CN105964233B - 一种消反射异质结复合涂层及其制备方法 - Google Patents

一种消反射异质结复合涂层及其制备方法 Download PDF

Info

Publication number
CN105964233B
CN105964233B CN201610316877.0A CN201610316877A CN105964233B CN 105964233 B CN105964233 B CN 105964233B CN 201610316877 A CN201610316877 A CN 201610316877A CN 105964233 B CN105964233 B CN 105964233B
Authority
CN
China
Prior art keywords
composite coating
transition metal
hetero
tio
metal oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610316877.0A
Other languages
English (en)
Other versions
CN105964233A (zh
Inventor
石刚
李赢
倪才华
东为富
张生文
白绘宇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangnan University
Original Assignee
Jiangnan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangnan University filed Critical Jiangnan University
Priority to CN201610316877.0A priority Critical patent/CN105964233B/zh
Priority to PCT/CN2016/082290 priority patent/WO2017193412A1/zh
Publication of CN105964233A publication Critical patent/CN105964233A/zh
Application granted granted Critical
Publication of CN105964233B publication Critical patent/CN105964233B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/87Light-trapping means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Catalysts (AREA)
  • Silicon Compounds (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明涉及光电材料技术领域,尤其涉及一种消反射异质结复合涂层及其制备方法,首先以碱液各向异性刻蚀单晶硅,得到微米尺寸的锥形结构;然后,通过软模板印刷技术,将硅锥结构转移到表面附有过渡金属氧化物的刚性基底表面,得到锥形过渡金属氧化物;最后,通过原位氧化物法,在锥形过渡金属氧化物表面生长导电高分子纳米粒子,形成刚性基底为载体的过渡金属氧化物、导电高分子复合涂层。由于该复合涂层具有微纳多级结构,因而具有优异消反射性能,同时过渡金属氧化物和导电高分子组装的界面处形成p‑n异质结,赋予复合涂层高效分离光生电荷的能力,提高光电转化效率。本发明的复合涂层高效利用入射光,作为光电材料具有较高的应用前景。

Description

一种消反射异质结复合涂层及其制备方法
技术领域
本发明涉及光电材料技术领域,尤其涉及一种消反射异质结复合涂层及其制备方法。
背景技术
由于光在界面反射的存在,大量入射到材料表面的太阳光被反射掉,一方面造成太阳能的损失,另一方面严重影响光电器件的使用效率。众所周知,高反射的根本原因为界面处折射率的突变。因此,为降低光在材料表面的反射,人们从减缓界面处折射率突变的相关工作入手。
目前,减缓折射率突变的手段主要由多层膜法和仿生法。虽然多层膜法易于制备,但是膜的成本和不同折射率膜的选择限制了其发展。仿生法是通过仿造自然界生物的特殊结构,进而达到生物所具有的某些特征。人们通过仿造飞蛾复眼,所构筑的结构具有折射率缓慢递变的特点,从而表现出优异的消反射性能。
近年来,科学家们通过碱液各向异性刻蚀单晶硅,得到硅锥结构,与飞蛾复眼结构相似,具有比较优异的消反射效果。但是目前所构筑的仿生锥形结构主要集中在单晶硅材料,没有将其拓展到其他单一材料或复合材料中,不利于仿生锥形材料的多功能化,限制了其应用范围。
发明内容
为解决上述技术问题,本发明的目的是提供一种具有高光电转化效率的消反射异质结复合涂层及其制备方法。
本发明提供一种消反射异质结复合涂层,为层级有序复合涂层,由下至上依次为刚性基底、锥形过渡金属氧化物、导电高分子纳米粒子。其中所述的刚性基底包括:硅片、氧化硅片、载玻片、石英片、锗片、砷化镓片、蓝宝石片、氮化铝陶瓷片、导电玻璃;过渡金属氧化物为n型半导体,包括:二氧化钛、氧化锌、氧化镉、二氧化锰、氧化镍、钴铁氧体;锥形结构为四棱锥,锥的侧面与底面夹角为54°,锥的高度为1~10μm;导电高分子为p型半导体,包括:聚苯胺、聚吡咯、聚噻吩、聚乙炔、聚苯撑、聚苯撑乙炔及其以上物质的衍生物;纳米粒子的粒径范围为5~100nm。三种材料在复合涂层中具有各自的作用:1)刚性基底为微纳材料的有序组装提供的稳定的环境,起到负载复合涂层的作用;2)过渡金属氧化物为微米尺寸的锥形结构,可以减缓空气到过渡金属氧化物表面的折射率变化,降低入射光在材料表面的反射率;3)导电聚合物为纳米粒子形貌,在微米尺寸的过渡金属氧化物锥形表面组装,可以进一步降低入射光在材料表面的反射率,同时,所选导电聚合物为p型半导体,与n型半导体的过渡金属氧化物接触,形成p-n异质结,有效分离光生电荷。
本发明还提供一种消反射异质结复合涂层的制备方法,依次包括以下步骤:
1)将单晶硅通过碱液刻蚀得到表面具有金字塔形貌的硅锥;
2)将聚二甲基硅氧烷(PDMS)的预聚物和固化剂浇铸在步骤1)的硅锥表面,加热固化后剥离PDMS模板;
3)将过渡金属盐进行水解,得到过渡金属氧化物溶胶;
4)将步骤2)的PDMS模板与表面附有过渡金属氧化物溶胶的基底紧密接触,待溶剂挥发后,剥离PDMS模板,经过高温煅烧,得到与模板互补的锥形过渡金属氧化物;
5)通过原位氧化法,在骤4)得到的锥形过渡金属氧化物表面自组装导电高分子纳米粒子,得到消反射异质结复合涂层。
具体的,所述步骤1)中,单晶硅的碱液刻蚀为在机械或磁力搅拌下30~100℃水浴锅加热不少于5min。
具体的,所述步骤2)中,预聚物和固化剂的质量比8:1~12:1,固化温度40~90℃,固化时间0.5~24h。
具体的,所述步骤3)中,过渡金属盐包括Ti4+盐、Zn2+盐、Cd2+盐、Mn2+盐、Ni2+盐、Co2+和Fe3+盐。
软压印技术是软光刻技术中一种衍生技术,也是软光刻技术中工艺过程相对简单适合应用到工业化大规模生产的一种生产工艺。通过软模板(PDMS)转移过渡金属氧化物锥形结构是典型的软压印过程。当PDMS软模板与表面附有过渡金属氧化物溶胶的刚性基底接触时,过渡金属氧化物溶胶就会充满模板结构的空隙中,待溶剂挥发后,得到与PDMS互补结构,即四棱锥结构。
本发明还提供一种消反射异质结复合涂层,在光催化降解有机染料中的应用。有机染料污染是典型的工业污染,过渡金属氧化物及导电高分子的光催化降解有机染料是解决污染的一种有效手段。一种消反射异质结复合涂层中微米尺寸的锥形过渡金属氧化物和纳米尺寸的导电高分子粒子所构成的微纳复合结构,可以有效的降低入射光在复合涂层表面的反射率,增加入射光的吸收,提高光催化降解有机染料的效率;同时,一种消反射异质结复合涂层中过渡金属氧化物和导电高分子组装界面处可以形成有效的p-n异质结,增加光生电荷的分离效率,可以进一步提高光催化降解有机染料的效率。
借由上述方案,本发明至少具有以下优点:
1.由于该复合涂层中同时含有微米尺寸的锥形过渡金属氧化物、纳米尺度的导电高分子粒子,因而具有优异的消反射性能,可以有效的增加光的吸收;
2.复合涂层中过渡金属氧化物和导电高分子接触界面处形成p-n异质结,赋予复合涂层高效分离光生电荷的能力,因而复合涂层具有高效光电转化效率;
3.软压印技术用于转移锥形结构,拓宽了锥形结构的使用范围,方法简便,条件温和,不需要高温和高压,成本低廉,适合大规模生产;
4.复合涂层实在消反射结构和p-n异质结协同作用下,充分利用入射光,提高涂层的光电转化效率,因此该复合涂层可以作为光电材料应用到光催化降解污染物、太阳能电池、光电器件中,具有实际的应用价值。
上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,并可依照说明书的内容予以实施,以下以本发明的较佳实施例并配合附图详细说明如后。
附图说明
图1为本发明中消反射异质结复合涂层的制备示意图;
图2为本发明中表面具有锥形结构单晶硅的扫描电镜图片;
图3为本发明中表面具有锥形结构TiO2的扫描电子显微镜照片;
图4为本发明中消反射异质结复合涂层PANI/TiO2/Si的扫描电子显微镜照片;
图5为本发明中消反射异质结复合涂层PANI/TiO2/Si与TiO2/Si、F-TiO2/Si样品的漫反射光谱对比图;
图6为本发明中消反射异质结复合涂层PANI/TiO2/Si与TiO2/Si样品的线性扫描伏安曲线对比图,
图中,PANI/TiO2/Si(dark)和PANI/TiO2/Si(dark)为样品在暗处的线性扫描伏安曲线,PANI/TiO2/Si(100mW/cm2)和PANI/TiO2/Si(100mW/cm2)为样品在光强为100mW/cm2的线性扫描伏安曲线;
图7为本发明中消反射异质结复合涂层PANI/TiO2/Si与TiO2/Si、F-TiO2/Si样品的光催化降解亚甲基蓝的效率对比图,
图中,C0和C分别为亚甲基蓝被催化降解过程中的初始浓度和某一时刻的浓度。
具体实施方式
下面结合附图和实施例,对本发明的具体实施方式作进一步详细描述。以下实施例用于说明本发明,但不用来限制本发明的范围。
实施例1
1)微米尺寸硅锥的制备:
将100型单晶硅片切割成1.5cm×1.0cm,分别在丙酮、氯仿、乙醇和水中超声清洗5min,除去硅片表面的污染;然后将清洁后的硅片置于浓度为1mol/L氢氧化钾的异丙醇溶液中,在机械搅拌的条件下,50℃的水浴中刻蚀30min,得到平均高度为3μm的硅锥,如图2所示。
2)PDMS软模板的制备:
将PDMS的预聚物与固化剂按10:1的质量比进行混合,浇筑在硅锥结构上,放在烘箱中75℃下固化2h,冷却后从刚性模板上剥离,得到与硅锥模板结构互补的PDMS软模板。
3)TiO2溶胶的制备:
首先,取5mL的钛酸正四丁酯与25mL的无水乙醇混合均匀;其次,将5mL的无水乙醇、5mL的水以及1.0mL的盐酸(37%)加入到上述溶液中;最后,在水浴温度为40℃的条件下搅拌1h,使其充分反应,得到二氧化钛(TiO2)溶胶。
4)锥形TiO2的制备:
首先将TiO2溶胶置于刚性基底表面;然后将上述制备的PDMS软模板与表面附有TiO2溶胶的硅片基底进行紧密接触,水平静置一定时间后在70℃的烘箱中干燥12h;待溶剂挥发完全之后,将PDMS软模板从基底上剥离,得到了锥形的TiO2结构,如图3所示;最后,在马弗炉中500℃煅烧3h除去烷氧基以及结构中的羟基。
5)消反射异质结复合涂层的制备:
配制2mol/L苯胺盐酸盐50mL,称量过硫酸铵5.711g溶解于50mL蒸馏水中,称量聚乙烯吡喏烷酮k-30(PVP)4g溶解于上述两种溶液的混合液中,将TiO2锥形结构置于此混合液中,短暂搅拌后在20℃下反应4h后取出,用蒸馏水冲洗再用氮气吹干,得硅片为刚性基底,表面附有聚苯胺(PANI)纳米粒子的TiO2锥形阵列,即消反射异质结复合涂层(PANI/TiO2/Si),如图4所示。
实施例2
消反射异质结复合涂层的表面反射率:
将实施例1中所得PANI/TiO2/Si进行消反射性能检测,利用积分球收集其在紫外、可见、近红外的反射光谱,结果见图5,其中表面无PANI纳米粒子的锥形TiO2(TiO2/Si)及平面TiO2作为对比样品(F-TiO2/Si)。PANI/TiO2/Si中的微米尺寸的锥体和纳米尺寸的粒子能够同时在长波和短波波段范围内实现好的消反射,反射率最低可达3%,远低于TiO2/Si及F-TiO2/Si样品的反射率。
实施例3
消反射异质结复合涂层的光电性能:
将实施例1中所得PANI/TiO2/Si进行光电流检测,结果见图6,其中表面无聚苯胺纳米粒子的锥形TiO2(TiO2/Si)作为对比样品。测试过程中以待测样品作为工作电极,表面镀铂的导电玻璃作为对电极,Ag/AgCl作为参比电极,0.3mol/L的Na2SO4作为电解液,氙灯为模拟太阳光光源。在无光的条件下,半导体中的电子被限制在价带中,因此回路中没有电子定向运动,无电流产生。当在工作电极上进行光照后,电子被激发从价带跃迁到导带,回路中有电流产生。在相同的光照条件下,随着电压的增加,PANI/TiO2/Si的光电流密度也随之增大,且始终大于TiO2/Si样品的光电流密度,具有优异的光电转化效率。
实施例4
消反射异质结复合涂层光催化降解有机染料:
将实施例1中所得PANI/TiO2/Si作为光催化剂,在模拟太阳光的条件下,催化降解亚甲基蓝溶液,结果见图7,其中表面无聚苯胺纳米粒子的锥形TiO2(TiO2/Si)及平面TiO2(F-TiO2/Si)作为对比样品。催化实验过程如下:配制浓度为1.0×10-5mol/L的亚甲基蓝溶液,将制备好的1.5cm×1.0cm的样品放置于石英烧杯中,加入染料5mL,然后将其置于暗处1h让其达到吸附-解吸平衡,之后用氙灯对暗置后的溶液在水浴下进行光照。每隔1h用紫外-可见光谱仪对样品进行一次检测,记录亚甲基蓝分子在663nm处吸收峰的最大值,通过不同时间下染料浓度的变化来表征样品的光催化性能,PANI/TiO2/Si复合涂层能在6h内将染料亚甲基蓝完全降解,且降解效率高于TiO2/Si及F-TiO2/Si样品。
以上所述仅是本发明的优选实施方式,并不用于限制本发明,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和变型,这些改进和变型也应视为本发明的保护范围。

Claims (3)

1.一种消反射异质结复合涂层,其特征在于:消反射异质结复合涂层为层级有序结构,由下到上分别为刚性基底、锥形过渡金属氧化物、导电高分子纳米粒子,复合涂层整体为微纳多级结构;
所述锥形为四棱锥结构,锥的侧面与底面夹角为54°,锥的高度为1-10μm;
所述过渡金属氧化物为n型半导体,为二氧化钛;
所述刚性基底为硅片;
所述导电高分子纳米粒子为p型半导体,为聚苯胺,纳米粒子的粒径范围为5~100nm;
所述消反射异质结复合涂层的制备方法,包括以下步骤:
1)将单晶硅通过碱液刻蚀得到表面具有金字塔形貌的硅锥;
2)将聚二甲基硅氧烷(PDMS)的预聚物和固化剂浇铸在步骤1)的硅锥表面,加热固化后剥离PDMS模板;
3)将Ti4+盐进行水解,得到TiO2的溶胶;
4)将步骤2)的PDMS模板与表面附有TiO2溶胶的基底紧密接触,待溶剂挥发后,剥离PDMS模板,经过高温煅烧,得到与模板互补的锥形TiO2
5)通过原位氧化法,在骤4)得到的锥形TiO2表面自组装聚苯胺纳米粒子,得到消反射异质结复合涂层。
2.根据权利要求1所述的一种消反射异质结复合涂层,其特征在于:所述步骤1)中,单晶硅的碱液刻蚀为在机械或磁力搅拌下30~100℃水浴锅加热不少于5min。
3.根据权利要求1所述的一种消反射异质结复合涂层,其特征在于:所述步骤2)中,预聚物和固化剂的质量比8:1~12:1,固化温度40~90℃,固化时间0.5~24h。
CN201610316877.0A 2016-05-12 2016-05-12 一种消反射异质结复合涂层及其制备方法 Active CN105964233B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201610316877.0A CN105964233B (zh) 2016-05-12 2016-05-12 一种消反射异质结复合涂层及其制备方法
PCT/CN2016/082290 WO2017193412A1 (zh) 2016-05-12 2016-05-17 一种消反射异质结复合涂层及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610316877.0A CN105964233B (zh) 2016-05-12 2016-05-12 一种消反射异质结复合涂层及其制备方法

Publications (2)

Publication Number Publication Date
CN105964233A CN105964233A (zh) 2016-09-28
CN105964233B true CN105964233B (zh) 2019-03-01

Family

ID=56991814

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610316877.0A Active CN105964233B (zh) 2016-05-12 2016-05-12 一种消反射异质结复合涂层及其制备方法

Country Status (2)

Country Link
CN (1) CN105964233B (zh)
WO (1) WO2017193412A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109622064B (zh) * 2018-12-17 2020-07-03 江南大学 一种双层三维仿生消反射复合材料及其制备方法
CN109972168A (zh) * 2019-04-16 2019-07-05 厦门大学 多重陷光纳米二氧化钛电极及其制备方法和应用
CN113937182A (zh) * 2020-07-13 2022-01-14 中国科学院理化技术研究所 一种具有柔性基底的尺寸可控的氧化锌基光电器件及其制备方法
WO2022116003A1 (zh) * 2020-12-01 2022-06-09 莱恩创科(北京)科技有限公司 一种光催化净化装置
CN112680748B (zh) * 2020-12-01 2022-03-25 江南大学 一种具有仿生结构的A/B/Si三元复合硅基光电极及其制备方法
CN113181935A (zh) * 2021-04-28 2021-07-30 合肥工业大学 一种MoS2/TiO2/Si金字塔阵列光电催化剂及制备方法
CN114043649B (zh) * 2021-11-05 2024-04-26 浙大城市学院 用于塑料微流控芯片制造的复合结构阳模、成型方法及其应用

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100577693B1 (ko) * 2004-05-20 2006-05-10 광주과학기술원 콜로이드 다중 입자층 구조를 이용한 반사 방지막과 이의제조방법
US8460547B2 (en) * 2007-07-18 2013-06-11 Nanyang Technological University Hollow porous microspheres
CN101465214B (zh) * 2009-01-09 2011-03-30 清华大学 一种无机/有机复合薄膜光电极及其制备方法
CN101891144A (zh) * 2010-06-23 2010-11-24 四川大学 具有纳米尺度图案的二氧化钛薄膜及其制备方法
CN102320653B (zh) * 2011-05-26 2014-05-14 南京工业大学 各向异性刻蚀陷光v-型微-纳结构二氧化钛材料
CN105542456B (zh) * 2015-12-28 2018-02-16 江南大学 一种基于三元层级组装的硅‑二氧化钛‑聚苯胺复合材料及应用

Also Published As

Publication number Publication date
WO2017193412A1 (zh) 2017-11-16
CN105964233A (zh) 2016-09-28

Similar Documents

Publication Publication Date Title
CN105964233B (zh) 一种消反射异质结复合涂层及其制备方法
Sun et al. An ordered and porous N-doped carbon dot-sensitized Bi 2 O 3 inverse opal with enhanced photoelectrochemical performance and photocatalytic activity
Lei et al. Fabrication, characterization, and photoelectrocatalytic application of ZnO nanorods grafted on vertically aligned TiO2 nanotubes
Yang et al. Light modulation and water splitting enhancement using a composite porous GaN structure
CN104923259B (zh) 贵金属/ZnIn2S4/TiO2纳米异质结构光催化剂及制备方法
Wang et al. Plasmon-enhanced layered double hydroxide composite BiVO4 photoanodes: layering-dependent modulation of the water-oxidation reaction
CN101844077B (zh) 具有可见光活性的碳氮改性纳米二氧化钛薄膜的制备方法
Liu et al. Co-modification with cost-effective nickel oxides and nickel sulfides on CuInS2 nanosheets photocathode for enhanced photoelectrochemical performance
CN105618153B (zh) 一种基于层级组装的硅‑二氧化钛‑聚吡咯三维仿生复合材料及应用
Dudem et al. Hierarchical Ag/TiO2/Si forest-like nano/micro-architectures as antireflective, plasmonic photocatalytic, and self-cleaning coatings
CN102610687A (zh) 一种p-CuO-n-ZnO太阳能电池及其制备方法
CN101768771B (zh) 圆柱形和圆筒形二氧化钛纳米管阵列及其制备方法与应用
CN109876867A (zh) 一种双金属-有机骨架/钒酸铋复合光电阳极材料的制备方法
CN106431005B (zh) 一种钛酸锶-二氧化钛复合纳米管阵列薄膜及其制备方法与应用
CN106391055A (zh) ZnO/CdS/CuS纳米阵列复合材料的制备方法
CN110016691A (zh) 一种WO3/Fe2O3/Mn3O4复合光阳极薄膜的制备方法
CN105609580A (zh) 一种基于p/n异质结协同消反射性能的硅/二氧化钛三维复合材料及应用
CN106684201B (zh) 一种氧化锌纳米棒/黑硅异质结纳米光电探测器及其制备方法
CN102569444B (zh) 广谱高吸收的太阳能电池结构及其制作方法
CN101665973A (zh) 电泳沉积高压电场辅助晶化制备纳米晶三元二氧化钛多孔电极的方法
CN109107569A (zh) 负载钯的二氧化钛基纳米异质结材料的原位合成方法
Hung et al. Spatially controllable plasmon enhanced water splitting photocurrent in Au/TiO 2–Fe 2 O 3 cocatalyst system
CN103050287B (zh) 一种转移并粘结二氧化钛纳米管阵列薄膜至导电玻璃表面制备光阳极的方法
CN105542456B (zh) 一种基于三元层级组装的硅‑二氧化钛‑聚苯胺复合材料及应用
Ju et al. Simultaneous improvement of absorption and separation efficiencies of Mo: BiVO4 photoanodes via nanopatterned SnO2/Au hybrid layers

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant