CN104069844B - 一种分级三维多孔石墨烯/二氧化钛光催化剂及其制备方法 - Google Patents

一种分级三维多孔石墨烯/二氧化钛光催化剂及其制备方法 Download PDF

Info

Publication number
CN104069844B
CN104069844B CN201410353104.0A CN201410353104A CN104069844B CN 104069844 B CN104069844 B CN 104069844B CN 201410353104 A CN201410353104 A CN 201410353104A CN 104069844 B CN104069844 B CN 104069844B
Authority
CN
China
Prior art keywords
titanium dioxide
graphene
preparation
photocatalyst
dimensional porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201410353104.0A
Other languages
English (en)
Other versions
CN104069844A (zh
Inventor
阳晓宇
卢毅
张晓平
苏宝连
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan University of Technology WUT
Original Assignee
Wuhan University of Technology WUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan University of Technology WUT filed Critical Wuhan University of Technology WUT
Priority to CN201410353104.0A priority Critical patent/CN104069844B/zh
Publication of CN104069844A publication Critical patent/CN104069844A/zh
Application granted granted Critical
Publication of CN104069844B publication Critical patent/CN104069844B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

本发明提供一种分级三维多孔结构石墨烯/二氧化钛光催化剂及其制备方法。该光催化剂由三维石墨烯骨架和纳米二氧化钛颗粒组成,石墨烯具有大孔结构,二氧化钛为介孔二氧化钛,大孔和介孔相互连通,纳米二氧化钛颗粒分散于石墨烯纳米片上,纳米二氧化钛微球表面包覆有石墨烯纳米片,所述纳米二氧化硅微球填充于所述石墨烯的大孔内。这种三维结构的光催化剂不仅能防止石墨烯片层的堆叠,而且能良好分散二氧化钛颗粒,且具有很高的比表面积。样品用于光催化降解亚甲基蓝,25分钟就几乎降解完全。本发明的制备方法为光催化剂的制备提供了一种新的思路,在能源和环境领域都有潜在的应用价值。

Description

一种分级三维多孔石墨烯/二氧化钛光催化剂及其制备方法
技术领域
本发明涉及环境和能源领域,具体的说是涉及一种分级三维多孔石墨烯/二氧化钛光催化剂及其制备方法。
背景技术
二氧化钛(TiO2)半导体光催化剂广泛应用于有机染料降解、光催化裂解水,从上个世纪70年代以来受到国内外研究热潮。然而目前TiO2光催化剂发展的瓶颈在于光的有效吸收效率较低、电子-空穴易复合。因此导致TiO2光催化寿命短,光催化活性不高。为了克服以上的缺陷,近年来,国内外研究者们将二维石墨烯材料与TiO2复合形成复合材料来改善其光催化性能。二维石墨烯用于光催化研究有明显的优点:首先石墨烯是目前公认的良好的电子受体和传递体,能有效阻止电子和空穴的复合;其次,石墨烯和光催化剂(如TiO2)的复合物能增加光的吸收和拓宽光吸收的范围,从而更有效的利用太阳光。比如,早期研究者们[ACS nano,2009,4,380-386]将P25与氧化石墨烯水热,得到石墨烯/P25复合材料,这种复合材料增强电荷的有效分离、扩展了光吸收范围,还对染料具有强的吸附性能。Hwang等人[Small,2012,8,1038-1048]将P25换成表面带正电荷的TiO2纳米溶胶,与石墨烯混合得到石墨烯/TiO2层状复合材料,该复合材料展示了高的光催化性能。武汉理工大学余家国教授[J.Am.Chem.Soc.,2012,134,6575-6578]率先尝试使用石墨烯/二硫化钼负载TiO2纳米颗粒并用于光催化产氢的研究,结果显示,二维石墨烯纳米片作为活性吸附位点,它的存在让体系的产氢速率提高了近4倍。然而,二维石墨烯材料由于石墨烯纳米片的强π-π键、疏水界面和范德华力作用,石墨烯纳米片部分会发生团聚和重叠,由此会牺牲掉部分二维石墨烯界面结构,从而影响光催化剂材料的性能。
发明内容
本发明的目的在于提供一种光催化剂吸附性能和光催化性能增强的分级三维多孔石墨烯/二氧化钛光催化剂及其制备方法。
一种分级三维多孔石墨烯/二氧化钛光催化剂,所述石墨烯/二氧化钛光催化复合材料由三维石墨烯骨架和纳米二氧化钛颗粒组成,所述石墨烯具有大孔结构,所述二氧化钛为介孔二氧化钛,大孔和介孔相互连通,所述纳米二氧化钛颗粒分散于石墨烯纳米片上,所述纳米二氧化钛微球表面包覆有石墨烯纳米片,所述纳米二氧化硅微球填充于所述石墨烯的大孔内,所述二氧化钛为纯锐钛矿型晶体。
一种分级三维多孔石墨烯/二氧化钛光催化剂的制备方法,它包括以下步骤:
1)使用Hummers法制备氧化石墨,将氧化石墨溶于去离子水中,超声分散得到氧化石墨烯水溶液;
2)将钛酸异丙酯、十六胺加入到无水乙醇中并添加氯化钾水溶液,室温下搅拌混合溶液16~20小时,过滤反应溶液,然后用乙醇反复洗涤,干燥获得二氧化钛前驱体;
3)取步骤2)反应得到的二氧化钛前驱体溶于乙醇中,超声分散,然后加入步骤1)制备得到的氧化石墨烯水溶液和氨水得到混合溶液,将所述混合溶液超声分散后转移至水热反应釜中,120~180℃下反应12‐18小时;
4)将步骤3)反应产物冷却至室温后,过滤并用无水乙醇洗涤,然后冷冻干燥;
5)将干燥后的样品在惰性气氛的管式炉中500℃热处理2~3小时得到分级三维多孔石墨烯/二氧化钛光催化剂。
上述方案中,步骤2)中,十六胺:去离子水:氯化钾:无水乙醇:钛酸异丙酯的摩尔比为(0.25~1.0):(3-8):(5.5×10-3):236.5:1.0。
上述方案中,步骤1)中的氧化石墨烯水溶液浓度为1~4mg/ml。
上述方案中,步骤3)中的混合溶液pH为9~12。
上述方案中,步骤3)中,乙醇:氧化石墨烯水溶液的体积比为1~5。
上述方案中,步骤3)中,超声时间为10~30分钟,反应温度为180℃,反应时间16小时。
上述方案中,步骤5)中,样品在氩气保护的管式炉中热处理2小时得到分级三维多孔石墨烯/二氧化钛光催化剂。
上述方案中,步骤3)中二氧化钛前驱体:氧化石墨烯的质量比在2:1~8:1之间。
本发明的有益效果为:
1)本发明采用高浓度的氧化石墨烯、二氧化钛前驱体为反应物,以乙醇和水为溶剂,水热条件一步原位合成具有大孔-介孔结构的三维石墨烯/二氧化钛光催化剂,其比表面积、吸附性能和光催化性能都有显著提升。
2)本发明解决了现有石墨烯/二氧化钛光催化剂及其制备方法中,石墨烯容易团聚成多层、二维结构的光催化剂吸附性能差、二氧化钛易团聚以及光催化效果不佳等问题,提供一种方便快捷的制备大孔-介孔结构的三维石墨烯/二氧化钛光催化剂的方法,以三维石墨烯为骨架,三维石墨烯相互连通的孔结构能有效固定二氧化钛纳米颗粒,极大增强了二氧化钛光催化剂与石墨烯纳米片的有效接触面积,同时也能抑制二氧化钛尺寸的增长,增强了光催化剂的吸附性能和光催化性能。
附图说明
图1是实施例1、对比例1及对比例2得到的分级三维多孔石墨烯/二氧化钛光催化剂的XRD图谱;
图2是实施例1分级三维多孔石墨烯/二氧化钛光催化剂的SEM照片;
图3是实施例1分级三维多孔石墨烯/二氧化钛光催化剂的TEM照片;
图4是对比例4所制备样品的SEM照片;
图5是实施例1分级三维多孔石墨烯/二氧化钛光催化剂的氮气吸附-脱附图;
图6是实施例1所制备样品与P25和对比例3纯二氧化钛在光照时间下对亚甲基蓝的光催化降解曲线对比图;
图7是对比例1所制备样品与P25和对比例3纯二氧化钛在光照时间下对亚甲基蓝的光催化降解曲线对比图;
图8是对比例2所制备样品与P25和对比例3纯二氧化钛在光照时间下对亚甲基蓝的光催化降解曲线对比图。
具体实施方式
为了更好地理解本发明,下面结合实施例进一步阐明本发明的内容,但本发明的内容不仅仅局限于下面的实施例。
实施例1:
本实施例提供一种分级三维多孔石墨烯/二氧化钛光催化剂的制备方法,它包括以下步骤:
1)使用Hummers法制备氧化石墨,将氧化石墨溶于去离子水中,超声2小时得到浓度为3mg/ml的氧化石墨烯水溶液;
2)取7.95g十六胺加入到800ml无水乙醇和3.20ml氯化钾(0.1M)的水溶液中,超声10分钟,在剧烈搅拌下将18.10ml钛酸异丙酯缓慢滴加到混合溶液中,反应18小时,过滤反应溶液,然后用乙醇反复洗涤3次,干燥获得二氧化钛前驱体;
3)将0.50g二氧化钛前驱体溶于10ml乙醇中,超声分散10分钟,然后依次加入50ml氧化石墨烯溶液(3mg/ml)和500μl氨水得到混合溶液,混合溶液的pH值为9‐12;将所述混合溶液超声分散10分钟后转移至水热反应釜中,180℃下反应16小时;
4)然后将反应产物冷却至室温后,过滤并用无水乙醇洗涤数次后冷冻干燥处理;
5)最后将干燥后的样品在氩气气氛保护的管式炉中500℃热处理2小时得到分级三维多孔石墨烯/二氧化钛光催化剂。
从图1的XRD图谱中可以看出,本发明所制备的二氧化钛为纯锐钛矿型晶体,石墨烯与二氧化钛复合之后并没有影响到二氧化钛晶型,说明石墨烯的存在并不影响二氧化钛的形成,且各种实施例下所制备的二氧化钛晶型几乎无差别。在2θ=11°左右的氧化石墨的特征衍射峰消失,则说明样品经过热处理后,氧化石墨已经被还原为石墨烯。
图2是所制备样品的扫描电镜图片,从图2可以看出,三维石墨烯骨架孔径在数百纳米到几微米之间,二氧化钛介孔微球被包覆在以石墨烯为骨架的微米级的大孔中,同时,在二氧化钛微球表面也包覆有形状不一的石墨烯纳米片,这种三维结构非常有助于二氧化钛光降解时电子的传输,增大了电子-空穴的分离时间。
从图3的透射图中,我们可以看出二氧化钛大面积的与石墨烯接触,填充于微米级的孔径之间,增强了二氧化钛纳米颗粒的分散性。这种三维结构同时还具有比二维材料更大的比表面积,从图5的氮气吸附-脱附曲线可以看出,纯二氧化钛比表面积只有79m2g-1,组装成三维结构之后,比表面积增大到139m2g-1
实施例2:
本实施例与实施例1大致相同,不同之处在于步骤2)中的氯化钾水溶液的体积为5.49ml,即H2O:Ti的摩尔比为5:1时:水含量的增加使其二氧化钛纳米颗粒粒径逐渐变小,由于石墨烯三维骨架的伸缩性,其包覆结构依然使得其光催化效率较P25高。
实施例3:
本实施例与实施例1大致相同,不同之处在于步骤2)中的十六胺的质量为:3.975g时,即十六胺:钛的摩尔比由实施例1的0.5:1降为0.25:1时,部分二氧化钛纳米颗粒开始相互粘结在一起,与三维石墨烯孔道结构形成包覆,光催化性能与实施例1相似。
实施例4:
本实施例与实施例1大致相同,不同之处在于步骤3)中的氧化石墨烯水溶液浓度为2mg/ml,其结构性能及光催化性能与实施例1相似。
对比例1:
本对比例与实施例1大致相同,不同之处在于反应物二氧化钛前驱体质量为0.10g。产物测试结果与实施例1相似。图1中由于二氧化钛含量较低,所以其XRD图谱中的峰强较弱,由于二氧化钛含量太低而其光催化性能较低。
对比例2:
本对比例与实施例1大致相同,不同之处在于反应物二氧化钛前驱体质量为2.00g。产物测试结果与实施例1相似。
对比例3:
同时制备对照的二氧化钛,具体步骤如下:
取7.47g十六胺加入到480ml无水乙醇和2.625ml氯化钾(0.1M)的水溶液中,超声10分钟,置于磁力搅拌器上室温搅拌,将10.8ml钛酸异丙酯缓慢滴加到混合溶液中,反应18小时,过滤反应溶液,然后用乙醇反复洗涤3次,干燥获得二氧化钛前驱体;将0.50g二氧化钛前驱体溶于10ml无水乙醇中,超声分散10分钟,然后依次滴加50ml去离子水和500μl氨水到混合溶液中,再超声分散10分钟后转移至水热反应釜中,180℃下反应16小时;然后将反应产物冷却至室温后,过滤并用无水乙醇洗涤数次后冷冻干燥处理。最后将干燥后的样品在马弗炉中500℃热处理2小时得到二氧化钛光催化剂。
为了阐述本发明的效果,将本发明制备的分级三维多孔石墨烯/二氧化钛光催化剂应用于亚甲基蓝的光催化降解,同时对比单独制备的对比例3中的二氧化钛光催化剂和商业P25催化剂的光催化性能。具体步骤为:配置1×10-5M的亚甲基蓝溶液,取10mg本发明实施例1所制备的光催化剂并加入到100ml亚甲基蓝溶液中。将此分散液置于暗处搅拌30分钟使亚甲基蓝达到吸附脱附平衡,然后转移至石英玻璃反应器。用300W的高压氙灯模拟太阳光,放置于离反应器10cm处。暗反应结束马上开启氙灯开始光降解过程。每隔一定时间取样,离心后取上清液用紫外-可见分光光度计测吸光度,从而得到各时间段亚甲基蓝的降解率。
图6为实施例1所制备的分级三维多孔石墨烯/二氧化钛光催化剂对亚甲基蓝的光催化降解图。从图6可以看出,在25分钟内,本发明所制备的三维结构光催化剂对亚甲基蓝的降解率几乎达到了100%,其降解性能超过了纯的二氧化钛和P25。图7是对比例1所制备的分级三维多孔石墨烯/二氧化钛光催化剂对亚甲基蓝的光催化降解图。从图7可以看出,在25分钟内,对比例1所制备的三维结构光催化剂对亚甲基蓝的降解率仅达到了60%,其降解性未能超过纯的二氧化钛和P25,这说明二氧化钛含量过低,也不利于其光催化性能的提升。图8是对比例2所制备的分级三维多孔石墨烯/二氧化钛光催化剂对亚甲基蓝的光催化降解图。对比例2配比中二氧化钛含量是实施例1的4倍,从图8可以看出,虽然二氧化钛的初始含量提升了,但是其光催化性能并没有相应提升,说明二氧化钛含量太高并不能完全的包覆于石墨烯三维孔道结构中,只有二氧化钛含量在一定的范围内时,其单位质量下的光催化效率是最高的,通过反复试验,我们得出
当二氧化钛前驱体:氧化石墨烯质量比在2:1~8:1之间时,其催化效率最佳,低于2:1时,二氧化钛含量偏低使得光催化效率较低;反之,当比值大于8:1时,其光催化效率并不能因二氧化钛含量上升而增强。
对比例4:
本对比例与实施例1大致相同,不同之处在于步骤2)中的氯化钾水溶液的体积为10.98ml,即H2O:Ti的摩尔比为10:1时:所制备的复合光催化剂中二氧化钛含量及其低下,原因是因为当H2O:Ti的摩尔比大于8:1时,如图4所示,其二氧化钛纳米颗粒粒径太小而无法形成二氧化钛微球,不能被大孔石墨烯骨架的孔道结构所包覆,其光催化效率较低。
对比例5:
本对比例与实施例1大致相同,不同之处在于步骤3)中的氧化石墨烯水溶液浓度为0.1mg/ml,当氧化石墨烯浓度太低时,形成的骨架孔道结构常常大于5μm甚至无法形成三维孔道结构,其包覆二氧化钛纳米颗粒效果非常差,石墨烯对二氧化钛光催化性能的提升作用非常有限。

Claims (3)

1.一种分级三维多孔石墨烯/二氧化钛光催化剂的制备方法,其特征在于,它包括以下步骤:
1)使用Hummers法制备氧化石墨,将氧化石墨溶于去离子水中,超声分散得到氧化石墨烯水溶液;
2)将钛酸异丙酯、十六胺加入到无水乙醇中并添加氯化钾水溶液,室温下搅拌混合溶液16~20小时,过滤反应溶液,然后用乙醇反复洗涤,干燥获得二氧化钛前驱体;
3)取步骤2)反应得到的二氧化钛前驱体溶于乙醇中,超声分散,然后加入步骤1)制备得到的氧化石墨烯水溶液和氨水得到混合溶液,将所述混合溶液超声分散后转移至水热反应釜中,120~180℃下反应12-18小时;
4)将步骤3)反应产物冷却至室温后,过滤并用无水乙醇洗涤,然后冷冻干燥;
5)将干燥后的样品在惰性气氛的管式炉中500℃热处理2~3小时得到分级三维多孔石墨烯/二氧化钛光催化剂,
其中,步骤2)中,氯化钾水溶液中的水为去离子水,十六胺:去离子水:氯化钾:无水乙醇:钛酸异丙酯的摩尔比为(0.25~1.0):(3-8):(5.5×10-3):236.5:1.0;步骤1)中的氧化石墨烯水溶液浓度为1~4mg/ml;步骤3)中的混合溶液pH为9~12;步骤3)中,乙醇:氧化石墨烯水溶液的体积比为1~5;步骤3)中二氧化钛前驱体:氧化石墨烯的质量比在2:1~8:1之间。
2.根据权利要求1所述的分级三维多孔石墨烯/二氧化钛光催化剂的制备方法,其特征在于:步骤3)中,超声时间为10~30分钟,反应温度为180℃,反应时间16小时。
3.根据权利要求1所述的分级三维多孔石墨烯/二氧化钛光催化剂的制备方法,其特征在于:步骤5)中,样品在氩气保护的管式炉中热处理2小时得到分级三维多孔石墨烯/二氧化钛光催化剂。
CN201410353104.0A 2014-07-23 2014-07-23 一种分级三维多孔石墨烯/二氧化钛光催化剂及其制备方法 Expired - Fee Related CN104069844B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410353104.0A CN104069844B (zh) 2014-07-23 2014-07-23 一种分级三维多孔石墨烯/二氧化钛光催化剂及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410353104.0A CN104069844B (zh) 2014-07-23 2014-07-23 一种分级三维多孔石墨烯/二氧化钛光催化剂及其制备方法

Publications (2)

Publication Number Publication Date
CN104069844A CN104069844A (zh) 2014-10-01
CN104069844B true CN104069844B (zh) 2017-02-01

Family

ID=51591682

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410353104.0A Expired - Fee Related CN104069844B (zh) 2014-07-23 2014-07-23 一种分级三维多孔石墨烯/二氧化钛光催化剂及其制备方法

Country Status (1)

Country Link
CN (1) CN104069844B (zh)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104368324A (zh) * 2014-11-20 2015-02-25 重庆交通大学 介孔石墨烯/二氧化钛纳米复合材料的制备方法和应用
CN104907018B (zh) * 2015-05-25 2017-03-01 齐鲁工业大学 一种三维钛酸/氧化石墨烯复合凝胶及其制备方法
CN107486110B (zh) * 2015-07-20 2019-01-22 重庆文理学院 一种高效降解亚甲基蓝的方法
CN105107528A (zh) * 2015-07-31 2015-12-02 武汉理工大学 一种三元复合光催化剂及其制备方法与应用
CN105251473B (zh) * 2015-10-28 2017-10-13 北京工业大学 一种结构可控的TiO2介孔类单晶微球‑石墨烯复合光催化剂、制备及应用
CN105576224B (zh) * 2015-10-30 2019-01-15 武汉理工大学 一种分级结构的板钛矿型氧化钛/石墨烯复合材料及其制备方法和应用
CN105749894A (zh) * 2016-04-10 2016-07-13 南昌航空大学 一种三维石墨烯-二氧化钛复合物光催化剂的制备方法
CN106215920A (zh) * 2016-08-29 2016-12-14 佛山市高明区尚润盈科技有限公司 一种多孔石墨烯负载二氧化钛复合材料及其制备方法
CN106698585B (zh) * 2016-12-27 2019-05-28 钟华 利用石墨烯改性纳米二氧化钛光触媒纤维网整治河涌黑臭水体的方法
CN106914268B (zh) * 2017-04-12 2019-04-19 威海千千鸟家纺有限公司 一种石墨烯复合纳米材料及其制备方法和应用
CN108295828B (zh) * 2018-03-01 2020-12-22 齐鲁工业大学 一种用于给水处理工艺中紫外-双氧水高级氧化的光催化剂及其制备方法
CN108582353A (zh) * 2018-04-28 2018-09-28 北京林业大学 一种释放负氧离子的木基复合材料及其制备方法
CN110676376A (zh) * 2019-08-27 2020-01-10 深圳大学 一种基于二维MXene材料的阻变存储器及制备方法
CN110560096B (zh) * 2019-09-27 2020-07-10 兰州理工大学 一种负载铋系异质结的氧化石墨烯光催化材料及其制备方法和应用
CN111111736B (zh) * 2019-12-31 2021-02-02 厦门捌斗新材料科技有限公司 一种三维氟氮掺杂石墨烯/二氧化钛复合材料及制备方法
CN111871236A (zh) * 2020-07-27 2020-11-03 四川春语环保科技有限公司 一种双膜联用膜分离与生物活性法处理废水系统
CN113145091A (zh) * 2021-02-22 2021-07-23 宝峰时尚国际控股有限公司 一种纳米复合光催化材料及其制备方法
CN113578043A (zh) * 2021-08-17 2021-11-02 厦门大学 一种石墨烯复合结构的气体吸附包
CN113994975B (zh) * 2021-10-29 2022-11-04 广东极客亮技术有限公司 多功能抗菌抗病毒复合材料及其应用
CN114940823A (zh) * 2022-04-29 2022-08-26 同济大学 一种二氧化钛/碳纳米管/石墨烯/聚二甲基硅氧烷复合材料及其制备与应用
CN114931936B (zh) * 2022-05-19 2024-01-30 西南科技大学 一种MoS2/TiO2/rGO复合光催化材料的制备及应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102167397A (zh) * 2011-03-02 2011-08-31 东莞宏威数码机械有限公司 制备多孔球形二氧化钛及光阳极的方法
KR101414539B1 (ko) * 2013-05-22 2014-07-04 인하대학교 산학협력단 그래핀/TiO2 복합체의 제조방법

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102167397A (zh) * 2011-03-02 2011-08-31 东莞宏威数码机械有限公司 制备多孔球形二氧化钛及光阳极的方法
KR101414539B1 (ko) * 2013-05-22 2014-07-04 인하대학교 산학협력단 그래핀/TiO2 복합체의 제조방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Mesoporous TiO2 Nanocrystals Grown in Situ on Graphene Aerogels for High Phtocatalysis and Lithium-Ion Batteries";Bocheng Qiu等;《J.Am.Chem.Soc.》;20140408;第136卷;第5852-5855页 *

Also Published As

Publication number Publication date
CN104069844A (zh) 2014-10-01

Similar Documents

Publication Publication Date Title
CN104069844B (zh) 一种分级三维多孔石墨烯/二氧化钛光催化剂及其制备方法
CN104084186B (zh) 一种石墨烯/二氧化钛光催化复合材料及其制备方法
Zhao et al. Facile preparation of a self-assembled artemia cyst shell–TiO2–MoS2 porous composite structure with highly efficient catalytic reduction of nitro compounds for wastewater treatment
Li et al. Preparation and characterization of WO3/TiO2 hollow microsphere composites with catalytic activity in dark
Li et al. A novel mesoporous single-crystal-like Bi2WO6 with enhanced photocatalytic activity for pollutants degradation and oxygen production
Shchukin et al. Template synthesis and photocatalytic properties of porous metal oxide spheres formed by nanoparticle infiltration
Wang et al. Magnetic (γ-Fe2O3@ SiO2) n@ TiO2 functional hybrid nanoparticles with actived photocatalytic ability
Pian et al. Pillared nanocomposite TiO2/Bi-doped hexaniobate with visible-light photocatalytic activity
Zhang et al. Fly ash cenospheres supported visible-light-driven BiVO4 photocatalyst: synthesis, characterization and photocatalytic application
Yao et al. ZnO/PVP nanocomposite spheres with two hemispheres
Dong et al. Fabrication of CeO2 nanorods for enhanced solar photocatalysts
Wang et al. Two-dimensional Sn 2 Ta 2 O 7 nanosheets as efficient visible light-driven photocatalysts for hydrogen evolution
Salari Efficient photocatalytic degradation of environmental pollutant with enhanced photocarrier separation in novel Z-scheme a-MnO2 nanorod/a-MoO3 nanocomposites
CN105233874B (zh) 一步法制备卟啉功能化纳米硫化锌的工艺
Jia et al. SnO2 core–shell microspheres with excellent photocatalytic properties
Kong et al. Rattle-type Au@ TiO2 hollow microspheres with multiple nanocores and porous shells and their structurally enhanced catalysis
Zhao et al. Visible light driven photocatalytic hydrogen evolution over CdS incorporated mesoporous silica derived from MCM-48
Chang et al. Regulation of the adsorption affinity of metal-organic framework MIL-101 via a TiO2 coating strategy for high capacity adsorption and efficient photocatalysis
Li et al. Hollow mesoporous SiO2–BiOBr nanophotocatalyst: Synthesis, characterization and application in photodegradation of organic dyes under visible-light irradiation
CN102614933B (zh) 一种贵金属银沉积-聚吡咯敏化的中空状二氧化钛纳米光催化剂及其制备方法
Lv et al. Fabrication of magnetically recyclable yolk-shell Fe 3 O 4@ TiO 2 nanosheet/Ag/gC 3 N 4 microspheres for enhanced photocatalytic degradation of organic pollutants
CN101855180A (zh) 光电极
Cai et al. Biotemplating synthesis of graphitic carbon-coated TiO2 and its application as efficient visible-light-driven photocatalyst for Cr6+ remove
Han et al. Chapter green nanotechnology: development of nanomaterials for environmental and energy applications
CN105618153B (zh) 一种基于层级组装的硅‑二氧化钛‑聚吡咯三维仿生复合材料及应用

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20170201

Termination date: 20170723

CF01 Termination of patent right due to non-payment of annual fee