WO2017113563A1 - 一种基于层级组装的硅-二氧化钛-聚吡咯三维仿生复合材料及应用 - Google Patents

一种基于层级组装的硅-二氧化钛-聚吡咯三维仿生复合材料及应用 Download PDF

Info

Publication number
WO2017113563A1
WO2017113563A1 PCT/CN2016/081791 CN2016081791W WO2017113563A1 WO 2017113563 A1 WO2017113563 A1 WO 2017113563A1 CN 2016081791 W CN2016081791 W CN 2016081791W WO 2017113563 A1 WO2017113563 A1 WO 2017113563A1
Authority
WO
WIPO (PCT)
Prior art keywords
tio
silicon
ppy
nanorods
titanium dioxide
Prior art date
Application number
PCT/CN2016/081791
Other languages
English (en)
French (fr)
Inventor
石刚
李赢
倪才华
王大伟
何飞
迟力峰
吕男
Original Assignee
江南大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江南大学 filed Critical 江南大学
Priority to US15/748,760 priority Critical patent/US10888855B2/en
Publication of WO2017113563A1 publication Critical patent/WO2017113563A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/06Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/19Catalysts containing parts with different compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • B01J37/0217Pretreatment of the substrate before coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • B01J37/0228Coating in several steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0244Coatings comprising several layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/12Oxidising
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • C01G23/053Producing by wet processes, e.g. hydrolysing titanium salts
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • C30B29/22Complex oxides
    • C30B29/32Titanates; Germanates; Molybdates; Tungstates
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/54Organic compounds
    • C30B29/58Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/60Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/60Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
    • C30B29/66Crystals of complex geometrical shape, e.g. tubes, cylinders
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B7/00Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions
    • C30B7/10Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions by application of pressure, e.g. hydrothermal processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/30604Chemical etching
    • H01L21/30608Anisotropic liquid etching
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/10Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising heterojunctions between organic semiconductors and inorganic semiconductors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/10Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising heterojunctions between organic semiconductors and inorganic semiconductors
    • H10K30/15Sensitised wide-bandgap semiconductor devices, e.g. dye-sensitised TiO2
    • H10K30/151Sensitised wide-bandgap semiconductor devices, e.g. dye-sensitised TiO2 the wide bandgap semiconductor comprising titanium oxide, e.g. TiO2
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24
    • B01J31/38Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24 of titanium, zirconium or hafnium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/10Particle morphology extending in one dimension, e.g. needle-like
    • C01P2004/16Nanowires or nanorods, i.e. solid nanofibres with two nearly equal dimensions between 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/32Treatment of water, waste water, or sewage by irradiation with ultraviolet light
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Definitions

  • Silicon-titania-polypyrrole three-dimensional biomimetic composite material based on hierarchical assembly and application thereof
  • the present invention relates to a ternary layer-assembled composite material, that is, a silicon-titanium dioxide-polypyrrole composite material, and the like can be used as a photocatalytic material and a photoelectric conversion material, and belongs to the technical field of photovoltaic materials.
  • a ternary layer-assembled composite material that is, a silicon-titanium dioxide-polypyrrole composite material, and the like can be used as a photocatalytic material and a photoelectric conversion material, and belongs to the technical field of photovoltaic materials.
  • Titanium dioxide is an important photoelectric conversion material. It has the advantages of high catalytic activity, good stability, high hydroxyl radical yield, no light corrosion, etc. It is particularly prominent in anticorrosive coatings, sewage purification, antibacterial sterilization, etc. Application prospects.
  • the titanium dioxide has a large band gap, the photo-generated charge is easy to recombine, and the use of solar light has a small wavelength range, which limits its application.
  • Polypyrrole has good environmental stability, strong absorption in the visible light region, strong electron donor and excellent hole transporting material. When the two are effectively combined, a heterojunction will be formed at the contact interface, which not only improves the separation efficiency of the photo-generated charge, but also increases the spectral response range of the composite material, thereby improving the utilization of sunlight.
  • Patent CN101955665A discloses a preparation method of a composite material of polypyrrole particles/titanium dioxide nanotube array
  • patent CN102350317A discloses a polypyrrole/titanium dioxide composite adsorbent and a preparation, application and regeneration method thereof
  • specialization ljCN102600907A public A polypyrrole-sensitized hollow titanium dioxide nano photocatalyst and a preparation method thereof are provided; the above has solved the problems of large band gap of titanium dioxide, small spectral response range, and easy photoreaction of photogenerated electron-hole pairs.
  • polypyrrole/titanium dioxide composites still have problems such as poor order, easy agglomeration, low recovery rate, and low light absorption rate, which limits the popularization and application of polypyrrole/titanium dioxide composites.
  • the object of the present invention is to overcome the disadvantages of the conventional titanium dioxide/polypyrrole nanocomposites, such as disorder, easy agglomeration, difficult recovery and low photoelectric conversion efficiency, and provide a three-dimensional bionics of silicon-titania-polypyrrole based on hierarchical assembly.
  • Composite material which combines good anti-reflection performance and high-efficiency separation of photo-generated charge
  • the photoelectric conversion efficiency of the material exhibits excellent photocatalytic ability, and the composite material is supported by single crystal silicon, which is beneficial to the recycling and reuse of materials.
  • the silicon-titanium dioxide-polypyrrole three-dimensional biomimetic composite material based on the hierarchical assembly is silicon/titania/polypyrrole (Si/Ti0 2 /PPY).
  • Si is a 100-type single crystal silicon with a tapered microstructure on the surface, which is a P-type semiconductor.
  • the shape of the silicon cone is a square pyramid with a height of 4 to 10 ⁇ , which is closely arranged.
  • TiO 2 is a rutile phase of TiO 2 nanorods.
  • PPY is a polypyrrole nanoparticle, which is a P-type semiconductor with a particle size of 10 to 60 nm and uniformly grown on the surface of TiO 2 nanorods.
  • the interface between Si and Ti0 2 and the interface between TiO 2 and 1 ⁇ ⁇ form a double P/N heterojunction, which can efficiently separate photogenerated charges, and has a three-dimensional biomimetic composite structure. Effectively reduce the reflectivity of incident light on the surface.
  • a method for preparing a silicon-titanium dioxide-polypyrrole three-dimensional biomimetic composite material based on hierarchical assembly which comprises the following steps:
  • step (1) etched silicon wafer is hydrophilically treated, TiO 2 seed crystal is grown on the surface thereof, and placed in a muffle furnace for a period of calcination and then naturally cooled;
  • the silicon wafer having the surface of the TiO 2 seed crystal obtained in the step (2) is placed in the reaction vessel, and the TiO 2 nanorods are grown on the sidewall of the silicon cone by hydrothermal synthesis;
  • the alkali solution described in the step (1) is potassium hydroxide, tetramethylammonium hydroxide, sodium hydroxide, ammonia water, EDP (ethylene diamine, a mixed solution of catechol and water),
  • the ⁇ of the lye is 12 ⁇ 14
  • the etching temperature is 50 ⁇ 90 °C
  • the etching time is 5 ⁇ 60 min.
  • the stirring method is mechanical stirring magnetic stirring.
  • the hydrophilic treatment operation in the step (2) is that the silicon wafer obtained in the step (1) is placed in a mixed solution of NH 3 ⁇ 2 0, ⁇ 2 ⁇ ⁇ ⁇ 2 0, and the volume ratio is 1:1:5, temperature is 90 °C, heating time 30 Min°
  • the condition of the grown TiO 2 seed crystals in the step (2) is that the hydrophilic processed silicon wafer is immersed in a concentration of 0.05 ⁇ 1.
  • the hydrothermal synthesis condition in the step (3) is 80 to 200.
  • the reactor was treated with mL of concentrated hydrochloric acid (37% by mass) and 0.5 to 5 mL of tetrabutyl titanate for 2 to 19 h, and then the sample was taken out and dried with nitrogen.
  • depositing conductive PPY nanoparticles on the TiO 2 nanorods according to the step (4) refers to using TiO 2 in situ oxidation method.
  • the PPY conductive polymer particles are deposited on the nanorods under the following conditions: 0.01 to 0.06 g of FeCl 3 , 50 to 150 uL of pyrrole and 5 to 10 mL of ultrapure water are placed in a beaker to form a reaction solution.
  • the composite material used as photocatalytic degradation of organic pollutants
  • a 1.5 cm X 1.0 cm area of three-dimensional Si / Ti0 2 / PPY composite material was placed in 5 mL of methylene blue solution at a concentration of 1.0x10 5 mol / L, and then It was placed in the dark to allow it to reach the adsorption-desorption equilibrium, after which the solution was irradiated with a light source to degrade methylene blue.
  • the composite material is not limited to the application of photocatalytic degradation of organic pollutants, but also suitable for other fields of photocatalysis, and photoelectric conversion devices, solar cells and the like.
  • the present invention has the following advantages:
  • the silicon dioxide sidewall is in contact with the TiO 2 nanorod and the TiO 2 nanorod is in contact with the PPY nanoparticle to form
  • the double-layer nano P/N heterojunction structure effectively separates photo-generated carriers and reduces the recombination of electron-hole pairs, and has excellent photoelectric conversion efficiency.
  • the three-dimensional Si/Ti0 2 /PPY composite material has a high specific surface area, increases the effective catalytic activity point of the surface, and has certain use value in photocatalytic degradation of pollutants.
  • Example 1 is a scanning electron microscope image of single crystal silicon subjected to anisotropic etching of lye in Example 2;
  • Example 2 is a scanning electron microscope image of TiO 2 nanorods assembled on the surface of a silicon cone in Example 2.
  • Example 3 is a scanning electron microscope image of a three-dimensional Si/TiO 2 /PPY composite material assembled on the surface of a silicon cone in Example 2.
  • Step 1 Preparation of a silicon cone
  • Step 2 Growth of TiO 2 seed crystals on the sidewall of the silicon cone
  • the silicon wafer having the silicon cone structure obtained in the first step is placed in a mixed solution of NH 3 H 2 0, H 2 0 2 fPH 2 0, the volume ratio is 1:1:5, and the temperature is 80 ° C. , heated for 30 minutes. Then, it is immersed in a solution of tetrabutyl titanate in a concentration of 0.075 mol/L in an isopropanol solution, and the pulling speed is 2
  • Step Three Preparation of TiO 2 TiO 2 nanorods induced seed
  • the silicon wafer with the TiO 2 seed crystals obtained on the surface obtained in the second step is subjected to hydrothermal conditions to grow the TiO 2 nanorods.
  • the hydrothermal synthesis conditions were carried out at a temperature of 130 ° C in a reaction vessel containing 10 mL of deionized water, 10 mL of concentrated hydrochloric acid (37% by mass) and 0.5 mL of tetrabutyl titanate for 8 h, and then the sample was taken out. Nitrogen Blow dry.
  • Step 4 Preparation of PPY Nanoparticles in situ on the Surface of TiO 2 Nanorods
  • PPY nanoparticles were deposited on the TiO 2 nanorods obtained in the third step by in-situ oxidation.
  • the reaction conditions are as follows: 0.03 g of FeCl 3 , 112.8 uL of pyrrole and 6 mL of ultrapure water are placed in a beaker to form a reaction solution; a silicon wafer having an area of 1.5 cm X 1.0 cm and having TiO 2 nanorods grown thereon is placed in the reaction. In the solution, the mixture was stirred at room temperature for 25 min. After the reaction was completed, the sample was taken out and rinsed with a large amount of water to obtain a three-dimensional Si/TiO 2 /PPY composite material.
  • the average particle size of the PPY nanoparticles is 35
  • the average diameter of the nm, TiO 2 nanorods is 83 nm, the average height is 818 nm, and the average height of the silicon cone is 4.1 ⁇ . .
  • the UV diffuse reflectance test shows that the Si Ti0 2 /PPY layer composite exhibits excellent anti-reflection performance with a light reflectance of 9%.
  • the photocurrent test shows that the photocurrent of the Si Ti0 2 /PPY layer composite is about pure 11 and 7 times of TiO 2 nanorods and pure PPY; photocatalytic degradation of methylene blue by Si/Ti0 2 /PPY layer composites by simulated solar environment, combined with UV spectrophotometer to investigate the variation of methylene blue concentration with daytime, at 6.5 The dye methylene blue was completely degraded in h, and the degradation efficiency was higher than that of pure TiO 2 nanorods and pure ⁇ .
  • Step 1 Preparation of a silicon cone
  • Step 2 Growth of TiO 2 seed crystals on the sidewall of the silicon cone
  • the silicon wafer having the silicon cone structure obtained in the first step is placed in a mixed solution of NH 3 H 2 0, H 2 0 2 fPH 2 0, the volume ratio is 1:1:5, and the temperature is 80 ° C. , heated for 30 minutes. Then, it is immersed in a solution of tetrabutyl titanate in a concentration of 0.075 mol/L in an isopropanol solution, and the pulling speed is 2
  • Step Three Preparation of TiO 2 TiO 2 nanorods induced seed
  • the silicon wafer with the TiO 2 seed crystal on the surface obtained in the second step was placed under hydrothermal conditions to grow the TiO 2 nanorods.
  • Hydrothermal synthesis conditions are 130 ° C, with 10 mL of deionized water, 10 mL of concentrated hydrochloric acid (mass fraction 37%) and 0.5 mL of tetrabutyl titanate were treated in a reaction kettle for 8 h, and then the sample was taken out and dried with nitrogen.
  • Step 4 In-situ preparation of PPY nanoparticles on the surface of TiO 2 nanorods
  • PPY nanoparticles were deposited on the TiO 2 nanorods obtained in the third step by in-situ oxidation.
  • the reaction conditions are as follows: 0.03 g of FeCl 3 , 112.8 uL of pyrrole and 6 mL of ultrapure water are placed in a beaker to form a reaction solution; a silicon wafer having an area of 1.5 cm X 1.0 cm and having TiO 2 nanorods grown thereon is placed in the reaction. In the solution, the mixture was stirred at room temperature for 15 min. After the reaction was completed, the sample was taken out and rinsed with a large amount of water to obtain a three-dimensional Si/Ti0 2 /PPY composite material.
  • the average particle diameter of the cerium nanoparticles is 19
  • the average diameter of the nm, TiO 2 nanorods is 83 nm, the average height is 818 nm, and the average height of the silicon cone is 4.1 ⁇ . . It can be seen from the UV diffuse reflectance test that the Si Ti0 2 /PPY layer composite exhibits excellent anti-reflection performance with a light reflectance of 6%.
  • the photocurrent test shows that the photocurrent of the Si Ti0 2 /PPY layer composite is about pure 15 times and 10 times of TiO 2 nanorods and pure PPY; photocatalytic degradation of methylene blue by Si/Ti0 2 /PPY layer composites by simulated solar environment, combined with UV spectrophotometer to investigate the variation of methylene blue concentration with daytime, at 5.5 The dye methylene blue was completely degraded in h, and the degradation efficiency was higher than that of pure TiO 2 nanorods and pure PPY.
  • Step 1 Preparation of a silicon cone
  • ⁇ ⁇ ⁇ 14 ⁇ solution 100 mL, add 25 mL of isopropanol, the silicon wafer is placed in the solution, etched at 50 ° C for 15 min, mechanically stirred during the etching process Stirring continuously. After the etching, the silicon wafer was rinsed with distilled water and then blown dry with nitrogen.
  • Step 2 Growth of TiO 2 seed crystals on the sidewall of the silicon cone
  • the silicon wafer having the silicon cone structure obtained in the first step is placed in a mixed solution of NH 3 H 2 0, H 2 0 2 fPH 2 0, the volume ratio is 1:1:5, and the temperature is 90 ° C. , heated for 30 minutes. Then, it is immersed in a solution of tetrabutyl titanate in an isopropanol solution at a concentration of 0.1 mol/L, and the pulling speed is 2
  • Step Three Preparation of TiO 2 TiO 2 nanorods induced seed
  • the silicon wafer with the TiO 2 seed crystal on the surface obtained in the second step is placed under hydrothermal conditions to grow TiO 2 nano Rice stick.
  • the hydrothermal synthesis conditions were 120 ° C, and treated in a reaction vessel containing 10 mL of deionized water, 10 mL of concentrated hydrochloric acid (37% by mass) and 0.5 mL of tetrabutyl titanate for 8 h, and then the sample was taken out. Dry with nitrogen.
  • Step 4 In situ preparation of PPY nanoparticles on the surface of TiO 2 nanorods
  • PPy nanoparticles were deposited on the TiO 2 nanorods obtained in the third step by in-situ oxidation.
  • the reaction conditions are as follows: 0.03 g of FeCl 3 , 112.8 uL of pyrrole and 6 mL of ultrapure water are placed in a beaker to form a reaction solution; a silicon wafer having an area of 1.5 cm X 1.0 cm and having TiO 2 nanorods grown thereon is placed in the reaction. In the solution, the mixture was stirred at room temperature for 10 min. After the reaction was completed, the sample was taken out and rinsed with a large amount of water to obtain a three-dimensional Si/TiO 2 /PPY composite material.
  • the average particle diameter of the PPY nanoparticles is 12
  • the average diameter of the nm, TiO 2 nanorods is 83 nm, the average height is 818 nm, and the average height of the silicon cone is 3.3 ⁇ . . It can be seen from the UV diffuse reflectance test that the Si Ti0 2 /PPY layer composite exhibits excellent anti-reflection performance with a light reflectance of 4%. The photocurrent of the Si Ti0 2 /PPY layer composite is about pure by photocurrent test.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Electromagnetism (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Geometry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)
  • Dispersion Chemistry (AREA)
  • Hydrology & Water Resources (AREA)
  • Water Supply & Treatment (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)

Abstract

一种基于层级组装的硅-二氧化钛-聚吡咯三维仿生复合材料,制备方法包括:(1)用一定浓度的碱液,对硅片进行各向异性刻蚀,在其表面形成紧密排列的四方锥形貌;(2)对步骤(1)刻蚀后的硅片进行亲水处理,在其表面生长二氧化钛晶种,并置于马弗炉内煅烧;(3)将步骤(2)中所得到的表面具有二氧化钛晶种的硅片置于反应釜中,采用水热法在硅片的侧壁上生长二氧化钛纳米棒;(4)在步骤(3)中得到的二氧化钛纳米棒上沉积聚吡咯纳米粒子。

Description

一种基于层级组装的硅 -二氧化钛-聚吡咯三维仿生复合 材料及应用
技术领域
[0001] 本发明涉及一种三元层级组装的复合材料即硅-二氧化钛 -聚吡咯复合材料, 同 吋此类复合物可以用作光催化材料和光电转化材料, 属于光电材料技术领域。 背景技术
[0002] 自然界中的太阳光作为一种可再生的绿色能源弓 I起人们的广泛关注, 在将太阳 能转化为可用能源过程中, 寻找高效转化材料十分重要。 二氧化钛是一种重要 的光电转化材料, 同吋具有催化活性高、 稳定性好、 高羟基自由基产率、 光照 不腐蚀等优点, 在防腐涂料、 污水净化、 抗菌杀菌等方面表现出尤为突出的应 用前景。 然而, 二氧化钛禁带宽度较大, 光生电荷易复合, 有效利用太阳光的 波长范围小等缺点, 限制了其应用。
[0003] 聚吡咯具有良好的环境稳定性, 在可见光区有很强烈的吸收, 是强的供电子体 和优良的空穴传输材料。 当两者有效的进行复合, 接触界面处将会形成异质结 , 不仅能提高光生电荷的分离效率, 而且可将复合材料的光谱响应范围, 从而 提高太阳光的利用率。 专利 CN101955665A公幵了一种聚吡咯颗粒 /二氧化钛纳米 管列阵的复合材料制备方法; 专利 CN102350317A公幵了一种聚吡咯 /二氧化钛复 合吸附剂及其制备、 应用和再生方法; 专禾 ljCN102600907A公幵了一种聚吡咯敏 化的中空状二氧化钛纳米光催化剂及其制备方法; 以上一定程度解决了二氧化 钛禁带宽度大、 光谱响应范围小, 光生电子-空穴对易复合等问题。 然而, 聚吡 咯 /二氧化钛复合物仍然存在着有序性较差、 易团聚、 回收利用率较低, 光吸收 率不高等问题, 限制了聚吡咯 /二氧化钛复合物的推广应用。
技术问题
[0004] 本发明目的是为了克服传统的二氧化钛 /聚吡咯纳米复合物无序、 易团聚、 难 回收和光电转化效率低等缺点, 提供了一种基于层级组装的硅 -二氧化钛-聚吡咯 三维仿生复合材料, 兼具良好的消反射性能和高效分离光生电荷能力, 提高了 材料的光电转化效率, 表现出优异的光催化能力, 同吋该复合材料以单晶硅为 载体, 有利于材料的回收再利用。
问题的解决方案
技术解决方案
[0005] 按照本发明提供的技术方案, 所述一种基于层级组装的硅-二氧化钛-聚吡咯三 维仿生复合材料, 即是硅 /二氧化钛 /聚吡咯 (Si/Ti0 2/PPY) 。 Si是表面具有锥形 微结构的 100型单晶硅, 为 P型半导体, 硅锥结构形状为四方锥, 高度为 4~10 μηι , 紧密排列; TiO 2是金红石相的 TiO 2纳米棒, 为 N型半导体, 四棱柱形状, 高 度为 500~4000 nm, 直径为 40~250 nm, 有序垂直生长在硅锥的侧壁上。 PPY是 聚吡咯纳米粒子, 为 P型半导体, 粒径为 10~60 nm, 均匀生长在 TiO 2纳米棒表面 。 Si/Ti0 2/PPY三维仿生复合材料中的 Si与 Ti0 2界面、 TiO 2与1^丫界面形成双 P/N 异质结, 可以高效分离光生电荷, 同吋具有三维的仿生复合结构, 可以有效降 低入射光在表面的反射率。
[0006] 所制备的一种基于层级组装的硅 -二氧化钛-聚吡咯三维仿生复合材料的制备方 法, 其特征是, 包括以下步骤:
[0007] (1) 首先用一定浓度的碱液, 在搅拌的条件下, 对硅片进行各向异性刻蚀, 在硅片表面形成紧密排列的四方锥形貌;
[0008] (2) 然后将步骤 (1) 刻蚀后的硅片进行亲水处理, 在其表面生长 TiO 2晶种, 并置于马弗炉内煅烧一段吋间后自然冷却;
[0009] (3) 再将步骤 (2) 中所得到的表面具有 TiO 2晶种的硅片置于反应釜中, 采用 水热合成的方法在硅锥的侧壁上生长 TiO 2纳米棒;
[0010] (4) 最后在步骤 (3) 中得到的 TiO 2纳米棒上沉积导电 PPY纳米粒子, 得到三 维 Si/TiO 2/PPY。
[0011] 进一步的, 步骤 (1) 所述的碱液为氢氧化钾、 四甲基氢氧化铵、 氢氧化钠、 氨水、 EDP (乙二胺、 邻苯二酚和水的混合溶液), 碱液的 ΡΗ=12~14, 刻蚀温度 50 ~90 °C, 刻蚀吋间 5~60 min, 搅拌的方式为机械搅拌磁力搅拌。
[0012] 进一步的, 步骤 (2) 所述的亲水处理操作为将步骤 (1) 得到的硅片置于 NH 3 Η 20、 Η 2Ο ^ΠΗ 20的混合溶液中, 体积比为 1:1:5, 温度为 90 °C, 加热吋间 30 min°
[0013] 进一步的, 步骤 (2) 所述的生长 TiO 2晶种条件为将亲水处理后的硅片浸于浓 度为 0.05~1
mol/L的钛酸四丁酯的异丙醇溶液中进行提拉或旋涂, 提拉的速度是 1~10 mm/s, 重复提拉 5~30次, 旋涂的速度为 500~7000转 /分钟, 最后将上述样品在 450~500 °。马弗炉中煅烧约 30~60 min。
[0014] 进一步的, 步骤 (3) 所述的水热合成条件为 80~200
°C的温度下, 在装有 10~20 mL去离子水、 6~17
mL浓盐酸 (质量分数 37%) 和 0.5~5 mL钛酸四丁酯的反应釜中处理 2~19 h, 然后 取出样品用氮气吹干。
[0015] 进一步的, 步骤 (4) 所述的在 TiO 2纳米棒上沉积导电 PPY纳米粒子, 是指利 用原位氧化法在 TiO 2
纳米棒上沉积 PPY导电高分子颗粒, 反应条件为: 将 0.01~0.06 g的 FeCl 3 、 50~150 uL吡咯、 5~10 mL超纯水置于烧杯中, 构成反应溶液。 将面积为 1.5 cm X 1.0 cm的表面生长有 TiO 2纳米棒的硅片置于反应液中, 保持室温下搅拌 10~30 min, 得到 Si/TiO 2/PPY三维仿生复合材料。
[0016] 进一步的, 三维 Si/Ti0 2
/PPY复合材料用作光催化降解有机污染物的应用, 将 1.5 cm X 1.0 cm面积的三维 Si/Ti0 2/PPY复合材料放置于 5 mL的亚甲基蓝溶液, 浓度为 1.0x10 5 mol/L, 然后 将其置于暗处 l h让其达到吸附 -解吸平衡, 之后用光源对溶液进行光照, 对亚甲 基蓝进行降解。 同吋, 该种复合材料并不局限于应用在光催化降解有机污染物 , 也适合于其他光催化领域, 及光电转化器件、 太阳能电池等领域。
发明的有益效果
有益效果
[0017] 本发明具有以下优越性:
[0018] (1) 在硅锥表面层级有序组装 TiO 2纳米棒和 PPY纳米粒子, 形成三维的仿生 复合结构, 具有优异的消反射性能。
[0019] (2) 硅锥侧壁与 TiO 2纳米棒接触及 TiO 2纳米棒与 PPY纳米粒子接触, 能形成 双层纳米 P/N异质结结构, 有效的分离光生载流子, 减小电子-空穴对的复合, 具 有优异的光电转化效率。
[0020] (3) 三维的 Si/Ti0 2/PPY复合材料具有高的比表面积, 增加了表面有效的催化 活性点, 在光催化降解污染物方面具有一定的使用价值。
[0021] (4) 该种三维的 Si/Ti0 2/PPY复合材料制备方法简便, 条件温和易控, 对反应 设备要求低, 同吋使用过程中利于回收再使用, 满足大规模生产的要求。
对附图的简要说明
附图说明
[0022] 图 1为实施例 2中经过碱液各向异性刻蚀的单晶硅扫描电镜图片;
[0023] 图 2为实施例 2中在硅锥表面组装 TiO 2纳米棒扫描电镜图片。
[0024] 图 3为实施例 2中在硅锥表面层级组装得到的三维 Si/TiO 2/PPY复合材料扫描电 镜图片。
本发明的实施方式
[0025] 实施例 1 :
[0026] 步骤一: 硅锥的制备
[0027] 配置 ρΗ=13的 ΚΟΗ溶液 lOO mL, 向其中添加 25 mL异丙醇, 将硅片置于溶液中 , 70 °C下刻蚀 30 min, 在刻蚀的过程中用机械搅拌的方式连续搅拌。 刻蚀完后 , 硅片用蒸馏水冲洗, 然后用氮气吹干。
[0028] 步骤二: 硅锥侧壁生长 TiO 2晶种
[0029] 将步骤一中得到的呈硅锥结构的硅片置于 NH 3H 20、 H 20 2fPH 20的混合溶液 中, 体积比为 1:1:5, 温度为 80 °C, 加热吋间 30 min。 然后, 浸于浓度为 0.075 mol/L的钛酸四丁酯的异丙醇溶液中进行提拉, 提拉的速度是 2
mm/s, 重复提拉 20次, 最后将上述样品在 450 °C马弗炉中煅烧约 30 min。
[0030] 步骤三: TiO 2晶种诱导 TiO 2纳米棒的制备
[0031] 将步骤二中得到的表面附有 TiO 2晶种的硅片置于水热条件下进行生长 TiO 2纳 米棒。 水热合成条件为 130 °C的温度下, 在装有 10 mL去离子水、 10 mL浓盐酸 (质量分数 37%) 和 0.5 mL钛酸四丁酯的反应釜中处理 8 h, 然后取出样品用氮 气吹干。
[0032] 步骤四: TiO 2纳米棒表面原位制备 PPY纳米粒子
[0033] 利用原位氧化法在步骤三中所得到的 TiO 2纳米棒上沉积 PPY纳米粒子。 反应条 件为: 将 0.03 g的 FeCl 3、 112.8 uL吡咯、 6 mL超纯水置于烧杯中, 构成反应溶液 ; 将面积为 1.5 cm X 1.0 cm表面生长有 TiO 2纳米棒的硅片置于反应液中, 保持室 温下搅拌 25 min, 反应结束后, 将样品取出后用大量水冲洗, 得到三维 Si/TiO 2 /PPY复合材料。
[0034] 上述得到的三维 Si/Ti0 2/PPY复合材料中, PPY纳米粒子的平均粒径是 35
nm, TiO 2纳米棒的平均直径为 83 nm, 平均高度为 818 nm, 硅锥的平均高度 4.1 μηι。 。 通过紫外漫反射测试可知, Si Ti0 2/PPY层级复合材料表现出优秀的消反 射性能, 光反射率为 9%; 通过光电流测试, Si Ti0 2/PPY层级复合材料的光电流 约分别为纯 TiO 2纳米棒和纯 PPY的 11倍和 7倍; 通过模拟太阳光环境, Si/Ti0 2 /PPY层级复合材料光催化降解亚甲基蓝, 结合紫外分光光度计考察亚甲基蓝浓 度随吋间的变化, 在 6.5 h内将染料亚甲基蓝完全降解, 且降解效率高于纯 TiO 2 纳米棒和纯 ρργ。
[0035] 实施例 2:
[0036] 步骤一: 硅锥的制备
[0037] 配置 ρΗ=13的 ΚΟΗ溶液 lOO mL, 向其中添加 25 mL异丙醇, 将硅片置于溶液中 , 70 °C下刻蚀 30 min, 在刻蚀的过程中用机械搅拌的方式连续搅拌。 刻蚀完后 , 硅片用蒸馏水冲洗, 然后用氮气吹干。
[0038] 步骤二: 硅锥侧壁生长 TiO 2晶种
[0039] 将步骤一中得到的呈硅锥结构的硅片置于 NH 3H 20、 H 20 2fPH 20的混合溶液 中, 体积比为 1:1:5, 温度为 80 °C, 加热吋间 30 min。 然后, 浸于浓度为 0.075 mol/L的钛酸四丁酯的异丙醇溶液中进行提拉, 提拉的速度是 2
mm/s, 重复提拉 20次, 最后将上述样品在 450 °C马弗炉中煅烧约 30 min。
[0040] 步骤三: TiO 2晶种诱导 TiO 2纳米棒的制备
[0041] 将步骤二中得到的表面附有 TiO 2晶种的硅片置于水热条件下进行生长 TiO 2纳 米棒。 水热合成条件为 130 °C的温度下, 在装有 10 mL去离子水、 10 mL浓盐酸 (质量分数 37%) 和 0.5 mL钛酸四丁酯的反应釜中处理 8 h, 然后取出样品用氮 气吹干。
[0042] 步骤四: TiO 2纳米棒表面原位制备 PPY纳米粒子
[0043] 利用原位氧化法在步骤三中所得到的 TiO 2纳米棒上沉积 PPY纳米粒子。 反应条 件为: 将 0.03 g的 FeCl 3、 112.8 uL吡咯、 6 mL超纯水置于烧杯中, 构成反应溶液 ; 将面积为 1.5 cm X 1.0 cm表面生长有 TiO 2纳米棒的硅片置于反应液中, 保持室 温下搅拌 15 min, 反应结束后, 将样品取出后用大量水冲洗, 得到三维 Si/Ti0 2 /PPY复合材料。
[0044] 上述得到的三维 Si/TiO 2/PPY复合材料中, ΡΡΥ纳米粒子的平均粒径是 19
nm, TiO 2纳米棒的平均直径为 83 nm, 平均高度为 818 nm, 硅锥的平均高度 4.1 μηι。 。 通过紫外漫反射测试可知, Si Ti0 2/PPY层级复合材料表现出优秀的消反 射性能, 光反射率为 6%; 通过光电流测试, Si Ti0 2/PPY层级复合材料的光电流 约分别为纯 TiO 2纳米棒和纯 PPY的 15倍和 10倍; 通过模拟太阳光环境, Si/Ti0 2 /PPY层级复合材料光催化降解亚甲基蓝, 结合紫外分光光度计考察亚甲基蓝浓 度随吋间的变化, 在 5.5 h内将染料亚甲基蓝完全降解, 且降解效率高于纯 TiO 2 纳米棒和纯 PPY。
[0045] 实施例 3:
[0046] 步骤一: 硅锥的制备
[0047] 配置 ρΗ=14的 ΚΟΗ溶液 lOO mL, 向其中添加 25 mL异丙醇, 将硅片置于溶液中 , 50 °C下刻蚀 15 min, 在刻蚀的过程中用机械搅拌的方式连续搅拌。 刻蚀完后 , 硅片用蒸馏水冲洗, 然后用氮气吹干。
[0048] 步骤二: 硅锥侧壁生长 TiO 2晶种
[0049] 将步骤一中得到的呈硅锥结构的硅片置于 NH 3H 20、 H 20 2fPH 20的混合溶液 中, 体积比为 1:1:5, 温度为 90 °C, 加热吋间 30 min。 然后, 浸于浓度为 0.1 mol/L的钛酸四丁酯的异丙醇溶液中进行提拉, 提拉的速度是 2
mm/s, 重复提拉 10次, 最后将上述样品在 500 °C马弗炉中煅烧约 30 min。
[0050] 步骤三: TiO 2晶种诱导 TiO 2纳米棒的制备
[0051] 将步骤二中得到的表面附有 TiO 2晶种的硅片置于水热条件下进行生长 TiO 2纳 米棒。 水热合成条件为 120 °C的温度下, 在装有 10 mL去离子水、 10 mL浓盐酸 (质量分数 37%) 和 0.5 mL钛酸四丁酯的反应釜中处理 8 h, 然后取出样品用氮 气吹干。
[0052] 步骤四: TiO 2纳米棒表面原位制备 PPY纳米粒子
[0053] 利用原位氧化法在步骤三中所得到的 TiO 2纳米棒上沉积 PPy纳米粒子。 反应条 件为: 将 0.03 g的 FeCl 3、 112.8 uL吡咯、 6 mL超纯水置于烧杯中, 构成反应溶 液; 将面积为 1.5 cm X 1.0 cm表面生长有 TiO 2纳米棒的硅片置于反应液中, 保持 室温下搅拌 10 min, 反应结束后, 将样品取出后用大量水冲洗, 得到三维 Si/TiO 2/PPY复合材料。
[0054] 上述得到的三维 Si/Ti0 2/PPY复合材料中, PPY纳米粒子的平均粒径是 12
nm, TiO 2纳米棒的平均直径为 83 nm, 平均高度为 818 nm, 硅锥的平均高度 3.3 μηι。 。 通过紫外漫反射测试可知, Si Ti0 2/PPY层级复合材料表现出优秀的消反 射性能, 光反射率为 4%; 通过光电流测试, Si Ti0 2/PPY层级复合材料的光电流 约分别为纯 TiO 2纳米棒和纯 PPY的 21倍和 14倍; 通过模拟太阳光环境, Si/Ti0 2 /PPY层级复合材料光催化降解亚甲基蓝, 结合紫外分光光度计考察亚甲基蓝浓 度随吋间的变化, 在 5 h内将染料亚甲基蓝完全降解, 且降解效率高于纯 TiO 2纳 米棒和纯 PPY。
[0055] 以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明, 不能认 定本发明的具体实施只局限于这些说明。 对于本发明所属技术领域的人员来说 , 在不脱离本发明构思的前提下, 还可做出很多简单推演或替换, 都应当视为 属于本发明的保护范围。

Claims

权利要求书
[权利要求 1] 一种基于层级组装的硅 -二氧化钛-聚吡咯三维仿生复合材料, 其特征 在于: 以单晶硅 (Si) 、 二氧化钛 (Ti0 2) 和聚吡咯 (PPY) 有序层 级组成 (Si/Ti0 2/PPY) , Si是表面具有锥形微结构的 100型单晶硅, 为 P型半导体, 硅锥结构形状为四方锥, 高度为 4~10 μηι, 紧密排列 ; Ti0 2是金红石相的 Ti0 2纳米棒, 为 N型半导体, 四棱柱形状, 高度 为 500~4000 nm, 直径为 40~250 nm, 有序垂直生长在硅锥的侧壁上
PPY是聚吡咯纳米粒子, 为 P型半导体, 粒径为 10~60 nm, 均匀生长 在 TiO 2纳米棒表面。
Si/TiO 2/PPY三维仿生复合材料中的 Si与 TiO 2界面、 TiO 2与1^丫界面 形成双 P/N异质结, 可以高效分离光生电荷, 同吋具有三维的仿生复 合结构, 可以有效降低入射光在表面的反射率。
[权利要求 2] —种制备如权利要求 1所述一种基于层级组装的硅 -二氧化钛-聚吡咯 三维仿生复合材料的方法, 其特征是, 包括以下步骤:
(1) 首先用一定浓度的碱液, 在搅拌的条件下, 对硅片进行各向异 性刻蚀, 在硅片表面形成紧密排列的四方锥形貌;
(2) 然后将步骤 (1) 刻蚀后的硅片进行亲水处理, 在其表面生长 Ti 0 2晶种, 并置于马弗炉内煅烧一段吋间后自然冷却;
(3) 再将步骤 (2) 中所得到的表面具有 TiO 2晶种的硅片置于反应 釜中, 采用水热合成的方法在硅锥的侧壁上生长 TiO 2纳米棒;
(4) 最后在步骤 (3) 中得到的 TiO 2纳米棒上沉积导电 PPY纳米粒子 , 得到三维仿生 Si/TiO 2/PPY。
[权利要求 3] 根据权利要求 2所述的制备方法, 其特征在于: 步骤 (1) 所述的碱液 为氢氧化钾、 四甲基氢氧化铵、 氢氧化钠、 氨水、 EDP (乙二胺、 邻 苯二酚和水的混合溶液), 碱液的 ΡΗ=12~14, 刻蚀温度 50~90 °C, 刻 蚀吋间 5~60 min, 搅拌的方式为机械搅拌磁力搅拌。
[权利要求 4] 根据权利要求 2所述的制备方法, 其特征在于: 步骤 (2) 所述的亲水 处理操作为将步骤 (1) 得到的硅片置于 ΝΗ 3Η 20、 Η 2Ο ^ΠΗ 20的 混合溶液中, 体积比为 1:1:5, 温度为 90 °C, 加热吋间 30 min。
[权利要求 5] 根据权利要求 2所述的制备方法, 其特征在于: 步骤 (2) 所述的生长
ΤΪΟ 2晶种条件为将亲水处理后的硅片浸于浓度为 0.05~1 mol/L的钛酸 四丁酯的异丙醇溶液中进行提拉或旋涂, 提拉的速度是 1~10 mm/s , 重复提拉 5~30次, 旋涂的速度是 500~7000转 /min, 最后将上述样品在 450-500 °。马弗炉中煅烧约 30~60 min。
[权利要求 6] 根据权利要求 2所述的制备方法, 其特征在于: 步骤 (3) 所述的水热 合成条件为 80~200 °C的温度下, 在装有 10~20 mL去离子水、 6~17 mL浓盐酸 (质量分数 37%) 和 0.5 5
mL钛酸四丁酯的反应釜中处理 2~19 h, 然后取出样品用氮气吹干。
[权利要求 7] 根据权利要求 2所述的制备方法, 其特征在于: 步骤 (4) 所述的在 Ti
0 2纳米棒上沉积导电 PPY纳米粒子, 是指利用原位氧化法在 TiO 2纳 米棒上沉积 PPY导电高分子颗粒, 反应条件为: 将 0.01~0.06 g的 FeCl 3、 50~150 uL吡咯、 5~10 mL超纯水置于烧杯中, 构成反应溶液。 将面积为 1.5 cm X 1.0 cm的表面生长有 TiO 2纳米棒的硅片置于反应液 中, 保持室温下搅拌 10~60 min, 得到 Si/TiO 2/PPY三维仿生复合材料
[权利要求 8] 如权利要求 1所述一种基于层级组装的硅-二氧化钛-聚吡咯三维仿生 复合材料用作光催化降解有机污染物的应用, 其特征在于: 将 1.5 cm X 1.0 cm面积的三维 Si/TiO 2/PPY复合材料放置于 5 mL的亚甲基蓝溶 液, 浓度为 1.0x10 -5 mol/L, 然后将其置于暗处 l h让其达到吸附 -解吸 平衡, 之后用光源对溶液进行光照, 对亚甲基蓝进行降解。
同吋, 该种复合材料并不局限于应用在光催化降解有机污染物, 也适 合于其他光催化领域, 及光电转化器件、 太阳能电池等领域。
PCT/CN2016/081791 2015-12-28 2016-05-12 一种基于层级组装的硅-二氧化钛-聚吡咯三维仿生复合材料及应用 WO2017113563A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/748,760 US10888855B2 (en) 2015-12-28 2016-05-12 Silicon-titanium dioxide-polypyrrole three-dimensional bionic composite material based on hierarchical assembly and use thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510994514.8 2015-12-28
CN201510994514.8A CN105618153B (zh) 2015-12-28 2015-12-28 一种基于层级组装的硅‑二氧化钛‑聚吡咯三维仿生复合材料及应用

Publications (1)

Publication Number Publication Date
WO2017113563A1 true WO2017113563A1 (zh) 2017-07-06

Family

ID=56033726

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/081791 WO2017113563A1 (zh) 2015-12-28 2016-05-12 一种基于层级组装的硅-二氧化钛-聚吡咯三维仿生复合材料及应用

Country Status (3)

Country Link
US (1) US10888855B2 (zh)
CN (1) CN105618153B (zh)
WO (1) WO2017113563A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110694604B (zh) * 2019-10-11 2023-09-12 巨鹏(肇庆)信息科技有限公司 一种TiO2-PPy超浸润光催化复合材料及其制备方法
CN113213538B (zh) * 2020-01-21 2022-05-10 中国科学院上海硅酸盐研究所 一种五氧化二钽量子点及其制备方法
CN112374562B (zh) * 2020-10-30 2022-05-20 哈尔滨工业大学 一种用于拦截水体污染中易挥发有机物的聚吡咯光热薄膜的制备方法及应用
CN112680748B (zh) * 2020-12-01 2022-03-25 江南大学 一种具有仿生结构的A/B/Si三元复合硅基光电极及其制备方法
CN112675859A (zh) * 2021-01-28 2021-04-20 华南农业大学 一种泡沫镍基二氧化钛纳米复合材料及其制备方法和应用
CN115722264B (zh) * 2022-11-18 2023-06-30 昆明理工大学 一种二氧化钛/PFNBr复合光催化剂、制备方法及其应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004029303A1 (de) * 2004-06-17 2006-01-12 Ems-Chemie Ag Nanoskalige Titandioxid-Sole, Verfahren zu dessen Herstellung und seine Verwendung
US7303723B2 (en) * 2002-10-04 2007-12-04 The Ohio State University Research Foundation Method of forming nanostructures on ceramics
CN101555629A (zh) * 2009-04-22 2009-10-14 上海第二工业大学 单晶硅基片表面自组装磺酸基硅烷-二氧化钛复合膜的制备方法
CN104677767A (zh) * 2015-03-04 2015-06-03 浙江大学 聚吡咯/二氧化钛频率型薄膜qcm气敏传感器及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7303723B2 (en) * 2002-10-04 2007-12-04 The Ohio State University Research Foundation Method of forming nanostructures on ceramics
DE102004029303A1 (de) * 2004-06-17 2006-01-12 Ems-Chemie Ag Nanoskalige Titandioxid-Sole, Verfahren zu dessen Herstellung und seine Verwendung
CN101555629A (zh) * 2009-04-22 2009-10-14 上海第二工业大学 单晶硅基片表面自组装磺酸基硅烷-二氧化钛复合膜的制备方法
CN104677767A (zh) * 2015-03-04 2015-06-03 浙江大学 聚吡咯/二氧化钛频率型薄膜qcm气敏传感器及其制备方法

Also Published As

Publication number Publication date
CN105618153B (zh) 2017-12-26
US10888855B2 (en) 2021-01-12
US20190009261A1 (en) 2019-01-10
CN105618153A (zh) 2016-06-01

Similar Documents

Publication Publication Date Title
WO2017113563A1 (zh) 一种基于层级组装的硅-二氧化钛-聚吡咯三维仿生复合材料及应用
US8835285B2 (en) Methods to fabricate vertically oriented anatase nanowire arrays on transparent conductive substrates and applications thereof
CN101976611B (zh) TiO2纳米线阵列薄膜光阳极及其制备方法
Li et al. Hydrothermal growth of well-aligned TiO 2 nanorod arrays: Dependence of morphology upon hydrothermal reaction conditions
Dudem et al. Hierarchical Ag/TiO2/Si forest-like nano/micro-architectures as antireflective, plasmonic photocatalytic, and self-cleaning coatings
CN102921435A (zh) 一种磁性Fe3O4/SiO2/TiO2/量子点复合纳米光催化剂及其制备方法和应用
CN102125863A (zh) 一种石墨相氮化碳/金红石单晶二氧化钛纳米线阵列的制备方法
CN105609580A (zh) 一种基于p/n异质结协同消反射性能的硅/二氧化钛三维复合材料及应用
CN102674451A (zh) 一种{001}面暴露二氧化钛纳米晶的制备方法
CN109876828B (zh) 一种TNT/CdS/TiO2/Pt核壳结构纳米管及其制备方法
CN100575245C (zh) 一种制备碳纳米管/CdS纳米花复合材料的方法
WO2017193412A1 (zh) 一种消反射异质结复合涂层及其制备方法
CN109295487A (zh) 用于水体污染物去除的三维二氧化钛光电极的制备
CN107706248A (zh) 一种硅纳米结构异质结太阳电池及其制备方法
CN108607580B (zh) 硫化铟/钒酸铟复合光催化剂及其制备方法和应用
CN105542456B (zh) 一种基于三元层级组装的硅‑二氧化钛‑聚苯胺复合材料及应用
CN107583642A (zh) 石墨烯量子点负载Ag‑TiO2纳米阵列的制备方法
CN104628262A (zh) 火柴状TiO2纳米颗粒和纳米棒复合阵列的制备方法
CN106783186A (zh) 一种ZnO纳米棒光阳极及其制备方法、太阳能电池
WO2017113564A1 (zh) 一种基于消除反射和双层p/n异质结的三维仿生复合材料及应用
CN105642367A (zh) 一种以单晶硅为载体的消反射双层p/n异质结的层级复合材料及应用
CN113087012B (zh) 一种钙钛矿太阳能电池TiO2电子传输层的制备方法
CN102324315B (zh) 一种染料敏化电池光阳极的制备方法
CN209508387U (zh) 一种生长在Si衬底上的(In)GaN纳米管
CN113559856A (zh) 一种钛酸钡/碘酸银异质结光催化剂的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16880371

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16880371

Country of ref document: EP

Kind code of ref document: A1