CN105618153A - 一种基于层级组装的硅-二氧化钛-聚吡咯三维仿生复合材料及应用 - Google Patents

一种基于层级组装的硅-二氧化钛-聚吡咯三维仿生复合材料及应用 Download PDF

Info

Publication number
CN105618153A
CN105618153A CN201510994514.8A CN201510994514A CN105618153A CN 105618153 A CN105618153 A CN 105618153A CN 201510994514 A CN201510994514 A CN 201510994514A CN 105618153 A CN105618153 A CN 105618153A
Authority
CN
China
Prior art keywords
tio
silicon
ppy
titanium dioxide
polypyrrole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510994514.8A
Other languages
English (en)
Other versions
CN105618153B (zh
Inventor
石刚
李赢
倪才华
王大伟
何飞
迟力峰
吕男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangnan University
Original Assignee
Jiangnan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangnan University filed Critical Jiangnan University
Priority to CN201510994514.8A priority Critical patent/CN105618153B/zh
Priority to US15/748,760 priority patent/US10888855B2/en
Priority to PCT/CN2016/081791 priority patent/WO2017113563A1/zh
Publication of CN105618153A publication Critical patent/CN105618153A/zh
Application granted granted Critical
Publication of CN105618153B publication Critical patent/CN105618153B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/06Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/19Catalysts containing parts with different compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • B01J37/0217Pretreatment of the substrate before coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • B01J37/0228Coating in several steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0244Coatings comprising several layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/12Oxidising
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • C01G23/053Producing by wet processes, e.g. hydrolysing titanium salts
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • C30B29/22Complex oxides
    • C30B29/32Titanates; Germanates; Molybdates; Tungstates
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/54Organic compounds
    • C30B29/58Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/60Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/60Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
    • C30B29/66Crystals of complex geometrical shape, e.g. tubes, cylinders
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B7/00Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions
    • C30B7/10Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions by application of pressure, e.g. hydrothermal processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/30604Chemical etching
    • H01L21/30608Anisotropic liquid etching
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/10Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising heterojunctions between organic semiconductors and inorganic semiconductors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/10Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising heterojunctions between organic semiconductors and inorganic semiconductors
    • H10K30/15Sensitised wide-bandgap semiconductor devices, e.g. dye-sensitised TiO2
    • H10K30/151Sensitised wide-bandgap semiconductor devices, e.g. dye-sensitised TiO2 the wide bandgap semiconductor comprising titanium oxide, e.g. TiO2
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24
    • B01J31/38Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24 of titanium, zirconium or hafnium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/10Particle morphology extending in one dimension, e.g. needle-like
    • C01P2004/16Nanowires or nanorods, i.e. solid nanofibres with two nearly equal dimensions between 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/32Treatment of water, waste water, or sewage by irradiation with ultraviolet light
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Electromagnetism (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Geometry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)
  • Dispersion Chemistry (AREA)
  • Hydrology & Water Resources (AREA)
  • Water Supply & Treatment (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)

Abstract

本发明涉及一种基于层级组装的硅-二氧化钛-聚吡咯三维仿生复合材料,依以下方法制备:(1)首先用一定浓度的碱液,对硅片进行各向异性刻蚀,在其表面形成紧密排列的四方锥形貌;(2)然后将步骤(1)刻蚀后的硅片进行亲水处理,在其表面生长二氧化钛晶种,并置于马弗炉内煅烧;(3)再将步骤(2)中所得到的表面具有二氧化钛晶种的硅片置于反应釜中,采用水热法在硅锥的侧壁上生长二氧化钛纳米棒;(4)最后在步骤(3)中得到的二氧化钛纳米棒上沉积聚吡咯纳米粒子。本发明所涉及的三维仿生复合材料兼具优异消反射和高效分离光生电荷的能力,可以应用到光催化、光电转化器件和太阳能电池等领域。

Description

一种基于层级组装的硅-二氧化钛-聚吡咯三维仿生复合材料及应用
技术领域
本发明涉及一种三元层级组装的复合材料即硅-二氧化钛-聚吡咯复合材料,同时此类复合物可以用作光催化材料和光电转化材料,属于光电材料技术领域。
背景技术
自然界中的太阳光作为一种可再生的绿色能源引起人们的广泛关注,在将太阳能转化为可用能源过程中,寻找高效转化材料十分重要。二氧化钛是一种重要的光电转化材料,同时具有催化活性高、稳定性好、高羟基自由基产率、光照不腐蚀等优点,在防腐涂料、污水净化、抗菌杀菌等方面表现出尤为突出的应用前景。然而,二氧化钛禁带宽度较大,光生电荷易复合,有效利用太阳光的波长范围小等缺点,限制了其应用。
聚吡咯具有良好的环境稳定性,在可见光区有很强烈的吸收,是强的供电子体和优良的空穴传输材料。当两者有效的进行复合,接触界面处将会形成异质结,不仅能提高光生电荷的分离效率,而且可将复合材料的光谱响应范围,从而提高太阳光的利用率。专利CN101955665A公开了一种聚吡咯颗粒/二氧化钛纳米管列阵的复合材料制备方法;专利CN102350317A公开了一种聚吡咯/二氧化钛复合吸附剂及其制备、应用和再生方法;专利CN102600907A公开了一种聚吡咯敏化的中空状二氧化钛纳米光催化剂及其制备方法;以上一定程度解决了二氧化钛禁带宽度大、光谱响应范围小,光生电子-空穴对易复合等问题。然而,聚吡咯/二氧化钛复合物仍然存在着有序性较差、易团聚、回收利用率较低,光吸收率不高等问题,限制了聚吡咯/二氧化钛复合物的推广应用。
发明内容
本发明目的是为了克服传统的二氧化钛/聚吡咯纳米复合物无序、易团聚、难回收和光电转化效率低等缺点,提供了一种基于层级组装的硅-二氧化钛-聚吡咯三维仿生复合材料,兼具良好的消反射性能和高效分离光生电荷能力,提高了材料的光电转化效率,表现出优异的光催化能力,同时该复合材料以单晶硅为载体,有利于材料的回收再利用。
按照本发明提供的技术方案,所述一种基于层级组装的硅-二氧化钛-聚吡咯三维仿生复合材料,即是硅/二氧化钛/聚吡咯(Si/TiO2/PPY)。Si是表面具有锥形微结构的100型单晶硅,为P型半导体,硅锥结构形状为四方锥,高度为4~10μm,紧密排列;TiO2是金红石相的TiO2纳米棒,为N型半导体,四棱柱形状,高度为500~4000nm,直径为40~250nm,有序垂直生长在硅锥的侧壁上。PPY是聚吡咯纳米粒子,为P型半导体,粒径为10~60nm,均匀生长在TiO2纳米棒表面。Si/TiO2/PPY三维仿生复合材料中的Si与TiO2界面、TiO2与PPY界面形成双P/N异质结,可以高效分离光生电荷,同时具有三维的仿生复合结构,可以有效降低入射光在表面的反射率。
所制备的一种基于层级组装的硅-二氧化钛-聚吡咯三维仿生复合材料的制备方法,其特征是,包括以下步骤:
(1)首先用一定浓度的碱液,在搅拌的条件下,对硅片进行各向异性刻蚀,在硅片表面形成紧密排列的四方锥形貌;
(2)然后将步骤(1)刻蚀后的硅片进行亲水处理,在其表面生长TiO2晶种,并置于马弗炉内煅烧一段时间后自然冷却;
(3)再将步骤(2)中所得到的表面具有TiO2晶种的硅片置于反应釜中,采用水热合成的方法在硅锥的侧壁上生长TiO2纳米棒;
(4)最后在步骤(3)中得到的TiO2纳米棒上沉积导电PPY纳米粒子,得到三维Si/TiO2/PPY。
进一步的,步骤(1)所述的碱液为氢氧化钾、四甲基氢氧化铵、氢氧化钠、氨水、EDP(乙二胺、邻苯二酚和水的混合溶液),碱液的PH=12~14,刻蚀温度50~90℃,刻蚀时间5~60min,搅拌的方式为机械搅拌磁力搅拌。
进一步的,步骤(2)所述的亲水处理操作为将步骤(1)得到的硅片置于NH3H2O、H2O2和H2O的混合溶液中,体积比为1:1:5,温度为90℃,加热时间30min。
进一步的,步骤(2)所述的生长TiO2晶种条件为将亲水处理后的硅片浸于浓度为0.05~1mol/L的钛酸四丁酯的异丙醇溶液中进行提拉或旋涂,提拉的速度是1~10mm/s,重复提拉5~30次,旋涂的速度为500~7000转/分钟,最后将上述样品在450~500℃马弗炉中煅烧约30~60min。
进一步的,步骤(3)所述的水热合成条件为80~200℃的温度下,在装有10~20mL去离子水、6~17mL浓盐酸(质量分数37%)和0.5~5mL钛酸四丁酯的反应釜中处理2~19h,然后取出样品用氮气吹干。
进一步的,步骤(4)所述的在TiO2纳米棒上沉积导电PPY纳米粒子,是指利用原位氧化法在TiO2纳米棒上沉积PPY导电高分子颗粒,反应条件为:将0.01~0.06g的FeCl3、50~150uL吡咯、5~10mL超纯水置于烧杯中,构成反应溶液。将面积为1.5cm×1.0cm的表面生长有TiO2纳米棒的硅片置于反应液中,保持室温下搅拌10~30min,得到Si/TiO2/PPY三维仿生复合材料。
进一步的,三维Si/TiO2/PPY复合材料用作光催化降解有机污染物的应用,将1.5cm×1.0cm面积的三维Si/TiO2/PPY复合材料放置于5mL的亚甲基蓝溶液,浓度为1.0×10-5mol/L,然后将其置于暗处1h让其达到吸附-解吸平衡,之后用光源对溶液进行光照,对亚甲基蓝进行降解。同时,该种复合材料并不局限于应用在光催化降解有机污染物,也适合于其他光催化领域,及光电转化器件、太阳能电池等领域。
本发明具有以下优越性:
(1)在硅锥表面层级有序组装TiO2纳米棒和PPY纳米粒子,形成三维的仿生复合结构,具有优异的消反射性能。
(2)硅锥侧壁与TiO2纳米棒接触及TiO2纳米棒与PPY纳米粒子接触,能形成双层纳米P/N异质结结构,有效的分离光生载流子,减小电子-空穴对的复合,具有优异的光电转化效率。
(3)三维的Si/TiO2/PPY复合材料具有高的比表面积,增加了表面有效的催化活性点,在光催化降解污染物方面具有一定的使用价值。
(4)该种三维的Si/TiO2/PPY复合材料制备方法简便,条件温和易控,对反应设备要求低,同时使用过程中利于回收再使用,满足大规模生产的要求。
附图说明
图1为实施例2中经过碱液各向异性刻蚀的单晶硅扫描电镜图片;
图2为实施例2中在硅锥表面组装TiO2纳米棒扫描电镜图片。
图3为实施例2中在硅锥表面层级组装得到的三维Si/TiO2/PPY复合材料扫描电镜图片。
具体实施方式
实施例1:
步骤一:硅锥的制备
配置pH=13的KOH溶液100mL,向其中添加25mL异丙醇,将硅片置于溶液中,70℃下刻蚀30min,在刻蚀的过程中用机械搅拌的方式连续搅拌。刻蚀完后,硅片用蒸馏水冲洗,然后用氮气吹干。
步骤二:硅锥侧壁生长TiO2晶种
将步骤一中得到的呈硅锥结构的硅片置于NH3H2O、H2O2和H2O的混合溶液中,体积比为1:1:5,温度为80℃,加热时间30min。然后,浸于浓度为0.075mol/L的钛酸四丁酯的异丙醇溶液中进行提拉,提拉的速度是2mm/s,重复提拉20次,最后将上述样品在450℃马弗炉中煅烧约30min。
步骤三:TiO2晶种诱导TiO2纳米棒的制备
将步骤二中得到的表面附有TiO2晶种的硅片置于水热条件下进行生长TiO2纳米棒。水热合成条件为130℃的温度下,在装有10mL去离子水、10mL浓盐酸(质量分数37%)和0.5mL钛酸四丁酯的反应釜中处理8h,然后取出样品用氮气吹干。
步骤四:TiO2纳米棒表面原位制备PPY纳米粒子
利用原位氧化法在步骤三中所得到的TiO2纳米棒上沉积PPY纳米粒子。反应条件为:将0.03g的FeCl3、112.8uL吡咯、6mL超纯水置于烧杯中,构成反应溶液;将面积为1.5cm×1.0cm表面生长有TiO2纳米棒的硅片置于反应液中,保持室温下搅拌25min,反应结束后,将样品取出后用大量水冲洗,得到三维Si/TiO2/PPY复合材料。
上述得到的三维Si/TiO2/PPY复合材料中,PPY纳米粒子的平均粒径是35nm,TiO2纳米棒的平均直径为83nm,平均高度为818nm,硅锥的平均高度4.1μm。。通过紫外漫反射测试可知,Si/TiO2/PPY层级复合材料表现出优秀的消反射性能,光反射率为9%;通过光电流测试,Si/TiO2/PPY层级复合材料的光电流约分别为纯TiO2纳米棒和纯PPY的11倍和7倍;通过模拟太阳光环境,Si/TiO2/PPY层级复合材料光催化降解亚甲基蓝,结合紫外分光光度计考察亚甲基蓝浓度随时间的变化,在6.5h内将染料亚甲基蓝完全降解,且降解效率高于纯TiO2纳米棒和纯PPY。
实施例2:
步骤一:硅锥的制备
配置pH=13的KOH溶液100mL,向其中添加25mL异丙醇,将硅片置于溶液中,70℃下刻蚀30min,在刻蚀的过程中用机械搅拌的方式连续搅拌。刻蚀完后,硅片用蒸馏水冲洗,然后用氮气吹干。
步骤二:硅锥侧壁生长TiO2晶种
将步骤一中得到的呈硅锥结构的硅片置于NH3H2O、H2O2和H2O的混合溶液中,体积比为1:1:5,温度为80℃,加热时间30min。然后,浸于浓度为0.075mol/L的钛酸四丁酯的异丙醇溶液中进行提拉,提拉的速度是2mm/s,重复提拉20次,最后将上述样品在450℃马弗炉中煅烧约30min。
步骤三:TiO2晶种诱导TiO2纳米棒的制备
将步骤二中得到的表面附有TiO2晶种的硅片置于水热条件下进行生长TiO2纳米棒。水热合成条件为130℃的温度下,在装有10mL去离子水、10mL浓盐酸(质量分数37%)和0.5mL钛酸四丁酯的反应釜中处理8h,然后取出样品用氮气吹干。
步骤四:TiO2纳米棒表面原位制备PPY纳米粒子
利用原位氧化法在步骤三中所得到的TiO2纳米棒上沉积PPY纳米粒子。反应条件为:将0.03g的FeCl3、112.8uL吡咯、6mL超纯水置于烧杯中,构成反应溶液;将面积为1.5cm×1.0cm表面生长有TiO2纳米棒的硅片置于反应液中,保持室温下搅拌15min,反应结束后,将样品取出后用大量水冲洗,得到三维Si/TiO2/PPY复合材料。
上述得到的三维Si/TiO2/PPY复合材料中,PPY纳米粒子的平均粒径是19nm,TiO2纳米棒的平均直径为83nm,平均高度为818nm,硅锥的平均高度4.1μm。。通过紫外漫反射测试可知,Si/TiO2/PPY层级复合材料表现出优秀的消反射性能,光反射率为6%;通过光电流测试,Si/TiO2/PPY层级复合材料的光电流约分别为纯TiO2纳米棒和纯PPY的15倍和10倍;通过模拟太阳光环境,Si/TiO2/PPY层级复合材料光催化降解亚甲基蓝,结合紫外分光光度计考察亚甲基蓝浓度随时间的变化,在5.5h内将染料亚甲基蓝完全降解,且降解效率高于纯TiO2纳米棒和纯PPY。
实施例3:
步骤一:硅锥的制备
配置pH=14的KOH溶液100mL,向其中添加25mL异丙醇,将硅片置于溶液中,50℃下刻蚀15min,在刻蚀的过程中用机械搅拌的方式连续搅拌。刻蚀完后,硅片用蒸馏水冲洗,然后用氮气吹干。
步骤二:硅锥侧壁生长TiO2晶种
将步骤一中得到的呈硅锥结构的硅片置于NH3H2O、H2O2和H2O的混合溶液中,体积比为1:1:5,温度为90℃,加热时间30min。然后,浸于浓度为0.1mol/L的钛酸四丁酯的异丙醇溶液中进行提拉,提拉的速度是2mm/s,重复提拉10次,最后将上述样品在500℃马弗炉中煅烧约30min。
步骤三:TiO2晶种诱导TiO2纳米棒的制备
将步骤二中得到的表面附有TiO2晶种的硅片置于水热条件下进行生长TiO2纳米棒。水热合成条件为120℃的温度下,在装有10mL去离子水、10mL浓盐酸(质量分数37%)和0.5mL钛酸四丁酯的反应釜中处理8h,然后取出样品用氮气吹干。
步骤四:TiO2纳米棒表面原位制备PPY纳米粒子
利用原位氧化法在步骤三中所得到的TiO2纳米棒上沉积PPy纳米粒子。反应条件为:将0.03g的FeCl3、112.8uL吡咯、6mL超纯水置于烧杯中,构成反应溶液;将面积为1.5cm×1.0cm表面生长有TiO2纳米棒的硅片置于反应液中,保持室温下搅拌10min,反应结束后,将样品取出后用大量水冲洗,得到三维Si/TiO2/PPY复合材料。
上述得到的三维Si/TiO2/PPY复合材料中,PPY纳米粒子的平均粒径是12nm,TiO2纳米棒的平均直径为83nm,平均高度为818nm,硅锥的平均高度3.3μm。。通过紫外漫反射测试可知,Si/TiO2/PPY层级复合材料表现出优秀的消反射性能,光反射率为4%;通过光电流测试,Si/TiO2/PPY层级复合材料的光电流约分别为纯TiO2纳米棒和纯PPY的21倍和14倍;通过模拟太阳光环境,Si/TiO2/PPY层级复合材料光催化降解亚甲基蓝,结合紫外分光光度计考察亚甲基蓝浓度随时间的变化,在5h内将染料亚甲基蓝完全降解,且降解效率高于纯TiO2纳米棒和纯PPY。
以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的人员来说,在不脱离本发明构思的前提下,还可做出很多简单推演或替换,都应当视为属于本发明的保护范围。

Claims (8)

1.一种基于层级组装的硅-二氧化钛-聚吡咯三维仿生复合材料,其特征在于:以单晶硅(Si)、二氧化钛(TiO2)和聚吡咯(PPY)有序层级组成(Si/TiO2/PPY),Si是表面具有锥形微结构的100型单晶硅,为P型半导体,硅锥结构形状为四方锥,高度为4~10μm,紧密排列;TiO2是金红石相的TiO2纳米棒,为N型半导体,四棱柱形状,高度为500~4000nm,直径为40~250nm,有序垂直生长在硅锥的侧壁上。PPY是聚吡咯纳米粒子,为P型半导体,粒径为10~60nm,均匀生长在TiO2纳米棒表面。Si/TiO2/PPY三维仿生复合材料中的Si与TiO2界面、TiO2与PPY界面形成双P/N异质结,可以高效分离光生电荷,同时具有三维的仿生复合结构,可以有效降低入射光在表面的反射率。
2.一种制备如权利要求1所述一种基于层级组装的硅-二氧化钛-聚吡咯三维仿生复合材料的方法,其特征是,包括以下步骤:
(1)首先用一定浓度的碱液,在搅拌的条件下,对硅片进行各向异性刻蚀,在硅片表面形成紧密排列的四方锥形貌;
(2)然后将步骤(1)刻蚀后的硅片进行亲水处理,在其表面生长TiO2晶种,并置于马弗炉内煅烧一段时间后自然冷却;
(3)再将步骤(2)中所得到的表面具有TiO2晶种的硅片置于反应釜中,采用水热合成的方法在硅锥的侧壁上生长TiO2纳米棒;
(4)最后在步骤(3)中得到的TiO2纳米棒上沉积导电PPY纳米粒子,得到三维仿生Si/TiO2/PPY。
3.根据权利要求2所述的制备方法,其特征在于:步骤(1)所述的碱液为氢氧化钾、四甲基氢氧化铵、氢氧化钠、氨水、EDP(乙二胺、邻苯二酚和水的混合溶液),碱液的PH=12~14,刻蚀温度50~90℃,刻蚀时间5~60min,搅拌的方式为机械搅拌磁力搅拌。
4.根据权利要求2所述的制备方法,其特征在于:步骤(2)所述的亲水处理操作为将步骤(1)得到的硅片置于NH3H2O、H2O2和H2O的混合溶液中,体积比为1:1:5,温度为90℃,加热时间30min。
5.根据权利要求2所述的制备方法,其特征在于:步骤(2)所述的生长TiO2晶种条件为将亲水处理后的硅片浸于浓度为0.05~1mol/L的钛酸四丁酯的异丙醇溶液中进行提拉或旋涂,提拉的速度是1~10mm/s,重复提拉5~30次,旋涂的速度是500~7000转/min,最后将上述样品在450~500℃马弗炉中煅烧约30~60min。
6.根据权利要求2所述的制备方法,其特征在于:步骤(3)所述的水热合成条件为80~200℃的温度下,在装有10~20mL去离子水、6~17mL浓盐酸(质量分数37%)和0.5~5mL钛酸四丁酯的反应釜中处理2~19h,然后取出样品用氮气吹干。
7.根据权利要求2所述的制备方法,其特征在于:步骤(4)所述的在TiO2纳米棒上沉积导电PPY纳米粒子,是指利用原位氧化法在TiO2纳米棒上沉积PPY导电高分子颗粒,反应条件为:将0.01~0.06g的FeCl3、50~150uL吡咯、5~10mL超纯水置于烧杯中,构成反应溶液。将面积为1.5cm×1.0cm的表面生长有TiO2纳米棒的硅片置于反应液中,保持室温下搅拌10~60min,得到Si/TiO2/PPY三维仿生复合材料。
8.如权利要求1所述一种基于层级组装的硅-二氧化钛-聚吡咯三维仿生复合材料用作光催化降解有机污染物的应用,其特征在于:将1.5cm×1.0cm面积的三维Si/TiO2/PPY复合材料放置于5mL的亚甲基蓝溶液,浓度为1.0×10-5mol/L,然后将其置于暗处1h让其达到吸附-解吸平衡,之后用光源对溶液进行光照,对亚甲基蓝进行降解。同时,该种复合材料并不局限于应用在光催化降解有机污染物,也适合于其他光催化领域,及光电转化器件、太阳能电池等领域。
CN201510994514.8A 2015-12-28 2015-12-28 一种基于层级组装的硅‑二氧化钛‑聚吡咯三维仿生复合材料及应用 Active CN105618153B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201510994514.8A CN105618153B (zh) 2015-12-28 2015-12-28 一种基于层级组装的硅‑二氧化钛‑聚吡咯三维仿生复合材料及应用
US15/748,760 US10888855B2 (en) 2015-12-28 2016-05-12 Silicon-titanium dioxide-polypyrrole three-dimensional bionic composite material based on hierarchical assembly and use thereof
PCT/CN2016/081791 WO2017113563A1 (zh) 2015-12-28 2016-05-12 一种基于层级组装的硅-二氧化钛-聚吡咯三维仿生复合材料及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510994514.8A CN105618153B (zh) 2015-12-28 2015-12-28 一种基于层级组装的硅‑二氧化钛‑聚吡咯三维仿生复合材料及应用

Publications (2)

Publication Number Publication Date
CN105618153A true CN105618153A (zh) 2016-06-01
CN105618153B CN105618153B (zh) 2017-12-26

Family

ID=56033726

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510994514.8A Active CN105618153B (zh) 2015-12-28 2015-12-28 一种基于层级组装的硅‑二氧化钛‑聚吡咯三维仿生复合材料及应用

Country Status (3)

Country Link
US (1) US10888855B2 (zh)
CN (1) CN105618153B (zh)
WO (1) WO2017113563A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110694604A (zh) * 2019-10-11 2020-01-17 陕西科技大学 一种TiO2-PPy超浸润光催化复合材料及其制备方法
CN112374562A (zh) * 2020-10-30 2021-02-19 哈尔滨工业大学 一种用于拦截水体污染中易挥发有机物的聚吡咯光热薄膜的制备方法及应用
CN112680748A (zh) * 2020-12-01 2021-04-20 江南大学 一种具有仿生结构的A/B/Si三元复合硅基光电极及其制备方法
CN115722264A (zh) * 2022-11-18 2023-03-03 昆明理工大学 一种二氧化钛/PFNBr复合光催化剂、制备方法及其应用

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113213538B (zh) * 2020-01-21 2022-05-10 中国科学院上海硅酸盐研究所 一种五氧化二钽量子点及其制备方法
CN112675859A (zh) * 2021-01-28 2021-04-20 华南农业大学 一种泡沫镍基二氧化钛纳米复合材料及其制备方法和应用
CN115466981A (zh) * 2022-09-20 2022-12-13 上海电力大学 一种分解水制氢用光阳极材料及其制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005000734A2 (en) * 2002-10-04 2005-01-06 The Ohio State University Research Foundation Method of forming nanostructures on ceramics and the ceramics formed
DE102004029303A1 (de) * 2004-06-17 2006-01-12 Ems-Chemie Ag Nanoskalige Titandioxid-Sole, Verfahren zu dessen Herstellung und seine Verwendung
CN101555629A (zh) * 2009-04-22 2009-10-14 上海第二工业大学 单晶硅基片表面自组装磺酸基硅烷-二氧化钛复合膜的制备方法
CN104677767A (zh) * 2015-03-04 2015-06-03 浙江大学 聚吡咯/二氧化钛频率型薄膜qcm气敏传感器及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005000734A2 (en) * 2002-10-04 2005-01-06 The Ohio State University Research Foundation Method of forming nanostructures on ceramics and the ceramics formed
DE102004029303A1 (de) * 2004-06-17 2006-01-12 Ems-Chemie Ag Nanoskalige Titandioxid-Sole, Verfahren zu dessen Herstellung und seine Verwendung
CN101555629A (zh) * 2009-04-22 2009-10-14 上海第二工业大学 单晶硅基片表面自组装磺酸基硅烷-二氧化钛复合膜的制备方法
CN104677767A (zh) * 2015-03-04 2015-06-03 浙江大学 聚吡咯/二氧化钛频率型薄膜qcm气敏传感器及其制备方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110694604A (zh) * 2019-10-11 2020-01-17 陕西科技大学 一种TiO2-PPy超浸润光催化复合材料及其制备方法
CN110694604B (zh) * 2019-10-11 2023-09-12 巨鹏(肇庆)信息科技有限公司 一种TiO2-PPy超浸润光催化复合材料及其制备方法
CN112374562A (zh) * 2020-10-30 2021-02-19 哈尔滨工业大学 一种用于拦截水体污染中易挥发有机物的聚吡咯光热薄膜的制备方法及应用
CN112680748A (zh) * 2020-12-01 2021-04-20 江南大学 一种具有仿生结构的A/B/Si三元复合硅基光电极及其制备方法
CN115722264A (zh) * 2022-11-18 2023-03-03 昆明理工大学 一种二氧化钛/PFNBr复合光催化剂、制备方法及其应用

Also Published As

Publication number Publication date
US20190009261A1 (en) 2019-01-10
CN105618153B (zh) 2017-12-26
US10888855B2 (en) 2021-01-12
WO2017113563A1 (zh) 2017-07-06

Similar Documents

Publication Publication Date Title
CN105618153A (zh) 一种基于层级组装的硅-二氧化钛-聚吡咯三维仿生复合材料及应用
CN102513079B (zh) 具有高效光电活性的可控晶形二氧化钛与石墨烯复合材料及其制备方法
Lei et al. Fabrication, characterization, and photoelectrocatalytic application of ZnO nanorods grafted on vertically aligned TiO2 nanotubes
CN104069844B (zh) 一种分级三维多孔石墨烯/二氧化钛光催化剂及其制备方法
CN101976611B (zh) TiO2纳米线阵列薄膜光阳极及其制备方法
CN103073057B (zh) 一种分级混晶TiO2微纳米材料、制备方法及其用途
CN105609580A (zh) 一种基于p/n异质结协同消反射性能的硅/二氧化钛三维复合材料及应用
CN102674451A (zh) 一种{001}面暴露二氧化钛纳米晶的制备方法
CN105964233B (zh) 一种消反射异质结复合涂层及其制备方法
CN106540673A (zh) 一种三维TiO2/ZnO异质结阵列的合成方法
CN101916670A (zh) 一种TiO2纳米花薄膜光阳极及其制备方法
CN103101972A (zh) 一种生物模版法制备三维介孔二氧化钛光催化剂的方法
CN102486967B (zh) 复合有序多孔纳米二氧化钛薄膜的制备方法
CN104383902A (zh) 一种钛酸盐纳米片光催化膜材料及其制备方法和应用
CN105542456A (zh) 一种基于三元层级组装的硅-二氧化钛-聚苯胺复合材料及应用
CN102320653B (zh) 各向异性刻蚀陷光v-型微-纳结构二氧化钛材料
CN105642367B (zh) 一种以单晶硅为载体的消反射双层p/n异质结的层级复合材料及应用
CN104628262A (zh) 火柴状TiO2纳米颗粒和纳米棒复合阵列的制备方法
CN107583642A (zh) 石墨烯量子点负载Ag‑TiO2纳米阵列的制备方法
CN104368324A (zh) 介孔石墨烯/二氧化钛纳米复合材料的制备方法和应用
CN105665013B (zh) 一种基于消除反射和双层p/n异质结的三维仿生复合材料及应用
CN104888746A (zh) 一种高比表面积、高光催化性能二氧化钛纳米带薄膜的制备方法
CN109289887A (zh) 一种氮、钒共掺杂二氧化钛/钽酸铋z型异质结光催化剂的制备方法及应用
CN101719419A (zh) 染料敏化电池结构中的背电极及其制备方法
CN105967278B (zh) 一种硅掺杂二氧化钛纳米线光电极的制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant