、研磨剤100質量部に対して0.01質量部から1質量部の範囲が好ましい。
 スチレンとアクリロニトリルの共重合体が、研磨剤100質量部に対して0.01質量部から1質量部の範囲であれば、保護膜形成が十分となり、高い保護効果が得られる。
 また、本発明において、スチレンとアクリロニトリルの共重合体が、前記研磨粒子100質量部に対して0.1質量部以上5質量部以下で配合されたものであることが好ましい。
 このような配合比のものであれば、より研磨選択比が高く、且つ、より傷等の欠陥の発生を抑制できる研磨剤となる。
 本発明の研磨剤は、研磨特性を調整する目的で、前述のスチレンとアクリロニトリルの共重合体の他に、更に別の添加剤を含有することができる。
 このような添加剤としては、研磨粒子の表面電位をマイナスに転換できるアニオン性界面活性剤やアミノ酸を含むことができる。
 アニオン性界面活性剤としては、例えば、モノアルキル硫酸塩、アルキルポリオキシエチレン硫酸塩、アルキルベンゼンスルホン酸塩、モノアルキルリン酸塩、ラウリル硫酸塩、ポリカルボン酸、ポリアクリル酸塩、ポリメタクリル酸塩等があげられる。
 アミノ酸としては、例えば、アルギニン、リシン、アスパラギン酸、グルタミン酸、アスパラギン、グルタミン、ヒスチジン、プロリン、チロシン、セリン、トリプトファン、トレオニン、グリシン、アラニン、メチオニン、システイン、フェニルアラニン、ロイシン、バリン、イソロイシン等があげられる。
 これらの添加剤を使用する場合、研磨剤中での添加剤の濃度は、研磨粒子1質量部を基準として0.01質量部から0.1質量部の範囲で含有することが好ましい。より好ましくは0.02質量部から0.06質量部の範囲で含有されることがより好ましい。
 含有量が研磨粒子1質量部を基準として0.01質量部以上であれば、研磨剤の分散安定性の低下を抑制できる。また、0.1質量部以下であれば、研磨対象膜の研磨を阻害することなく、研磨速度が低下するといった問題が発生することがない。従って、このような含有量であれば、研磨剤の分散安定性を向上させ研磨を阻害しないように添加剤の含有量を調整することができる。
 本発明の研磨剤のpHは、研磨剤の保存安定性や、研磨速度に優れる点で、3.0以上7.0以下の範囲にあることが好ましい。pHの下限値は研磨剤の分散安定性に影響し、4.0以上であることが好ましく、より好ましくは6.0以上であることが好ましい。また、上限値は研磨速度に影響し、7.0以下であることが好ましい。pH7.0以下であれば塩基性に起因してポリシリコン膜の研磨速度が急激に増加することがなく、酸化ケイ素膜のポリシリコン膜に対する研磨選択比が低下することが無い。
 また、研磨剤のpHの調整には、塩酸、硝酸、硫酸、リン酸等の無機酸、ギ酸、酢酸、クエン酸、シュウ酸等の有機酸、アンモニア、水酸化ナトリウム、水酸化カリウム、テトラメチルアンモニウムヒドロキシド(TMAH)等の塩基の添加によって調整可能である。
 次に、本発明の研磨剤を使用した基板の研磨方法について説明する。以下では、半導体基板の片面をCMP研磨する場合を例に説明する。
 片面研磨装置は、例えば、図2に示すように、研磨パッド4が貼り付けられた定盤3と、研磨剤供給機構5と、研磨ヘッド2等から構成された片面研磨装置6とすることができる。
 このような研磨装置6では、研磨ヘッド2で半導体基板Wを保持し、研磨剤供給機構5から研磨パッド4上に本発明のCMP研磨剤1を供給するとともに、定盤3と研磨ヘッド2をそれぞれ回転させて基板Wの表面を研磨パッド4に摺接させることにより研磨を行う。
 研磨パッドとしては、不織布、発泡ポリウレタン、多孔質樹脂等が使用できる。また、研磨を実施している間は、常にパッド表面が研磨剤で覆われているように、ポンプ等を備えた研磨剤供給機構5で連続的にCMP研磨剤1を供給することが好ましい。
 そして、本発明における研磨方法は、定盤上に貼られた、研磨パッド4上に本発明のCMP研磨剤1を供給しながら、基板Wに形成された研磨停止膜上の絶縁膜を研磨パッドに押し当て加圧しつつ、基板Wと定盤3とを相対的に動かすことで絶縁膜を研磨する。
 ここで研磨対象となる基板Wとしては、半導体素子製造に関係する基板であり、例えばSTIパターン、配線パターン等が形成された半導体基板上に、絶縁膜及び研磨停止膜が形成された基板があげられる。研磨対象の膜はこれらパターン上に形成された絶縁膜であり、例えば、酸化ケイ素膜等が挙げられる。また、研磨停止膜としてはポリシリコン膜等などが挙げられる。このような半導体基板上に形成された絶縁膜を、本発明の研磨剤で研磨することで、半導体基板の表面を平坦な面とすることができる。
 本発明の研磨剤を使用した研磨方法は、酸化ケイ素等から成る絶縁膜等の研磨対象膜の下側(ベース基板側)の研磨停止膜がポリシリコン膜である基板の研磨に対して特に好適に使用でき、このような基板として、NANDフラッシュメモリー素子基板があげられる。以下では、このNANDフラッシュメモリー素子基板のCMP工程に、本発明の研磨剤を適用した場合を説明する。
 例えばNANDフラッシュメモリー素子基板は、図3に示すように、所定領域の導電膜30、トンネル酸化膜20からベース基板10を所定の深さまでエッチングして複数のトレンチが形成され、そしてトレンチが埋め立てされるように絶縁膜40が形成されている。ここで、導電膜30はフローティングゲートとなるポリシリコン膜等で形成されているものとでき、この場合では研磨停止膜としての役割も果たす。
 絶縁膜40は酸化膜系の物質により形成されており、例えばBPSG膜、PSG膜、HDP膜、TEOS膜、USG膜、PETEOS膜、HARP膜等で形成されている。また、絶縁膜40の形成方法としては、PVD法、CVD法、MOCVD法、ALD法等により形成される。
 また、ベース基板10としては、例えばシリコン基板等が挙げられる。
 図3に示すような、トレンチに絶縁膜40が埋め込まれたベース基板10を有するNANDフラッシュメモリー素子基板を、図2に示すような研磨装置内にセットした後、本発明の研磨剤を用いて導電膜30が露出するまで絶縁膜40を研磨することで、図4に示すように、絶縁膜40が研磨除去されSTI分離膜50が形成される。この時、絶縁膜40の導電膜30に対する研磨選択比が10以上であることが好ましい。研磨選択比が10未満であると絶縁膜40と導電膜30の研磨速度に差が少なくなり、所定の研磨停止位置の検出が困難になり、絶縁膜40及び導電膜30に対して過剰研磨してしまうことがあり、欠陥の発生を高めてしまうことになる。研磨選択比が10以上であれば研磨の停止位置の検出が容易となり、上記STI分離膜形成により好適となる。そして、本発明であれば、この絶縁膜の導電膜に対する研磨選択比を30以上とすることができる。
 以上のように、平均分子量が500~20000であるスチレンとアクリロニトリルの共重合体を含有する研磨剤を、研磨停止膜に導電膜30が適用された場合の、絶縁膜40のCMP研磨に適用することで、絶縁膜40の導電膜30に対する高い研磨選択比が得られ、例えばSTI形成において本発明を適応すれば、研磨傷等の欠陥の少ないSTI膜の形成が可能となる。
 以上説明したように、本発明は、CMP工程において、高い研磨選択比を得ることができ、精度の高い研磨をすることができる。さらに基板の研磨面における傷の発生を抑制することができる。
 以下、本発明の実施例及び比較例を示して本発明をより具体的に説明するが、本発明はこれらに限定されるものではない。
(湿式セリアの合成)
 1000gの硝酸セリウム六水和物(Ce(NO・6HO)を純水250gに溶解した溶液に、硝酸100gを混合してセリウム(III)溶液を得た。次いで、1gの硝酸二アンモニウムセリウム((NHCe(NO)を純水500gに溶解してセリウム(IV)溶液を得た。引き続きセリウム(III)溶液とセリウム(IV)溶液を混合してセリウム混合液を得た。
 次に、反応容器に純水4000gを窒素ガス雰囲気下で滴下し、続いて1000gのアンモニア水を反応容器に滴下し、攪拌して塩基性溶液を得た。
 次に、セリウム混合液を反応容器に滴下し塩基性溶液と混合し攪拌して、窒素ガス雰囲気下で80℃まで加熱した。8時間熱処理を行い、セリア粒子を含有した混合溶液を得た。
 セリア粒子を含有した混合液を室温まで冷却後、混合液に硝酸を滴下し、混合液のpHを4以下の酸性に調整して反応を終端させた。混合液中のセリア粒子を沈殿させた後、純水により数回洗浄及び遠心分離を繰り返し洗浄し、最終的にセリア粒子を得た。
(CMP研磨剤の作製)
 上記の方法で合成したセリア粒子、スチレンとアクリロニトリルの共重合体、純水を混合し、攪拌しながら超音波分散を60分行った。このようにして得られたスラリーを0.5ミクロンフィルターでろ過し、純水で希釈することでCMP研磨剤を得た。
(基板の研磨)
 図2に示した片面研磨装置の研磨ヘッドに、プラズマCVD法で作製した酸化ケイ素膜を形成したシリコン基板を、酸化ケイ素膜の表面を下にしてセットした。そして、研磨加重6psi(pound per square inch)、定盤及び研磨ヘッドの回転速度を70rpm、上記作製したCMP研磨剤を毎分100mlで供給しながら、研磨パッド(IC1000/SubaIV CMPパッド:Dowchemical)を用いて、60秒間研磨を実施した。研磨終了後、基板を研磨ヘッドから取り外し、純水で洗浄後さらに超音波洗浄を行い、乾燥器を使用し80℃で乾燥させた。その後、分光エリプソメーターにより、研磨前後の膜厚変化を測定することで研磨速度を算出した。同様に、低圧CVD法で作製したポリシリコン膜を形成したシリコン基板を同条件で研磨し、研磨前後の膜厚変化を測定することで研磨速度を算出した。また、走査型電子顕微鏡により、研磨後のポリシリコン膜表面に発生した研磨傷の個数を求めた。
(実施例1)
 上記作製した湿式セリア粒子500g、平均分子量600のスチレンとアクリロニトリルの共重合体15g、純水5000gを混合し、攪拌しながら超音波分散を60分行った後、0.5ミクロンフィルターでろ過し、純水で更に希釈してセリア粒子濃度1質量部、スチレンとアクリロニトリルの共重合体0.15質量部を含有するCMP研磨剤を調整した。
 得られたCMP研磨剤のpHは6.3であった。粒度分布を超音波減衰式粒度分布計(Zeta-APS:Matec製)で測定した結果、平均粒子径は0.10ミクロンであった。
(実施例2)
 平均分子量8000のスチレンとアクリロニトリルの共重合体を添加した以外は、実施例1と同様な手順によりCMP研磨剤を調整した。
 得られたCMP研磨剤のpHは6.5であった。粒度分布を超音波減衰式粒度分布計(Zeta-APS:Matec製)で測定した結果、平均粒子径が0.11ミクロンであった。
(実施例3)
 平均分子量16000のスチレンとアクリロニトリルの共重合体を添加した以外は、実施例1と同様な手順によりCMP研磨剤を調整した。
 得られたCMP研磨剤のpHは6.5であった。粒度分布を超音波減衰式粒度分布計(Zeta-APS:Matec製)で測定した結果、平均粒子径が0.10ミクロンであった。
(実施例4)
 平均分子量20000のスチレンとアクリロニトリルの共重合体を添加した以外は、実施例1と同様な手順によりCMP研磨剤を調整した。
 得られたCMP研磨剤のpHは6.5であった。粒度分布を超音波減衰式粒度分布計(Zeta-APS:Matec製)で測定した結果、平均粒子径が0.10ミクロンであった。
(実施例5)
 平均分子量500のスチレンとアクリロニトリルの共重合体を添加した以外は、実施例1と同様な手順によりCMP研磨剤を調整した。
 得られたCMP研磨剤のpHは6.5であった。粒度分布を超音波減衰式粒度分布計(Zeta-APS:Matec製)で測定した結果、平均粒子径が0.10ミクロンであった。
(比較例1)
 平均分子量300のスチレンとアクリロニトリルの共重合体を添加した以外は、実施例1と同様な手順によりCMP研磨剤を調整した。
 得られたCMP研磨剤のpHは6.4であった。粒度分布を超音波減衰式粒度分布計(Zeta-APS:Matec製)で測定した結果、平均粒子径が0.11ミクロンであった。
(比較例2)
 平均分子量25000のスチレンとアクリロニトリルの共重合体を添加した以外は、実施例1と同様な手順によりCMP研磨剤を調整した。
 得られたCMP研磨剤のpHは6.4であった。粒度分布を超音波減衰式粒度分布計(Zeta-APS:Matec製)で測定した結果、平均粒子径が0.11ミクロンであった。
(比較例3)
 スチレンとアクリロニトリルの共重合体を添加しない以外は、実施例1と同様な手順によりCMP研磨剤を調整した。
 得られたCMP研磨剤のpHは6.5であった。粒度分布を超音波減衰式粒度分布計(Zeta-APS:Matec製)で測定した結果、平均粒子径が0.13ミクロンであった。
(比較例4)
 スチレンとアクリロニトリルの共重合体の代わりに、平均分子量10000のポリアクリル酸アンモニウム塩を添加したこと以外は、実施例1と同様な手順によりCMP研磨剤を調整した。
 得られたCMP研磨剤のpHは6.1であった。粒度分布を超音波減衰式粒度分布計(Zeta-APS:Matec製)で測定した結果、平均粒子径が0.10ミクロンであった。
 実施例及び比較例で調整したCMP研磨剤を用いて、上記基板を研磨装置にセットし、上記研磨条件にて60秒間CMP研磨を行った。研磨前後の膜厚変化を測定することで、酸化ケイ素膜及びポリシリコン膜の研磨速度を算出した。結果を表1に示す。なお、表中の数字は実施例及び比較例でCMP研磨した基板5枚の平均値である。
 表1に、実施例、比較例における実施結果をまとめたもの示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示す実施例1から実施例5の結果より、本発明のCMP研磨剤を使用して研磨することで、研磨による膜表面への傷の発生を抑制することが可能であり、さらに、絶縁膜(酸化ケイ素膜)の研磨停止膜(ポリシリコン膜)に対する研磨選択比が30以上と非常に高い研磨選択比が得られた。
 一方、比較例1のCMP研磨剤においては、スチレンとアクリロニトリルの共重合体の平均分子量が500未満と小さいため、ポリシリコン膜に対する保護膜形成が不十分となり、酸化ケイ素膜のポリシリコン膜に対する研磨選択比が低い結果となった。また、研磨傷の発生個数も実施例1から実施例5の倍以上となってしまった。
 また、比較例2のCMP研磨剤は、スチレンとアクリロニトリルの共重合体の分子量が20000より大きいため、研磨剤への分散性が悪く、その結果、ポリシリコン膜との相互作用が低下し、ポリシリコン膜に対する研磨選択比及び研磨傷の発生個数は実施例に比べ劣る結果となった。
 一方、保護膜形成剤を添加しない比較例3のCMP研磨剤は選択比が小さく、また、研磨傷の発生も多い結果となった。
 さらに、保護膜形成剤としてスチレンとアクリロニトリルの共重合体の代わりに、アクリル酸アンモニウム塩を使用した比較例4のCMP研磨剤においては、ポリシリコン膜に対する研磨選択比の向上や研磨傷の低減効果は多少あるものの、実施例の研磨剤には大きく劣る結果となった。
 以上のように、本発明のCMP研磨剤によりポリシリコン膜を研磨停止膜としたCMP研磨を行うことで、ポリシリコン膜に対する高い研磨選択比が得られ、研磨傷の発生を少なく研磨することができる。
 なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。

Claims (8)

  1.  研磨粒子、保護膜形成剤、及び水を含むCMP研磨剤であって、
     前記保護膜形成剤は、スチレンとアクリロニトリルの共重合体であり、その平均分子量が500以上20000以下のものであることを特徴とするCMP研磨剤。
  2.  前記研磨粒子が、湿式セリア粒子であることを特徴とする請求項1に記載のCMP研磨剤。
  3.  前記スチレンとアクリロニトリルの共重合体が、前記研磨粒子100質量部に対して0.1質量部以上5質量部以下で配合されたものであることを特徴とする請求項1又は請求項2に記載のCMP研磨剤。
  4.  前記CMP研磨剤のpHが、3以上7以下であることを特徴とする請求項1から請求項3のいずれか1項に記載のCMP研磨剤。
  5.  前記CMP研磨剤は絶縁膜の研磨用のCMP研磨剤であることを特徴とする請求項1から請求項4のいずれか1項に記載のCMP研磨剤。
  6.  定盤上に貼られた、基板を研磨するための研磨パッド上に請求項1から請求項5のいずれか1項に記載のCMP研磨剤を供給しながら、前記基板に形成された研磨停止膜上の絶縁膜を研磨パッドに押し当て加圧しつつ、前記基板と前記定盤とを相対的に動かすことで前記絶縁膜を研磨することを特徴とする基板の研磨方法。
  7.  前記研磨停止膜をポリシリコン膜とし、前記絶縁膜を酸化ケイ素膜とすることを特徴とする請求項6に記載の基板の研磨方法。
  8.  請求項1から請求項5のいずれか1項に記載のCMP研磨剤の製造方法であって、
     保護膜形成剤として、平均分子量が500以上20000以下のスチレンとアクリロニトリルの共重合体を添加する工程を含むことを特徴とするCMP研磨剤の製造方法。
PCT/JP2015/001729 2014-05-09 2015-03-26 Cmp研磨剤及びその製造方法、並びに基板の研磨方法 WO2015170436A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201580024264.3A CN106459732B (zh) 2014-05-09 2015-03-26 Cmp研磨剂及其制造方法、以及基板的研磨方法
KR1020167028471A KR102366907B1 (ko) 2014-05-09 2015-03-26 Cmp 연마제 및 그 제조 방법, 그리고 기판의 연마 방법
US15/303,564 US10246620B2 (en) 2014-05-09 2015-03-26 CMP polishing agent, method for manufacturing thereof, and method for polishing substrate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014097625A JP6243791B2 (ja) 2014-05-09 2014-05-09 Cmp研磨剤及びその製造方法、並びに基板の研磨方法
JP2014-097625 2014-05-09

Publications (1)

Publication Number Publication Date
WO2015170436A1 true WO2015170436A1 (ja) 2015-11-12

Family

ID=54392300

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/001729 WO2015170436A1 (ja) 2014-05-09 2015-03-26 Cmp研磨剤及びその製造方法、並びに基板の研磨方法

Country Status (5)

Country Link
US (1) US10246620B2 (ja)
JP (1) JP6243791B2 (ja)
KR (1) KR102366907B1 (ja)
CN (1) CN106459732B (ja)
WO (1) WO2015170436A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200039773A (ko) 2017-09-29 2020-04-16 히타치가세이가부시끼가이샤 연마액, 연마액 세트 및 연마 방법
KR20210118191A (ko) 2019-02-19 2021-09-29 쇼와덴코머티리얼즈가부시끼가이샤 연마액 및 연마 방법

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6243791B2 (ja) * 2014-05-09 2017-12-06 信越化学工業株式会社 Cmp研磨剤及びその製造方法、並びに基板の研磨方法
US11161751B2 (en) * 2017-11-15 2021-11-02 Saint-Gobain Ceramics & Plastics, Inc. Composition for conducting material removal operations and method for forming same
JP6985116B2 (ja) * 2017-11-17 2021-12-22 信越化学工業株式会社 合成石英ガラス基板用の研磨剤及び合成石英ガラス基板の研磨方法
WO2022189598A1 (en) * 2021-03-12 2022-09-15 Rhodia Operations Cerium oxide particles, making process thereof and use thereof in chemical mechanical polishing

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007069488A1 (ja) * 2005-12-16 2007-06-21 Jsr Corporation 化学機械研磨用水系分散体および化学機械研磨方法、ならびに化学機械研磨用水系分散体を調製するためのキット
WO2008010499A1 (fr) * 2006-07-18 2008-01-24 Jsr Corporation Dispersion aqueuse pour polissage mécanico-chimique, son procédé de fabrication et procédé de polissage mécanico-chimique
JP2008098525A (ja) * 2006-10-13 2008-04-24 Mitsui Chemicals Inc 研磨用組成物
JP2008147688A (ja) * 2008-01-15 2008-06-26 Jsr Corp 化学機械研磨用水系分散体及び化学機械研磨方法
JP2009070904A (ja) * 2007-09-11 2009-04-02 Mitsui Chemicals Inc 研磨用組成物
JP2011529269A (ja) * 2008-07-24 2011-12-01 テクノ セミケム シーオー., エルティーディー. ポリシリコン研磨仕上げ剤を含有する化学機械的研磨組成物
JP4894981B2 (ja) * 2009-10-22 2012-03-14 日立化成工業株式会社 研磨剤、濃縮1液式研磨剤、2液式研磨剤及び基板の研磨方法
WO2013093557A1 (en) * 2011-12-21 2013-06-27 Basf Se Chemical mechanical polishing composition comprising polyvinyl phosphonic acid and its derivatives
WO2013093556A1 (en) * 2011-12-21 2013-06-27 Basf Se Method for manufacturing cmp composition and application thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3278532B2 (ja) 1994-07-08 2002-04-30 株式会社東芝 半導体装置の製造方法
JPH10106994A (ja) 1997-01-28 1998-04-24 Hitachi Chem Co Ltd 酸化セリウム研磨剤及び基板の研磨法
US20060135045A1 (en) * 2004-12-17 2006-06-22 Jinru Bian Polishing compositions for reducing erosion in semiconductor wafers
JP4872919B2 (ja) 2005-11-11 2012-02-08 日立化成工業株式会社 酸化ケイ素用研磨剤、添加液および研磨方法
CN103725256A (zh) 2013-12-31 2014-04-16 上海集成电路研发中心有限公司 用于cmp的研磨颗粒体系及抛光液
JP6243791B2 (ja) * 2014-05-09 2017-12-06 信越化学工業株式会社 Cmp研磨剤及びその製造方法、並びに基板の研磨方法
JP6170027B2 (ja) * 2014-10-09 2017-07-26 信越化学工業株式会社 Cmp研磨剤及びその製造方法、並びに基板の研磨方法
JP6393231B2 (ja) * 2015-05-08 2018-09-19 信越化学工業株式会社 合成石英ガラス基板用研磨剤及び合成石英ガラス基板の研磨方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007069488A1 (ja) * 2005-12-16 2007-06-21 Jsr Corporation 化学機械研磨用水系分散体および化学機械研磨方法、ならびに化学機械研磨用水系分散体を調製するためのキット
WO2008010499A1 (fr) * 2006-07-18 2008-01-24 Jsr Corporation Dispersion aqueuse pour polissage mécanico-chimique, son procédé de fabrication et procédé de polissage mécanico-chimique
JP2008098525A (ja) * 2006-10-13 2008-04-24 Mitsui Chemicals Inc 研磨用組成物
JP2009070904A (ja) * 2007-09-11 2009-04-02 Mitsui Chemicals Inc 研磨用組成物
JP2008147688A (ja) * 2008-01-15 2008-06-26 Jsr Corp 化学機械研磨用水系分散体及び化学機械研磨方法
JP2011529269A (ja) * 2008-07-24 2011-12-01 テクノ セミケム シーオー., エルティーディー. ポリシリコン研磨仕上げ剤を含有する化学機械的研磨組成物
JP4894981B2 (ja) * 2009-10-22 2012-03-14 日立化成工業株式会社 研磨剤、濃縮1液式研磨剤、2液式研磨剤及び基板の研磨方法
WO2013093557A1 (en) * 2011-12-21 2013-06-27 Basf Se Chemical mechanical polishing composition comprising polyvinyl phosphonic acid and its derivatives
WO2013093556A1 (en) * 2011-12-21 2013-06-27 Basf Se Method for manufacturing cmp composition and application thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200039773A (ko) 2017-09-29 2020-04-16 히타치가세이가부시끼가이샤 연마액, 연마액 세트 및 연마 방법
KR20220065096A (ko) 2017-09-29 2022-05-19 쇼와덴코머티리얼즈가부시끼가이샤 연마액, 연마액 세트 및 연마 방법
KR20230134157A (ko) 2017-09-29 2023-09-20 가부시끼가이샤 레조낙 연마액, 연마액 세트 및 연마 방법
KR20210118191A (ko) 2019-02-19 2021-09-29 쇼와덴코머티리얼즈가부시끼가이샤 연마액 및 연마 방법

Also Published As

Publication number Publication date
JP6243791B2 (ja) 2017-12-06
CN106459732A (zh) 2017-02-22
US10246620B2 (en) 2019-04-02
KR102366907B1 (ko) 2022-02-23
CN106459732B (zh) 2018-10-30
US20170037290A1 (en) 2017-02-09
JP2015214638A (ja) 2015-12-03
KR20170007253A (ko) 2017-01-18

Similar Documents

Publication Publication Date Title
JP6170027B2 (ja) Cmp研磨剤及びその製造方法、並びに基板の研磨方法
JP6243791B2 (ja) Cmp研磨剤及びその製造方法、並びに基板の研磨方法
US8231735B2 (en) Polishing slurry for chemical mechanical polishing and method for polishing substrate
JP3457144B2 (ja) 研磨用組成物
US20070181534A1 (en) Barrier polishing liquid and chemical mechanical polishing method
JPWO2009037903A1 (ja) シリコン膜研磨用cmpスラリー及び研磨方法
JP2009218558A (ja) Cmp用研磨液、基板の研磨方法及び電子部品
JPWO2018131341A1 (ja) 研磨用組成物
CN101300320A (zh) 用于对多晶硅膜进行抛光的化学机械抛光浆料组合物及其制备方法
JP5516594B2 (ja) Cmp研磨液、並びに、これを用いた研磨方法及び半導体基板の製造方法
JP2001351882A (ja) 研磨剤
JP2023101482A (ja) 研磨液及び研磨方法
JP2009266882A (ja) 研磨剤、これを用いた基体の研磨方法及び電子部品の製造方法
JPH1180707A (ja) 研磨用組成物および研磨方法
JP2002097459A (ja) 研磨剤
JP2001348563A (ja) 研磨剤
JP2011243789A (ja) Cmp用研磨液及びこれを用いた研磨方法
JP2001351883A (ja) 半導体絶縁膜層用研磨剤
JP2007154156A (ja) 金属酸化物微粒子、研磨材、これを用いる研磨方法及び半導体装置の製造方法
JP2005048122A (ja) Cmp研磨剤、研磨方法及び半導体装置の製造方法
KR20230013031A (ko) 합성석영유리기판용의 연마제 및 그 연마제의 제조방법, 및 합성석영유리기판의 연마방법
JP2012151273A (ja) Cmp用洗浄液
JP2007153728A (ja) 金属酸化物微粒子、研磨材、これを用いる基板の研磨方法及び半導体装置の製造方法
JP2005005501A (ja) Cmp研磨剤、研磨方法及び半導体装置の製造方法
JP2001348564A (ja) 研磨剤

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15789638

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15303564

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20167028471

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15789638

Country of ref document: EP

Kind code of ref document: A1