WO2022116003A1 - 一种光催化净化装置 - Google Patents

一种光催化净化装置 Download PDF

Info

Publication number
WO2022116003A1
WO2022116003A1 PCT/CN2020/133147 CN2020133147W WO2022116003A1 WO 2022116003 A1 WO2022116003 A1 WO 2022116003A1 CN 2020133147 W CN2020133147 W CN 2020133147W WO 2022116003 A1 WO2022116003 A1 WO 2022116003A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
photocatalytic reaction
photocatalyst
carrier layer
photocatalytic
Prior art date
Application number
PCT/CN2020/133147
Other languages
English (en)
French (fr)
Inventor
赵志伟
周晓林
王航波
Original Assignee
莱恩创科(北京)科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 莱恩创科(北京)科技有限公司 filed Critical 莱恩创科(北京)科技有限公司
Priority to PCT/CN2020/133147 priority Critical patent/WO2022116003A1/zh
Publication of WO2022116003A1 publication Critical patent/WO2022116003A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/12Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electromagnetic waves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/08Silica

Definitions

  • the invention relates to the technical field of environmental purification, in particular to an efficient photocatalytic purification device.
  • indoor pollutants may have more complex components than outdoor pollutants. Since indoor pollutants include all types of pollution elements of outdoor pollutants, including radioactive pollution, chemical pollution, biological pollution, physical pollution, etc., the types of pollutants can reach more than 1,000 kinds, and the indoor air flow state is not as good as outdoor, indoor air pollution Pollutants stay indoors for a long time and generate new pollutants under the physical action of photosynthesis and oxidation, which further deteriorates indoor air quality. Humans spend most of their day indoors, such as studying, working, resting and other activities. Therefore, the quality of indoor air quality has a more obvious impact on human health.
  • VOCs such as toluene, benzene, xylene, and formaldehyde at room temperature.
  • Cosmetics, deodorants, insecticides, and various detergents used in daily life also lead to the release of a large amount of VOCs into the atmosphere.
  • VOCs have complex components, and most of them are highly toxic, which will cause great harm to the human body, and a variety of VOCs will have cumulative effects when they act on the human body at the same time.
  • VOCs gaseous pollutants
  • many gaseous pollutants such as VOCs can be directly treated in the gas phase or separated from the liquid phase for oxidative degradation by means of photocatalysis, so that the pollution can be treated.
  • bacteria in the air will adhere to the surface of fine particles such as dust or PM 2.5 . If the bacteria are harmful bacteria, they are easy to enter with people's respiration when suspended in the air, especially in the air with high humidity. human body and pose a threat to people's health.
  • Photocatalytic materials are a class of semiconductor materials that have photocatalytic activity and can degrade various chemicals or kill bacteria under ultraviolet light or even visible light irradiation, including oxide photocatalytic materials such as TiO 2 . Under the action of light, TiO 2 can be used as a catalyst for photochemical reactions, react in the presence of H 2 O and O 2 , etc., to generate free radicals, destroy cell walls and viral protein shells, and thus play a role in disinfection and sterilization. In addition to sterilization, photocatalytic materials have purification effects on formaldehyde and VOCs (volatile organic compounds).
  • heterogeneous photocatalytic oxidation process using semiconducting oxides as catalysts can convert a variety of chemical substances (formaldehyde and various VOCs) are degraded into carbon dioxide, water and other small molecular chemicals at room temperature, which is easy to operate and control, and has low operating cost.
  • the research on the performance of TiO 2 photocatalyst mainly focuses on the modification of TiO 2 photocatalyst and the photocatalyst supporting and fixing technology.
  • the materials used for supporting TiO 2 at home and abroad mainly include silica gel, activated carbon, activated alumina, and glass fiber mesh. , hollow ceramic balls, sea sand, hollow glass beads, quartz glass tubes (sheets), ordinary (conductive) glass sheets, plexiglass, etc.
  • titanium dioxide photocatalysis technology focuses on the application of ambient photocatalysis technology. Including self-cleaning technology, anti-fog technology, antibacterial technology, wastewater purification and air purification. With the increasingly serious air pollution problem and the escalation of public concerns about air quality issues, the application of photocatalytic titanium dioxide in indoor air purifiers has developed rapidly. However, due to the nature of the photocatalytic reaction principle, the low efficiency of the photocatalytic reaction is the main problem of this type of technology and equipment. There are several reasons for the low efficiency of the photocatalytic reaction in principle.
  • the gas reaction material needs to stay in contact with the catalyst for a certain period of time, and only a part of the light in the natural light can excite titanium dioxide to generate free radicals and catalyze the effect.
  • the actual situation is At the same time, it is difficult to achieve the above optimal conditions.
  • the photocatalytic reaction efficiency is often relatively low.
  • the existing methods for improving the efficiency are mainly used, including improving the mixing efficiency of gas and catalyst, expanding the reaction volume, and increasing the power of the light source. Although these methods can improve the efficiency of the photocatalytic reaction to a certain extent, there are still some problems in the application process.
  • Patent Application No. CN104089348A discloses an air duct type photocatalytic air purifier.
  • the purifier mainly realizes the improvement of the reaction area by arranging two photocatalytic filters and the whole is in the form of a W-shaped tortuous back and forth.
  • this invention increases the contact area between the gas and the photocatalytic material, but expands the reaction area by increasing the internal structure, there are still problems such as increased resistance, increased production difficulty, and increased light efficiency, which cannot greatly improve the purification efficiency of the filter element. .
  • the patent with application number 201821737024.5 discloses a tunnel-type air cleaning reactor.
  • the photocatalyst honeycomb carrier is wavy and is installed obliquely inside the casing to form a connected serpentine air passage, and the space gradually shrinks along the direction of gas inflow.
  • the belt is installed in the middle of each serpentine airway to treat chemical pollutants such as formaldehyde and VOC in the air.
  • Some conventional methods of improving nano-titanium dioxide in other projects include increasing the power of the light source, increasing the fan to accelerate the circulation, etc., which often lead to some other problems such as increased energy consumption.
  • the problem of low efficiency of photocatalytic reaction brought about by the characteristics of photocatalytic reaction principle is the main problem of photocatalytic technology and equipment in air purification.
  • Light in a part of the wavelength band can excite titanium dioxide to generate free radicals and catalyze.
  • the contact between the reactant and the catalyst is insufficient, or the violet light irradiation is insufficient, the photocatalytic reaction efficiency is often low.
  • the existing technology mainly improves the structure of the photocatalytic air purification device, such as improving the air passage design to improve the mixing efficiency of gas and catalyst, increasing the reaction volume, increasing the power of the light source and other methods.
  • the improvement has improved the efficiency to a certain extent, but limited by the traditional mechanical structure and equipment space factors, the improvement effect of the overall purification efficiency of the existing purification devices containing titanium dioxide catalysts is limited.
  • the above problems exist not only in air purification, but also in devices that use the principle of photocatalysis to purify water (including sterilization, disinfection of organic matter degradation, ammonia nitrogen treatment, etc.).
  • the purpose of an embodiment of the present invention is to apply a new technical solution to improve the efficiency of photocatalytic purification.
  • the inventor found that the prior art is mainly the improvement of the purification device on the macroscopic structure. Although these improvements improve the purification effect to a certain extent, these improvements often bring about Other problems such as increased equipment volume, increased energy consumption, and increased manufacturing costs.
  • the inventors found that if the structure of the photocatalytic reaction layer, especially the microstructure of the photocatalytic reaction layer is improved, it is possible to greatly improve the reaction efficiency of the photocatalytic reaction.
  • the surface structure is improved accordingly, the contact area between the reactant and the catalyst can be better increased, the problem of insufficient contact area can be overcome, and the purification efficiency can be improved.
  • microscopic reflection can be added to the microstructure of the surface of the photocatalytic reaction layer, which can realize multiple utilization of light energy at the microscopic level.
  • the photocatalytic reaction layer with reflection function can enhance the number of reflections of light in the microstructure, phase Compared with the traditional untreated surface, the improved method can utilize the light source more efficiently, overcome the problem of low utilization rate of light energy, and improve the efficiency of the photocatalytic reaction.
  • the technical solution involved in an embodiment of the present invention provides a photocatalytic reaction layer, the photocatalytic reaction layer includes a carrier layer and a photocatalyst layer, the photocatalytic reaction layer has a specific microstructure, and the specific microstructure can increase the light
  • the surface area of the catalyst layer is increased, thereby increasing the carrying capacity of the catalyst, thereby expanding the contact area between the reactant and the catalyst, thereby improving the reaction efficiency.
  • the surface area of the surface-treated photocatalyst layer is at least 1.2 times that of the unsurface-treated carrier layer, and the photocatalyst layer is closely attached to the carrier layer.
  • the microstructure can also improve the utilization efficiency of light energy at the microscopic level by increasing the microscopic reflection, thereby further improving the reaction efficiency.
  • a photocatalytic purification device using a photocatalytic reaction layer with a specific microstructure is provided. With more catalysts and better light utilization efficiency, the photocatalytic purification device has higher photocatalytic reaction efficiency.
  • the same surface structure treatment can also be performed on other components of the air transport, storage, and purification devices, thereby increasing the reaction efficiency of the photocatalyst.
  • an ultraviolet lamp with photocatalytic reaction function is provided.
  • the outer side of the lamp shell of the ultraviolet lamp has been surface-treated, has a specific microstructure, and is attached with a nano-titanium dioxide photocatalyst coating, and the light source of the ultraviolet lamp is located in the lamp shell. within.
  • the specific microstructure can increase the surface area of the photocatalytic reaction layer, thereby increasing the carrying capacity of the catalyst, thereby expanding the contact area between the reactant and the photocatalyst. This technical solution can directly enable the ultraviolet lamp to have an efficient catalytic reaction function.
  • a photocatalytic water purification device is provided, and the photocatalytic water purification device adopts a photocatalytic reaction layer structure.
  • the device can be used as the main component or filler of the water purifier, and the same surface structure treatment can also be performed on other components related to water purification, transportation, storage, etc., thereby increasing the reaction efficiency of the photocatalyst.
  • the technical solution involved in one embodiment of the present invention can be widely used in various high-efficiency reaction devices based on the principle of photocatalysis.
  • a photocatalytic reaction layer in an embodiment of the present invention, includes a carrier layer and a photocatalyst layer, and a first side of the carrier layer supports the photocatalyst layer, characterized in that A microstructure is formed on the surface of the photocatalyst reaction layer to increase the surface area of the photocatalyst layer by more than 1.2 times.
  • the first side refers to the side that is in contact with the pollutant and undergoes a photocatalytic reaction.
  • the first side of the carrier layer or the bonding/adhering portion thereof with the photocatalyst layer has optical reflection properties.
  • the carrier layer further has an optically transparent property;
  • the structure of the second side of the carrier layer includes a sawtooth shape, a triangle shape, a wedge shape or a fan shape, and the structure of the second side is arranged to The incident light perpendicular to the photocatalyst layer is totally reflected on the structure.
  • the second side refers to the side away from the light source.
  • the structure of the second side is a sawtooth shape, and the apex angle ⁇ of the sawtooth shape needs to satisfy ⁇ 180-2*total reflection critical angle, and the total reflection critical angle is light at the critical angle of total reflection of the carrier layer with air.
  • the apex angle ⁇ of the zigzag is less than 98°; if the carrier layer is made of polymethyl methacrylate, the zigzag The apex angle ⁇ of the shape is less than 96°.
  • the carrier layer has optically transparent properties, and a reflective layer is attached/bonded on the second side of the carrier layer.
  • the microstructure is formed on the carrier layer and/or the photocatalyst layer, so that incident light perpendicular to the photocatalytic reaction layer can penetrate the specific microstructure Achieve more than 3 reflections.
  • the microstructure is configured such that incident light perpendicular to the photocatalytic reaction layer can be reflected at the specific microstructure more than 6 times.
  • the structural units of the specific microstructure are in an inverted "V” shape, the apex angle of the "V"-shaped structural units is 30 degrees, and the depth of the specific microstructure is 10- 15 microns.
  • the microstructure is a channel formed openly on the surface of the carrier layer, and the photocatalyst layer is attached to the inner wall of the channel.
  • the relationship between the angle between the channel and the carrier layer, the thickness H of the carrier layer, and the channel diameter r are consistent with Relationship.
  • the included angle ⁇ between the channel and the carrier layer, the thickness H of the carrier layer, and the channel diameter r have the following relationship: i) If the included angle ⁇ is 30°, then H>0.577 r; ii) if the included angle ⁇ is 45°, then H>1.5r; iii) if the included angle ⁇ is 60°, then H>3.464r; iii) if the included angle ⁇ is 75°, Then H>8.830r.
  • the depth of the specific microstructure is 5-100 times the thickness of the photocatalyst layer.
  • the refractive index of the carrier layer is greater than 2.6, and the thickness of the photocatalyst layer is an odd multiple of 32-39 nm.
  • the thickness of the photocatalyst layer is 50-400 nm.
  • the method of adhering the photocatalyst layer includes magnetron sputtering, spraying, dip coating, and roller coating.
  • the catalyst layer is made of titanium dioxide.
  • a transition layer is provided between the carrier layer and the photocatalyst layer, and the thickness of the transition layer is 50-250 nm.
  • a photocatalytic purification device comprising the photocatalytic reaction layer as described in any other embodiment, and a reaction cavity, the inner wall of the reaction cavity is provided with the a photocatalytic reaction layer; the photocatalytic purification device further includes a control system, a fan controlled by the control system, a pollutant sensor coupled to the control system, and an air inlet disposed on the reaction cavity , the air outlet.
  • the photocatalytic purification device of some embodiments further includes a baffle plate disposed inside the reaction chamber to form a tortuous loop gas passing through the photocatalyst layer between the air inlet and the air outlet. road.
  • the air inlet and the air outlet are arranged at the first end of the reaction chamber; the baffle is isolated between the air inlet and the air outlet and divides the reaction chamber into two parts communicating at the second end of the reaction chamber, thereby forming a loop air passage between the air inlet and the air outlet.
  • the baffle is provided with a plurality of sub-baffles to i) further bend the loop air passage, or ii) further extend the loop air passage .
  • the reaction cavity is filled with filler, and the surface of the filler is provided with the photocatalytic reaction layer; the filler is in a working state when the photocatalytic purification device is in a working state Suspended inside the reaction chamber.
  • an ultraviolet lamp which is characterized by comprising a lamp envelope and an ultraviolet light source at least partially enclosed in the lamp envelope; the lamp envelope applies a specific microstructure
  • the photocatalytic reaction layer is located on the outside of the lamp envelope.
  • an ultraviolet lamp comprising the photocatalytic reaction layer described in any of the other embodiments, and an ultraviolet light source at least partially enclosed in the photocatalytic reaction layer ;
  • the carrier layer is located between the photocatalyst layer and the ultraviolet light source.
  • an ultraviolet lamp is also provided, wherein a photocatalyst layer is attached to the surface of the lamp housing of the ultraviolet lamp, and the outer surface of the photocatalyst layer is formed with a zigzag shape, a triangle shape, a wedge shape or a fan shape.
  • a photocatalyst layer is attached to the surface of the lamp housing of the ultraviolet lamp, and the outer surface of the photocatalyst layer is formed with a zigzag shape, a triangle shape, a wedge shape or a fan shape.
  • One or more structures so that the light perpendicular to the lamp envelope is totally reflected on the structures.
  • the photocatalyst layer is made of titanium dioxide, and the apex angle of the zigzag structure is less than 133°.
  • FIG. 1 is a schematic view of the microstructure of a carrier layer with regularly or irregularly arranged convex or concave hole structures on the surface of an embodiment of the present application.
  • FIG. 2 is a schematic view of the microstructure of a carrier layer with various forms of gully structures arranged regularly or irregularly on the surface of an embodiment of the present application.
  • FIG. 3 is a schematic view of the microstructure of a gully structure with regular or irregular criss-cross arrangement on the surface of a carrier layer according to an embodiment of the present application.
  • FIG. 4 is a flow chart of a reaction device according to an embodiment of the present application.
  • FIG. 5 is a schematic diagram of the structure and position of a photocatalytic reaction layer and an optical path according to an embodiment of the present application.
  • FIG. 6 is a schematic diagram of the structure and position of a photocatalytic reaction layer and an optical path according to an embodiment of the present application.
  • FIG. 7 is a schematic diagram of the structure and position of a photocatalytic reaction layer according to an embodiment of the present application.
  • FIG. 8 is a schematic diagram of the thickness u of the photocatalyst layer and the depth h of the concave holes or grooves according to an embodiment of the present application.
  • FIG. 9 is a schematic diagram of an ultraviolet lamp with a photocatalytic reaction function according to an embodiment of the present application.
  • FIG. 10 is a schematic diagram of a multi-pass gas flow channel in a reaction chamber according to an embodiment of the present application.
  • FIG. 11 is a schematic diagram of a fluidized bed purification device according to an embodiment of the present application.
  • Figure 12 is a schematic diagram of the microstructure surface area ratio of one embodiment of the application.
  • FIG. 13 is a schematic diagram of a water purification device using a photocatalytic reaction layer according to an embodiment of the present application.
  • FIG. 14 is a schematic diagram of a carrier layer with inclined channels according to an embodiment of the present application.
  • FIG. 15 is a schematic diagram of a bottom layer of a carrier layer material having a total reflection structure according to an embodiment of the present application.
  • FIG. 16 is a schematic diagram of an anti-reflection principle according to an embodiment of the present application.
  • FIG. 17 is a schematic diagram of a process for fabricating a specific microstructure according to an embodiment of the present application.
  • FIG. 18 is a schematic diagram of the optical path of a “V” specific microstructure with an apex angle of 30° according to an embodiment of the present application.
  • FIG. 19 is a schematic diagram of a photocatalyst layer with a specific microstructure according to an embodiment of the present application.
  • FIG. 20 is a partial cross-sectional schematic diagram of a structure of an ultraviolet lamp with total reflection property according to an embodiment of the present application.
  • FIG. 21 is a partial cross-sectional schematic diagram of a structure of an ultraviolet lamp with total reflection property according to an embodiment of the present application.
  • 1100 carrier layer
  • 1110 transparent carrier layer
  • 1300 reflection layer
  • 1400 catalyst filler
  • 1500 projected area of a’
  • gully 3100-air inlet; 3500-air outlet; 3200-ultraviolet lamp; 3300-air flow baffle; 3400-fan; 3600-light source; 5000-photocatalyst layer.
  • Photocatalytic reaction layer is a multi-layer structure with photocatalytic function.
  • Carrier layer In the process of photocatalytic reaction, it refers to the structural material used to support the photocatalyst layer, which can be a homogeneous material or a splicing of different materials.
  • the photocatalyst layer is a thin layer composed of photocatalyst and auxiliary materials, which can accelerate the chemical reaction under the excitation of light.
  • the reflective layer is a material layer composed of specular reflective materials, which can reflect light back to the original material, and the reflection coefficient of the material is greater than 0.6.
  • the microstructure mentioned in the technical solution involved in an embodiment of the present invention refers to the microstructure formed on the surface of the photocatalytic reaction layer after surface treatment, which can be a structure in which the catalyst layer and the carrier layer simultaneously generate a structure with an increased surface area. , and may be a structure in which the surface area is increased only in the catalyst layer.
  • Microscopic reflection It means that the microstructure of the photocatalytic reaction layer has light reflection characteristics, so that the microstructure can realize multiple reflections of light in the structure.
  • Ultraviolet lamp including the ultraviolet lamp in the form of a tube and the ultraviolet lamp in the form of LED.
  • Light sources Includes artificial light sources, or structures that can receive or import natural light sources.
  • High-efficiency photocatalytic reaction function If a photocatalytic material is applied with the photocatalytic nanomaterial photolysis index test method (GB/T30452-2013), its photolysis index R can reach 35 or more, then this photocatalytic material has high-efficiency light. Catalytic reaction function.
  • Optical reflection performance The reflection coefficient of the material is more than 0.6, we call this material with optical reflection performance.
  • This material can be a single material such as silver, polished glass, etc., or a combination of multiple materials, such as a coated ceramic material.
  • a photocatalytic reaction layer includes a carrier layer 1100 and a photocatalyst layer 5000, and the photocatalytic reaction layer has a specific microstructure, and the specific microstructure can increase the surface area of the photocatalytic reaction layer, thereby increasing the bearing capacity of the catalyst, Further, the contact area between the reactant and the catalyst is enlarged, thereby improving the reaction efficiency.
  • S' represents the surface area of the catalyst layer after surface treatment
  • S represents the surface area of the catalyst layer before surface treatment
  • represents the ratio of the surface area of the catalyst layer after surface treatment to the surface area of the catalyst layer before surface treatment.
  • the treated catalyst layer has more surface area than the untreated catalyst layer.
  • the specific microstructure in the technical solution involved in an embodiment of the present invention refers to a microstructure with ⁇ greater than 1.2.
  • the surface microstructure of the treated photocatalytic reaction layer can be added with concave holes 2100, protrusions 2200 or ravines 2300, and its structure can be in the form of Figure 1, Figure 2, As shown in Figure 3, the calculation method of n in this case can be:
  • a' is the projected area 1500 of the concave hole 2100, the protrusion 2200 or the gully 2300 structure
  • a is the surface area 1600 of the concave hole 2100, the protrusion 2200 or the groove 2300 structure
  • a' can be taken as The average, median, median, etc. of the surface area of the concave hole 2100, the protrusion 2200 or the gully 2300 structure.
  • the depth h of the concave hole 2100 or the ravine 2300 can also be the average value of the depth of the concave hole 2100 or the gully 2300, such as arithmetic mean, geometric mean, weighted mean, etc., or it can be The representative value of the overall concave hole 2100 or the depth of the ravine 2300, such as median, median, mode, etc.
  • the surface treatment can be aimed at the catalyst layer and the carrier layer 1100 at the same time. For example, after the surface microstructure of the carrier layer 1100 is formed on the carrier layer 1100 by laser, etching, 3D printing, etc., spraying, dip coating, roll coating, magnetron
  • the catalyst layer is attached to the surface of the carrier layer 1100 by processes such as sputtering.
  • the surface treatment can also be carried out only for the catalyst layer.
  • the catalyst layer can be prepared by 3D printing, and the catalyst layer with a specific microstructure can be directly prepared. It is also possible to directly fabricate a photocatalytic reaction layer with a specific microstructure by 3D printing.
  • Photocatalysts are materials with photocatalytic properties that can generate strongly oxidizing substances (such as hydroxyl radicals, oxygen, etc.) under light irradiation, and can be used to decompose organic compounds, some inorganic compounds, bacteria and viruses, etc.
  • Materials including Metal oxide materials such as TiO 2 , ZrO 2 , ZnO, CdS, WO 3 , Fe 2 O 3 , PbS, SnO 2 , ZnS, SrTiO 3 , SiO 2 , etc., or nano-precious metal materials such as platinum, rhodium, and palladium.
  • Substances that can be purified can be gases or liquids.
  • the carrier layer 1100 itself is a specular reflective material, or the part where the carrier layer 1100 and the photocatalyst layer 5000 are attached/bonded is a specular reflective material.
  • specular reflective material can be metal materials such as aluminum, stainless steel, titanium alloy, copper alloy, etc., non-metallic materials such as ceramics and glass, organic materials such as plexiglass, and composite materials with reflective function.
  • Another embodiment of this scheme is to select a transparent carrier layer 1100 and set a reflective layer 1300 on the second side thereof.
  • the photocatalytic reaction layer structure is arranged in order of the photocatalyst layer 5000 and the carrier layer 1100. 7.
  • the reflective layer 1300 as shown in FIG. 7, after the ultraviolet light enters the transparent carrier layer 1110, after being reflected by the reflective layer 1300 attached to the transparent carrier layer 1110, it can act with the photocatalyst again, so that the ultraviolet light can be used efficiently.
  • the material of the transparent carrier layer 1110 may be a non-metallic material such as glass, or an organic material such as plexiglass. Materials with light transmittance greater than 80% are called optically transparent.
  • the photocatalytic reaction layer that is, the photocatalyst layer 5000 and the carrier layer 1100.
  • a material with optical reflection properties can be arranged between the photocatalyst layer 5000 and the carrier layer 1100 in this arrangement order, so that the photocatalyst layer The 5000 is optically reflective.
  • the inventors found that by adding the function of microscopic reflection to the specific microstructure of the photocatalytic reaction layer, the incident light can be reflected in the microstructure to realize light reflection for multiple times.
  • the phenomenon that can be fully reacted by the photocatalyst layer 5000 is the phenomenon of "locking light" through the microstructure.
  • the microstructure of the "locking light” phenomenon it can be a variety of microstructures such as inverted "V”, inverted trapezoid, fan-shaped, semi-circular arc, rhombus, inverted cone, etc., as shown in Figure 1.
  • the utilization rate of light energy can be greatly improved, thereby improving the efficiency of photocatalytic reaction.
  • the mainstream ultraviolet lamp 3200 products can emit ultraviolet wavelengths in the range of 300nm-400nm.
  • the primary absorption efficiency of the titanium dioxide photocatalyst layer 5000 for this wavelength of ultraviolet light is 40%-80%. According to the lowest absorption rate of 40%, it can be calculated that through 3 reflections and 3 absorptions, an absorption rate of more than 75% can be achieved for one incident light, that is, "basic lock light”; through 6 reflections and 6 absorptions, the One incident light can achieve more than 95% absorption rate, that is, "complete light lock”.
  • the table below shows the absorption rate.
  • the photocatalytic reaction layer structure can also be combined with the ultraviolet lamp 3200, as shown in 9, so that the ultraviolet lamp 3200 becomes an ultraviolet lamp 3200 with a high-efficiency photocatalytic reaction function.
  • the reaction layer structure has the function of photocatalytic reaction.
  • the air outside the lamp housing is in contact with the catalyst layer outside the lamp housing, and the ultraviolet light emitted by the ultraviolet lamp 3200 can be directly used for photocatalytic reaction.
  • a photocatalyst layer 5000 is attached to the lamp housing of the ultraviolet lamp, and the outer surface of the photocatalyst layer 5000 forms a structure including a zigzag shape, a triangle shape, a wedge shape or a fan shape. Since the refractive index of the photocatalyst layer 5000 is greater than the refractive index of air, when the incident angle of the light from the photocatalyst layer 5000 to the air is greater than the critical angle of total reflection, the light to the air contacts the air at the photocatalyst layer 5000 Total reflection will occur on the surface.
  • These zigzag, triangular, wedge or fan-shaped structures can make the light emitted from the lamp housing achieve total reflection on the surface of the structure in contact with the air, and the totally reflected light can reach the lamp housing of the UV lamp 3200 again, so that the light can be repeatedly It can greatly improve the utilization rate of light energy, thereby improving the efficiency of the photocatalytic reaction.
  • the zigzag macro or micro structure can make the ultraviolet light emitted by the ultraviolet lamp 3200 have a total reflection effect on the sawtooth interface, so that the light can be reflected multiple times inside the ultraviolet lamp 3200, and the ultraviolet rays emitted by the ultraviolet lamp 3200 can be fully utilized. Without loss of generality, it is calculated with the light perpendicular to the lamp housing as the benchmark. Taking the zigzag shape as an example, the apex angle of the zigzag structure is ⁇ , and the calculation method is ⁇ 180-2* the critical angle of total reflection. Angle is the critical angle of total reflection of light in this material and air. If the catalyst material is titanium dioxide with a refractive index of 2.76 and air with a refractive index of 1, the apex angle of the sawtooth-shaped microstructure should be less than 133°.
  • the thickness of the photocatalyst layer 5000 of the ultraviolet lamp 3200 is controlled to be an odd multiple of 32nm-39nm, the effect of antireflection on the light emitted by the ultraviolet lamp 3200 can also be realized, so that more The ultraviolet light is projected out of the photocatalyst layer 5000, so that more ultraviolet light acts on the surface of the photocatalyst layer 5000, thereby improving the light utilization efficiency and the photocatalytic reaction efficiency.
  • the thickness of the photocatalyst layer 5000 is u, the thickness of the photocatalyst layer 5000 should not affect the angle of the surface microstructure of the carrier layer 1100, and the thickness is preferably in the nanometer range.
  • the coating thickness of the photocatalyst layer 5000 should be between 10nm-200nm. Too thin coating will affect the adhesion and film formation.
  • the photocatalyst layer 5000 can be coated by spraying, dipping, roller coating, magnetron sputtering and the like.
  • the thickness of the photocatalyst layer 5000 coating is u, h can be more than 5 times the thickness u of the nano-TiO2 coating, and the depth h is 10-50 times the thickness u, which is the preferred ratio of depth to thickness.
  • the schematic diagram is shown in Figure 8 .
  • the interior of the reaction chamber is provided with a multi-pass air flow channel, and the reaction chamber is provided with an air flow baffle 3300 to block the flow direction of the air flow.
  • Multiple semi-circular baffles 3300 are alternately arranged in the upper half and the lower half of the reaction chamber.
  • the components of the photocatalytic reaction layer run through the semicircular baffle to form a multi-pass air flow channel.
  • the schematic diagram of the semicircular baffle is shown in Figure 10.
  • the air flowing in from the air inlet 3100 flows through the gaps between the baffles and then flows out from the air outlet 3500, which prolongs the time for the air to be purified to stay in the purification module.
  • the baffle 3300 can be switched on and off according to the concentration of pollutants in the air and purification requirements, and switches between multi-pass airflow and single-pass airflow to optimize purification efficiency.
  • a gas disturbance device is arranged inside the reaction chamber to increase the gas disturbance, improve the contact effect and contact time between the gas and the catalyst, and improve the reaction efficiency.
  • the gas disturbance mechanism can be in the form of fins, as shown in FIG. 10 , the types of fins can be but are not limited to: straight tooth type, bidirectional corrugated type, right angle corrugated type, etc.
  • the inside of the reaction chamber can also be in the shape of a cylinder, but the diameter varies irregularly along the axial direction to form an irregular cylinder.
  • the flow velocity will change, the disturbance of the gas flow inside the cavity increases, and the contact effect with the surface of the photocatalyst is increased, thereby improving the photocatalytic effect.
  • the catalyst packing 1400 inside the reaction chamber can be in the form of floating in a fluidized bed.
  • a photocatalyst reaction layer is applied to the catalyst packing 1400.
  • the floating form of the fluidized bed of the catalyst packing 1400 is shown in Figure 11.
  • the catalyst packing 1400 in the catalytic chamber It is in the form of particles, and catalysts can be contained on the surface and inside of the particles.
  • the agitated catalyst packing 1400 can greatly enhance the contact effect between the gas and the catalyst and improve the photocatalytic reaction efficiency.
  • a surface treatment process of the carrier layer 1100 can increase the surface area of the carrier layer 1100, including the following steps:
  • the application of the manufacturing method can increase the surface area of the carrier layer 1100, increase the carrying capacity of the catalyst, improve the utilization rate of the light source, and improve the photocatalytic reaction efficiency.
  • the usual process is to first perform the microstructure treatment process of the surface of the carrier layer 1100 , and then perform the optical reflection treatment process after the microstructure treatment process of the surface of the carrier layer 1100 is completed. After the optical reflection treatment process is completed, the photocatalyst layer 5000 coating process is performed.
  • the microstructure processing technology is mainly chemical processing method, mechanical processing method, photolithography method, laser engraving method, etc.
  • the chemical treatment method refers to processing the surface of the carrier layer 1100 by chemical means to obtain the desired microstructure.
  • the glass etching technology is to perform deep processing on the surface of the carrier layer 1100 to obtain the desired surface structure. Etching, frosting and chemical polishing all belong to methods for treating the surface of the carrier layer 1100 by chemical means.
  • the surface of the carrier layer 1100 can be processed by mechanical processing methods such as grinding (NC grinding and polishing technology, ion beam polishing technology, stress disc polishing technology), polishing, sandblasting, engraving (manual engraving and automatic engraving, plasma
  • the surface of the carrier layer 1100 is processed by means such as arc engraving) to obtain the desired surface structure.
  • Photolithography The surface of the carrier layer 1100 can obtain the desired surface structure by photolithography.
  • the photolithography method transfers and presents the desired pattern and structure to the surface of the body through the action of light.
  • Laser engraving method the surface of the carrier layer 1100 can obtain the desired surface structure by means of laser engraving.
  • the catalyst carrying process refers to attaching the photocatalyst to the surface of the carrier layer 1100 through a series of processes on the surface of the carrier layer 1100 .
  • the carrier layer 1100 may be a carrier layer 1100 that has undergone microstructure processing, or may be a carrier layer 1100 that has not undergone microstructure processing.
  • the carrying process can generally be sprayed, dipped, rolled, magnetron sputtering and the like.
  • the optical reflection treatment process is to use an optical reflection treatment process on the surface of the carrier layer 1100 , so that the carrier layer 1100 has optical reflection performance and increases the utilization efficiency of light.
  • the optical reflection treatment process can be by means of chemical coating, plating aluminum, silver, copper and other metals on the surface of the carrier layer 1100; it can also be in the form of vacuum electroplating, plating aluminum, silver, copper and other metals on the carrier layer 1100. It can also be physical polishing, polishing the carrier layer 1100 to a certain smoothness, so as to have optical reflection performance; it can also be coated with a paint containing a reflective filler, and glass microbeads and microprisms are added to the filler.
  • the optical reflection treatment process should generally be performed on the first side of the carrier layer 1100 that has undergone the microstructure treatment process; for the transparent carrier layer 1110, the optical reflection treatment process may be performed on the carrier layer 1100 that has undergone the microstructure treatment process. Either the first side or the second side of the process is performed.
  • a transition layer can also be provided between the photocatalyst layer 5000 and the carrier layer 1100 to make the combination of the photocatalyst layer 5000 and the carrier layer 1100 more closely, improve the bonding strength of the photocatalyst and the carrier, and improve the durability of the photocatalyst layer 5000 sex.
  • the transition layer can also improve the activity of the photocatalyst.
  • the transition layer can be a material containing 1-5% of the reactive silane coupling agent, and the thickness of the transition layer can be controlled at 50-250 nanometers.
  • the photocatalytic purification device includes a reaction chamber and other auxiliary devices, and the reaction chamber and other auxiliary devices form an air purifier.
  • a light source is arranged inside the reaction chamber, and the photocatalytic reaction layer structure is applied to the catalyst filler 1400 inside the reaction chamber and the reaction chamber has a microscopic structure.
  • Photocatalyst decomposes harmful gases.
  • the microstructure can be as shown in FIG. 1 , FIG. 2 , and FIG. 3 . These structures can increase the specific surface area of the carrier and increase the carrying capacity of the catalyst.
  • Indoor air purification device, other auxiliary equipment of photocatalytic purification device also includes control system, fan 3400, pollutant sensor, air inlet 3100, air outlet 3500, etc.
  • the control system is used to control the work of the purification device, including the switch of the light source, the power of the fan 3400 and the power of the light source.
  • the pollutant sensor can be arranged at the air inlet 3100 or the air outlet 3500 to judge air pollution and purification effect; meanwhile, the data information of the pollutant sensor can be fed back to the control system for automatic operation of the purifier. If the pollutant data monitored at the air outlet 3500 is lower than the set value, the actions that can take place include turning off the purification device, reducing the power of the fan 3400, reducing the power of the light source, etc.; if the pollutant data monitored by the air outlet 3500 is higher than the set value. If the value is set, the actions that can occur include automatically turning on the purification device, increasing the power of the fan 3400, increasing the power of the light source, etc.
  • the material of the reaction chamber and the filler inside the chamber have a photocatalytic reaction layer structure.
  • the material of the carrier layer 1100 is made of mirror materials with light reflection properties. These materials can be mirror-treated aluminum, stainless steel, titanium alloy, copper Metal materials such as alloys can also be non-metal materials such as ceramics, and organic materials such as plexiglass.
  • the mirror surface treatment method can be polishing, such as chemical polishing, physical polishing and so on. The light emitted by the light source can be used more efficiently after multiple reflections by these mirrors.
  • FIG. 1 is a schematic diagram of the microstructure of the surface of a carrier layer 1100 , and the microstructure can be a regular or irregular arrangement of various forms of protruding or concave holes 2100 structures.
  • FIG. 2 is a schematic diagram of processing the microstructure of the surface of the carrier layer 1100 , and the microstructure may be a regular or irregular arrangement of various forms of ravine 2300 structures.
  • FIG. 3 is a schematic diagram of the surface microstructure of the carrier layer 1100 , and the microstructure may be a regular or irregular crisscross arrangement of various forms of gullies 2300 structures.
  • microstructures can increase the carrying capacity of the catalyst.
  • the shape of the grooves can be in a "V" shape, which can enhance the light reflection at the microscopic level, and the light can be reflected multiple times in the grooves, as shown in Figure 6, to enhance the utilization efficiency of the light source. .
  • the material of the reaction chamber and the carrier layer 1100 filled in the chamber are used to support the photocatalyst layer 5000, and the photocatalyst layer 5000 is attached to the surface of the carrier layer 1100 by means of coating.
  • the coating method can be: spraying, dipping, stick coating, magnetron sputtering, 3D printing, etc.
  • the coating thickness of the photocatalyst layer 5000 should be between 50-400 nm, and different coating methods can be used to achieve different coating thicknesses of the photocatalyst layer 5000.
  • the preferred coating thickness is between 100-200 nm, and the coating thickness of 100-200 nm can be achieved by spraying and dipping.
  • the photocatalytic purification device can also be equipped with an activated carbon adsorption module, an ozone/electrostatic module, a particulate filter module, etc. Through the combination of these modules and the reaction chamber, the photocatalytic purification device can more efficiently process VOCs, bacteria pollutants, but also other pollutants such as particulate matter.
  • the wavelength range of the light wave required for the photocatalytic reaction is 300-500 nm, and the preferred wavelength range of the light wave is 350-400 nm; the light wavelength of 365-385 nm can achieve better photocatalytic effect.
  • the material of the reaction chamber and the material of the carrier layer 1100 of the filler in the chamber are made of mirror materials with light reflection properties. These materials can be mirror-treated metal materials such as aluminum, stainless steel, titanium alloy, copper alloy, etc., or It is a non-metallic material such as ceramics, and can also be an organic material such as plexiglass.
  • the mirror surface treatment method can be polishing such as chemical polishing, physical polishing and the like. The light emitted by the light source can be used more efficiently after multiple reflections by these mirrors.
  • the mirror-treated reaction cavity material and the carrier layer 1100 material filled in the cavity also need to undergo surface microstructure treatment, and the microscopic surface structure treatment can be laser engraving, chemical etching, or mechanical treatment.
  • the treated surface should have the structure shown in Figure 1, Figure 2, and Figure 3.
  • These microstructures can increase the carrying capacity of the catalyst.
  • the microstructures are in the form of inverted cones, inverted pyramids, and cylinders, such as the concave holes 2100 shown in Figure 1, which can enhance light reflection at the microscopic level, and the light can be reflected multiple times in the inverted cone. Reflect, enhance the efficiency of light source utilization.
  • the mirror-treated reaction cavity material and the carrier layer 1100 material filled in the cavity are used to support the photocatalyst, and the photocatalyst is attached to the surface of the carrier by means of coating.
  • Coating methods can be used: spraying, dip coating, bar coating, magnetron sputtering and so on.
  • the carrier layer 1100 is a transparent material, such as a non-metallic material such as glass, or an organic material such as plexiglass.
  • the second side of the carrier layer 1100 can be closely attached/bonded with a material with optical reflective properties such as metal, or closely attached/bonded with a reflective film such as a mirror-coated, vacuum-evaporated reflective film, so that the photocatalytic reaction layer has optical properties. Reflection characteristics, as shown in Figure 7.
  • the surface microstructure treatment is performed on the carrier layer 1100, and the microscopic surface structure treatment method may be laser engraving, chemical etching, or mechanical treatment method. These microstructures can increase the carrying capacity of the catalyst.
  • the microstructure is in the form of an inverted cone, which can enhance the light reflection at the microscopic level. The light can be reflected multiple times in the inverted cone to enhance the utilization efficiency of the light source.
  • the photocatalyst layer 5000 is attached to the surface of the carrier layer 1100 by means of coating.
  • Coating methods can be used: spraying, dip coating, bar coating, magnetron sputtering and so on.
  • the part where the carrier layer 1100 and the photocatalyst layer 5000 are attached/bonded, that is, between the carrier layer 1100 and the catalyst layer, can increase the material with optical reflection performance, and the photocatalyst is attached to this layer of material with optical reflection performance.
  • This layer of optically reflective material can be closely attached to the carrier layer 1100 by means of mirror silver plating and vacuum evaporation, so that the photocatalytic reaction layer has optical reflection properties, and the light emitted by the light source can be used more efficiently, as shown in Figure 6 .
  • the carrier layer 1100 may be subjected to surface microstructuring.
  • the reflective layer 1300 may be subjected to surface microstructure treatment, and the microscopic surface structure treatment method may be laser engraving, chemical etching, or mechanical treatment.
  • These microstructures can increase the carrying capacity of the catalyst.
  • the microstructure is in the form of an inverted cone, which can enhance the light reflection at the microscopic level. The light can be reflected multiple times in the inverted cone to enhance the utilization efficiency of the light source.
  • the catalyst layer is closely attached to the material with optical reflective properties, and the photocatalyst layer 5000 is attached to the surface of the reflective layer 1300 by means of coating.
  • Coating methods can be used: spraying, dip coating, bar coating, magnetron sputtering and so on.
  • the photocatalytic purification device includes a reaction cavity, a light source, and the like.
  • the reaction cavity is a space structure capable of photocatalytic reaction, which can be a closed structure or an open structure.
  • the material of the reaction cavity has a photocatalytic reaction layer structure, the inside of the reaction cavity can also be loaded with a filler, and the filler can have a photocatalytic reaction layer structure.
  • the photocatalyst layer 5000 of the photocatalytic reaction layer faces the interior of the reaction chamber, and the reflective layer 1300 of the photocatalytic reaction layer also faces the interior of the reaction chamber, which can reflect the ultraviolet light back to the interior of the chamber, so that the air to be purified inside the reaction chamber is affected. With more sufficient ultraviolet light irradiation, the photocatalytic reaction is more thorough, reducing the gas that is not fully reacted.
  • the microstructure is a specific microstructure with an inverted "V" shape, which has a microscopic reflection function.
  • the surface of the carrier layer 1100 needs to undergo microstructure treatment, and the unit structure of the treated surface can be the structure shown in FIG.
  • the surface of the carrier layer 1100 is coated with a reflective layer 1300 .
  • the reflective layer 1300 in this embodiment is a material with light reflection function, such as silver, stainless steel and other materials with optical reflection performance.
  • the microstructure units on the surface of the carrier layer 1100 are in an inverted "V” shape, the angle below the "V” shape is 30°, and the depth of the "V” shape is 10-15um.
  • the vertically incident light can be reflected 6 times in this structure, and the utilization efficiency of light energy exceeds 95%, so that the structure of this embodiment has microscopic reflection and enhances the utilization efficiency of the light source. At the same time, these microstructures can also increase the catalyst loading capacity.
  • the apex angle of the "V" structure is less than 30°, it can achieve more than 6 reflections to the normal incident light.
  • the apex angle of the "V" structure is less than 90°, the vertical incident light can be reflected more than three times, and the light energy utilization efficiency of 78% can be achieved.
  • the reaction chamber One end of the reaction chamber is closed, and a dividing baffle is arranged inside the chamber to separate the chamber into two parts. At the same time, there is a gap between the baffle near the closed end of the chamber and the chamber wall, so that a U-shape is formed inside the chamber.
  • the loop air passage of the 1000A is provided with an air inlet 3100 and an air outlet 3500 at the unclosed end, as shown in FIG. 10 .
  • the reaction chamber can also be closed at both ends, the air inlet 3100 and the air outlet 3500 are arranged in the lateral direction of the chamber, and a dividing baffle is arranged inside the chamber to divide the chamber into four parts, and the baffle near the closed end of the chamber is at the same time.
  • the inside of the reaction cavity carries a photocatalyst and is provided with a light source. This arrangement can prolong the residence time of the gas in the reaction chamber in the same space, and increase the contact opportunity between the gas flow and the photocatalyst, thereby enabling the photocatalytic reaction to proceed more fully and improving the photocatalytic reaction effect.
  • the inside of the reaction cavity carries a photocatalyst and is provided with a light source.
  • An airflow baffle 3300 is provided inside the reaction chamber, which can be shown as the airflow baffle 3300 in FIG. 10 .
  • the airflow baffle 3300 can increase the disturbance and mixing of the airflow, and improve the contact efficiency of the photocatalytic reaction module.
  • the reaction chamber involved in one embodiment of the present invention can also be used for water treatment, and the reaction chamber can be used in conjunction with other auxiliary devices.
  • the inside of the reaction chamber carries a photocatalyst and is provided with a light source; other auxiliary devices include a control system, a pollutant sensor, a water inlet, a water outlet, and a water pump.
  • the light source set in the reaction chamber is used to emit light of a desired wavelength band, which acts on the photocatalyst to decompose harmful substances in water, which are organic substances in organic waste water.
  • the material of the reaction chamber and the filler inside the chamber have a photocatalytic reaction layer structure, including a carrier layer 1100, a photocatalyst layer 5000, and a reflective layer 1300.
  • the photocatalytic reaction layer has a microstructure, and the microstructure can be as shown in Figure 1, Figure 2, The structure shown in Figure 3. These structures can increase the specific surface area of the carrier layer 1100, increase the catalyst carrying capacity, and improve the reaction efficiency.
  • the specific surface treatment method can be chemical etching method, laser engraving method, mechanical treatment method and the like.
  • the photocatalyst layer 5000 is attached to the surface of the carrier layer 1100 by means of coating. Coating methods can be used: spraying, dip coating, bar coating, magnetron sputtering and so on.
  • the photocatalyst is titanium dioxide.
  • the carrier layer 1100 may be a non-metallic material such as glass, ceramics, etc.; may also be an organic material such as plexiglass, etc.; may also be a metal material such as stainless steel, aluminum alloy, and the like.
  • the control system is used to control the work of the purification device, including the switch of the light source, the power of the water pump and the power of the light source.
  • the pollutant sensor can be set at the water inlet or outlet to monitor the pollutant condition in the water and the purification effect; at the same time, the data information of the pollutant sensor can be fed back to the control system for the automatic operation of the purifier.
  • the actions that can take place include shutting down the purification device, reducing the power of the pump, reducing the power of the light source, etc.; if the pollutant data monitored at the water outlet is higher than the set value, Actions that can occur include turning on the purification device, increasing the power of the water pump, increasing the power of the light source, and so on.
  • the reaction chamber can also be combined with other purification means to improve the purification effect.
  • other purification means for example, activated carbon adsorption module, ozone module, electrostatic adsorption module, HEPA high-efficiency filter module, etc.
  • the reaction chamber is used in conjunction with the activated carbon adsorption module.
  • the gas first enters the reaction chamber for photocatalytic reaction, and the gas discharged from the reaction enters the activated carbon module for further adsorption and purification, and is finally discharged; the combination of the reaction chamber and the activated carbon adsorption module can make the combined device have Greater removal of organic matter.
  • the reaction chamber is used in conjunction with the ozone module, an ozone generator or an ozone injection hole is arranged in the photocatalytic purification device, and a light source is also arranged to carry a photocatalyst, and an ozone filter can also be arranged at the air outlet 3200 to remove residual ozone;
  • the combination of the photocatalytic cavity and the ozone module can enhance the organic removal effect and the sterilization effect.
  • the reaction chamber is used in conjunction with the electrostatic adsorption module.
  • the gas first enters the electrostatic adsorption module to absorb particulate matter and other substances, and the gas discharged from the electrostatic adsorption module enters again.
  • the reaction chamber undergoes photocatalytic reaction and is finally discharged; the reaction chamber and the electrostatic adsorption module can be
  • the combined device can also have the ability to remove particulate matter. Since the electrostatic adsorption module reduces the concentration of particulate matter in the gas, the subsequent photocatalytic reaction module can have a longer service life.
  • the reaction chamber is used in conjunction with the HEPA high-efficiency filter module.
  • the gas first enters the HEPA high-efficiency filter module to filter out particulate matter, and the filtered gas enters the photocatalytic chamber for photocatalytic reaction to remove organic matter and sterilize, and finally discharge; the reaction chamber and HEPA are highly efficient
  • the filter module can also enable the combined device to have the ability to remove particulate matter. Since the HEPA high-efficiency filtration module reduces the concentration of particulate matter in the gas, the subsequent photocatalytic reaction module can have a longer service life.
  • the conduits used to transport fluids can also be treated with surface microstructures to have a microstructure and act as a photocatalytic reaction layer.
  • Such ducts can be ventilation ducts used in buildings, or ducts for liquid transport. Pipes with this structure can inhibit the internal bacteria and viruses, and can continuously decompose pollutants such as VOCs.
  • the photocatalytic reaction layer includes a carrier layer 1100 and a photocatalyst layer 5000.
  • the surface microstructure of the carrier layer 1100 can be treated by laser engraving, chemical treatment, mechanical processing, or photolithography.
  • the treated surface should have the structure shown in Figure 3.
  • These microstructures can increase the carrying capacity of the catalyst, and the microstructures are in the shape of an inverted "V". These structures can enhance light reflection at the microscopic level, and light can be reflected multiple times in the "V"-shaped structure to enhance the utilization efficiency of the light source.
  • the photocatalyst layer 5000 is attached to the surface of the carrier layer 1100 by means of coating. Coating methods can be used: spraying, dip coating, bar coating, magnetron sputtering and so on.
  • the thickness u of the photocatalyst layer 5000 should be between 30nm-50nm, and the depth h of the concave hole 2100 or the groove 2300 should be 10-15um.
  • the preferred coating methods are spraying and dip coating.
  • the wavelength range is 350-400nm, and the light wavelength of 365-385nm can achieve better photocatalytic effect.
  • n 1 , n 2 , and n 3 are the refractive indices of light in the three mediums
  • medium 2 is the photocatalytic film
  • l is the thickness of medium 2 .
  • is the wavelength of light
  • the photocatalyst layer 5000 can achieve an antireflection effect on light.
  • the refractive index of the carrier layer 1100 is greater than 2.6 and the coating thickness is an odd multiple of 32nm-39nm, the effect of antireflection can be achieved.
  • a technical solution involved in an embodiment of the present invention is that the surface of the carrier layer 1100 is provided with pores, the photocatalyst layer 5000 is attached inside the pores, and the lower photocatalyst layer in the pores may also have a reflective layer 1300 .
  • the inner surface of the channel may also have a microstructure. The arrangement of the pores can make the airflow flow more smoothly, reduce the airflow resistance, and make the fluid to be reacted more fully contact the photocatalyst layer 5000, thereby improving the reaction efficiency.
  • the structure of the carrier layer 1100 can be in the form of FIG. 14 , and the channels can be arranged obliquely with respect to the carrier layer 1100 .
  • the obliquely arranged channels can make the incident light perpendicular to the carrier layer 1100 to realize multiple reflections inside the channels, and utilize light more efficiently. can.
  • the normal incident light located in the center of the tunnel is chosen as the criterion.
  • the light energy utilization rate of more than 75% can be achieved.
  • the angle ⁇ between the channel and the carrier layer 1100 , the thickness H of the carrier layer 1100 , and the diameter r of the channel may be in the following relationship
  • Angle ⁇ between the inclined channel and the carrier layer 1100 The relationship between the thickness H of the carrier layer 1100 and the channel diameter r 30° H>0.577r 45° H>1.5r 60° H>3.464r 75° H>8.830r
  • the carrier layer 1100 may be a transparent material, and when light enters the transparent carrier layer 1110, reflection and refraction will occur.
  • the second side of the carrier layer 1100 may have a certain structure, so that the refracted light penetrating the catalyst layer and entering the carrier layer 1100 can use the above structure to realize total reflection of the light incident on the carrier layer 1100 , and refract the light entering the carrier layer 1100 The light is reflected back to the photocatalyst layer 5000, and the energy of the light is more fully utilized. Its structure can be zigzag, triangular, wedge, fan and other shapes.
  • the second side structure of the carrier layer 1100 is a sawtooth shape.
  • the material of the carrier layer 1100 is glass, the refractive index of glass is 1.52, and the refractive index of air is 1, and the critical angle of total reflection of light is 41°
  • the ⁇ angle of the structure shown in FIG. 15 should be less than 98°, so that The light vertically incident into the carrier layer 1100 can be totally reflected back to the surface carrying the photocatalyst layer 5000 .
  • the surface of the second side of the photocatalyst layer 5000 can also be treated with a surface microstructure to have a microstructure.
  • the preferred alpha angle is 90°, so that the incident light can return the same way.
  • the zigzag ⁇ angle requirement that can achieve total reflection of vertically incident light is, ⁇ 180°-2* total reflection critical angle, and the above total reflection critical angle is the light in the carrier layer 1100 material.
  • the critical angle of total reflection with air is the critical angle of total reflection with air.
  • An embodiment involved in an embodiment of the present invention is to directly produce a photocatalyst layer 5000 with a specific microstructure through a rapid prototyping technology such as 3D printing, and attach it to the carrier layer 1100, as shown in FIG. 19 .
  • the carrier layer 1100 with a specific microstructure can also be directly produced by a rapid prototyping technology such as 3D printing for supporting the photocatalyst layer 5000 .
  • the photocatalyst layer 5000 and the carrier layer 1100 with a specific microstructure can also be directly produced by rapid prototyping technologies such as 3D printing.
  • the outer side of the UV lamp 3200 lamp housing can also be surface-treated, so that the surface area ratio ⁇ of the photocatalyst layer 5000 carried on the surface thereof should be greater than 1.2, and has a (specific) microstructure in other embodiments.
  • the overall structure of the lamp housing of the ultraviolet lamp 3200 may be as shown in FIG. 9 .
  • the photocatalyst layer 5000 on the outer side of the lamp envelope of the ultraviolet lamp 3200 may also be directly formed with a specific microstructure, and the specific microstructure may be as shown in FIG. 19 .
  • the structure of the lamp housing of the UV lamp 3200 can be a zigzag structure. As shown in Figure 21, the zigzag apex angle can make the incident angle of the light exiting the lamp housing perpendicularly at the interface greater than the critical angle of total reflection, and the light occurs at the interface. The phenomenon of total reflection, so that the light is reflected back to the interior of the ultraviolet lamp 3200 again, and is used for many times.
  • the apex angle of the sawtooth should be less than 98°.

Abstract

一种光催化净化装置,涉及光催化反应层的结构,特别是光催化反应层的微观结构进行改进,将有可能大幅提升光催化反应的反应效率。在微观层面上,如果对表面结构做出相应的改进,可更好的增加反应物质与催化剂的接触面积,克服接触面积不够的问题,实现提升净化效率。

Description

一种光催化净化装置 技术领域
本发明涉及环境净化技术领域,具体涉及一种高效的光催化净化装置。
背景技术
经济快速发展的同时也带来了严峻的环境问题,我国大部分城市空气污染问题凸显,空气污染严重影响了城市生态景观,而且对人们的身体健康造成了严重的威胁。不仅是室外空气污染严重,室内污染物可能组分比室外污染物更复杂。由于室内污染物包含室外污染物的所有污染元素种类,包括放射性污染、化学污染、生物污染、物理污染等,污染物质种类可以达到一千种以上之多,且室内空气流动状态不如室外,室内的污染物在室内长期滞留,在光合、氧化物理作用下生成新的污染物,使室内空气质量进一步恶化。人类的每天大部分时间是待在室内的,例如学习、工作、休息等活动,因此室内空气质量的优劣对人类身体健康有更明显的影响。
由于室内外空气环境污染日益突出,空气质量问题也越来越受到人们的关注。室内装饰、装修材料如油漆及其溶剂、木材防腐剂、涂料、胶合板等常温下可释放出甲苯、苯、二甲苯、甲醛等多种VOCs。日常生活中使用的化妆品、除臭剂、杀虫剂、各种洗涤剂等也导致大量VOCs向大气中释放。而VOCs成分复杂,且多数具有较大毒性,会对人体产生较大危害,并且多种VOCs同时作用于人体时会有累积效应。实际上许多气态污染物如VOCs都可以借助光催化法在气相中直接处理或与液相分离后在进行氧化降解,从而使污染得到治理。除VOCs外,空气中的细菌会附着在尘埃或PM 2.5等细微颗粒的表面,若细菌为有害病菌,在空气中,尤其是在湿度较大的空气中悬浮时容易随着人们的呼吸作用进入人体,并对人们的身体健康造成威胁。
光催化材料是一类既有光催化活性、能在紫外光甚至可见光照射下降解各类化学物质或杀灭细菌的半导体材料,包括氧化物光催化材料,如TiO 2。TiO 2在光照的作用下,能够作为光化学反应的催化剂,在H 2O和O 2等存在的条件下发生反应,生成自由基,破坏细胞壁和病毒蛋白质外壳从而起到消毒杀菌的作用。除了杀菌外,光催化材料对于甲醛以及VOCs(挥发性有机物)还有净化效果。近年来,以半导氧化物为催化剂的多相光催化氧化过程以因室温深度反应(即在常温下光催化氧化反应就可以很好的发生),可将多种化学物质(甲醛以及多种VOCs)在常温降解成二氧化碳,水和其他小分子化学物质,易于操作控制、运行成本低,可直接利用光线来活化催化剂、驱动氧化反应等优越性能而成为一种理想的环境污染治理技术。
对于TiO 2光催化剂的性能研究主要集中在TiO 2光催化剂的改性研究和光催化剂承载固定技术,目前国内外应用的用于承载TiO 2的材料主要有硅胶、活性炭、活性氧化铝、玻璃纤维网、空心陶瓷球、海砂、空心玻璃珠、石英玻璃管(片)、普通(导电)玻璃片、有机玻璃等。
二氧化钛光催化技术应用的重点是环境光催化技术的应用。包括自洁净技术、防雾技术、抗菌技术、废水净化和空气净化等。随着空气污染问题的日益严重和公众对空气质量问题担 忧的升级,光催化二氧化钛在室内空气净化器方面的应用飞速发展。但由于光催化反应原理的性质,光催化反应的效率较低,是这一类技术和设备的主要问题。光催化反应效率低原理上有下列几个原因,气体反应物质需要和催化剂接触的同时还需停留一定时间,并且自然光中只有一部分波段的光可以激发二氧化钛产生自由基并发生催化作用,实际情况是,同时达到上述最佳条件有一定难度,当待净化气体与催化剂接触、或紫光光照射不充分时,光催化反应效率往往比较低。针对效率低的问题,主要使用现有提升效率的方法,包括提升气体与催化剂混合效率、扩大反应体积、提升光源功率,这些方法虽然能够一定程度上提升光催化反应效率,但在应用过程中还会带来其他如空间需求大,能耗提升等问题。上述问题不仅在空气净化中存在,在运用光催化原理净化水(包括杀菌、消毒化有机物降解、氨氮治理等方面)的装置中也同样存在。
申请号CN104089348A的专利公开了一种风道式光催化空气净化器。其净化器主要通过对光催化滤网设置为两张且整体呈来回曲折的W形的形式,实现提升反应面积。该发明虽然增加了气体与光催化材料的接触面积,但通过增加内部结构扩大反应面积,但仍然存在阻力增加、生产难度增加、光的效率降低增加等问题,无法大幅度的提升滤芯的净化效率。
申请号201821737024.5的专利公开了一种隧道式空气清洁反应器,光触媒蜂窝载体为波浪形,倾斜安装在外壳内部,形成一条连通的蛇形气道,且沿气体流入的方向空间逐渐缩小,紫外灯带安装在每个蛇形气道的中部轴向治理空气中的甲醛及VOC等化学污染物,这种结构虽然增加了污染物与催化剂的接触效果和停留时间,一定程度提升了反应效果,但是该方式紫外光利用效率仍然较低,并且装置还有形状复杂,气流阻力增加,生产难度增加,成本升高等问题。
其他工程上常规的提高纳米二氧化钛的一些方法包括提高光源功率、提升风机加速循环等方式,这往往都带来能耗升高等一些其他问题。
发明内容
问题描述与发明简介
光催化反应原理的特点带来的光催化反应的效率较低的问题,这是光催化在空气净化一类技术和设备的主要问题,如反应物质需要和催化剂接触并停留一定时间,光线中只有一部分波段的光可以激发二氧化钛产生自由基并发生催化作用,当待反应物与催化剂接触不充分、或紫光光照射不充分时,光催化反应效率往往比较低。
针对催化效率低的问题,现有技术主要是在光催化空气净化装置的结构层面进行的改进,如改进气道设计来提升气体与催化剂混合效率、增大反应体积、提升光源功率等方法,这些改进在一定程度上提升了效率,但受到传统的机械结构、设备空间因素限制,目前存在的含二氧化钛催化剂的净化装置总体净化效率的提升效果有限。事实上,上述问题不仅在空气净化中存在,在运用光催化原理净化水(包括杀菌、消毒化有机物降解、氨氮治理等方面)的装置中也同样存在。本发明的一个实施例的目的在于应用新的技术方案,提升光催化净化的效率。
在实现本发明的一个实施例过程中,发明人发现现有技术都主要为在宏观结构上对净化装置进行的改进,这些改进虽然在一定程度上改善净化效果,但这些改进往往还带来了其他 的如设备体积增加、能耗增多、制造成本提升等问题。
在实现本发明的一个实施例的过程中,发明人发现如果对光催化反应层的结构,特别是光催化反应层的微观结构进行改进,将有可能大幅提升光催化反应的反应效率。在微观层面上,如果对表面结构做出相应的改进,可更好的增加反应物质与催化剂的接触面积,克服接触面积不够的问题,实现提升净化效率。此外,还可以在光催化反应层表面的微观结构中增加微观反射,可以在微观层面实现光能的多次利用,具备反射功能的光催化反应层,可以增强光线在微观结构的反射次数,相较于传统的未经过处理的表面,该改进方式可以更高效的利用光源,克服光能利用率低的问题,提高光催化反应的效率。
本发明的一个实施例涉及的技术方案,一方面,提供了一种光催化反应层,光催化反应层包括载体层与光催化剂层,光催化反应层具备特定微观结构,特定微观结构可以增加光催化剂层的表面积,从而增加催化剂的承载量,进而扩大了反应物与催化剂的接触面积,从而提升了反应效率。经过表面处理的光催化剂层表面积至少是未经表面处理载体层表面积的1.2倍,光催化剂层则紧密附着于载体层上。此外该微观结构还可以通过增加微观反射在微观层面提升光能的利用效率,从而进一步提升反应效率。
另一方面,提供了一种应用了具备特定微观结构光催化反应层的光催化净化装置。具备了更多的催化剂以及更好的光线利用效率,使得这种光催化净化装置具备更高的光催化反应效率。其他关于空气输送、存储、净化装置的组成部件上也可以进行同样的表面结构处理,从而增加光催化剂的反应效率。
另一方面,提供了一种具备光催化反应功能的紫外灯,紫外灯的灯壳的外侧进行过表面处理,具备特定微观结构,并且附着有纳米二氧化钛光催化剂镀膜,紫外灯的光源位于灯壳之内。特定微观结构可以增加光催化反应层的表面积,从而增加催化剂的承载量,进而扩大了反应物与光催化剂的接触面积,该技术方案可以使得紫外灯直接具备高效的催化反应功能。
再一方面,基于相同的思路,提供了一种光催化水净化装置,光催化水净化装置应用了光催化反应层结构。该装置可作为水净化器的主要部件或填料,其他关于水净输送、运输、存储等组成部件上也可以进行同样的表面结构处理,从而增加光催化剂的反应效率。事实上本发明的一个实施例所涉及的技术方案可以广泛的应用于以光催化为原理的各种高效反应装置中。
在本发明的一个实施例中,提供了一种光催化反应层,所述光催化反应层包括载体层、光催化剂层,所述载体层的第一侧承载所述光催化剂层,其特征在于所述光催化反应层表面形成有微观结构,以使所述光催化剂层表面积增大1.2倍以上。第一侧指与污染物接触并发生光催化反应的一侧。
可选地,在一些实施例中,所述载体层的所述第一侧或其与所述光催化剂层的结合部/贴合部具有光学反射特性。
可选地,在一些实施例中,所述载体层还具有光学透明特性;所述载体层的第二侧的结构包括锯齿形、三角形、楔形或扇形,所述第二侧的结构被设置以使得垂直于光催化剂层的入射光线在所述结构上实现全反射。第二侧指远离光源的一侧。
可选地,在一些实施例中,所述第二侧的结构是锯齿形,所述锯齿形的顶角α需满足α <180-2*全反射临界角,所述全反射临界角为光线在所述载体层与空气的全反射临界角。
可选地,在一些实施例中,如所述载体层由玻璃制成,所述锯齿形的顶角α小于98°;如所述载体层由聚甲基丙烯酸甲脂制成,所述锯齿形的顶角α小于96°。
可选地,在一些实施例中,所述载体层具有光学透明特性,所述载体层的第二侧上贴合/结合有反射层。
可选地,在一些实施例中,所述微观结构形成于所述载体层和/或所述光催化剂层上,以使垂直于所述光催化反应层的入射光能够在所述特定微观结构实现3次以上反射。
可选地,在一些实施例中,所述微观结构被构造以使垂直于所述光催化反应层的入射光能够在所述特定微观结构实现6次以上反射。
可选地,在一些实施例中,所述特定微观结构的结构单元呈倒“V”形状,所述“V”形结构单元的顶角为30度,所述特定微观结构的深度为10-15微米。
可选地,在一些实施例中,所述微观结构为开放地形成于所述载体层表面的孔道,所述孔道的内壁附着有所述光催化剂层。
可选地,在一些实施例中,所述孔道与载体层的夹角、载体层的厚度H、孔道直径r的关系符合
Figure PCTCN2020133147-appb-000001
的关系。
可选地,在一些实施例中,所述孔道与载体层的夹角γ、载体层的厚度H、孔道直径r存在如下关系:i)如所述夹角γ为30°,则H>0.577r;ii)如所述夹角γ为45°,则H>1.5r;iii)如所述夹角γ为60°,则H>3.464r;iiii)如所述夹角γ为75°,则H>8.830r。
可选地,在一些实施例中,所述特定微观结构的深度为所述光催化剂层厚度的5-100倍。
可选地,在一些实施例中,所述载体层折射率大于2.6,所述光催化剂层的厚度为32-39nm的奇数倍。
可选地,在一些实施例中,所述光催化剂层的厚度为50-400nm。
可选地,在一些实施例中,所述光催化剂层的附着方式包括磁控溅射、喷涂、浸涂、辊涂。
可选地,在一些实施例中,所述催化剂层由二氧化钛制成。
可选地,在一些实施例中,所述载体层与所述光催化剂层之间设置有过渡层,所述过渡层的厚度为50-250nm。
在本发明的另一个实施例中,提供了一种光催化净化装置,包括如其他任一实施例中所述的光催化反应层,以及一个反应腔体,该反应腔体内壁设置有所述光催化反应层;所述光 催化净化装置还包括,控制系统、受控于所述控制系统的风机、耦合于所述控制系统的污染物传感器、设置于所述反应腔体上的进气口、出气口。
可选地,一些实施例的光催化净化装置,还包括挡板,设置于所述反应腔体内部以在所述进气口和出气口之间形成经由所述光催化剂层的曲折的回路气道。
可选地,在一些实施例的光催化净化装置中,所述进气口和出气口设置于所述反应腔体第一端;所述挡板隔离于所述进气口和出气口之间,并将反应腔体分隔为在所述反应腔体的第二端连通的两部分,从而在所述进气口和出气口之间形成回路气道。
可选地,在一些实施例的光催化净化装置中,所述挡板上设置有多个子挡板以i)将所述回路气道进一步曲折化,或者,ii)进一步延长所述回路气道。
可选地,在一些实施例的光催化净化装置中,所述反应腔体填充有填料,该填料表面设置有所述光催化反应层;所述填料在所述光催化净化装置处于工作状态时悬浮于所述反应腔体内部。
在本发明的另一个实施例中,还提供了一种紫外灯,其特征在于,包括灯壳和至少部分地封闭于所述灯壳之内的紫外光源;所述灯壳应用了特定微观结构的光催化反应层,所述光催化剂层位于灯壳的外侧。
在本发明的另一个实施例中,还提供了一种紫外灯,包括其他任一实施例中所述的光催化反应层,以及至少部分地封闭于所述光催化反应层之内的紫外光源;所述载体层位于所述光催化剂层与所述紫外光源之间。
在本发明的另一个实施例中,还提供了一种紫外灯,所述紫外线灯的灯壳表面附着光催化剂层,光催化剂层的外表面形成有包括锯齿形、三角形、楔形或扇形中的一个或多个的结构,以使得垂直于灯壳的光线在所述结构上实现全反射。
可选地,在一些实施的紫外灯中,所述光催化剂层由二氧化钛制成,所述锯齿形的结构的顶角小于133°。
附图说明
图1为本申请的一个实施例的一种载体层表面具备规则或不规则排列的凸起或凹孔结构的微观结构示意图。
图2为本申请的一个实施例的一种载体层表面具备规则或不规则排列的多种形式的沟壑结构的微观结构示意图。
图3为本申请的一个实施例的一种载体层表面具备规则或不规则纵横交错排列形式的沟壑结构微观结构示意图。
图4为本申请的一个实施例的反应装置流程图。
图5为本申请的一个实施例的一种光催化反应层、光路的结构位置示意图。
图6为本申请的一个实施例的一种光催化反应层、光路的结构位置示意图。
图7为本申请的一个实施例的光催化反应层的结构位置示意图。
图8为本申请的一个实施例的光催化剂层厚度u与凹孔或者沟壑的深度h的示意图。
图9为本申请的一个实施例的一种具备光催化反应功能的紫外灯的示意图。
图10为本申请的一个实施例的反应腔体内多程气流通道的示意图。
图11为本申请的一个实施例的一种流化床净化装置示意图。
图12为本申请的一个实施例的微观结构表面积比率示意图。
图13为本申请的一个实施例的一种应用了光催化反应层水净化装置示意图。
图14为本申请的一个实施例的具有倾斜孔道的载体层示意图。
图15为本申请的一个实施例的载体层材料的底层具有全反射结构示意图。
图16为本申请的一个实施例的增透原理示意图。
图17为本申请的一个实施例的制作特定微观结构工艺示意图。
图18为本申请的一个实施例的顶角为30°的“V”特定微观结构光路示意图。
图19为本申请的一个实施例的具备特定微观结构的光催化剂层示意图。
图20为本申请的一个实施例的紫外灯具备全反射特性的结构的局部剖面示意图。
图21为本申请的一个实施例的紫外灯具备全反射特性的结构的局部剖面示意图。
图中:1100—载体层;1110—透明载体层;1300—反射层;1400—催化剂填料;1500—a’的投影面积;1600—a的表面积;2100—凹孔;2200—凸起;2300—沟壑;3100—进气口;3500—出气口;3200—紫外灯;3300—气流挡板;3400—风机;3600-光源;5000—光催化剂层。
具体实施方式
术语表
光催化反应层:光催化反应层是具备光催化功能的多层结构。
载体层:在光催化反应过程中,指用于承载光催化剂层的结构性材料,可以是均质的材料,也可以是不同材料进行的拼接。
光催化剂层:光催化剂层是光催化剂以及辅助材料构成的薄层,可以在光的激发作用下,起到加速化学反应的功能。
反射层:反射层是由镜面反射材料构成的材料层,可以将光线反射回原来的材料,材料的反射系数大于0.6。
微观结构:本发明的一个实施例所涉及技术方案中提及的微观结构是指光催化反应层经表面处理,在表面形成的微观结构,可以是催化剂层与载体层同时产生表面积增大的结构,也可以是仅在催化剂层出现的表面积增大的结构。
微观反射:是指在光催化反应层的微观结构中具备了光反射特性,使得该微观结构可以使光线在该结构内的实现多次反射。
紫外灯:包含灯管形式的紫外灯与led形式的紫外灯。
光源:包括人工光源,或可以接收或导入自然光源的结构。
高效光催化反应功能:如果一种光催化材料,应用光催化纳米材料光解指数测试方法(GB/T30452-2013),其光解指数R可以达到35以上,则这种光催化材料具备高效光催化反应功能。
光学反射性能:材料的反射系数大于0.6以上,我们称这种材料具备光学反射性能。这种材料可以是一种单独的材料如银、抛光的玻璃等,也可以是多种材料的组合,如经过镀膜处理的陶瓷材料等。
方案1
一种光催化反应层,光催化反应层包括载体层1100、光催化剂层5000,其光催化反应层具备特定微观结构,特定微观结构可以增加光催化反应层的表面积,从而增加催化剂的承载量,进而扩大了反应物与催化剂的接触面积,从而提升了反应效率。
定义光催化剂层5000表面积比为η,η的宏观计算方式如下:
Figure PCTCN2020133147-appb-000002
其中S’表示经表面处理后的催化剂层表面积,S表示表面处理前的催化剂层表面积,η表示经表面处理后的催化剂层表面积与表面处理前的催化剂层表面积比,η值越大则说明经处理后的催化剂层表面积比未处理的催化剂层表面积多。
研究表明,当催化剂反应层的表面积提升1.2倍以上时,在其他条件不变的情况下,可以带来光催化反应效率约15%以上的效率提升,在光催化反应领域为显著的效率提升。本发明的一个实施例所涉及技术方案中的特定微观结构是指η大于1.2的微观结构。
处理后的光催化反应层表面微观结构相对于原有光催化反应层表面微观结构,可以是增 加了凹孔2100、凸起2200或者是沟壑2300,其结构的形式可以如图1、图2、图3所示,在此情况下η的计算方式可以为:
Figure PCTCN2020133147-appb-000003
如图12所示,其中a’为凹孔2100、凸起2200或者是沟壑2300结构的投影面积1500;a为凹孔2100、凸起2200或者是沟壑2300结构的表面积1600,另外a’可以取凹孔2100、凸起2200或者是沟壑2300结构的表面积的平均值、中值、中位数等。如图8所示,其中凹孔2100或者沟壑2300的深度h,这个深度也可以是凹孔2100或者沟壑2300深度的平均值,如算数平均值、几何平均值、加权平均值等,还可以是整体凹孔2100或者沟壑2300深度的代表数值,如中位数、中数、众数等。
表面处理可以同时针对催化剂层和载体层1100,如通过在载体层1100通过激光、蚀刻、3D打印等方式形成了载体层1100的表面微观结构后,再通过喷涂、浸涂、棍涂、磁控溅射等工艺,将催化剂层附着于载体层1100表面。表面处理还可以只针对催化剂层开展。可以通过3D打印的方式,制备催化剂层,直接制取具有特定微观结构的催化剂层。还可以通过3D打印的方式直接制取具备特定微观结构的光催化反应层。
光催化剂是具有光催化特性的材料,可以在光照射下产生强氧化性的物质(如羟基自由基、氧气等),并且可用于分解有机化合物、部分无机化合物、细菌及病毒等的材料,包含TiO 2、ZrO 2、ZnO、CdS、WO 3、Fe 2O 3、PbS、SnO 2、ZnS、SrTiO 3、SiO 2等金属氧化物材料,还可以是铂、铑、钯等纳米贵金属材料。可以被净化的物质可以是气体,也可以是液体。
方案2
本发明的一个实施例所涉及的一个技术方案是,载体层1100本身为镜面反射材料,或者是载体层1100与光催化剂层5000贴合/结合的部位是镜面反射材料。此类材料可以是如铝、不锈钢、钛合金、铜合金等金属材料,也可以是陶瓷、玻璃等非金属材料,还可以是有机玻璃等有机材料,还可以是有反射功能的复合材料。在光催化剂层5000附着在这种载体层1100上时,增强光催化剂层5000的光催化剂承载量,同时增强反射效果。光源发出的紫外光被更多的反射,得到更高效的利用。
本方案的另外一种实施方式是,选用透明的载体层1100,并在其第二侧设置反射层1300,这种方式的光催化反应层结构的排列顺序依次是光催化剂层5000、载体层1100、反射层1300,如图7所示,紫外光进入透明载体层1110后,经附着于透明载体层1110的反射层1300反射后,可以再次与光催化剂作用,使得紫外光高效的利用。透明载体层1110的材料可以玻璃等非金属材料,还可以是有机玻璃等有机材料。透光率大于80%的材料我们称之为其具备光学透明特性。光催化反应层还有一种排列顺序,即为光催化剂层5000、载体层1100,在这种排列顺序的光催化剂层5000与载体层1100之间可以布置具光学反射性能的材料,使得光催化剂层5000具备光学反射性能。
方案3
在实现本发明的一个实施例的过程中,发明人发现,通过在光催化反应层的特定微观结构中增加微观反射的功能,可以使得入射光线在进入该微观结构中因多次反射而实现光能被光催化剂层5000充分反应的现象,即通过微观结构实现“锁光”现象。要实现“锁光”现象的微观结构,可以是倒“V”、倒梯形、扇形、半圆弧、菱形、倒圆锥等多种微观结构,如图1所示。通过反射可以大幅提升光能利用率,从而提升光催化反应的效率。
目前,主流的紫外灯3200产品可以发出的紫外线波长范围在300nm-400nm之间,以二氧化钛为例,二氧化钛光催化剂层5000对于这个波段紫外光的一次吸收效率在40%-80%。按照最低的吸收率40%可以测算,通过3次反射,3次吸收,对一次入射光可以实现75%以上的吸收率,即实现“基本锁光”;通过6次反射,6次吸收,对一次入射光可以实现超过95%的吸收率,即实现“完全锁光”。如下表格为所示的是吸收率。
反射次数 单次吸收 光能剩余 综合吸收率
1 40.00% 60.00% 40.00%
2 24.00% 36.00% 64.00%
3 14.40% 21.60% 78.40%
4 8.64% 12.96% 87.04%
5 5.18% 7.78% 92.22%
6 3.11% 4.67% 95.33%
方案4
光催化反应层结构还可以与紫外灯3200结合,如9所示,使得紫外灯3200成为具备高效光催化反应功能的紫外灯3200,这种紫外灯3200的灯壳接触空气的一侧具备光催化反应层结构,从而具有光催化反应功能,灯壳外面的空气与灯壳外侧的催化剂层接触,可以直接利用紫外灯3200发出的紫外光进行光催化反应。
所述紫外线灯的灯壳附着光催化剂层5000,光催化剂层5000的外表面形成了包括锯齿形、三角形、楔形或扇形等结构。由于光催化剂层5000的折射率大于空气的折射率,因此从光催化剂层5000射向空气的光线,当入射角度大于全反射临界角的时候,射向空气的光线在光催化剂层5000与空气接触的表面会发生全反射现象。这些锯齿形、三角形、楔形或扇形等结构可以使得射出灯壳的光线在所述结构与空气接触的表面实现全反射,经过全反射的光线可以再次到达紫外灯3200的灯壳,使得光线多次利用,大幅提升光能利用率,从而提升光催化反应的效率。
锯齿形的宏观或微观结构可以使得紫外灯3200发出的紫外光在锯齿形的界面上发生全反射的效应,使得光线可以在紫外灯3200内部多次反射,充分利用紫外灯3200发出的紫外线。不失一般性,以垂直于灯壳的光线作为基准计算得出,以锯齿形为例,锯齿形结构顶角为α,计算方法是α<180-2*全反射临界角,本全反射临界角为光线在此材料与空气的全反射临界角。如果催化剂材料为,二氧化钛折射率2.76,空气折射率为1,则锯齿形的微观结构顶角应当小于133°。
通过发明人的分析和研究:在紫外灯3200的光催化剂层5000的厚度控制在32nm-39nm的奇数倍情况下,还可以实现对紫外灯3200发出的光实现增透的作用,使得更多的紫外光投 射出光催化剂层5000,让更多的紫外光作用在光催化剂层5000表面,提高光线利用效率与光催化反应效率。
方案5
光催化剂层5000的厚度为u,光催化剂层5000厚度不应当影响载体层1100表面微观结构的角度,在纳米级为优选的厚度范围。光催化剂层5000镀膜厚度应当在10nm-200nm之间,过于薄的镀膜会影响附着成膜。光催化剂层5000镀膜的方式可以采用:喷涂、浸涂、棍涂、磁控溅射等方式。
光催化剂层5000镀膜的厚度为u,h可以是纳米二氧化钛镀膜厚度u的5倍以上,深度h是厚度u的10-50倍,是优选的深度与厚度的比例关系,示意图如图8所示。
方案6
反应腔体内部具备多程气流流道,反应腔体内具备气流挡板3300,格挡气流流动方向,反应腔体内部上半部分和下半部分交错设置多个半圆形挡板3300,应用了光催化反应层的部件贯穿半圆形挡板,形成多程气流通道,半圆形挡板示意图见图10。从进气口3100流入的空气依次流过各个挡板之间的间隙然后从出气口3500流出,延长了待净化空气停留在净化模块中的时间,在相同的反应腔体体积下,增加气体与光催化剂接触时间,使光催化反应进行的更充分,提高了光催化反应效率。挡板3300可以根据空气中污染物浓度、净化需求开关闭合,在多程气流与单程气流切换,优化净化效率。
反应腔体内部设置气体扰动装置,增加气体扰动,提高气体与催化剂接触效果与接触时间,提高反应效率。气体扰动机构可以是翅片形式,如图10所示,翅片的类型可以但不限于有:直齿型、双向波纹型、直角波纹型等。
反应腔体内部还可以是柱体形状,但直径由沿轴向方向不规则变化,形成一个不规则柱体。气体流经不规则柱体时由于直径不规则,因此流速会有变化,气流在腔体内部扰动增大,增加与光催化剂表面接触效果,进而提高了光催化效果。
反应腔体内部的催化剂填料1400,可以是流化床的漂浮形式,催化剂填料1400应用了光催化剂反应层,催化剂填料1400流化床的漂浮形式如图11所示,催化腔体内的催化剂填料1400是颗粒形式,颗粒表面、内部都可以含有催化剂。反应腔体内部通过吹入一定流速的气体,使得催化剂填料1400被气流带动并在反应模块内部搅动,搅动起的催化剂填料1400可以极大增强气体与催化剂的接触效果,提高光催化反应效率。
实施例1
一种载体层1100的表面处理工艺,所述处理工艺可以增加载体层1100表面积,包含如下步骤:
(A)对载体层1100的表面进行微观结构处理,使得载体表面具备特定的微观结构;
(B)在载体层1100表面进行光学反射处理工艺,使得载体层1100具备光学反射性能, 更高效的利用光源发出的光;
(C)在载体层1100表面的光催化剂层5000镀膜工艺,使得载体层1100具备光催化特性,同时该光催化剂层5000具备与载体层1100牢靠的结合特性。
应用本制造方法可以增加载体层1100表面积、增加催化剂的承载量、提升光源利用率,提高光催化反应效率。通常的流程是首先进行载体层1100的表面的微观结构处理工艺,载体层1100的表面的微观结构处理工艺完成后进行光学反射处理工艺,光学反射处理工艺完成后再进行光催化剂层5000镀膜工艺。
微观结构处理工艺主要为化学处理法、机械加工法、光刻法、激光雕刻法等。
化学处理法:化学处理法是指通过化学手段,对载体层1100表面进行处理而得到所需的微观结构。玻璃蚀刻技术是对载体层1100表面进行深加工处理,得到所需的表面结构。蚀刻、蒙砂和化学抛光都属于利用化学方式对载体层1100表面进行处理的方法。
机械加工法:载体层1100表面可以通过机械加工法如研磨(数控研磨和抛光技术、离子束抛光技术、应力盘抛光技术)、抛光、喷砂、刻花(人工刻花和自动刻花、等离子弧刻花)等方式对载体层1100表面进行加工处理,得到所需的表面结构。
光刻法:载体层1100表面可以通过光刻法得到所需的表面结构。光刻法通过光照作用,使得所需的图案、观结构转移、呈现到在体表面。
激光雕刻法:载体层1100表面可以通过激光雕刻的方式得到所需表面结构。
催化剂承载工艺是指在载体层1100表面,通过一系列工艺的处理,将光催化剂附着于载体层1100的表面。所述载体层1100可以是经过通过微观结构处理的载体层1100,也可以是没有经过微观结构处理的载体层1100。所述的承载工艺通常可以使用喷涂、浸涂、棍涂、磁控溅射等方式。
可选地,光学反射处理工艺是在载体层1100表面采用光学反射处理工艺,使得载体层1100具备光学反射性能,增加光的利用效率。光学反射处理工艺可以是通过化学镀膜的方式,将铝、银、铜等金属镀在载体层1100的表面;还可以是真空电镀的形式,将铝、银、铜等金属镀在载体层1100的表面;还可以是物理抛光的方式,将载体层1100抛光至一定光洁度,从而具备光学反射性能;还可以是涂覆含有反光填料的涂料,该填料中添加了玻璃微珠、微棱镜。对于不透明的载体层1100,光学反射处理工艺通常应当在载体层1100进行过微观结构处理工艺的第一侧进行;对于透明载体层1110,光学反射处理工艺可以在载体层1100已进行过微观结构处理工艺的第一侧或者第二侧进行。
在光催化剂层5000与载体层1100之间,还可以设置一层过渡层,使得光催化剂层5000与载体层1100的结合更加紧密,提高光催化剂与载体的结合强度,提升光催化剂层5000的耐久性。过渡层还可以提高光催化剂的活性。过渡层可以是包含反应型硅烷偶联剂1-5%的材料,过渡层的厚度可以控制在50-250纳米。
实施例2
光催化净化装置包括反应腔体与其他辅助装置,反应腔体与其他辅助装置组成空气净化器。反应腔体内部设置光源,反应腔体内部以及反应腔体内部的催化剂填料1400应用了光催化反应层结构,具备微观结构,反应腔体内设置的光源用于发出的所需波段的光,作用于光催化剂,分解有害气体。微观结构可以为图1、图2、图3所示。这些结构可以增加载体的比表面积,增加催化剂的承载量。室内空气净化装置,光催化净化装置的其他辅助设备还包括控制系统、风机3400、污染物传感器、进气口3100、出气口3500等。
控制系统用于控制净化装置的工作,包括光源的开关、风机3400的功率和光源功率。污染物传感器可以设置于进气口3100或出气口3500,用于判断空气污染情况以及净化效果;同时污染物传感器的数据信息可以反馈给控制系统用于净化器的自动工作。如在出气口3500监测到的污染物数据低于设定值,则可以发生的动作包括关闭净化装置,减少风机3400功率,降低光源功率等;如果出气口3500监测到的污染物数据高于设定值,则可以发生的动作包括自动打开净化装置,提升风机3400功率,增加光源功率等。
实施例3
反应腔体材料、腔体内部填料具备光催化反应层结构,其中载体层1100材料是利用具备光反射特性的镜面材料制作而成,这些材料可以是经过镜面处理的铝、不锈钢、钛合金、铜合金等金属材料,也可以是陶瓷等非金属材料,还可以是有机玻璃等有机材料。镜面处理的方式可以是抛光,如化学抛光、物理抛光等方式。光源发出的光经过这些镜面的多次反射,可以得到更高效的利用。
经过镜面处理的反应腔体材料、腔体内部填料的载体层1100的表面还需要经过微观结构处理,处理后的表面应当具备图1、图2、图3所示的结构。图1是一种载体层1100表面的微观结构示意图,微观结构可以为呈规则或不规则排列的多种形式的凸起或凹孔2100结构。图2是一种载体层1100表面微观结构处理示意图,微观结构可以为呈规则或不规则排列的多种形式的沟壑2300结构。图3是一种载体层1100表面微观结构示意图,微观结构可以为呈规则或不规则纵横交错排列的多种形式的沟壑2300结构。
这些微观结构可以增加催化剂的承载量,如沟槽的形状可以呈“V”形状,可以在微观层面增强光反射,光可以在沟槽内多次反射,如图6所示,增强光源利用效率。
反应腔体材料、腔体内部填料的载体层1100用于承载光催化剂层5000,光催化剂层5000通过镀膜的方式附着于载体层1100表面。镀膜的方法可以采用:喷涂、浸涂、棍涂、磁控溅射、3D打印等方式。
光催化剂层5000的镀膜厚度应当在50-400nm之间,应用不同的镀膜方式可以实现不同的光催化剂层5000镀膜厚度。优选的镀膜厚度在100-200nm之间,实现100-200nm的镀膜厚度可以采用喷涂和浸涂方式。
Figure PCTCN2020133147-appb-000004
光催化净化装置内部除了反应腔体,还可以设置活性炭吸附模块、臭氧/静电模块、颗粒物过滤模块等,通过这些模块与反应腔体的联用,光催化净化装置可以更高效的处理VOCs、细菌的污染物,也可以处理其他的污染物如颗粒物。
光催化反应所需光波的波长范围是300-500nm,优选的光波波长范围是350-400nm;365-385nm的光波波长可以实现更好的光催化效果。
实施例4
反应腔体材料、腔体内部填料的载体层1100材料是利用具备光反射特性的镜面材料制作而成,这些材料可以是经过镜面处理的铝、不锈钢、钛合金、铜合金等金属材料,也可以是陶瓷等非金属材料,还可以是有机玻璃等有机材料。镜面处理的方式可以是抛光如化学抛光、物理抛光等方式。光源发出的光经过这些镜面的多次反射,可以得到更高效的利用。
经过镜面处理的反应腔体材料、腔体内部填料的载体层1100材料还需要经过表面微观结构处理,微观表面结构处理的方式可以是激光雕刻、化学蚀刻、机械处理方法。处理后的表面应当具备图1、图2、图3所示的结构。这些微观结构可以增加催化剂的承载量,微观的结构呈倒圆锥、倒金字塔、圆柱的形式,如图1中所示凹孔2100,可以在微观层面增强光反射,光可以在倒圆锥内多次反射,增强光源利用效率。
经过镜面处理的反应腔体材料、腔体内部填料的载体层1100材料用于承载光催化剂,光催化剂通过镀膜的方式附着于载体表面。镀膜的方法可以采用:喷涂、浸涂、棍涂、磁控溅射等方式。
实施例5
载体层1100是透明材料,如玻璃等非金属材料,也可以是有机玻璃等有机材料。载体层1100的第二侧,可以紧密贴合/结合具备光学反射特性的材料如金属,或紧密贴合/结合反射膜如镜面镀银、真空蒸镀的反射膜,使光催化反应层具备光反射特性,如图7所示。在载体层1100进行表面微观结构处理,微观表面结构处理的方式可以是激光雕刻、化学蚀刻、机械处理方法。这些微观结构可以增加催化剂的承载量,微观的结构呈倒圆锥形式,可以在微观层面增强光反射,光可以在倒圆锥内多次反射,增强光源利用效率。
光催化剂层5000通过镀膜的方式附着于载体层1100表面。镀膜的方法可以采用:喷涂、浸涂、棍涂、磁控溅射等方式。
实施例6
载体层1100与光催化剂层5000贴合/结合的部位,也就是载体层1100与催化剂层之间,可以增加光学反射性能的材料,光催化剂附着于这层光学反射性能的材料上。这层光学反射性能的材料可以通过镜面镀银、真空蒸镀的方法紧密附着于载体层1100上,使得光催化反应层具备光学反射性能,更加高效的利用光源发出的光,如图6所示。
载体层1100可以进行表面微观结构处理。对于设置的反射层1300,如果载体层1100没有经过表面结构处理,可以对反射层1300进行表面微观结构处理,微观表面结构处理的方式可以是激光雕刻、化学蚀刻、机械处理方法。这些微观结构可以增加催化剂的承载量,微观的结构呈倒圆锥形式,可以在微观层面增强光反射,光可以在倒圆锥内多次反射,增强光源利用效率。
催化剂层紧密附着于光学反射性能的材料,光催化剂层5000通过镀膜的方式附着于反射层1300表面。镀膜的方法可以采用:喷涂、浸涂、棍涂、磁控溅射等方式。
实施例7
光催化净化装置包括反应腔体、光源等。反应腔体是可以进行光催化反应的空间结构,可以是封闭的结构,也可以是开放的结构。反应腔体材料具有光催化反应层结构,反应腔体内部还可以装载有填料,填料可以具有光催化反应层结构。光催化反应层的光催化剂层5000朝向反应腔体内部,光催化反应层的反射层1300也朝向反应腔体内部,可以将紫外光反射回腔体内部,使得反应腔体内部的待净化空气受到更充分的紫外光照射,光催化反应更彻底,减少未被充分反应的气体。
实施例8
本发明的一个实施例的一个技术方案是微观结构为倒“V”形的特定微观结构,具有微观反射功能。载体层1100的表面需要经过微观结构处理,处理后的表面的单元结构可以是图18所示的结构,结构包含载体层1100、反射层1300、光催化剂层5000。载体层1100表面镀有反射层1300,本实施例中的反射层1300是具有光反射功能的材料,银、不锈钢等有光学反射性能的材料。载体层1100表面具备的微观结构单元呈倒“V”形,“V”形下方的角度为30°,“V”形深度在10-15um。垂直入射光在此结构内可以实现6次的反射,利用超过95%的光能利用效率,从而使本实施例的结构具备微观反射,增强光源利用效率。同时这些微观结构也可以增加催化剂的承载量。“V”结构的顶角在小于30°的情况下可以实现对垂直入射光超过6次以上的反射。“V”结构的顶角在小于90°的情况下,可以实现对垂直入射光实现3次以上的反射,实现78%的光能利用效率。
实施例9
反应腔体的一端是封闭的,腔体内部设置分割挡板,将腔体分隔为两部分,同时靠近腔体封闭一端的挡板与腔体壁留有空隙,使得腔体内部形成一个U形的回路气道,未封闭一端设置有进气口3100与出气口3500,如图10所示。反应腔体还可以是两端封闭的,进气口3100与出气口3500设置于腔体侧向,腔体内部设置分割挡板,将腔体分隔为四个部分,同时靠近 腔体封闭端的挡板与腔体壁留有空隙,使得腔体内部形成四程回路的气道。此种设置方式可以在同样的空间内延长气体在反应腔体内的停留时间,增加气流与光催化剂的接触机会,提高光催化反应效果。反应腔体内部承载有光催化剂,并设有光源。此种设置方式可以在同样的空间内延长气体在反应腔体内的停留时间,增加气流与光催化剂的接触机会,进而使光催化反应进行的更充分,提高光催化反应效果。反应腔体内部承载有光催化剂,并设有光源。
反应腔体的内部设置有气流挡板3300,可以如图10的气流挡板3300所示。气流挡板3300可以增加气流的扰动与混合,提升光催化反应模块接触的效率。
实施例10
本发明的一个实施例所涉的反应腔体还可用于水处理,反应腔体可以与其他辅助装置的设备配合使用。反应腔体内部承载有光催化剂,并设置光源;其他辅助装置包括控制系统、污染物传感器、进水口、出水口、水泵等。反应腔体内设置的光源用于发出的所需波段的光,作用于光催化剂分解水中的有害物质,是有机废水的中的有机物。
反应腔体材料、腔体内部填料具有光催化反应层结构,包括载体层1100、光催化剂层5000、反射层1300,光催化反应层具备微观结构,该微观结构可以是如图1、图2、图3所示的结构。这些结构可以增加载体层1100的比表面积,增加催化剂的承载量,提高反应效率。具体表面处理方法可以是化学蚀刻方法、激光雕刻方法、机械处理方法等。
光催化剂层5000通过镀膜的方式附着于载体层1100表面。镀膜的方法可以采用:喷涂、浸涂、棍涂、磁控溅射等方式。光催化剂为二氧化钛。载体层1100可以是非金属材料如玻璃、陶瓷等;也可以是有机材料如有机玻璃等;也可以是金属类材料,如不锈钢、铝合金等。
控制系统用于控制净化装置的工作,包括光源的开关、水泵的功率和光源功率。污染物传感器可以设置于进水口或出水口,用于监测水中污染物况以及净化效果;同时污染物传感器的数据信息可以反馈给控制系统用于净化器的自动工作。如在出水口监测到的污染物数据低于设定值,则可以发生的动作包括关闭净化装置,降低水泵功率,降低光源功率等;如果出水口监测到的污染物数据高于设定值,则可以发生的动作包括打开净化装置,提升水泵功率,增加光源功率等。
实施例11
反应腔体还可与其他净化手段结合联用提高净化效果。例如活性炭吸附模块、臭氧模块、静电吸附模块、HEPA高效过滤模块等。
反应腔体与活性炭吸附模块联用,气体先进入反应腔体进行光催化反应,反应排出的气体进入活性炭模块进一步吸附净化,最终排出;反应腔体与活性炭吸附模块联用可以使得联用装置具备更强的有机物去除能力。
反应腔体与臭氧模块联用,在光催化净化装置内设置臭氧发生器或臭氧注入孔,还设有光源,并承载光催化剂,在出气口3200还可以设置臭氧过滤网用于去除残余臭氧;光催化腔体与臭氧模块联用可以增强有机物去除效果与杀菌消毒效果。
反应腔体与静电吸附模块联用,气体先进入静电吸附模块吸附颗粒物等物质,经静电吸附模块排出的气体再进入,反应腔体进行光催化反应,最终排出;反应腔体与静电吸附模块可以使得联用装置除了具备有机物去除能力和杀菌能力,还可以使得联用装置具备颗粒物的去除能力。由于静电吸附模块降低了气体中颗粒物的浓度,可以使后续的光催化反应模块具备更长的使用寿命。
反应腔体与HEPA高效过滤模块联用,气体先进入HEPA高效过滤模块过滤掉颗粒物,过滤之后的气体进入光催化腔体进行光催化反应去除有机物和杀菌消毒,最终排出;反应腔体与HEPA高效过滤模块还可以使得联用装置具备颗粒物的去除能力。由于HEPA高效过滤模块降低了气体中颗粒物的浓度,可以使后续的光催化反应模块具备更长的使用寿命。
实施例12
用于传送流体的管道也可以经过表面微观结构的处理,从而具备微观结构,并作为光催化反应层。这种管道可以是楼宇中使用的通风管道,或者用于液体输送的管道。具备这种结构的管道可以对内部的细菌病毒等有抑制作用,并且可以持续的分解污染物,如VOCs等。
实施例13
光催化反应层包括载体层1100和光催化剂层5000,载体层1100表面微观结构处理的方式可以是激光雕刻、化学处理法、机械加工法、光刻法。处理后的表面应当具备图3所示的结构。这些微观结构可以增加催化剂的承载量,微观的结构呈倒“V”形,这些结构可以在微观层面增强光反射,光可以在“V”形结构内多次反射,增强光源利用效率。光催化剂层5000通过镀膜的方式附着于载体层1100表面。镀膜的方法可以采用:喷涂、浸涂、棍涂、磁控溅射等方式。
如图8所示的光催化剂层5000镀膜的厚度u应当在30nm-50nm之间,凹孔2100或者沟壑2300的深度h应当在10-15um,优选的镀膜方式为喷涂和浸涂,优选的光波波长范围是350-400nm,365-385nm的光波波长可以实现更好的光催化效果。
实施例14
如图16所示,n 1、n 2、n 3为光在三种介质中的折射率,介质2为光催化膜,l为介质2的厚度。根据菲涅尔公式
Figure PCTCN2020133147-appb-000005
λ为光波的波长;当在n 1<n 2<n 3或n 1>n 2>n 3情况下,同时l是
Figure PCTCN2020133147-appb-000006
奇数倍的情况下,光催化剂层5000可以实现对光线的增透作用。在载体层1100为折射率大于2.6,镀膜厚度是32nm-39nm的奇数倍情况下,可以实现增透的作用。
实施例15
本发明的一个实施例所涉及的一个技术方案是,载体层1100表面具备孔道,孔道内部附着有光催化剂层5000,孔道内部的光催化剂下层还可以有反射层1300。孔道的内部表面同样可以具备微观结构。通过孔道的设置,可以使得气流更顺畅的流通,减小气流阻力,使得待反应的流体更充分的接触光催化剂层5000,从而提升反应效率。
载体层1100结构可以是图14的形式,孔道相对于载体层1100可以是倾斜布置的,倾斜布置的孔道可以使得垂直于载体层1100的入射光在孔道内部实现多次反射,更高效的利用光能。
为了便于描述,选择位于孔道中央的垂直入射光作为标准。为了使位于孔道中央的垂直入射光可以在孔道内发生3次以上的反射,达到75%以上的光能利用率。孔道与载体层1100的夹角γ、载体层1100的厚度H、孔道的直径r可以为如下关系
Figure PCTCN2020133147-appb-000007
倾斜孔道与载体层1100的夹角γ 载体层1100的厚度H与孔道直径r的关系
30° H>0.577r
45° H>1.5r
60° H>3.464r
75° H>8.830r
实施例16
载体层1100可以是透明的材料,光线在进入透明载体层1110时候,会发生反射与折射现象。载体层1100的第二侧可以具备一定结构,从而使穿透催化剂层并进入载体层1100的折射光线利用上述结构,实现对射入载体层1100的光进行全反射,将这些折射进入载体层1100的光线,反射回光催化剂层5000,更充分的利用这些光线的能量。其结构可以是锯齿形、三角形、楔形、扇形等形状。
如图15展示的是载体层1100的第二侧结构是锯齿形状的一种方案。如果载体层1100材料为玻璃,玻璃折射率为1.52,空气折射率为1的情况下,光线的全反射临界角为41°,则如图15中所示结构的α角度应当小于98°,从而可以使得垂直入射进入载体层1100的光线可以发生全反射回到承载有光催化剂层5000的表面。光催化剂层5000第二侧的表面同样可以经表面微观结构处理,具备微观结构。优选的α角度为90°,使得入射光可以原路返回。
对不同的载体层1100材料,可以对垂直射入的光实现全反射的锯齿形α角度要求为,α<180°-2*全反射临界角,上述全反射临界角为光线在载体层1100材料与空气的全反射临界角。
Figure PCTCN2020133147-appb-000008
实施例17
本发明的一个实施例所涉及的一个实施例是,通过如3D打印等快速成型技术,直接生产出具有特定微观结构的光催化剂层5000,并附着于载体层1100之上,如图19所示。还可以通过3D打印等快速成型技术,直接生产出具有特定微观结构的载体层1100,用于承载光催化剂层5000。还可以通过3D打印等快速成型技术,直接生产出具有特定微观结构的光催化剂层5000与载体层1100。
实施例18
紫外灯3200灯壳的外侧还可以进行表面处理,使其表面承载的光催化剂层5000的表面积比η应当大于1.2,具备其他一些实施例中的(特定的)微观结构。例如,紫外灯3200的灯壳的整体结构可以如图9所示。紫外灯3200灯壳外侧的光催化剂层5000也可以直接地形成有特定微观结构,其特定微观结构可以如图19所示。
紫外灯3200的灯壳的结构可以为锯齿形的结构,如图21所示,锯齿形顶角的可以使得垂直射出灯壳的光在界面处的入射角度大于全反射临界角,光线在界面发生全反射现象,从而使得光线再次反射回紫外灯3200内部,并得到多次的利用。在透光材料为玻璃的情况下,锯齿形的顶角应当小于98°。

Claims (27)

  1. 一种光催化反应层,所述光催化反应层包括载体层、光催化剂层,所述载体层的第一侧承载所述光催化剂层,其特征在于所述光催化反应层表面形成有特定微观结构,以使所述光催化剂层表面积增大1.2倍以上。
  2. 如权利要求1所述的光催化反应层,其特征在于,所述载体层的所述第一侧或其与所述光催化剂层的结合部具有光学反射特性。
  3. 如权利要求1或2所述的光催化反应层,其特征在于,所述载体层还具有光学透明特性;所述载体层的第二侧的结构包括锯齿形、三角形、楔形或扇形,所述第二侧的结构被设置以使得垂直于光催化剂层的入射光线在所述结构上实现全反射。
  4. 如权利要求3所述的光催化反应层,其特征在于,所述第二侧的结构是锯齿形,所述锯齿形的顶角α需满足α<180-2*全反射临界角,所述全反射临界角为光线在所述载体层与空气的全反射临界角。
  5. 如权利要求4所述的光催化反应层,其特征在于,如所述载体层由玻璃制成,所述锯齿形的顶角α小于98°;如所述载体层由聚甲基丙烯酸甲脂制成,所述锯齿形的顶角α小于96°。
  6. 如权利要求1所述的光催化反应层,其特征在于,所述载体层具有光学透明特性,所述载体层的第二侧上贴合有反射层。
  7. 如权利要求2所述的光催化反应层,其特征在于,所述特定微观结构形成于所述载体层和/或所述光催化剂层上,以使垂直于所述光催化反应层的入射光能够在所述特定微观结构实现3次以上反射。
  8. 如权利要求7所述的光催化反应层,其特征在于,所述特定微观结构被构造以使垂直于所述光催化反应层的入射光能够在所述特定微观结构实现6次以上反射。
  9. 如权利要求7所述的光催化反应层,其特征在于,所述特定微观结构的结构单元呈倒“V”形状,所述“V”形结构单元的顶角为30度,所述特定微观结构的深度为10-15微米。
  10. 如权利要求7所述的光催化反应层,其特征在于,所述特定微观结构存在于贯穿载体层的孔道中。
  11. 如权利要求10所述的光催化反应层,其特征在于,所述孔道与载体层的夹角、载体层的厚度H、孔道直径r的关系符合
    Figure PCTCN2020133147-appb-100001
    的关系。
  12. 如权利要求11所述的光催化反应层,其特征在于,所述孔道与载体层的夹角γ、载体层的厚度H、孔道直径r存在如下关系:i)如所述夹角γ为30°,则H>0.577r;ii)如所述夹角γ为45°,则H>1.5r;iii)如所述夹角γ为60°,则H>3.464r;iiii)如所述夹角γ为75°,则H>8.830r。
  13. 如权利要求1至12所述的光催化反应层,其特征在于,所述特定微观结构的深度为所述光催化剂层厚度的5-100倍。
  14. 如权利要求1至12所述的光催化反应层,其特征在于,所述载体层折射率大于2.6,所述光催化剂层的厚度为32-39nm的奇数倍。
  15. 如权利要求1至12所述的光催化反应层,其特征在于,所述光催化剂层的厚度为50-400nm。
  16. 如权利要求1至12所述的光催化反应层,其特征在于,所述光催化剂层的附着方式包括磁控溅射、喷涂、浸涂、辊涂。
  17. 如权利要求1至12所述的光催化反应层,其特征在于,所述催化剂层由二氧化钛制成。
  18. 如权利要求1至12所述的光催化反应层,其特征在于,所述载体层与所述光催化剂层之间设置有过渡层,所述过渡层的厚度为50-250nm,所述过渡层的成分包括反应型硅烷偶联剂。
  19. 一种光催化反应装置,其特征在于,包括权利要求1至18所述的光催化反应层、反应腔体,该反应腔体内壁设置有所述光催化反应层;所述光催化反应装置还包括控制系统、受控于所述控制系统的风机、耦合于所述控制系统的污染物传感器、设置于所述反应腔体上的进气口和出气口。
  20. 如权利要求19所述的光催化反应装置,其特征在于,还包括挡板,设置于所述反应腔体内部以在所述进气口和出气口之间形成经由所述光催化剂层的曲折的回路气道。
  21. 如权利要求20所述的光催化反应装置,其特征在于,所述进气口和出气口设置于所述反 应腔体第一端;所述挡板隔离于所述进气口和出气口之间,并将反应腔体分隔为在所述反应腔体的第二端连通的两部分,从而在所述进气口和出气口之间形成回路气道。
  22. 利要求20所述的光催化反应装置,其特征在于,所述挡板上设置有多个子挡板以i)将所述回路气道进一步曲折化,或者,ii)进一步延长所述回路气道。
  23. 如权利要求19所述的光催化反应装置,其特征在于,所述反应腔体填充有填料,该填料表面设置有所述光催化反应层;所述填料在所述光催化反应装置处于工作状态时悬浮于所述反应腔体内部。
  24. 一种紫外灯,其特征在于,包括灯壳和至少部分地封闭于所述灯壳之内的紫外光源;所述灯壳表面应用了权利要求1所述的光催化反应层,所述光催化剂层位于灯壳的外侧。
  25. 如权利要求24所述的紫外灯,其特征在于,所述光催化剂层的厚度为32-39nm的奇数倍。
  26. 一种紫外灯,由光源和灯壳组成,其特征在于,所述灯壳由透光材料制成,且附着有光催化剂层,所述光催化剂层的外表面形成有包括锯齿形、三角形、楔形或扇形中的一个或多个的结构,以使得垂直于灯壳的光线在所述结构上实现全反射。
  27. 如权利要求26所述的紫外灯,其特征在于,所述光催化剂层由二氧化钛制成,所述锯齿形的结构的顶角小于133°。
PCT/CN2020/133147 2020-12-01 2020-12-01 一种光催化净化装置 WO2022116003A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/133147 WO2022116003A1 (zh) 2020-12-01 2020-12-01 一种光催化净化装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/133147 WO2022116003A1 (zh) 2020-12-01 2020-12-01 一种光催化净化装置

Publications (1)

Publication Number Publication Date
WO2022116003A1 true WO2022116003A1 (zh) 2022-06-09

Family

ID=81852861

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/133147 WO2022116003A1 (zh) 2020-12-01 2020-12-01 一种光催化净化装置

Country Status (1)

Country Link
WO (1) WO2022116003A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104226287A (zh) * 2014-08-18 2014-12-24 江苏恒智纳米科技有限公司 纳米二氧化钛光催化剂薄膜的制备工艺
CN104437304A (zh) * 2014-12-06 2015-03-25 绍兴明透装甲材料有限责任公司 一种光催化灯及其制造方法
CN104874384A (zh) * 2015-05-19 2015-09-02 大连理工大学 一种微纳复合结构二氧化钛薄膜的制备方法
CN105609580A (zh) * 2015-12-28 2016-05-25 江南大学 一种基于p/n异质结协同消反射性能的硅/二氧化钛三维复合材料及应用
CN105964233A (zh) * 2016-05-12 2016-09-28 江南大学 一种消反射异质结复合涂层及其制备方法
CN108212156A (zh) * 2016-12-15 2018-06-29 优维科斯株式会社 光催化剂片、空气净化器以及光催化剂片的制造方法
CN209630985U (zh) * 2019-01-17 2019-11-15 重庆交通大学 折流式光催化净化反应器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104226287A (zh) * 2014-08-18 2014-12-24 江苏恒智纳米科技有限公司 纳米二氧化钛光催化剂薄膜的制备工艺
CN104437304A (zh) * 2014-12-06 2015-03-25 绍兴明透装甲材料有限责任公司 一种光催化灯及其制造方法
CN104874384A (zh) * 2015-05-19 2015-09-02 大连理工大学 一种微纳复合结构二氧化钛薄膜的制备方法
CN105609580A (zh) * 2015-12-28 2016-05-25 江南大学 一种基于p/n异质结协同消反射性能的硅/二氧化钛三维复合材料及应用
CN105964233A (zh) * 2016-05-12 2016-09-28 江南大学 一种消反射异质结复合涂层及其制备方法
CN108212156A (zh) * 2016-12-15 2018-06-29 优维科斯株式会社 光催化剂片、空气净化器以及光催化剂片的制造方法
CN209630985U (zh) * 2019-01-17 2019-11-15 重庆交通大学 折流式光催化净化反应器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
FURUSAWA KENTARO ET AL.: "Femtosecond laser micromachining of TiO2 crystal surface for robust optical catalyst", JOURNAL OF APPLIED PHYSICS, vol. 87, no. 4, 15 February 2000 (2000-02-15), pages 1604 - 1609, XP012049466, ISSN: 0021-8979, DOI: 10.1063/1.372066 *

Similar Documents

Publication Publication Date Title
US6902653B2 (en) Apparatus and method for photocatalytic purification and disinfection of fluids
US8709341B2 (en) System for purifying air through germicidal irradiation and method of manufacture
US20090041632A1 (en) Air Purifier System and Method
US20050224335A1 (en) Apparatus and method for photocatalytic purification and disinfection of fluids
US5790934A (en) Apparatus for photocatalytic fluid purification
CN108355491B (zh) 光触媒蜂窝组件
CN110056996A (zh) 空气净化装置和空气净化系统
CN102281933A (zh) 用于使用点辐射源进行流体的细菌消毒的系统和方法
CN111542346A (zh) 用于光电化学空气净化的系统和方法
JP2001062253A (ja) 浄化装置
CN101288839A (zh) 透光性管状蜂巢式光催化反应器
EP1434737A1 (en) Apparatus and method for photocatalytic purification and disinfection of water and ultrapure water
US20170259254A1 (en) Photocatalyst apparatus and system
KR20220058023A (ko) 광 산란체를 구비하는 광촉매 필터
CN203886413U (zh) 一种流化TiO2光催化氧化型空气净化器
WO2022116003A1 (zh) 一种光催化净化装置
WO2022116004A1 (zh) 一种高效光催化装置的生产方法
US20050063881A1 (en) Air purifier including a photocatalyst
Zaleska et al. Photocatalytic air purification
CN2548051Y (zh) 纳米光催化空气净化装置
CN207945755U (zh) 一种用于新风系统的可见光光催化部件及新风系统
JP2004358459A (ja) 光ファイバ、フィルタ部材、空気浄化システムおよび空気浄化方法
CN2568189Y (zh) 纳米光催化空气净化配件
CN111895532B (zh) 一种基于多面体结构的光催化空气净化装置
TWM545785U (zh) 光觸媒濾淨模組及其光觸媒結構

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20963851

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 25.07.2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20963851

Country of ref document: EP

Kind code of ref document: A1