WO2017113564A1 - 一种基于消除反射和双层p/n异质结的三维仿生复合材料及应用 - Google Patents

一种基于消除反射和双层p/n异质结的三维仿生复合材料及应用 Download PDF

Info

Publication number
WO2017113564A1
WO2017113564A1 PCT/CN2016/081792 CN2016081792W WO2017113564A1 WO 2017113564 A1 WO2017113564 A1 WO 2017113564A1 CN 2016081792 W CN2016081792 W CN 2016081792W WO 2017113564 A1 WO2017113564 A1 WO 2017113564A1
Authority
WO
WIPO (PCT)
Prior art keywords
tio
pani
silicon wafer
solution
nanorods
Prior art date
Application number
PCT/CN2016/081792
Other languages
English (en)
French (fr)
Inventor
石刚
何飞
李赢
倪才华
王大伟
迟力峰
吕男
Original Assignee
江南大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江南大学 filed Critical 江南大学
Priority to AU2016380409A priority Critical patent/AU2016380409B2/en
Publication of WO2017113564A1 publication Critical patent/WO2017113564A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/06Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing polymers
    • B01J31/069Hybrid organic-inorganic polymers, e.g. silica derivatized with organic groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24
    • B01J31/38Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24 of titanium, zirconium or hafnium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/12Oxidising
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/32Treatment of water, waste water, or sewage by irradiation with ultraviolet light
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Definitions

  • Three-dimensional biomimetic composite material based on anti-reflection and double-layer P/N heterojunction and its application
  • the present invention relates to a three-dimensional biomimetic composite material based on anti-reflection and two-layer P/N heterojunction, that is, a silicon-titania-polyaniline composite material, and the same composite can be used for photoelectric conversion and photocatalytic materials. It belongs to the field of optoelectronic materials technology.
  • Titanium dioxide nanomaterials have outstanding application prospects in anticorrosive coatings, sewage purification, antibacterial sterilization, etc. due to their high catalytic activity, good stability, high hydroxyl radical yield, and non-corrosion.
  • Polyaniline has good environmental stability, strong absorption in the visible region, strong electron donor and excellent hole transport material. When the two are effectively combined, a heterojunction will be formed at the contact interface, which not only improves the separation efficiency of the photo-generated charge, but also increases the spectral response range of the composite material, thereby improving the utilization of sunlight.
  • Patent CN102432876A and CN102866181A disclose a method for preparing a polyaniline/titanium dioxide nanocomposite;
  • Patent CN104084241A discloses a 3D flower structure titanium dioxide/polyaniline photocatalyst and a preparation method thereof;
  • Patent CN102389836A discloses a poly Aniline/titanium dioxide/clay nanocomposite photocatalyst and preparation method thereof; the above has solved the problems of large band gap of titanium dioxide, small spectral response range, and photoelectron-hole pair recombination.
  • polyaniline/titanium dioxide composites still have problems such as poor order, easy agglomeration, photo-generated charge easy to recombine, low recovery and utilization, etc., and the absorption rate of incident light on the surface of composite materials is not considered.
  • problems such as poor order, easy agglomeration, photo-generated charge easy to recombine, low recovery and utilization, etc., and the absorption rate of incident light on the surface of composite materials is not considered.
  • Popularization and application of polyaniline/titanium dioxide composites technical problem
  • the object of the present invention is to overcome the shortcomings of the conventional titanium dioxide/polyaniline nanocomposites such as disorder, easy agglomeration, difficult recovery and low photoelectric conversion efficiency, and provide a kind of anti-reflection and double-layer P/N heterojunction.
  • the three-dimensional biomimetic composite material has good anti-reflection performance and high-efficiency separation of photo-generated charge capacity, improves the photoelectric conversion efficiency of the material, and exhibits excellent photocatalytic ability, and the composite material is supported by single crystal silicon as a carrier. Recycling of materials.
  • the three-dimensional biomimetic composite material based on the anti-reflection and double-layer P/N heterojunction is silicon/titania/polyaniline (Si/Ti0 2 /PANI).
  • Si is a 100-type single crystal silicon with a tapered microstructure on the surface, which is a P-type semiconductor.
  • the shape of the silicon cone is a square pyramid with a height of 4 to 10 ⁇ , which is closely arranged.
  • TiO 2 is a rutile phase of TiO 2 nanorods.
  • PANI is a polyaniline nanoparticle, which is a P-type semiconductor with a particle size of 10 to 60 nm and uniformly grown on the surface of TiO 2 nanorods.
  • the interface between Si and Ti0 2 in Si/Ti0 2 /PANI three-dimensional composite material and the double P/N heterojunction at the interface between TiO 2 and PANI can efficiently separate photogenerated charges, and have a three-dimensional biomimetic composite structure, which can effectively reduce incidence.
  • the reflectivity of light on the surface is a polyaniline nanoparticle, which is a P-type semiconductor with a particle size of 10 to 60 nm and uniformly grown on the surface of TiO 2 nanorods.
  • a method for preparing a three-dimensional biomimetic composite material based on anti-reflection and two-layer P/N heterojunction is characterized in that it comprises the following steps:
  • step (1) etched silicon wafer is hydrophilically treated, TiO 2 seed crystal is grown on the surface thereof, and placed in a muffle furnace for a period of calcination and then naturally cooled;
  • the silicon wafer having the surface of the TiO 2 seed crystal obtained in the step (2) is placed in the reaction vessel, and the TiO 2 nanorods are grown on the sidewall of the silicon cone by hydrothermal synthesis;
  • Conductive PANI nanoparticles were deposited on the nanorods to obtain a Si/TiO 2 /PANI three-dimensional biomimetic composite.
  • the hydrophilic treatment operation in the step (2) is that the silicon wafer obtained in the step (1) is placed in a mixed solution of NH 3 ⁇ 2 0, ⁇ 2 ⁇ ⁇ ⁇ 2 0, and the volume ratio is 1:1:5, temperature is 90 °C, heated for 30 min°
  • the condition of the grown TiO 2 seed crystals in the step (2) is that the hydrophilic processed silicon wafer is immersed in a concentration of 0.05 ⁇ 1.
  • the hydrothermal synthesis condition in the step (3) is 80 to 200.
  • the reactor was treated with mL of concentrated hydrochloric acid (37% by mass) and 0.5 to 5 mL of tetrabutyl titanate for 2 to 19 h, and then the sample was taken out and dried with nitrogen.
  • depositing PANI nanoparticles on the TiO 2 nanorods according to the step (4) refers to assembling PANI conductive polymer particles on the TiO 2 nanorods by in-situ oxidation, and the reaction conditions are as follows: mL 0.2 ⁇ 0.5 mol/L aniline hydrochloride solution, add 3 ⁇ 7 g ammonium persulfate and 4 g PVP (polyvinylpyrrolidone k-30), mix evenly; the area is 1.5 cm X 1.0 cm
  • the silicon wafer with TiO 2 nanorods grown on the surface is placed in the reaction solution, and stirred at room temperature for 1 ⁇ 8 h to obtain a Si Ti0 2 /PANI three-dimensional biomimetic composite.
  • the Si/TiO 2 /PANI three-dimensional biomimetic composite material is used for photocatalytic degradation of organic pollutants, and a three-dimensional Si/TiO 2 /PANI composite material with a size of 1.5 cm ⁇ 1.0 cm is placed in 5 mL of methylene blue.
  • the solution at a concentration of 1.0 x 10 -5 mo l / L, was then placed in the dark for 1 h to reach the adsorption-desorption equilibrium, after which the solution was illuminated with a light source to degrade the methylene blue.
  • this kind of biomimetic composite material is not limited to the application of photocatalytic degradation of organic pollutants, but also suitable for other fields of photocatalysis, photoelectric conversion devices, solar cells and the like.
  • Ti0 2 nanorods and PANI nanoparticles are sequentially assembled at the surface of the silicon cone to form a three-dimensional biomimetic composite structure, which has excellent anti-reflection performance.
  • the three-dimensional Si/Ti0 2 /PANI composite material has a high specific surface area, increases the effective catalytic activity point of the surface, and has certain use value in photocatalytic degradation of pollutants.
  • Example 1 is a scanning electron microscope image of single crystal silicon subjected to anisotropic etching of lye in Example 1;
  • Example 2 is a scanning electron microscope image of TiO 2 nanorods assembled on the surface of a silicon cone in Example 1.
  • Example 3 is a scanning electron microscope image of a Si/TiO 2 /PANI three-dimensional biomimetic composite material assembled on the surface of a silicon cone in Example 1.
  • Step 1 Preparation of a silicon cone
  • Step 2 Growth of TiO 2 seed crystals on the sidewall of the silicon cone
  • the silicon wafer having the silicon cone structure obtained in the first step is placed in a mixed solution of NH 3 H 2 0, H 2 0 2 and H 2 0, and the volume ratio is 1:1:5, and the temperature is 80 °. C, heated for 30 minutes. Then, it is immersed in a solution of tetrabutyl titanate in a concentration of 0.075 mol/L in an isopropanol solution, and the pulling speed is 2
  • Step 3 Preparation of Ti0 2 nanorods by Ti0 2 seed crystals
  • the silicon wafer with the TiO 2 seed crystals obtained on the surface obtained in the second step is subjected to hydrothermal conditions to grow the TiO 2 nanorods.
  • the hydrothermal synthesis conditions were carried out at a temperature of 130 ° C in a reaction vessel containing 10 mL of deionized water, 10 mL of concentrated hydrochloric acid (37% by mass) and 0.5 mL of tetrabutyl titanate for 8 h, and then the sample was taken out. Dry with nitrogen.
  • Step 4 In situ preparation of PANI nanoparticles on the surface of TiO 2 nanorods
  • PANI nanoparticles were deposited on the TiO 2 nanorods obtained in step two by in situ oxidation.
  • the reaction conditions were as follows: 100 mL of 0.3 mol/L aniline hydrochloride solution was prepared, and 5 g of ammonium persulfate and 4 g of PVP (polyvinylpyrrolidone k-30) were added and mixed uniformly; the area was 1.5 cm X A 1.0 cm surface wafer with TiO 2 nanorods was placed in the reaction solution, and stirred at room temperature for 3 h to obtain a Si/TiO 2 /PANI three-dimensional biomimetic composite.
  • the average particle diameter of the PANI nanoparticles is 44 nm
  • the average diameter of the TiO 2 nanorods is 83 nm
  • the average height is 818 nm
  • the average height of the silicon cones is 4.1 ⁇ .
  • the UV diffuse reflectance test shows that the Si/TiO 2 / ⁇ layer composite exhibits excellent antireflection and the light reflectance is 4%.
  • the photocurrent test shows the photocurrent of the Si Ti0 2 /PANI layer composite.
  • Step 1 Preparation of a silicon cone
  • Step 2 Growth of TiO 2 seed crystals on the sidewall of the silicon cone
  • the silicon wafer having the silicon cone structure obtained in the first step is placed in a mixed solution of NH 3 H 2 0, H 2 0 2 fPH 2 0, the volume ratio is 1:1:5, and the temperature is 80 ° C. , heated for 30 minutes. Then, it is immersed in a solution of tetrabutyl titanate in a concentration of 0.075 mol/L in an isopropanol solution, and the pulling speed is 2 Mm/s, repeated pulling 20 times, and finally the above sample was calcined in a muffle furnace at 450 ° C for about 30 min.
  • Step 3 Preparation of Ti0 2 nanorods by Ti0 2 seed crystals
  • the silicon wafer with the TiO 2 seed crystal on the surface obtained in the second step was placed under hydrothermal conditions to grow the TiO 2 nanorods.
  • the hydrothermal synthesis conditions were carried out at a temperature of 130 ° C in a reaction vessel containing 10 mL of deionized water, 10 mL of concentrated hydrochloric acid (37% by mass) and 0.5 mL of tetrabutyl titanate for 8 h, and then the sample was taken out. Dry with nitrogen.
  • Step 4 In situ preparation of PANI nanoparticles on the surface of TiO 2 nanorods
  • PANI nanoparticles were deposited on the TiO 2 nanorods obtained in step two by in situ oxidation.
  • the reaction conditions were as follows: 100 mL of 0.3 mol/L aniline hydrochloride solution was prepared, and 7 g of ammonium persulfate and 4 g of PVP (polyvinylpyrrolidone k-30) were added and mixed uniformly; the area was 1.5 cm X A 1.0 cm surface wafer with TiO 2 nanorods was placed in the reaction solution, and stirred at room temperature for 4 h to obtain a Si/TiO 2 /PANI three-dimensional biomimetic composite.
  • the average particle diameter of the PANI nanoparticles is 44 nm
  • the average diameter of the TiO 2 nanorods is 83 nm
  • the average height is 818 nm
  • the average height of the silicon cones 4.1 ⁇ . .
  • the UV diffuse reflectance test shows that the Si/TiO 2 / ⁇ layer composite exhibits excellent anti-reflection performance with a light reflectance of 6%.
  • the photocurrent test shows that the photocurrent of the Si Ti0 2 /PANI layer composite is approximately 18 times and 11 times of pure TiO 2 nanorods and pure PANI; photocatalytic degradation of methylene blue by Si/TiO 2 /PANI layer composites by simulated solar environment, combined with UV spectrophotometer to investigate the variation of methylene blue concentration with daytime The dye methylene blue was completely degraded within 5.5 h, and the degradation efficiency was higher than that of pure TiO 2 nanorods and pure PANI.
  • Step 1 Preparation of a silicon cone
  • Step 2 Growth of TiO 2 seed crystals on the sidewall of the silicon cone
  • the silicon wafer having the silicon cone structure obtained in the first step is placed in a mixed solution of NH 3 H 2 0, H 2 0 2 and H 2 0 in a volume ratio of 1:1:5 and a temperature of 90 °. C, heated for 30 minutes. Then, immersed in a concentration of 0.1 The mol/L tetrabutyl titanate is extracted in an isopropanol solution, and the pulling speed is 2
  • Step 3 Preparation of Ti0 2 nanorods by Ti0 2 seed crystals
  • the silicon wafer with the TiO 2 seed crystal on the surface obtained in the second step was placed under hydrothermal conditions to grow the TiO 2 nanorods.
  • the hydrothermal synthesis conditions were 120 ° C, and treated in a reaction vessel containing 10 mL of deionized water, 10 mL of concentrated hydrochloric acid (37% by mass) and 0.5 mL of tetrabutyl titanate for 8 h, and then the sample was taken out. Dry with nitrogen.
  • Step 4 In situ preparation of PANI nanoparticles on the surface of TiO 2 nanorods
  • PANI nanoparticles were deposited on the TiO 2 nanorods obtained in step two by in situ oxidation.
  • the reaction conditions were as follows: 100 mL of 0.3 mol/L aniline hydrochloride solution was prepared, and 7 g of ammonium persulfate and 4 g of PVP (polyvinylpyrrolidone k-30) were added and mixed uniformly; the area was 1.5 cm X A 1.0 cm surface wafer with TiO 2 nanorods was placed in the reaction solution, and stirred at room temperature for 5 h to obtain a Si/TiO 2 /PANI three-dimensional biomimetic composite.
  • the average particle diameter of the PANI nanoparticles is 52 nm
  • the average diameter of the TiO 2 nanorods is 83 nm
  • the average height is 818 nm
  • the photocurrent test shows the photocurrent of the Si Ti0 2 /PANI layer composite.
  • Si/TiO 2 /PANI layer composites photocatalyticly degrade methylene blue by simulated solar environment, and the concentration of methylene blue with diurnal changes was investigated by UV spectrophotometer.
  • the dye methylene blue was completely degraded within 7 h, and the degradation efficiency was higher than that of pure TiO 2 nanorods and pure PANI.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Hydrology & Water Resources (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Toxicology (AREA)
  • Composite Materials (AREA)
  • Water Supply & Treatment (AREA)
  • General Physics & Mathematics (AREA)
  • Metallurgy (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Catalysts (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

一种基于消除反射和双层P/N异质结的三维仿生复合材料,其制备方法包括:(1)用一定浓度的碱液,对硅片进行各向异性刻蚀,在其表面形成紧密排列的四方锥形貌;(2)对步骤(1)刻蚀后的硅片进行亲水处理,在其表面生长而二氧化钛晶种,并置于马弗炉内煅烧;(3)将步骤(2)中所得到的表面具有二氧化钛晶种的硅片置于反应釜中,采用水热合成的方法在硅片的侧壁上生长二氧化钛纳米棒;(4)在步骤(3)中得到的二氧化钛纳米棒上沉积聚苯胺纳米粒子。

Description

一种基于消除反射和双层 P/N异质结的三维仿生复合材料 及应用
技术领域
[0001] 本发明涉及一种基于消除反射和双层 P/N异质结的三维仿生复合材料即硅 -二氧 化钛 -聚苯胺复合材料, 同吋此类复合物可以用于光电转化和光催化材料, 属于 光电材料技术领域。
背景技术
[0002] 光在我们的生活中随处可见, 其中最大的自然光源便是太阳。 太阳光中的能量 是巨大的, 寻找高效的光电转化材料, 已经成为人们研究的热点。 其光电转化 效率主要受到入射光吸收量、 材料的带隙、 光生电子与空穴的分离效率等因素 的影响。 由于单一光电材料通常受带隙宽度及光生电荷分离效率的影响, 限制 了单一光电材料的应用范围。 因此, 人们通过多种光电材料复合物解决上述的 问题。 其中, 二氧化钛和聚苯胺的复合已成为该领域研究的热点。
[0003] 二氧化钛纳米材料由于具有催化活性高、 稳定性好、 高羟基自由基产率、 光照 不腐蚀等优点, 在防腐涂料、 污水净化、 抗菌杀菌等方面表现出尤为突出的应 用前景。 聚苯胺具有良好的环境稳定性, 在可见光区有很强烈的吸收, 是强的 供电子体和优良的空穴传输材料。 当两者有效的进行复合, 接触界面处将会形 成异质结, 不仅能提高光生电荷的分离效率, 而且可将复合材料的光谱响应范 围, 从而提高太阳光的利用率。 专利 CN102432876A和 CN102866181A公幵了一 种制备聚苯胺 /二氧化钛纳米复合物的方法; 专利 CN104084241A公幵了一种 3D 花型结构的二氧化钛 /聚苯胺光催化剂及制备方法; 专利 CN102389836A公幵了一 种聚苯胺 /二氧化钛 /粘土纳米复合光催化剂及其制备方法; 以上一定程度解决了 二氧化钛禁带宽度大、 光谱响应范围小, 光生电子-空穴对易复合等问题。 然而 , 聚苯胺 /二氧化钛复合物仍然存在着有序性较差、 易团聚、 光生电荷易复合、 回收利用率较低等问题, 同吋也没有考虑复合材料表面对入射光的吸收率, 限 制了聚苯胺 /二氧化钛复合物的推广应用。 技术问题
[0004] 本发明目的是为了克服传统的二氧化钛 /聚苯胺纳米复合物无序、 易团聚、 难 回收和光电转化效率低等缺点, 提供了一种基于消除反射和双层 P/N异质结的三 维仿生复合材料, 兼具良好的消反射性能和高效分离光生电荷能力, 提高了材 料的光电转化效率, 表现出优异的光催化能力, 同吋该复合材料以单晶硅为载 体, 有利于材料的回收再利用。
问题的解决方案
技术解决方案
[0005] 按照本发明提供的技术方案, 所述一种基于消除反射和双层 P/N异质结的三维 仿生复合材料, 即是硅 /二氧化钛 /聚苯胺 (Si/Ti0 2/PANI) 。 Si是表面具有锥形 微结构的 100型单晶硅, 为 P型半导体, 硅锥结构形状为四方锥, 高度为 4~10 μηι , 紧密排列; TiO 2是金红石相的 TiO 2纳米棒, 为 N型半导体, 四棱柱形状, 高 度为 500~4000 nm, 直径为 40~250 nm, 有序垂直生长在硅锥的侧壁上。 PANI是 聚苯胺纳米粒子, 为 P型半导体, 粒径为 10~60 nm, 均匀生长在 TiO 2纳米棒表面 。 Si/Ti0 2/PANI三维复合材料中的 Si与 Ti0 2界面、 TiO 2与 PANI界面形成双 P/N异 质结, 可以高效分离光生电荷, 同吋具有三维的仿生复合结构, 可以有效降低 入射光在表面的反射率。
[0006] 所制备的一种基于消除反射和双层 P/N异质结的三维仿生复合材料的制备方法 , 其特征是, 包括以下步骤:
[0007] (1) 首先用一定浓度的碱液, 在搅拌的条件下, 对硅片进行各向异性刻蚀, 在硅片表面形成紧密排列的四方锥形貌;
[0008] (2) 然后将步骤 (1) 刻蚀后的硅片进行亲水处理, 在其表面生长 TiO 2晶种, 并置于马弗炉内煅烧一段吋间后自然冷却;
[0009] (3) 再将步骤 (2) 中所得到的表面具有 TiO 2晶种的硅片置于反应釜中, 采用 水热合成的方法在硅锥的侧壁上生长 TiO 2纳米棒;
[0010] (4) 最后在步骤 (3) 中得到的 TiO 2
纳米棒上沉积导电 PANI纳米粒子, 得到 Si/TiO 2/PANI三维仿生复合材料。
[0011] 进一步的, 步骤 (1) 所述的碱液为氢氧化钾、 四甲基氢氧化铵、 氢氧化钠、 氨水、 EDP (乙二胺、 邻苯二酚和水的混合溶液), 碱液的 PH=12~14, 刻蚀温度 50 ~90 °C, 刻蚀吋间 5~60 min, 搅拌的方式为机械搅拌磁力搅拌。
[0012] 进一步的, 步骤 (2) 所述的亲水处理操作为将步骤 (1) 得到的硅片置于 NH 3 Η 20、 Η 2Ο ^ΠΗ 20的混合溶液中, 体积比为 1:1:5, 温度为 90 °C, 加热吋间 30 min°
[0013] 进一步的, 步骤 (2) 所述的生长 TiO 2晶种条件为将亲水处理后的硅片浸于浓 度为 0.05~1
mol/L的钛酸四丁酯的异丙醇溶液中进行提拉或旋涂, 提拉的速度是 1~10 mm/s, 重复提拉 5~30次, 旋涂的速度是 500~7000转 /min, 最后将上述样品在 450~500 °C 马弗炉中煅烧约 30~60 min。
[0014] 进一步的, 步骤 (3) 所述的水热合成条件为 80~200
°C的温度下, 在装有 10~20 mL去离子水、 6~17
mL浓盐酸 (质量分数 37%) 和 0.5~5 mL钛酸四丁酯的反应釜中处理 2~19 h, 然后 取出样品用氮气吹干。
[0015] 进一步的, 步骤 (4) 所述的在 TiO 2纳米棒上沉积 PANI纳米粒子, 是指利用原 位氧化法在 TiO 2纳米棒上组装 PANI导电高分子颗粒, 反应条件为: 配制 100 mL 的 0.2~0.5 mol/L苯胺盐酸盐溶液, 并加入 3~7 g过硫酸铵和 4 g PVP (聚乙烯吡喏 烷酮 k-30) , 混合均匀; 将面积为 1.5 cm X 1.0 cm的表面生长有 TiO 2纳米棒的硅 片置于反应液中, 保持室温下搅拌 l~8 h, 得到 Si Ti0 2/PANI三维仿生复合材料
[0016] 进一步的, Si/TiO 2/PANI三维仿生复合材料用作光催化降解有机污染物的应用 , 将 1.5 cm X 1.0 cm面积的三维 Si/TiO 2/PANI复合材料放置于 5 mL的亚甲基蓝溶 液, 浓度为 1.0x10 -5 mol/L, 然后将其置于暗处 1 h让其达到吸附 -解吸平衡, 之后 用光源对溶液进行光照, 对亚甲基蓝进行降解。 同吋, 该种仿生复合材料并不 局限于应用在光催化降解有机污染物, 也适合于其他光催化领域, 及光电转化 器件、 太阳能电池等领域。
发明的有益效果
有益效果 [0017] 本发明具有以下优越性:
[0018] (1) 在硅锥表面层级有序组装 Ti0 2纳米棒和 PANI纳米粒子, 形成三维的仿生 复合结构, 具有优异的消反射性能。
[0019] (2) 硅锥侧壁与 Ti0 2纳米棒接触及 Ti0 2纳米棒与 PANI纳米粒子接触, 能形成 双层纳米 P/N异质结结构, 有效的分离光生载流子, 减小电子-空穴对的复合, 具 有优异的光电转化效率。
[0020] (3) 三维的 Si/Ti0 2/PANI复合材料具有高的比表面积, 增加了表面有效的催 化活性点, 在光催化降解污染物方面具有一定的使用价值。
[0021] (4) 该种三维的 Si/Ti0 2/PANI复合材料制备方法简便, 条件温和易控, 对反 应设备要求低, 同吋使用过程中利于回收再使用, 满足大规模生产的要求。 对附图的简要说明
附图说明
[0022] 图 1为实施例 1中经过碱液各向异性刻蚀的单晶硅扫描电镜图片;
[0023] 图 2为实施例 1中在硅锥表面组装 TiO 2纳米棒扫描电镜图片。
[0024] 图 3为实施例 1中在硅锥表面层级组装得到的 Si/TiO 2/PANI三维仿生复合材料扫 描电镜图片。 本发明的实施方式
[0025] 实施例 1 :
[0026] 步骤一: 硅锥的制备
[0027] 配置 pH=13的 KOH溶液 lOO mL, 向其中添加 25 mL异丙醇, 将硅片置于溶液中 , 70 °C下刻蚀 30 min, 在刻蚀的过程中用机械搅拌的方式连续搅拌。 刻蚀完后 , 硅片用蒸馏水冲洗, 然后用氮气吹干。
[0028] 步骤二: 硅锥侧壁生长 TiO 2晶种
[0029] 将步骤一中得到的呈硅锥结构的硅片置于 NH 3H 20、 H 20 2和 H 20的混合溶液 中, 体积比为 1:1:5, 温度为 80 °C, 加热吋间 30 min。 然后, 浸于浓度为 0.075 mol/L的钛酸四丁酯的异丙醇溶液中进行提拉, 提拉的速度是 2
mm/s, 重复提拉 20次, 最后将上述样品在 450 °C马弗炉中煅烧约 30 min。 [0030] 步骤三: Ti0 2晶种诱导 Ti0 2纳米棒的制备
[0031] 将步骤二中得到的表面附有 TiO 2晶种的硅片置于水热条件下进行生长 TiO 2纳 米棒。 水热合成条件为 130 °C的温度下, 在装有 10 mL去离子水、 10 mL浓盐酸 (质量分数 37%) 和 0.5 mL钛酸四丁酯的反应釜中处理 8 h, 然后取出样品用氮 气吹干。
[0032] 步骤四: TiO 2纳米棒表面原位制备 PANI纳米粒子
[0033] 利用原位氧化法在步骤二中所得到的 TiO 2纳米棒上沉积 PANI纳米粒子。 反应 条件为: 配制 100 mL的 0.3 mol/L苯胺盐酸盐溶液, 并加入 5 g过硫酸铵和 4 g PVP (聚乙烯吡喏烷酮 k-30) , 混合均匀; 将面积为 1.5 cm X 1.0 cm的表面生长有 TiO 2纳米棒的硅片置于反应液中, 保持室温下搅拌 3 h, 得到 Si/TiO 2/PANI三维仿生 复合材料。
[0034] 上述得到的三维 Si/TiO 2/PANI复合材料中, PANI纳米粒子的平均粒径是 44 nm , TiO 2纳米棒的平均直径为 83 nm, 平均高度为 818 nm, 硅锥的平均高度 4.1 μηι 。 通过紫外漫反射测试可知, Si/TiO 2/ΡΑΝΙ层级复合材料表现出优秀的消反射性 育 , 光反射率为 4%; 通过光电流测试, Si Ti0 2/PANI层级复合材料的光电流约 分别为纯 TiO 2纳米棒和纯 PANI的 20倍和 14倍; 通过模拟太阳光环境, Si/TiO 2 /PANI层级复合材料光催化降解亚甲基蓝, 结合紫外分光光度计考察亚甲基蓝浓 度随吋间的变化, 在 5 h内将染料亚甲基蓝完全降解, 且降解效率高于纯 TiO 2纳 米棒和纯 PANI。
[0035] 实施例 2:
[0036] 步骤一: 硅锥的制备
[0037] 配置 pH=13的 KOH溶液 lOO mL, 向其中添加 25 mL异丙醇, 将硅片置于溶液中 , 70 °C下刻蚀 30 min, 在刻蚀的过程中用机械搅拌的方式连续搅拌。 刻蚀完后 , 硅片用蒸馏水冲洗, 然后用氮气吹干。
[0038] 步骤二: 硅锥侧壁生长 TiO 2晶种
[0039] 将步骤一中得到的呈硅锥结构的硅片置于 NH 3H 20、 H 20 2fPH 20的混合溶液 中, 体积比为 1:1:5, 温度为 80 °C, 加热吋间 30 min。 然后, 浸于浓度为 0.075 mol/L的钛酸四丁酯的异丙醇溶液中进行提拉, 提拉的速度是 2 mm/s, 重复提拉 20次, 最后将上述样品在 450 °C马弗炉中煅烧约 30 min。
[0040] 步骤三: Ti0 2晶种诱导 Ti0 2纳米棒的制备
[0041] 将步骤二中得到的表面附有 TiO 2晶种的硅片置于水热条件下进行生长 TiO 2纳 米棒。 水热合成条件为 130 °C的温度下, 在装有 10 mL去离子水、 10 mL浓盐酸 (质量分数 37%) 和 0.5 mL钛酸四丁酯的反应釜中处理 8 h, 然后取出样品用氮 气吹干。
[0042] 步骤四: TiO 2纳米棒表面原位制备 PANI纳米粒子
[0043] 利用原位氧化法在步骤二中所得到的 TiO 2纳米棒上沉积 PANI纳米粒子。 反应 条件为: 配制 100 mL的 0.3 mol/L苯胺盐酸盐溶液, 并加入 7 g过硫酸铵和 4 g PVP (聚乙烯吡喏烷酮 k-30) , 混合均匀; 将面积为 1.5 cm X 1.0 cm的表面生长有 TiO 2纳米棒的硅片置于反应液中, 保持室温下搅拌 4 h, 得到 Si/TiO 2/PANI三维仿生 复合材料。
[0044] 上述得到的三维 Si/TiO 2/PANI复合材料中, PANI纳米粒子的平均粒径是 44 nm , TiO 2纳米棒的平均直径为 83 nm, 平均高度为 818 nm, 硅锥的平均高度 4.1 μηι 。 。 通过紫外漫反射测试可知, Si/TiO 2/ΡΑΝΙ层级复合材料表现出优秀的消反射 性能, 光反射率为 6%; 通过光电流测试, Si Ti0 2/PANI层级复合材料的光电流 约分别为纯 TiO 2纳米棒和纯 PANI的 18倍和 11倍; 通过模拟太阳光环境, Si/TiO 2 /PANI层级复合材料光催化降解亚甲基蓝, 结合紫外分光光度计考察亚甲基蓝浓 度随吋间的变化, 在 5.5 h内将染料亚甲基蓝完全降解, 且降解效率高于纯 TiO 2 纳米棒和纯 PANI。
[0045] 实施例 3:
[0046] 步骤一: 硅锥的制备
[0047] 配置 pH=14的 KOH溶液 lOO mL, 向其中添加 25 mL异丙醇, 将硅片置于溶液中 , 50 °C下刻蚀 15 min, 在刻蚀的过程中用机械搅拌的方式连续搅拌。 刻蚀完后 , 硅片用蒸馏水冲洗, 然后用氮气吹干。
[0048] 步骤二: 硅锥侧壁生长 TiO 2晶种
[0049] 将步骤一中得到的呈硅锥结构的硅片置于 NH 3H 20、 H 20 2和 H 20的混合溶液 中, 体积比为 1:1:5, 温度为 90 °C, 加热吋间 30 min。 然后, 浸于浓度为 0.1 mol/L的钛酸四丁酯的异丙醇溶液中进行提拉, 提拉的速度是 2
mm/s, 重复提拉 10次, 最后将上述样品在 500 °C马弗炉中煅烧约 30 min。
[0050] 步骤三: Ti0 2晶种诱导 Ti0 2纳米棒的制备
[0051] 将步骤二中得到的表面附有 TiO 2晶种的硅片置于水热条件下进行生长 TiO 2纳 米棒。 水热合成条件为 120 °C的温度下, 在装有 10 mL去离子水、 10 mL浓盐酸 (质量分数 37%) 和 0.5 mL钛酸四丁酯的反应釜中处理 8 h, 然后取出样品用氮 气吹干。
[0052] 步骤四: TiO 2纳米棒表面原位制备 PANI纳米粒子
[0053] 利用原位氧化法在步骤二中所得到的 TiO 2纳米棒上沉积 PANI纳米粒子。 反应 条件为: 配制 100 mL的 0.3 mol/L苯胺盐酸盐溶液, 并加入 7 g过硫酸铵和 4 g PVP (聚乙烯吡喏烷酮 k-30) , 混合均匀; 将面积为 1.5 cm X 1.0 cm的表面生长有 TiO 2纳米棒的硅片置于反应液中, 保持室温下搅拌 5 h, 得到 Si/TiO 2/PANI三维仿生 复合材料。
[0054] 上述得到的三维 Si/TiO 2/PANI复合材料中, PANI纳米粒子的平均粒径是 52 nm , TiO 2纳米棒的平均直径为 83 nm, 平均高度为 818 nm, 硅锥的平均高度 3.3 μηι 。 通过紫外漫反射测试可知, Si/TiO 2/ΡΑΝΙ层级复合材料表现出优秀的消反射性 育 , 光反射率为 9%; 通过光电流测试, Si Ti0 2/PANI层级复合材料的光电流约 分别为纯 TiO 2纳米棒和纯 PANI的 10倍和 6倍; 通过模拟太阳光环境, Si/TiO 2 /PANI层级复合材料光催化降解亚甲基蓝, 结合紫外分光光度计考察亚甲基蓝浓 度随吋间的变化, 在 7 h内将染料亚甲基蓝完全降解, 且降解效率高于纯 TiO 2纳 米棒和纯 PANI。
[0055] 以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明, 不能认 定本发明的具体实施只局限于这些说明。 对于本发明所属技术领域的人员来说 , 在不脱离本发明构思的前提下, 还可做出很多简单推演或替换, 都应当视为 属于本发明的保护范围。

Claims

权利要求书
[权利要求 1] 一种基于消除反射和双层 P/N异质结的三维仿生复合材料, 其特征在 于: 以单晶硅 (Si) 、 二氧化钛 (Ti0 2) 和聚苯胺 (PANI) 有序层 级组成 (Si/Ti0 2/PANI) , Si是表面具有锥形微结构的 100型单晶硅 , 为 N型半导体, 硅锥结构形状为四方锥, 高度为 4~10 μηι, 紧密排 歹 |J ; Ti0 2是金红石相的 Ti0 2纳米棒, 为 N型半导体, 四棱柱形状, 高 度为 500~4000 nm, 直径为 40~250 nm, 有序垂直生长在硅锥的侧壁 上。
PANI是聚苯胺纳米粒子, 为 P型半导体, 粒径为 10~60 nm, 均匀生长 在 TiO 2纳米棒表面。
Si/TiO 2/PANI三维仿生复合材料中的 Si与 TiO 2界面、 TiO 2与1^^«界 面形成双 P/N异质结, 可以高效分离光生电荷, 同吋具有三维的仿生 复合结构, 可以有效降低入射光在表面的反射率。
[权利要求 2] —种制备如权利要求 1所述基于消除反射和双层 P/N异质结的三维仿生 复合材料的方法, 其特征是, 包括以下步骤:
(1) 首先用一定浓度的碱液, 在搅拌的条件下, 对硅片进行各向异 性刻蚀, 在硅片表面形成紧密排列的四方锥形貌;
(2) 然后将步骤 (1) 刻蚀后的硅片进行亲水处理, 在其表面生长 Ti 0 2晶种, 并置于马弗炉内煅烧一段吋间后自然冷却;
(3) 再将步骤 (2) 中所得到的表面具有 TiO 2晶种的硅片置于反应 釜中, 采用水热合成的方法在硅锥的侧壁上生长 TiO 2纳米棒;
(4) 最后在步骤 (3) 中得到的 TiO 2纳米棒上沉积 PANI纳米粒子, 得到 Si/TiO 2/PANI三维仿生复合材料。
[权利要求 3] 根据权利要求 2所述的制备方法, 其特征在于: 步骤 (1) 所述的碱液 为氢氧化钾、 四甲基氢氧化铵、 氢氧化钠、 氨水、 EDP (乙二胺、 邻 苯二酚和水的混合溶液), 碱液的 PH=12~14, 刻蚀温度 50~90 °C, 刻 蚀吋间 5~60 min, 搅拌的方式为机械搅拌磁力搅拌。
[权利要求 4] 根据权利要求 2所述的制备方法, 其特征在于: 步骤 (2) 所述的亲水 处理操作为将步骤 (1) 得到的硅片置于 ΝΗ 3Η 20、 Η 2Ο ^ΠΗ 20的 混合溶液中, 体积比为 1:1:5, 温度为 90 °C, 加热吋间 30 min。
[权利要求 5] 根据权利要求 2所述的制备方法, 其特征在于: 步骤 (2) 所述的生长
ΤΪΟ 2晶种条件为将亲水处理后的硅片浸于浓度为 0.05~1 mol/L的钛酸 四丁酯的异丙醇溶液中进行提拉或旋涂, 提拉的速度是 1~10 mm/s , 重复提拉 5~30次, 旋涂的速度是 500~7000转 /min, 最后将上述样品在 450-500 °。马弗炉中煅烧约 30~60 min。
[权利要求 6] 根据权利要求 2所述的制备方法, 其特征在于: 步骤 (3) 所述的水热 合成条件为 80~200 °C的温度下, 在装有 10~20 mL去离子水、 6~17 mL浓盐酸 (质量分数 37%) 和 0.5 5
mL钛酸四丁酯的反应釜中处理 2-19 h, 然后取出样品用氮气吹干。
[权利要求 7] 根据权利要求 2所述的制备方法, 其特征在于: 步骤 (4) 所述的在 Ti
0 2纳米棒上沉积 PANI纳米粒子, 是指利用原位氧化法在 TiO 2纳米棒 上组装 PANI导电高分子颗粒, 反应条件为: 配制 lOO mL的 0.2~0.5 mol/L苯胺盐酸盐溶液, 并加入 3~7 g过硫酸铵和 4 g PVP (聚乙烯吡喏 烷酮 k-30) , 混合均匀; 将面积为 1.5 cm X 1.0 cm的表面生长有 TiO 2 纳米棒的硅片置于反应液中, 保持室温下搅拌 l~8 h, 得到 Si/Ti0 2 /PANI三维仿生复合材料。
[权利要求 8] 如权利要求 1所述一种基于消除反射和双层 P/N异质结的三维仿生复 合材料用作光催化降解有机污染物的应用, 其特征在于: 将 1.5 cm X 1.0 cm面积的 Si/TiO 2/PANI三维仿生复合材料放置于 5 mL的亚甲基蓝 溶液, 浓度为 1.0x10 -5 mol/L, 然后将其置于暗处 l h让其达到吸附-解 吸平衡, 之后用光源对溶液进行光照, 对亚甲基蓝进行降解。
同吋, 该种仿生复合材料并不局限于应用在光催化降解有机污染物, 也适合于其他光催化领域, 及光电转化器件、 太阳能电池等领域。
PCT/CN2016/081792 2015-12-28 2016-05-12 一种基于消除反射和双层p/n异质结的三维仿生复合材料及应用 WO2017113564A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2016380409A AU2016380409B2 (en) 2015-12-28 2016-05-12 Three-dimensional bionic composite material based on eliminating reflection and double-layer P/N heterojunction, and application thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201511002798.4A CN105665013B (zh) 2015-12-28 2015-12-28 一种基于消除反射和双层p/n异质结的三维仿生复合材料及应用
CN201511002798.4 2015-12-28

Publications (1)

Publication Number Publication Date
WO2017113564A1 true WO2017113564A1 (zh) 2017-07-06

Family

ID=56297850

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/081792 WO2017113564A1 (zh) 2015-12-28 2016-05-12 一种基于消除反射和双层p/n异质结的三维仿生复合材料及应用

Country Status (3)

Country Link
CN (1) CN105665013B (zh)
AU (1) AU2016380409B2 (zh)
WO (1) WO2017113564A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110120307A (zh) * 2019-04-03 2019-08-13 江汉大学 一种复合材料的制备方法、复合材料及超级电容器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005000734A2 (en) * 2002-10-04 2005-01-06 The Ohio State University Research Foundation Method of forming nanostructures on ceramics and the ceramics formed
DE102004029303A1 (de) * 2004-06-17 2006-01-12 Ems-Chemie Ag Nanoskalige Titandioxid-Sole, Verfahren zu dessen Herstellung und seine Verwendung
CN1731596A (zh) * 2005-07-28 2006-02-08 吉林大学 导电态聚苯胺/纳米晶体TiO2异质结二极管及制备方法
CN101050304A (zh) * 2007-04-21 2007-10-10 大连理工大学 氧化钛/聚苯胺纳米纤维杂化材料及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102219178B (zh) * 2010-04-15 2013-01-16 中国科学院合肥物质科学研究院 二氧化钛聚苯胺复合纳米管阵列及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005000734A2 (en) * 2002-10-04 2005-01-06 The Ohio State University Research Foundation Method of forming nanostructures on ceramics and the ceramics formed
DE102004029303A1 (de) * 2004-06-17 2006-01-12 Ems-Chemie Ag Nanoskalige Titandioxid-Sole, Verfahren zu dessen Herstellung und seine Verwendung
CN1731596A (zh) * 2005-07-28 2006-02-08 吉林大学 导电态聚苯胺/纳米晶体TiO2异质结二极管及制备方法
CN101050304A (zh) * 2007-04-21 2007-10-10 大连理工大学 氧化钛/聚苯胺纳米纤维杂化材料及其制备方法

Also Published As

Publication number Publication date
CN105665013B (zh) 2017-12-26
CN105665013A (zh) 2016-06-15
AU2016380409B2 (en) 2018-08-23
AU2016380409A1 (en) 2017-08-17

Similar Documents

Publication Publication Date Title
WO2017113563A1 (zh) 一种基于层级组装的硅-二氧化钛-聚吡咯三维仿生复合材料及应用
CN106944116A (zh) 氮化碳/二氧化钛纳米片阵列异质结光催化剂及制备方法
CN108767113B (zh) 一种TiO2纳米柱-Au纳米粒子复合阵列、制备方法及其应用
CN103007912B (zh) 一种以云母为载体的一维纳米二氧化钛光催化剂及其制备方法
CN101976611A (zh) TiO2纳米线阵列薄膜光阳极及其制备方法
CN110368968B (zh) NiFe-LDH/Ti3C2/Bi2WO6纳米片阵列及制法和应用
WO2017193412A1 (zh) 一种消反射异质结复合涂层及其制备方法
CN102208487B (zh) 铜铟硒纳米晶/硫化镉量子点/氧化锌纳米线阵列纳米结构异质结的制备方法
CN105609580A (zh) 一种基于p/n异质结协同消反射性能的硅/二氧化钛三维复合材料及应用
CN103157477A (zh) 氧化镍掺杂钛酸钠-二氧化钛复合光催化剂及其制备方法
CN102134091B (zh) 水热法制备微米结构氧化锌的方法
CN105714377A (zh) 一种纳米花状wo3薄膜光阳极的制备方法
CN102222572A (zh) 纳米线阵列/纳米晶多孔膜复合结构光阳极的制备方法
CN104475116A (zh) 二氧化锡纳米线修饰的三氧化二铁纳米棒阵列的制备方法
CN110350053B (zh) CuO纳米颗粒修饰ZnO纳米线阵列的光电材料、制备及应用
CN105542456B (zh) 一种基于三元层级组装的硅‑二氧化钛‑聚苯胺复合材料及应用
CN107706248A (zh) 一种硅纳米结构异质结太阳电池及其制备方法
CN108970612B (zh) 一种制备Ag负载ZnO纳米棒阵列的方法
CN108579775B (zh) 一种磷酸银/银/二氧化钛纳米花复合材料及其制备方法与应用
CN107732014B (zh) 一种基于三元无机体型异质结薄膜的太阳电池及其制备方法
CN105642367A (zh) 一种以单晶硅为载体的消反射双层p/n异质结的层级复合材料及应用
WO2017113564A1 (zh) 一种基于消除反射和双层p/n异质结的三维仿生复合材料及应用
CN109513454B (zh) 一种通过库仑作用制备MoS2/C3N4复合光催化剂的方法
CN111755256A (zh) 一种三维ZnO/CuO纳米异质分级结构光电极及其制备方法
CN110743535A (zh) 一种氧化钨同质结复合光催化剂及其制备方法和应用

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016380409

Country of ref document: AU

Date of ref document: 20160512

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16880372

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16880372

Country of ref document: EP

Kind code of ref document: A1