WO2022116004A1 - 一种高效光催化装置的生产方法 - Google Patents

一种高效光催化装置的生产方法 Download PDF

Info

Publication number
WO2022116004A1
WO2022116004A1 PCT/CN2020/133150 CN2020133150W WO2022116004A1 WO 2022116004 A1 WO2022116004 A1 WO 2022116004A1 CN 2020133150 W CN2020133150 W CN 2020133150W WO 2022116004 A1 WO2022116004 A1 WO 2022116004A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
carrier layer
microstructure
photocatalytic reaction
photocatalyst
Prior art date
Application number
PCT/CN2020/133150
Other languages
English (en)
French (fr)
Inventor
赵志伟
周晓林
王航波
Original Assignee
莱恩创科(北京)科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 莱恩创科(北京)科技有限公司 filed Critical 莱恩创科(北京)科技有限公司
Priority to PCT/CN2020/133150 priority Critical patent/WO2022116004A1/zh
Publication of WO2022116004A1 publication Critical patent/WO2022116004A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties

Definitions

  • the invention relates to the technical field of environmental purification, in particular to a production method of a high-efficiency photocatalytic purification device.
  • indoor pollutants may have more complex components than outdoor pollutants. Since indoor pollutants include all types of pollution elements of outdoor pollutants, including radioactive pollution, chemical pollution, biological pollution, physical pollution, etc., the types of pollutants can reach more than 1,000 kinds, and the indoor air flow state is not as good as outdoor, indoor air pollution Pollutants stay indoors for a long time and generate new pollutants under the physical action of photosynthesis and oxidation, which further deteriorates indoor air quality. Humans spend most of their day indoors, such as studying, working, resting and other activities. Therefore, the quality of indoor air quality has a more obvious impact on human health.
  • VOCs such as toluene, benzene, xylene, and formaldehyde at room temperature.
  • Cosmetics, deodorants, insecticides, and various detergents used in daily life also lead to the release of a large amount of VOCs into the atmosphere.
  • VOCs have complex components, and most of them are highly toxic, which will cause great harm to the human body, and a variety of VOCs will have cumulative effects when they act on the human body at the same time.
  • VOCs gaseous pollutants
  • many gaseous pollutants such as VOCs can be directly treated in the gas phase or separated from the liquid phase for oxidative degradation by means of photocatalysis, so that the pollution can be treated.
  • bacteria in the air will adhere to the surface of fine particles such as dust or PM 2.5 . If the bacteria are harmful bacteria, they are easy to enter with people's respiration when suspended in the air, especially in the air with high humidity. human body and pose a threat to people's health.
  • Photocatalytic materials are a class of semiconductor materials that have photocatalytic activity and can degrade various chemicals or kill bacteria under ultraviolet light or even visible light irradiation, including oxide photocatalytic materials such as TiO 2 . Under the action of light, TiO 2 can be used as a catalyst for photochemical reactions, react in the presence of H 2 O and O 2 , etc., to generate free radicals, destroy cell walls and viral protein shells, and thus play a role in disinfection and sterilization. In addition to sterilization, photocatalytic materials have purification effects on formaldehyde and VOCs (volatile organic compounds).
  • the heterogeneous photocatalytic oxidation process using semiconducting oxides as catalysts can take place well with its deep reaction at room temperature, that is, photocatalytic oxidation reaction at room temperature, which can convert various chemical substances (formaldehyde and various VOCs) Degraded into carbon dioxide, water and other small molecular chemicals, no secondary pollution, easy to operate and control, low operating cost, can directly use light to activate catalysts, drive oxidation reactions and other superior performances and become an ideal environmental pollution control technology.
  • various chemical substances formaldehyde and various VOCs
  • TiO2 photocatalyst mainly focuses on the modification research of TiO2 photocatalyst and the photocatalyst loading and fixing technology.
  • the TiO2 photocatalytic supports used at home and abroad mainly include silica gel, activated carbon, activated alumina, glass fiber mesh, hollow Ceramic balls, sea sand, hollow glass beads, quartz glass tubes (sheets), ordinary (conductive) glass sheets, plexiglass, etc.
  • titanium dioxide photocatalysis technology focuses on the application of ambient photocatalysis technology. Including self-cleaning technology, anti-fog technology, antibacterial technology, wastewater purification and air purification. With the growing problem of air pollution and the escalation of public concerns about air quality issues, the application of photocatalytic titanium dioxide in indoor air purifiers has developed rapidly. However, due to the nature of the photocatalytic reaction principle, the low efficiency of photocatalytic reaction is the main problem of this type of technology and equipment. There are several reasons for the low efficiency of photocatalytic reaction in principle. The gas reactant needs to stay in contact with the catalyst for a certain period of time, and only a part of the light in the natural light can excite titanium dioxide to generate free radicals and catalyze.
  • the existing methods for improving the efficiency are mainly used, including improving the mixing efficiency of gas and catalyst, expanding the reaction volume, and increasing the power of the light source. Although these methods can improve the efficiency of the photocatalytic reaction to a certain extent, there are still some problems in the application process. will bring other problems.
  • the above problems exist not only in air purification, but also in devices that use the principle of photocatalysis to purify water (including sterilization, disinfection of organic matter degradation, ammonia nitrogen treatment, etc.).
  • the patent application number CN103007781B discloses a filter membrane for air and water purification and a preparation method thereof.
  • the aluminum foil is pasted on the surface of the single-sided conductive aluminum flat plate with conductive adhesive; the single-sided conductive aluminum flat plate with the aluminum foil is then used as an anode and placed in an aluminum anodic oxidation solution for oxidation reaction and other operations to obtain three
  • the aluminum oxide ceramic foil is then coated with nano-titanium dioxide on the microporous aluminum oxide ceramic by magnetron sputtering to obtain a filter film with photocatalytic activity for air and water purification.
  • This method has limited utilization of light source, and thus does not effectively improve the reaction efficiency of photocatalysis.
  • Chinese patent 201210211733 discloses a method for preparing TiO2 nanotube thin films by magnetron sputtering, which belongs to the technical field of preparation of TiO2 thin film inorganic materials. Specifically, it is a method for preparing TiO2 nanotube array films by magnetron sputtering technology and annealing treatment through the confinement of porous anodic alumina template. Although this method is a surface treatment method of a TiO2 catalyst and a carrier, it is aimed at the catalyst attachment method on a complex surface.
  • This technical solution can indirectly increase the area of the photocatalytic reaction, but there is no effective means to improve the utilization rate of the light source, so that the light The catalytic reaction efficiency is limited.
  • the problem of low efficiency of photocatalytic reaction brought about by the characteristics of photocatalytic reaction principle is the main problem of photocatalytic technology and equipment in air purification.
  • Light in a part of the wavelength band can excite titanium dioxide to generate free radicals and catalyze.
  • the contact between the reactant and the catalyst is insufficient, or the violet light irradiation is insufficient, the photocatalytic reaction efficiency is often low.
  • the existing technology mainly improves the structure of the photocatalytic air purification device, such as improving the air passage design to improve the mixing efficiency of gas and catalyst, increasing the reaction volume, increasing the power of the light source and other methods.
  • the improvement has improved the efficiency to a certain extent, but limited by the traditional mechanical structure and equipment space factors, the improvement effect of the overall purification efficiency of the existing purification devices containing titanium dioxide catalysts is limited.
  • the above problems exist not only in air purification, but also in devices that use the principle of photocatalysis to purify water (including sterilization, disinfection of organic matter degradation, ammonia nitrogen treatment, etc.).
  • the purpose of the present invention is to apply a new technical solution to improve the efficiency of photocatalytic purification.
  • the inventor found that the prior art is mainly the improvement of the purification device on the macroscopic structure. Although these improvements improve the purification effect to a certain extent, these improvements often bring other equipment such as equipment. Increase in volume, increase in energy consumption, increase in manufacturing costs and other issues.
  • the inventors found that if the structure of the photocatalytic reaction layer, especially the microstructure of the photocatalytic reaction layer is improved, it is possible to greatly improve the reaction efficiency of the photocatalytic reaction.
  • the surface structure is improved accordingly, the contact area between the reactant and the catalyst can be better increased, the problem of insufficient contact area can be overcome, and the purification efficiency can be improved.
  • microscopic reflection can also be added to the microstructure of the surface of the photocatalytic reaction layer, which can realize multiple utilization of light energy at the microscopic level.
  • this improved method can utilize the light source more efficiently, overcome the problem of low utilization of light energy, and improve the efficiency of the photocatalytic reaction.
  • the technical solutions involved in the present invention provide a method for manufacturing a photocatalytic reaction device with a specific microstructure on the surface of the photocatalytic reaction layer.
  • the specific microstructure of the photocatalytic reaction layer is obtained by surface treatment. After the surface treatment, a specific microstructure will be formed on the surface of the photocatalytic reaction layer, which can increase the surface area of the photocatalyst layer, thereby increasing the support of the catalyst. In addition, the contact area between the reactant and the catalyst is enlarged, thereby improving the reaction efficiency.
  • the microstructure of the device manufactured by this manufacturing method can also be processed by adding a microscopic reflection process, so that the photocatalytic reaction layer has light reflection performance at the microscopic level, and the utilization efficiency of light energy is improved, thereby further improving the reaction efficiency.
  • the same surface structure treatment can also be performed on other components of the air transport, storage, and purification devices, thereby increasing the reaction efficiency of the photocatalyst.
  • the technical solution involved in the present invention provides a manufacturing method with a photocatalytic reaction layer, the photocatalytic reaction layer includes a carrier layer and a photocatalyst layer, and the photocatalytic reaction layer has a specific microstructure, and the specific microstructure can increase the light
  • the surface area of the catalyst layer is increased, thereby increasing the carrying capacity of the catalyst, thereby expanding the contact area between the reactant and the catalyst, thereby improving the reaction efficiency.
  • the surface area of the surface-treated photocatalyst layer is at least 1.2 times that of the unsurface-treated carrier layer, and the photocatalyst layer is closely attached to the carrier layer.
  • the same surface structure treatment can also be performed on other components of the air transport, storage, and purification devices, thereby increasing the reaction efficiency of the photocatalyst.
  • a manufacturing method of a photocatalytic water purification device is provided, and the photocatalytic water purification device adopts a photocatalytic reaction layer structure.
  • the specific microstructure of the photocatalytic reaction layer is obtained by surface treatment. After the surface treatment, a specific microstructure will be formed on the surface of the photocatalytic reaction layer, which can increase the surface area of the photocatalyst layer, thereby increasing the support of the catalyst. In addition, the contact area between the reactant and the catalyst is enlarged, thereby improving the reaction efficiency.
  • the microstructure can also improve the utilization efficiency of light energy at the microscopic level by increasing the microscopic reflection function, thereby further improving the reaction efficiency.
  • the device can be used as the main component or filler of the water purifier, and the same surface structure treatment can also be performed on other components related to water purification, transportation, storage, etc., thereby increasing the reaction efficiency of the photocatalyst.
  • the technical solutions involved in the present invention can be widely used in the manufacture of various high-efficiency reaction devices based on the principle of photocatalysis.
  • a method for treating a photocatalytic reaction layer is provided, which is characterized by comprising: performing a surface treatment process on the photocatalytic reaction layer to increase the surface area of the photocatalytic reaction layer 1.2 times or more.
  • the photocatalytic reaction layer includes a carrier layer and a photocatalyst layer
  • the surface treatment process for the photocatalytic reaction layer further includes:
  • the microstructure treatment process on the surface of the carrier layer includes the following steps:
  • the metal mold pretreatment step further includes using a cleaning agent to ultrasonically clean the metal mold for 5min-30min;
  • the cleaning agent is one of acetone, ethanol, isopropanol or deionized water or A mixture of two or more kinds;
  • the metal substrate is a mixture of one or more of 1060 aluminum alloy, 5052 aluminum alloy, 6061 aluminum alloy or 7075 aviation aluminum alloy.
  • the conical array structural units are one or more of triangles, quadrilaterals, pentagons and hexagons.
  • the cone height of a single cone size is 200 ⁇ m-800 ⁇ m, and the cone spacing is 100 ⁇ m-1200 ⁇ m.
  • the step of deburring the obtained metal substrate with a tapered array structure further includes placing the metal substrate with a tapered array structure into a 2-4 mol/L acid solution for etching for 10 mol/L. -20 minutes to remove metal residues on the machined surface, wherein the acid solution is one or a mixture of two or more of hydrochloric acid, oxalic acid, dilute nitric acid or sulfuric acid.
  • the apex angle of the predetermined cone is less than 90°.
  • the step B further includes: performing the photocatalytic reaction layer coating process on the surface of the carrier layer 1100 having the microstructure through a rapid prototyping technology.
  • step A before step A, a further step is included: preparing the carrier layer by a rapid prototyping technique.
  • the microstructure on the photocatalyst layer is open, wherein each microstructure unit is in an inverted "V" shape, and the vertex angle of the inverted "V” shape is less than 90°.
  • the step A further includes, coating the surface of the carrier layer with a transition layer; and the step B further includes, performing a photocatalytic reaction layer coating process on the surface of the transition layer on the surface of the carrier layer .
  • the coating method of the transition layer includes spray coating and dip coating, and the formula of the transition layer is 1%-5% of reactive silane coupling agent, 95%-5% of ethanol or isopropanol 98%, water 0.5%-2%.
  • the surface of the carrier layer or the surface of the photocatalyst layer is formed with regularly or irregularly arranged protrusions, concave holes or gully structure.
  • the thickness of the photocatalyst layer is uniform, and its thickness ranges from 30 nm to 50 nm, and the depth of the concave holes or grooves on the photocatalyst layer ranges from 10 um to 15 um.
  • the photocatalytic reaction layer coating process includes spray coating, dip coating, roll coating and magnetron sputtering.
  • the microstructure of the carrier layer includes a channel, the inner wall of the channel is attached with the photocatalyst layer, the angle between the channel and the carrier layer, the thickness H of the carrier layer,
  • the relationship between the pore diameter r is in accordance with Relationship.
  • the method further includes a channel processing step: forming the channels on the carrier layer and/or the photocatalyst layer through precision machining, laser processing, and 3D printing.
  • the channel processing step further includes:
  • the apex angle of the cutter is less than 30°.
  • a manufacturing method of a high-efficiency photocatalytic reaction ultraviolet lamp comprising the following steps:
  • the lamp housing of the ultraviolet lamp is manufactured by means of a mold, and the lamp housing is made of glass;
  • the mold is characterized in that the mold is of axisymmetric structure, and zigzag grooves are symmetrically distributed on the edge of the inner cavity wall of the mold, and the apex angle of the groove is less than 98°.
  • FIG. 1 is a schematic view of the microstructure processing of a carrier layer with regularly or irregularly arranged convex or concave hole structures on the surface of an embodiment of the present application.
  • FIG. 2 is a schematic view of the microstructure processing of a carrier layer with various forms of gully structures arranged regularly or irregularly on the surface of an embodiment of the present application.
  • FIG. 3 is a schematic view of the microstructure of a gully structure with regular or irregular criss-cross arrangement on the surface of a carrier layer according to an embodiment of the present application.
  • Fig. 4 is the flow chart of the reaction device of one embodiment of the application
  • FIG. 5 is a schematic diagram of the structure and position of a photocatalytic reaction layer and an optical path according to an embodiment of the present application.
  • FIG. 6 is a schematic diagram of the structure and position of a photocatalytic reaction layer and an optical path according to an embodiment of the present application.
  • FIG. 7 is a schematic diagram of the structure and position of a photocatalytic reaction layer according to an embodiment of the present application.
  • FIG. 8 is a schematic diagram of the thickness u of the photocatalyst layer and the depth h of the concave holes or grooves according to an embodiment of the present application.
  • FIG. 9 is a schematic diagram of an ultraviolet lamp with a photocatalytic reaction function according to an embodiment of the present application.
  • FIG. 10 is a schematic diagram of a multi-pass gas flow channel in a reaction chamber according to an embodiment of the present application.
  • FIG. 11 is a schematic diagram of a fluidized bed purification device according to an embodiment of the present application.
  • Figure 12 is a schematic diagram of the microstructure surface area ratio of one embodiment of the application.
  • FIG. 13 is a schematic diagram of a water purification device using a photocatalytic reaction layer according to an embodiment of the present application.
  • FIG. 14 is a flow chart of a surface microstructure processing process according to an embodiment of the present application.
  • FIG. 15 is a flow chart of a surface microstructure processing process according to an embodiment of the present application.
  • FIG. 16 is a schematic diagram of a carrier layer with inclined channels according to an embodiment of the present application.
  • FIG. 17 is a schematic diagram of a bottom layer of a carrier layer having a total reflection structure according to an embodiment of the present application.
  • FIG. 18 is a schematic diagram of an anti-reflection principle according to an embodiment of the present application.
  • FIG. 19 is a schematic diagram of a process for fabricating a specific microstructure according to an embodiment of the present application.
  • FIG. 20 is a schematic diagram of the optical path of a “V” specific microstructure with an apex angle of 30° according to an embodiment of the present application.
  • FIG. 21 is a schematic diagram of a photocatalyst layer with a specific microstructure according to an embodiment of the present application.
  • FIG. 22 is a partial cross-sectional schematic diagram of a structure of an ultraviolet lamp with total reflection property according to an embodiment of the present application.
  • FIG. 23 is a partial cross-sectional schematic diagram of a structure of an ultraviolet lamp with total reflection property according to an embodiment of the present application.
  • 1100 carrier layer
  • 1110 transparent carrier layer
  • 1300 reflection layer
  • 1400 catalyst filler
  • 1500 projected area of a’
  • gully 3100-air inlet; 3500-air outlet; 3200-ultraviolet lamp; 3300-air flow baffle; 3400-fan; 3600-light source; 5000-photocatalyst layer.
  • Photocatalytic reaction layer The photocatalytic reaction layer is a multi-layer structure with photocatalytic function.
  • Carrier layer In the photocatalytic reaction process, it refers to the structural material used to support the photocatalyst layer, which can be a homogeneous material or a splicing of different materials.
  • the photocatalyst layer is a thin layer composed of photocatalyst and auxiliary materials, which can accelerate the chemical reaction under the excitation of light.
  • the reflective layer is a material layer composed of specular reflective materials, which can reflect the light back to the original material, and the reflection coefficient of the material is greater than 0.6.
  • microstructure refers to the microstructure formed on the surface of the photocatalytic reaction layer after surface treatment. It may be a structure in which only the surface area of the catalyst layer is increased.
  • Microscopic reflection It means that the microstructure of the photocatalytic reaction layer has light reflection characteristics, so that the microstructure can realize multiple reflections of light in the structure.
  • Ultraviolet lamp It includes ultraviolet lamp in the form of tube and ultraviolet lamp in the form of LED.
  • Light sources including artificial light sources, or structures that can receive or import natural light sources.
  • Optical reflection performance The reflection coefficient of the material is more than 0.6, we call this material with optical reflection performance.
  • This material can be a single material such as silver, polished glass, etc., or a combination of multiple materials, such as a coated ceramic material.
  • a photocatalytic reaction layer includes a carrier layer 1100 and a photocatalyst layer 5000, and the photocatalytic reaction layer has a specific microstructure, and the specific microstructure can increase the surface area of the photocatalytic reaction layer, thereby increasing the bearing capacity of the catalyst, Further, the contact area between the reactant and the catalyst is enlarged, thereby improving the reaction efficiency.
  • S' represents the surface area of the catalyst layer after surface treatment
  • S represents the surface area of the catalyst layer before surface treatment
  • represents the ratio of the surface area of the catalyst layer after surface treatment to the surface area of the catalyst layer before surface treatment.
  • the treated catalyst layer has more surface area than the untreated catalyst layer.
  • the specific microstructure in the technical solution involved in the present invention refers to a microstructure with ⁇ greater than 1.2.
  • the surface microstructure of the treated photocatalytic reaction layer can be added with concave holes 2100, protrusions 2200 or ravines, and its structure can be as shown in Figure 1, Figure 2, Figure 2 3, the calculation method of n in this case can be:
  • a' is the projected area of the concave hole 2100, the protrusion 2200 or the gully structure
  • a is the surface area of the concave hole 2100, the protrusion 2200 or the gully structure
  • a' can be the concave hole 2100
  • the protrusions 2200 are either the mean, median, median, etc. of the surface area of the gullies. As shown in FIG. 12, where a' is the projected area of the concave hole 2100, the protrusion 2200 or the gully structure; a is the surface area of the concave hole 2100, the protrusion 2200 or the gully structure, and a' can be the concave hole 2100,
  • the protrusions 2200 are either the mean, median, median, etc. of the surface area of the gullies.
  • the depth h of the concave hole 2100 or the gully can also be the average value of the depth of the concave hole 2100 or the gully, such as arithmetic mean, geometric mean, weighted mean, etc., or it can be the overall concave
  • the representative value of the hole 2100 or the depth of the gully such as median, median, mode, etc.
  • the thickness of the photocatalyst layer 5000 coating is u, h should be more than 5 times the thickness u of the nano-titania coating, and the depth h is 10-50 times the thickness u, which is the preferred depth and thickness multiple.
  • the aforementioned manufacturing method relates to a surface treatment process.
  • the surface treatment can be aimed at the catalyst layer and the carrier layer 1100 at the same time.
  • the catalyst layer is attached to the surface of the carrier layer 1100 by processes such as sputtering.
  • the surface treatment can also be carried out only for the catalyst layer.
  • the catalyst layer can be prepared by 3D printing, and the catalyst layer with a specific microstructure can be directly prepared. It is also possible to directly fabricate a photocatalytic reaction layer with a specific microstructure by 3D printing.
  • the thickness of the photocatalyst layer 5000 is u, the thickness of the photocatalyst layer 5000 should not affect the angle of the surface microstructure of the carrier layer 1100, and the thickness is preferably in the nanometer range.
  • the coating thickness of the photocatalyst layer 5000 should be between 10nm-200nm. Too thin coating will affect the adhesion and film formation.
  • the photocatalyst layer 5000 can be coated by spraying, dipping, roller coating, magnetron sputtering and the like.
  • Photocatalysts are materials with photocatalytic properties that can generate strongly oxidizing substances (such as hydroxyl radicals, oxygen, etc.) under light irradiation, and can be used to decompose organic compounds, some inorganic compounds, bacteria and viruses, etc.
  • Materials including Metal oxide materials such as TiO 2 , ZrO 2 , ZnO, CdS, WO 3 , Fe 2 O 3 , PbS, SnO 2 , ZnS, SrTiO 3 , SiO 2 , etc., or nano-precious metal materials such as platinum, rhodium, and palladium.
  • Substances that can be purified can be gases or liquids.
  • a technical solution involved in an embodiment of the present invention is to make the surface of the carrier layer 1100 have a specific microstructure through a microstructure treatment process on the surface of the carrier layer 1100, and the surface treatment process may be a chemical treatment method, a mechanical processing method, Photolithography, laser engraving, etc.
  • a light-transmitting or non-light-transmitting material can be selected as the material of the carrier layer 1100, such as glass, ceramic, metal, plastic and other materials.
  • the chemical treatment method refers to the treatment of the surface of the carrier by chemical means to obtain the desired microstructure.
  • the glass etching technology is to deep process the surface of the catalyst carrier to obtain the desired surface structure. Etching, frosting and chemical polishing are all chemical methods used to treat the surface of the carrier.
  • the surface of the carrier layer 1100 can be processed by mechanical processing methods such as grinding (NC grinding and polishing technology, ion beam polishing technology, stress disc polishing technology), polishing, sandblasting, engraving (manual engraving and automatic engraving, plasma
  • the surface of the carrier is processed by means of arc engraving) to obtain the desired surface structure.
  • Photolithography The surface of the carrier layer 1100 can obtain the desired surface structure by photolithography.
  • the photolithography method transfers and presents the desired pattern and the surrounding structure to the surface of the body through the action of light.
  • Laser engraving method the surface of the carrier layer 1100 can obtain the desired surface structure by means of laser engraving.
  • an optical reflection treatment process can also be added to the surface of the carrier layer 1100, so that the carrier layer 1100 has optical reflection properties, and the light emitted by the light source can be used more efficiently;
  • a photocatalytic reaction layer is formed thereon, which has photocatalytic properties, and at the same time, the photocatalytic layer 5000 has strong bonding properties with the carrier layer 1100 .
  • the optical reflection treatment process can be by means of chemical coating, plating aluminum, silver, copper and other metals on the surface of the carrier layer 1100; it can also be in the form of vacuum electroplating, plating aluminum, silver, copper and other metals on the carrier layer 1100. It can also be physical polishing, polishing the carrier layer 1100 to a certain smoothness, so as to have optical reflection characteristics; it can also be coated with a paint containing a reflective filler, and glass microbeads and microprisms are added to the filler.
  • the optical reflection treatment process should generally be performed on the first side of the carrier layer 1100 that has undergone the microstructure treatment process; for the transparent carrier layer 1110, the optical reflection treatment process should generally be performed on the carrier layer 1100.
  • Microstructure treatment process The second side of the process takes place.
  • the first side refers to the side that is in contact with the pollutants and undergoes a photocatalytic reaction, and the second side refers to the side that is away from the light source.
  • the catalyst loading process means that a photocatalyst layer 5000 is formed on the carrier layer 1100 through a series of processes on the surface of the carrier layer 1100 , and the photocatalyst is attached to the surface of the carrier layer 1100 .
  • the carrier layer 1100 may be a carrier layer 1100 that has undergone surface microstructure treatment, or may be a carrier layer 1100 that has not undergone surface microstructure treatment.
  • the loading process can usually be sprayed, dipped, rolled, magnetron sputtering and the like.
  • the related process is that the surface microstructure treatment process of the carrier layer 1100 may be performed first, and then the photocatalyst layer 5000 coating process may be performed.
  • the optical reflection treatment process can be carried out in any part of the above process according to the characteristics of the carrier.
  • a technical solution involved in another embodiment of the present invention is to make the surface of the carrier have a specific microstructure through the surface microstructure treatment process of the carrier layer 1100, and the carrier is a transparent carrier, such as glass, plexiglass and other materials,
  • the surface treatment process can be chemical treatment, mechanical processing, photolithography and the like.
  • the basic solution 3 uses the surface microstructure treatment process of the carrier layer 1100 to make the surface of the carrier layer 1100 have a specific microstructure.
  • the carrier layer 1100 itself has optical reflection properties, such as optical reflection properties.
  • Metal materials such as aluminum alloys, stainless steel, copper alloys, etc., inorganic non-metallic materials such as ceramics, and organic materials such as plastics, etc.
  • the surface treatment process can be chemical treatment, mechanical processing, photolithography Wait.
  • photocatalytic reaction layer it is also necessary to generate a photocatalytic reaction layer on the carrier layer 1100 through a coating process on the surface of the carrier with optical reflection properties, so that the carrier layer 1100 has photocatalytic properties.
  • the photocatalyst layer 5000 coating process is applied to the surface of the carrier layer 1100. side of the process.
  • the inventors found that by adding the function of microscopic reflection to the specific microstructure of the photocatalytic reaction layer, the incident light can be reflected by the photocatalyst due to multiple reflections when entering the microstructure.
  • the phenomenon that the layer 5000 fully reacts that is, the phenomenon of "light locking” is realized through the microstructure.
  • the microstructure of the "lock light” phenomenon it can be a variety of microstructures such as inverted "V”, inverted trapezoid, fan-shaped, semi-circular arc, rhombus, inverted cone and so on.
  • the wavelength range of ultraviolet rays that can be emitted by mainstream ultraviolet lamp products is between 300nm-400nm.
  • the primary absorption efficiency of the titanium dioxide photocatalyst layer 5000 for this wavelength of ultraviolet light is 40%-80%. According to the lowest absorption rate of 40%, it can be calculated that through 3 reflections and 3 absorptions, an absorption rate of more than 75% can be achieved for one incident light, that is, "basic lock light”; through 6 reflections and 6 absorptions, the One incident light can achieve more than 95% absorption rate, that is, "complete light lock”.
  • the table below shows the absorption rate.
  • Another embodiment of the present invention provides a method for manufacturing a photocatalytic reaction device with a specific microstructure on the surface of the carrier layer 1100 .
  • the surface of the metal mold is first subjected to laser processing to obtain a microstructure array, and then the carrier layer 1100 is inverted, and the surface of the prepared carrier layer 1100 has a specific microstructure. The process is shown in Figure 19.
  • the metal mold is processed with a conical array structure using a laser printer, and the melted glass carrier layer 1100 is overturned on the metal mold, and the surface of the obtained carrier layer 1100 has a specific microstructure.
  • the main steps are as follows:
  • the first step is metal mold pretreatment. Grind the metal substrate, and then use the cleaning agent for ultrasonic cleaning for 5min-30min.
  • the cleaning agent is a mixture of one or more of acetone, ethanol, isopropanol or deionized water; the metal substrate is one of 1060 aluminum alloy, 5052 aluminum alloy, 6061 aluminum alloy or 7075 aviation aluminum alloy. one or a mixture of two or more.
  • the units of the cone array structure are one or more combinations of triangles, quadrilaterals, pentagons and hexagons; single cone size: cone height 200-800 ⁇ m, cone spacing 100-1200 ⁇ m.
  • deburring is performed on the metal substrate with the conical array structure obtained in the second step.
  • the metal substrate with the conical array structure is placed in a 2-4 mol/L acid solution for etching for 10-20 minutes to remove metal residues on the machined surface; after rinsing with deionized water for 3-5 minutes, it is blown dry; the described
  • the acid solution is a mixture of one or more of hydrochloric acid, oxalic acid, dilute nitric acid or sulfuric acid.
  • the molten glass is overturned on the metal substrate obtained in the third step, cooled, and then the cooled carrier layer 1100 is removed from the metal mold to obtain a carrier layer 1100 with a specific microstructure on the surface.
  • the carrier layer 1100 obtained through the mold inversion process has a specific microstructure, and the apex angle of the conical unit is less than 30°. Realize 6 times of reflections and utilize more than 95% of the light energy utilization efficiency; the apex angle of the conical unit in the second step of laser processing is less than 90°, and the carrier layer 1100 obtained by the reverse molding process has a specific microstructure, and the apex angle of the conical unit is When the angle is less than 90°, more than 3 reflections can be achieved for the vertically incident light, and a light energy utilization efficiency of 78% can be achieved.
  • the fifth step is to perform mirror surface treatment on the carrier layer 1100 by vacuum evaporation.
  • the carrier layer 1100 is cleaned, placed in an evaporation device with a vacuum degree of 0.1-10Pa, and the spiral tungsten wire is energized to generate a high temperature.
  • the aluminum alloy in the spiral is evaporated into a gaseous state and deposited on the surface of the carrier layer 1100 to form a mirror surface.
  • An electron gun can also be used instead of a tungsten wire for heating.
  • the carrier layer 1100 of the vacuum evaporation method may be a non-metallic material such as glass, or a metal.
  • the sixth step is to attach the photocatalyst layer 5000 to the surface of the carrier layer 1100 by pulling and dipping.
  • the carrier layer 1100 is washed with pure water to ensure that the surface of the carrier layer 1100 is free of dirt; In the tank; insert the carrier layer 1100 vertically into the customized card basket; immerse the card basket in the liquid tank until the liquid completely submerges the carrier layer 1100, the immersion time is 5 minutes; pull the whole card basket out of the liquid surface and transfer it to the tank; Drain the drain tank until the coating on the surface of the carrier layer 1100 is dry; transfer the whole card basket to the oven and bake at 500°C for 30 minutes (the material of the carrier layer 1100 is glass); take out the baked carrier layer 1100 (the carrier layer 1100 The material is non-quartz glass, which needs to be cooled naturally and cooled down to below 260 °C.
  • the formula (volume ratio) of the coating solution is: 5%-15% weakly alkaline nano-scale silica sol, 10%-20% nano-scale titanium dioxide; the formula also includes deionized water, polyether siloxane copolymer base material moisturizing Wetting agent, polyether siloxane copolymer base material leveling agent, polyethylene glycol.
  • a preferred formula is: 10% weak alkaline nanoscale silica sol, 74% deionized water, 15% nanoscale titanium dioxide; the formula also includes a polyether siloxane copolymer base material wetting agent, polyether silicon Oxane copolymer base material leveling agent, polyethylene glycol.
  • an etching solution is prepared: 60% concentration of hydrofluoric acid, 3 parts; 5 parts of water; 90% concentration of sulfuric acid, 1 part; Immerse in etching solution, etching time: 2-10min, etching temperature: 20-40°C; take out and clean.
  • a method for etching the carrier layer 1100 is configured with etching solution: 18-20 parts of water; 20-25 parts of ammonium hydrofluoride; 10-15 parts of oxalic acid; 12-20 parts of ammonium sulfate; 3-8 parts of glycerin 15-25 parts of barium sulfate; immerse the carrier layer 1100 in the etching solution; etching time: 1-30min; etching temperature: 20-60min; take out and clean.
  • An embodiment of the present invention relates to a method for attaching a photocatalyst to the carrier layer 1100 by means of low pressure and high atomization spraying or dip coating.
  • the required solution formulation of spraying liquid or dip coating liquid is: TiO 2 0.1-0.5%; SiO 2 0.3-1.2%; isopropanol 3-5%; leveling agent 0.2-0.5%; wetting agent 0.2-0.5% ; Adhesion promoter 0.5-1%; wherein, nano-TiO 2 and nano-SiO 2 are surface-modified, and the particle size is 5-20nm; spraying pressure: 0.8-1.2MPa; film forming temperature: normal temperature; required time 10- 24h.
  • a transition layer is added between the photocatalyst layer 5000 and the carrier layer 1100, so that the combination of the photocatalyst layer 5000 and the carrier layer 1100 is more closely, and the combination of the photocatalyst layer 5000 and the carrier layer 1100 is improved. strength and enhance the durability of the photocatalyst.
  • the transition layer can also improve the activity of the photocatalyst.
  • the transition layer is attached to the carrier layer 1100 by spraying or dipping.
  • the formulation of the required transition layer reactive silane coupling agent (1-5%), ethanol or isopropanol (95-98%), water (0.5-2%), pH adjusted to 9-9.5.
  • An embodiment of the present invention relates to a method for optical reflection treatment of a carrier layer 1100 using silver plating.
  • the carrier layer 1100 is a metal carrier layer 1100, and the surface of the carrier layer 1100 needs to undergo dust removal, oil removal and activation treatment , the main process is: degreasing - washing - chemical polishing - washing - passivation - washing - acid activation - washing - pure water washing - copper plating - washing - acid activation - washing - pure water washing - nickel plating - washing - acid activation - washing - pure water washing - pre-silver plating - bright silver plating - water washing - pure water washing - hot water washing - dehydration - silver protection - pure water washing - dehydration drying.
  • the chemical polishing agent contains sulfuric acid, hydrochloric acid, sodium nitrate, water, brightener, and the chemical polishing temperature is 20-35°C;
  • the passivation liquid for passivation includes chromic acid, sulfuric acid, nitric acid, water,
  • the passivation time is 5-10s;
  • the acid activator components of the acid activation are hydrochloric acid, water or sulfuric acid, water, and the acid activation time is 3-5min;
  • the main component of the silver protection agent for silver protection is mercaptan, and the treatment temperature is 60 °C. ⁇ 5°C, treatment time 1min.
  • a method of silver plating is: surface film removal—stress removal—grease removal—chemical roughening—neutralization reduction—sensitization—electroless silver plating—silver protection.
  • the surface film removal uses 40 °C absolute ethanol solution, and the carrier layer 1100 is immersed in the solution for 5 minutes to remove the surface mucosa; the stress removal uses acetone aqueous solution (volume ratio 1:3), and the carrier layer is soaked for 30 minutes; the grease removal
  • the used degreasing solution formula is: aluminum hydroxide 60g/L, sodium carbonate 20g/L, OP emulsifier 4mL/L, degreasing temperature 60°C, 20min under ultrasonic environment; It is: 30mL of concentrated sulfuric acid, 1.1g of chromium trioxide, 20mL of distilled water, and 30min of roughening time; the method of neutralization and reduction is to soak the carrier layer in 50-100g/L sodium hydroxide solution for
  • An embodiment of the present invention is to enhance the adhesion performance and activity of the photocatalyst through the transition layer, and the steps are as follows:
  • transition layer sol prepared in the first step above is coated on the carrier layer 1100 which has been cleaned and surface roughened by the method of pulling and coating, and the roughening is carried out with 4% HF solution, and the pulling speed can be At a speed of 20 cm/min, the excess sol is removed by rotating, and the thickness of the film layer can be controlled by adjusting the viscosity of the sol and the number of times of pulling.
  • the obtained wet gel film is dried by cold air, it is kept at 250-500°C for 0.5-3 hours in an air atmosphere at a heating rate of 2-5°C/min to form a transition film.
  • the thickness of the final prepared transition layer is controlled at 50-250 nanometers.
  • One embodiment of the present invention is to imprint the microstructure on the substrate by means of photolithography.
  • the specific operation process is: first use ultraviolet light (usually 200-450nm) to pass through the mask, irradiate the substrate coated with a layer of photoresist, and selectively expose the mask to make the photon accumulation effect occur in the exposed area. ; Then use the developer to dissolve and remove the photoresist in the exposed area (positive photoresist) or the unexposed area (negative photoresist), so that the microstructure on the mask is transferred to the photoresist; The pattern is transferred onto the carrier layer 1100 .
  • ultraviolet light usually 200-450nm
  • One embodiment of the present invention is an electroplating mirror surface treatment method, in which the plated metal or other insoluble material is used as the anode, the carrier layer 1100 to be plated is used as the cathode, and the cations of the plated metal are reduced on the surface of the workpiece to be plated to form a plated layer.
  • a solution containing metal cations in the coating should be used as the electroplating solution to keep the concentration of the metal cations in the coating unchanged.
  • the photochemical reaction cavity material, the catalyst carrier layer 1100 material separately provided inside the cavity has a photocatalyst side, and a layer may also be provided between the material and the photocatalyst.
  • the photocatalyst is attached to the reflection layer 1300 .
  • the specular reflection layer 1300 can be mirror-plated and vacuum evaporated, so that the catalyst carrier layer 1100 material inside the photochemical reaction cavity and the cavity has an optical reflection function, and the light emitted by the light source can be used more efficiently, as shown in Figure 6 shown.
  • the mirror-treated photochemical reaction cavity material and the catalyst carrier layer 1100 material inside the cavity also need to undergo surface microstructure treatment.
  • the microscopic surface structure treatment method can be laser engraving, chemical treatment, mechanical processing, and photolithography.
  • the treated surface should have the structure shown in Figure 3. These microstructures can increase the carrying capacity of the catalyst, and the microstructures are in the shape of an inverted "V". These structures can enhance light reflection at the microscopic level, and light can be reflected multiple times in the "V"-shaped structure to enhance the utilization efficiency of the light source.
  • the photochemical reaction cavity material and the photocatalyst carrier layer 1100 material separately provided inside the cavity are used to support the photocatalyst, and the photocatalyst is attached to the surface of the carrier layer 1100 by means of coating.
  • Coating methods can be used: spraying, dip coating, bar coating, magnetron sputtering and so on.
  • the coating thickness u of the photocatalyst layer 5000 should be between 30nm-50nm, the depth h of the concave hole 2100 or the groove should be 10-15um, the preferred coating method is spray coating and dip coating, and the preferred wavelength of light The range is 350-400nm, and the light wavelength of 365-385nm can achieve better photocatalytic effect.
  • a structure involved in an embodiment of the present invention is that the photochemical reaction chamber material and the catalyst carrier layer 1100 are made of mirror materials with light reflection properties, and these materials can be mirror-treated aluminum, stainless steel, titanium Metal materials such as alloys and copper alloys, non-metal materials such as ceramics, and organic materials such as plexiglass can also be used.
  • the mirror surface treatment method can be polishing such as chemical polishing, physical polishing and the like. The light emitted by the light source can be used more efficiently after multiple reflections by these mirrors.
  • FIG. 1 is a schematic diagram of processing the microstructure of the surface of the photocatalytic carrier layer 1100 , and the microstructure can be a regular or irregular arrangement of various forms of protrusions 2200 or concave holes 2100 structures.
  • FIG. 2 is a schematic diagram of processing the microstructure of the surface of the photocatalytic carrier layer 1100 , and the microstructure can be a regular or irregular arrangement of various forms of gullies 2300 structures.
  • FIG. 3 is a schematic diagram of processing the microstructure of the surface of the photocatalytic carrier layer 1100 , and the microstructure may be a regular or irregular criss-cross arrangement of various forms of gullies 2300 structures.
  • microstructures can increase the loading capacity of the catalyst, such as structures in the form of inverted cones, inverted pyramids, and cylinders, the shape of the grooves can be in the shape of "V", which can enhance light reflection at the microscopic level, and the light can be multiple times in the grooves Reflection, as shown in Figure 6, enhances light source utilization efficiency.
  • the photochemical reaction cavity material and the photocatalyst carrier layer 1100 provided separately inside the cavity are used to support the photocatalyst, and the photocatalyst is attached to the surface of the carrier layer 1100 by means of coating.
  • Coating methods can be used: spraying, dip coating, bar coating, magnetron sputtering and so on.
  • the coating thickness of the photocatalyst layer 5000 should be between 50-400 nm, and different photocatalyst coating thicknesses can be achieved by applying different coating methods.
  • the preferred coating thickness is between 100-200 nm, and the coating thickness of 100-200 nm can be achieved by spraying and dipping.
  • the purification device can also be equipped with activated carbon adsorption modules, ozone/electrostatic modules, particulate filter modules, etc. Through the combination of these modules and the photochemical reaction chamber, the purification device can more efficiently process VOCs and bacterial pollutants , can also deal with other pollutants such as particulate matter.
  • the wavelength range of the light wave required for the photocatalytic reaction is 300-500 nm, and the preferred wavelength range of the light wave is 350-400 nm; the light wavelength of 365-385 nm can achieve better photocatalytic effect.
  • the interior of the reaction chamber is provided with a multi-pass air flow channel, and the reaction chamber is provided with an air flow baffle 3300 to block the flow direction of the air flow.
  • a plurality of semicircular baffles are alternately arranged in the upper half and the lower half of the catalytic module, which are coated with The titanium dioxide carrier layer 1100 runs through the semicircular baffle to form a multi-pass airflow channel, or a baffle is arranged between the gaps between the titanium dioxide-coated carrier layer 1100 and is connected to the interior of the photocatalytic reaction shell to form a multi-pass airflow, half
  • the schematic diagram of the circular baffle is shown in Figure 10.
  • the air flowing in from the air inlet 3100 flows through the gaps between the baffles and then flows out from the air outlet 3500, which prolongs the time for the air to be purified to stay in the purification module.
  • increasing the amount of gas and The contact time of the photocatalytic catalyst enables the photocatalytic reaction to proceed more fully and improves the efficiency of the photocatalytic reaction.
  • the baffle can be switched on and off according to the concentration of pollutants in the air and purification requirements, and can switch between multi-pass airflow and single-pass airflow to optimize purification efficiency.
  • a gas disturbance device is arranged inside the reaction chamber to increase the gas disturbance, improve the contact effect and contact time between the gas and the catalyst, and improve the reaction efficiency.
  • the gas disturbance mechanism can be in the form of fins, as shown in FIG. 10 , the types of fins can be but are not limited to: straight tooth type, bidirectional corrugated type, right angle corrugated type, etc.
  • the inside of the reaction chamber can also be in the shape of a cylinder, but the diameter varies irregularly along the axial direction to form an irregular cylinder. When the gas flows through the irregular cylinder, due to the irregular diameter, the flow velocity will change, the disturbance of the gas flow inside the cavity increases, and the contact effect with the surface of the photocatalyst is increased, thereby improving the photocatalytic effect.
  • the catalyst carrier in the reaction chamber can be in the form of a fluidized bed. As shown in FIG.
  • the catalyst carrier layer 1100 in the catalyst chamber is a particle, and the catalyst can be attached to the particle surface and inside of the carrier layer 1100 .
  • the photocatalytic reaction module cavity is filled with a catalyst carrier layer 1100 .
  • the catalyst carrier layer 1100 is driven by the airflow and stirred inside the reaction module.
  • the stirred catalyst carrier layer 1100 can greatly enhance the contact effect between the gas and the catalyst and improve the photocatalytic reaction efficiency.
  • An embodiment of the present invention is that a photocatalytic reaction layer structure involved can also be combined with an ultraviolet lamp 3200, so that the ultraviolet lamp 3200 becomes an ultraviolet lamp 3200 with a high-efficiency photocatalytic reaction function.
  • the lamp shell of the ultraviolet lamp 3200 is in contact with One side of the air has a photocatalytic reaction layer structure, so it has a photocatalytic reaction function.
  • the air outside the lamp housing is in contact with the catalyst layer outside the lamp housing, and the ultraviolet light emitted by the ultraviolet lamp 3200 can be directly used for photocatalytic reaction.
  • the surface of the photocatalyst layer 5000 located on the UV lamp 3200 can form a zigzag macro or micro structure, and the zigzag micro structure can make the ultraviolet light emitted by the UV lamp 3200 have the effect of total reflection on the zigzag interface, so that the light can be reflected in the zigzag interface.
  • the interior of the ultraviolet lamp 3200 is reflected multiple times, and the ultraviolet rays emitted by the ultraviolet lamp 3200 are fully utilized.
  • the apex angle of the sawtooth microstructure should be less than 133°.
  • the outer side of the lamp housing of the ultraviolet lamp 3200 can also be surface-treated, so that the surface area ratio ⁇ of the photocatalyst layer 5000 carried on the surface thereof should be greater than 1.2 and have a specific microstructure.
  • the microstructure of the lamp housing of the ultraviolet lamp 3200 may be as shown in FIG. 9 .
  • the photocatalyst layer 5000 on the outer side of the lamp envelope of the ultraviolet lamp 3200 may also directly have a specific microstructure, and the specific microstructure may be as shown in FIG. 22 .
  • the structure of the lamp housing of the ultraviolet lamp 3200 can be a zigzag structure, as shown in FIG. 23 , the zigzag apex angle can make the incident angle of the light exiting the lamp housing perpendicularly at the interface greater than the critical angle of total reflection, and the light is in the The total reflection phenomenon occurs at the interface, so that the light is reflected back to the interior of the ultraviolet lamp 3200 again, and is used for many times.
  • the apex angle of the sawtooth should be less than 98°.
  • the lamp housing of the ultraviolet lamp 3200 is manufactured by a mold, and the material of the lamp housing is glass;
  • the apex angle of the grooves is less than 98°.
  • the thickness of the photocatalyst layer 5000 on the UV lamp 3200 is controlled to be an odd multiple of 32nm-39nm, the effect of antireflection of the light emitted by the UV lamp 3200 can be realized, so that more UV light is projected out of the photocatalyst layer 5000, Let more ultraviolet light act on the surface of the photocatalyst layer 5000 to improve the light utilization efficiency and the photocatalytic reaction efficiency.
  • the microstructure is a specific microstructure with an inverted "V" shape, which has a microscopic reflection function.
  • the surface of the carrier layer 1100 needs to undergo microstructure treatment, and the unit structure of the treated surface can be the structure shown in FIG.
  • the surface of the carrier layer 1100 is coated with a reflective layer 1300 .
  • the reflective layer 1300 in this embodiment is a material with light reflection function, such as silver, stainless steel and other materials with optical reflection performance.
  • the microstructure units on the surface of the carrier layer 1100 are in an inverted "V” shape, the angle below the "V” shape is 30°, and the depth of the "V” shape is 10-15um.
  • the vertically incident light can be reflected 6 times in this structure, and the utilization efficiency of light energy exceeds 95%, so that the structure of this embodiment has microscopic reflection and enhances the utilization efficiency of the light source. At the same time, these microstructures can also increase the catalyst loading capacity.
  • the apex angle of the "V" structure is less than 30°, it can achieve more than 6 reflections to the normal incident light.
  • the apex angle of the "V" structure is less than 90°, the vertical incident light can be reflected more than three times, and the light energy utilization efficiency of 78% can be achieved.
  • the reaction chamber involved in an embodiment of the present invention is also used for water treatment.
  • the reaction chamber can be used in conjunction with other auxiliary devices.
  • the inside of the reaction chamber carries a photocatalyst and is provided with a light source; other auxiliary devices include a control system, a pollutant sensor, a water inlet, a water outlet, and a water pump.
  • the light source set in the reaction chamber is used to emit light of a desired wavelength band, which acts on the photocatalyst to decompose harmful substances in water, which are organic substances in organic waste water.
  • the material of the reaction chamber and the filler inside the chamber have a photocatalytic reaction layer structure, including a carrier layer 1100, a photocatalyst layer 5000, and a reflective layer 1300.
  • the photocatalytic reaction layer has a microstructure, and the microstructure can be as shown in Figure 1 and Figure 2 , the structure shown in Figure 3. These structures can increase the specific surface area of the carrier layer 1100, increase the catalyst carrying capacity, and improve the reaction efficiency.
  • the specific surface treatment method can be chemical etching method, laser engraving method, mechanical treatment method and the like.
  • the photocatalyst layer 5000 is attached to the surface of the carrier layer 1100 by means of coating. Coating methods can be used: spraying, dip coating, bar coating, magnetron sputtering and so on.
  • the photocatalyst is titanium dioxide.
  • the carrier layer 1100 may be a non-metallic material such as glass, ceramics, etc.; may also be an organic material such as plexiglass, etc.; may also be a metal material such as stainless steel, aluminum alloy, and the like.
  • the control system is used to control the work of the purification device, including the switch of the light source, the power of the water pump and the power of the light source.
  • the pollutant sensor can be set at the water inlet or outlet to monitor the pollutant condition in the water and the purification effect; at the same time, the data information of the pollutant sensor can be fed back to the control system for the automatic operation of the purifier.
  • the actions that can take place include shutting down the purification device, reducing the power of the pump, reducing the power of the light source, etc.; if the pollutant data monitored at the water outlet is higher than the set value, Actions that can occur include turning on the purification device, increasing the power of the water pump, increasing the power of the light source, and so on.
  • the reaction chamber can also be combined with other purification means to improve the purification effect.
  • other purification means for example, activated carbon adsorption module, ozone module, electrostatic adsorption module, HEPA high-efficiency filter module, etc.
  • the reaction chamber is used in combination with the activated carbon adsorption module.
  • the gas first enters the reaction chamber for photocatalytic reaction, and the gas discharged from the reaction enters the activated carbon module for further adsorption and purification, and is finally discharged; the combination of the reaction chamber and the activated carbon adsorption module can make the combined device have Greater removal of organic matter.
  • the reaction chamber is used in conjunction with the ozone module, an ozone generator or an ozone injection hole is set in the photocatalytic reaction device, and a light source is also provided to carry a photocatalyst, and an ozone filter can be set at the air outlet to remove residual ozone;
  • the combination of the catalytic chamber and the ozone module can enhance the removal effect of organic matter and the effect of sterilization and disinfection.
  • the reaction chamber is used in conjunction with the electrostatic adsorption module.
  • the gas first enters the electrostatic adsorption module to absorb particulate matter and other substances, and the gas discharged from the electrostatic adsorption module enters again.
  • the reaction chamber undergoes photocatalytic reaction and is finally discharged; the reaction chamber and the electrostatic adsorption module can be
  • the combined device can also have the ability to remove particulate matter. Since the electrostatic adsorption module reduces the concentration of particulate matter in the gas, the subsequent photocatalytic reaction module can have a longer service life.
  • the reaction chamber is used in conjunction with the HEPA high-efficiency filter module.
  • the gas first enters the HEPA high-efficiency filter module to filter out particulate matter, and the filtered gas enters the photocatalytic chamber for photocatalytic reaction to remove organic matter and sterilize, and finally discharge; the reaction chamber and HEPA are highly efficient
  • the filter module can also enable the combined device to have the ability to remove particulate matter. Since the HEPA high-efficiency filtration module reduces the concentration of particulate matter in the gas, the subsequent photocatalytic reaction module can have a longer service life.
  • the conduits used to transport fluids can also be treated with surface microstructures to have a microstructure and act as a photocatalytic reaction layer.
  • Such ducts can be ventilation ducts used in buildings, or ducts for liquid transport. Pipes with this structure can inhibit the internal bacteria and viruses, and can continuously decompose pollutants such as VOCs.
  • n 1 , n 2 , and n 3 are the refractive indices of light in the three mediums
  • medium 2 is the photocatalytic film
  • l is the thickness of medium 2 .
  • is the wavelength of the light wave
  • the photocatalyst layer 5000 can achieve an antireflection effect on light.
  • the refractive index of the carrier layer 1100 is greater than 2.6 and the coating thickness is an odd multiple of 32nm-39nm, the effect of antireflection can be achieved.
  • a technical solution involved in the present invention is that the surface of the carrier layer 1100 is provided with pores, the photocatalyst layer 5000 is attached inside the pores, and the lower photocatalyst layer in the pores may also have a reflective layer 1300 .
  • the inner surface of the channel may also have a microstructure. The arrangement of the pores can make the airflow flow more smoothly, reduce the airflow resistance, and make the fluid to be reacted more fully contact the photocatalyst layer 5000, thereby improving the reaction efficiency.
  • the structure of the carrier layer 1100 can be in the form of FIG. 16 , the channels can be arranged obliquely with respect to the carrier layer 1100 , and the obliquely arranged channels can make the incident light perpendicular to the carrier layer 1100 realize multiple reflections inside the channels, and utilize light more efficiently. can.
  • the normal incident light located in the center of the tunnel is chosen as the criterion.
  • the light energy utilization rate of more than 75% can be achieved.
  • the angle ⁇ between the channel and the carrier layer 1100 , the thickness H of the carrier layer 1100 , and the diameter r of the channel may be in the following relationship
  • the channels and the microstructure inside the channels can be fabricated by precision machining (CNC) methods, laser processing, and 3D printing methods.
  • CNC precision machining
  • One of the preferred processing methods is to first drill holes in the carrier layer 1100 ; and then use a tool to machine specific microstructures in the holes.
  • the tool tip angle used can be less than 30°.
  • Porous carrier layer for tilt is
  • One embodiment of the present invention is to perform pulling and dipping on perforated flat glass to form a titanium dioxide coating, and finally obtain a photocatalytic reaction layer.
  • the related process and related formula are as follows.
  • the carrier layer 1100 with inclined channels can be punched by a CNC machine tool, and the carrier layer can be a flat glass material at this time.
  • the formula (volume ratio) of the coating solution is: 5%-15% weakly alkaline nano-scale silica sol, 10%-20% nano-scale titanium dioxide; the formula also includes deionized water, polyether siloxane copolymer base material moisturizing Wetting agent, polyether siloxane copolymer base material leveling agent, polyethylene glycol.
  • a preferred formula is: 10% weak alkaline nanoscale silica sol, 74% deionized water, 15% nanoscale titanium dioxide; the formula also includes a polyether siloxane copolymer base material wetting agent, polyether silicon Oxane copolymer base material leveling agent, polyethylene glycol.
  • the carrier layer 1100 may be a transparent material, and when light enters the transparent carrier layer 1110, reflection and refraction will occur.
  • the opposite side of the photocatalyst layer 5000 may have a certain structure, so that the refracted light penetrating the catalyst layer and entering the carrier layer 1100 can use the above structure to realize total reflection of the light incident on the carrier layer 1100 and refract the light entering the carrier layer 1100 The light is reflected back to the photocatalyst layer 5000, and the energy of the light is more fully utilized.
  • Its structure can be sawtooth shape or triangular shape, as shown in FIG. 17 .
  • the ⁇ angle of the structure as shown in FIG. 17 should be less than 98°, thus The light vertically incident into the carrier layer 1100 can be totally reflected back to the surface carrying the photocatalyst layer 5000 .
  • the surface on the side of the photocatalyst layer 5000 can also be treated with a surface microstructure to have a microstructure.
  • the preferred alpha angle is 90°, so that the incident light can return the same way.
  • the angle requirement ⁇ of the sawtooth-shaped groove that can realize total reflection of vertically incident light is, ⁇ 180°-2*critical angle of total reflection.
  • One embodiment of the present invention is to directly produce a photocatalyst layer 5000 with a specific microstructure through rapid prototyping technology such as 3D printing, and attach it to the carrier layer 1100, as shown in FIG. 22 .
  • the carrier layer 1100 with a specific microstructure can also be directly produced by a rapid prototyping technology such as 3D printing for supporting the photocatalyst layer 5000 .
  • the photocatalyst layer 5000 and the carrier layer 1100 with a specific microstructure can also be directly produced by rapid prototyping technologies such as 3D printing.
  • the microstructure units on the surface of the carrier layer 1100 or the photocatalyst layer 5000 produced by the rapid prototyping technology are in an inverted "V" shape, the angle below the “V” shape is 30°, and the depth of the "V” shape is 10-15um.
  • the vertically incident light can be reflected 6 times in this structure, and the utilization efficiency of light energy exceeds 95%, so that the structure of this embodiment has microscopic reflection and enhances the utilization efficiency of the light source.
  • these microstructures can also increase the catalyst loading capacity.
  • the apex angle of the "V" structure is less than 30°, it can achieve more than 6 reflections to the normal incident light.
  • the apex angle of the "V” structure is less than 90°, the vertical incident light can be reflected more than three times, and the light energy utilization efficiency of 78% can be achieved.
  • Rapid prototyping technology can also directly produce a photocatalyst layer 5000 with a specific microstructure as shown in FIG. 22.
  • the specific microstructure of the photocatalyst layer 5000 shown in FIG. 22 can be concave holes 2100, grooves 2300, or convex. A conical or convex wedge.
  • One embodiment of the present invention relates to the process steps and recipes of etching glass surface to form microstructures.
  • the formula of the etching solution is: 3%-6% hydrochloric acid, 0.5%-3% hydrofluoric acid, 0.03%-0.1% pickling corrosion inhibitor.
  • a preferred formulation of the etching solution is: 4%-5% hydrochloric acid, 1% hydrofluoric acid, 0.05% pickling corrosion inhibitor.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Catalysts (AREA)

Abstract

一种光催化净化装置的生产方法,涉及对光催化反应层的结构,特别是光催化反应层的微观结构进行改进,光催化反应层包括载体层(1100)与光催化剂层(5000),光催化反应层具备特定微观结构,特定微观结构可以增加光催化剂层(5000)的表面积,从而增加催化剂的承载量,进而扩大了反应物与催化剂的接触面积,从而提升了反应效率。经过表面处理的光催化剂层(5000)表面积增大1.2倍以上,光催化剂层(5000)紧密附着于载体层(1100)上。

Description

一种高效光催化装置的生产方法 技术领域
本发明涉及环境净化技术领域,具体涉及一种高效光催化净化装置的生产方法。
背景技术
经济快速发展的同时也带来了严峻的环境问题,我国大部分城市空气污染问题凸显,空气污染严重影响了城市生态景观,而且对人们的身体健康造成了严重的威胁。不仅是室外空气污染严重,室内污染物可能组分比室外污染物更复杂。由于室内污染物包含室外污染物的所有污染元素种类,包括放射性污染、化学污染、生物污染、物理污染等,污染物质种类可以达到一千种以上之多,且室内空气流动状态不如室外,室内的污染物在室内长期滞留,在光合、氧化物理作用下生成新的污染物,使室内空气质量进一步恶化。人类的每天大部分时间是待在室内的,例如学习、工作、休息等活动,因此室内空气质量的优劣对人类身体健康有更明显的影响。
由于室内外空气环境污染日益突出,空气质量问题也越来越受到人们的关注。室内装饰、装修材料如油漆及其溶剂、木材防腐剂、涂料、胶合板等常温下可释放出甲苯、苯、二甲苯、甲醛等多种VOCs。日常生活中使用的化妆品、除臭剂、杀虫剂、各种洗涤剂等也导致大量VOCs向大气中释放。而VOCs成分复杂,且多数具有较大毒性,会对人体产生较大危害,并且多种VOCs同时作用于人体时会有累积效应。实际上许多气态污染物如VOCs都可以借助光催化法在气相中直接处理或与液相分离后在进行氧化降解,从而使污染得到治理。除VOCs外,空气中的细菌会附着在尘埃或PM 2.5等细微颗粒的表面,若细菌为有害病菌,在空气中,尤其是在湿度较大的空气中悬浮时容易随着人们的呼吸作用进入人体,并对人们的身体健康造成威胁。
光催化材料是一类既有光催化活性、能在紫外光甚至可见光照射下降解各类化学物质或杀灭细菌的半导体材料,包括氧化物光催化材料,如TiO 2。TiO 2在光照的作用下,能够作为光化学反应的催化剂,在H 2O和O 2等存在的条件下发生反应,生成自由基,破坏细胞壁和病毒蛋白质外壳从而起到消毒杀菌的作用。除了杀菌外,光催化材料对于甲醛以及VOCs(挥发性有机物)还有净化效果。近年来,已半导氧化物为催化剂的多相光催化氧化过程以其室温深度反应即在常温下光催化氧化反应就可以很好的发生,可将多种化学物质(甲醛以及多种VOCs)降解成二氧化碳,水和其他小分子化学物质,无二次污染、易于操作控制、运行成本低,可直接利用光线来活化催化剂、驱动氧化反应等优越性能而成为一种理想的环境污染治理技术。
对于TiO 2光催化剂的性能研究主要集中在TiO 2光催化剂的改性研究和光催化剂负载固定技术,目前国内外应用的TiO 2光催化载体主要有硅胶、活性炭、活性氧化铝、玻璃纤维网、空心陶瓷球、海砂、空心玻璃珠、石英玻璃管(片)、普通(导电)玻璃片、有机玻璃等。
二氧化钛光催化技术应用的重点是环境光催化技术的应用。包括自洁净技术、防雾技术、抗菌技术、废水净化和空气净化等。随着空气污染问题的日益严重和公众对空气质量问题担忧的升级,光催化二氧化钛在室内空气净化器方面的应用飞速发展。但由于光催化反应原理 的性质,光催化反应的效率较低,是这一类技术和设备的主要问题。光催化反应效率低原理上有下列几个原因,气体反应物质需要和催化剂接触的同时还需停留一定时间,并且自然光中只有一部分波段的光可以激发二氧化钛产生自由基并发生催化作用,实际情况是,同时达到上述最佳条件有一定难度,当待净化气体与催化剂接触、或紫光光照射不充分时,光催化反应效率往往比较低。针对效率低的问题,主要使用现有提升效率的方法,包括提升气体与催化剂混合效率、扩大反应体积、提升光源功率,这些方法虽然能够一定程度上提升光催化反应效率,但在应用过程中还会带来其他的问题。上述问题不仅在空气净化中存在,在运用光催化原理净化水(包括杀菌、消毒化有机物降解、氨氮治理等方面)的装置中也同样存在。
申请号为CN103007781B专利公开了一种用于空气与水净化的过滤膜及其制备方法。该发明通过用导电胶将铝箔贴合在单面导电铝平面板表面上;再将贴合有铝箔的单面导电铝平面板作为阳极置于铝的阳极氧化溶液中进行氧化反应等操作获得三氧化二铝陶瓷箔,再通过磁控溅射的方式将纳米二氧化钛镀膜至微孔三氧化二铝陶瓷上,获得用于空气与水净化的有光催化活性的过滤膜。该方法对光源利用率有限,从而没有有效的提高光催化的反应效率。
中国专利201210211733公开一种磁控溅射制备TiO2纳米管薄膜的方法,属于TiO2薄膜无机材料制备技术领域。具体地说,是一种通过多孔阳极氧化铝模板的限制,利用磁控溅射技术和退火处理制备TiO2纳米管阵列膜的方法。该方法虽然是一种TiO2催化剂与载体的表面处理方法,针对的是复杂表面的催化剂附着方式,该技术方案可以间接提升光催化反应的面积,但没有有效的手段提升光源的利用率,从而光催化的反应效率提升有限。
发明内容
问题描述与发明简介
光催化反应原理的特点带来的光催化反应的效率较低的问题,这是光催化在空气净化一类技术和设备的主要问题,如反应物质需要和催化剂接触并停留一定时间,光线中只有一部分波段的光可以激发二氧化钛产生自由基并发生催化作用,当待反应物与催化剂接触不充分、或紫光光照射不充分时,光催化反应效率往往比较低。
针对催化效率低的问题,现有技术主要是在光催化空气净化装置的结构层面进行的改进,如改进气道设计来提升气体与催化剂混合效率、增大反应体积、提升光源功率等方法,这些改进在一定程度上提升了效率,但受到传统的机械结构、设备空间因素限制,目前存在的含二氧化钛催化剂的净化装置总体净化效率的提升效果有限。事实上,上述问题不仅在空气净化中存在,在运用光催化原理净化水(包括杀菌、消毒化有机物降解、氨氮治理等方面)的装置中也同样存在。本发明的目的在于应用新的技术方案,提升光催化净化的效率。
在实现本发明过程中,发明人发现现有技术都主要为在宏观结构上对净化装置进行的改进,这些改进虽然在一定程度上改善净化效果,但这些改进往往还带来了其他的如设备体积增加、能耗增多、制造成本提升等问题。
在实现本发明的过程中,发明人发现如果对光催化反应层的结构,特别是光催化反应层的微观结构进行改进,将有可能大幅提升光催化反应的反应效率。在微观层面上,如果对表面结构做出相应的改进,可更好的增加反应物质与催化剂的接触面积,克服接触面积不够的问题,实现提升净化效率。此外,还可以在光催化反应层表面的微观结构中增加微观反射,可以在微观层面实现光能的多次利用,具备反射功能的光催化反应层,可以增强光线在微观 结构的反射次数,甚至实现“锁光”,相较于传统的未经过处理的表面,该改进方式可以更高效的利用光源,克服光能利用率低的问题,提高光催化反应的效率。
本发明涉及的技术方案,一方面,提供了一种光催化反应层表面具备特定微观结构的光催化反应装置的制造方法。光催化反应层的特定微观结构是通过对其表面处理而得来,经表面处理后,光催化反应层表面会形成有特定微观结构,该结构可以增加光催化剂层的表面积,从而增加催化剂的承载量,进而扩大了反应物与催化剂的接触面积,从而提升了反应效率。此外应用该制造方法制造的装置的微观结构,还可以通过增加微观反射工艺的处理,使得光催化反应层具备在微观层面的光反射性能,提升光能的利用效率,从而进一步提升反应效率。其他关于空气输送、存储、净化装置的组成部件上也可以进行同样的表面结构处理,从而增加光催化剂的反应效率。
本发明涉及的技术方案,一方面,提供了具备一种光催化反应层的制造方法,光催化反应层包括载体层与光催化剂层,光催化反应层具备特定微观结构,特定微观结构可以增加光催化剂层的表面积,从而增加催化剂的承载量,进而扩大了反应物与催化剂的接触面积,从而提升了反应效率。经过表面处理的光催化剂层表面积至少是未经表面处理载体层表面积的1.2倍,光催化剂层则紧密附着于载体层上。其他关于空气输送、存储、净化装置的组成部件上也可以进行同样的表面结构处理,从而增加光催化剂的反应效率。
再一方面,基于相同的思路,提供了一种光催化水净化装置的制造方法,光催化水净化装置应用了光催化反应层结构。光催化反应层的特定微观结构是通过对其表面处理而得来,经表面处理后,光催化反应层表面会形成有特定微观结构,该结构可以增加光催化剂层的表面积,从而增加催化剂的承载量,进而扩大了反应物与催化剂的接触面积,从而提升了反应效率。此外该微观结构还可以通过增加微观反射功能在微观层面提升光能的利用效率,从而进一步提升反应效率。该装置可作为水净化器的主要部件或填料,其他关于水净输送、运输、存储等组成部件上也可以进行同样的表面结构处理,从而增加光催化剂的反应效率。事实上本发明所涉及的技术方案可以广泛的应用于制造以光催化为原理的各种高效反应装置。
在本发明的一个实施例中,提供了一种光催化反应层的处理方法,其特征在于,包括:对所述的光催化反应层进行表面处理工艺以将所述光催化反应层表面积增大1.2倍以上。
可选地,在一些实施中,所述光催化反应层包括载体层和光催化剂层,所述对光催化反应层进行表面处理工艺还包括:
(A)对载体层表面进行微观结构处理工艺以在所述载体层表面形成微观结构;
(B)对具有所述微观结构的载体层表面进行光催化反应层镀膜工艺。
可选地,在一些实施中,对所述载体层表面进行微观结构处理工艺包括如下步骤:
(A)金属模具预处理;
(B)在预处理后的金属模具上进行激光加工,以在金属基体上形成预定的锥形阵列结构;
(C)将获得的具有锥形阵列结构的金属基体进行去毛刺处理;
(D)将融化的玻璃载体层倾覆在去毛刺处理后的金属基体上,待融化的玻璃冷却后将 所述玻璃载体层与所述金属基体分离。
可选地,在一些实施中,金属模具预处理步骤还包括,使用清洗剂对金属模具进行超声清洗5min-30min;所述清洗剂为丙酮、乙醇、异丙醇或去离子水中的一种或两种以上混合;所述的金属基底为1060铝合金、5052铝合金、6061铝合金或7075航空铝合金中的一种或两种以上混合。
可选地,在一些实施中,在预处理后的金属模具上进行激光加工步骤中,所述的锥形阵列结构单元为三角形、四边形、五边形和六边形的一种或两种以上组合;单锥尺寸的锥高度为200μm-800μm,锥间距为100μm-1200μm。
可选地,在一些实施中,将获得的具有锥形阵列结构的金属基体进行去毛刺处理步骤还包括,将具有锥形阵列结构的金属基体置入2-4mol/L酸溶液中刻蚀10-20分钟,以去除加工表面的金属残屑,其中,所述的酸溶液为盐酸、草酸、稀硝酸或硫酸中的一种或两种以上混合。
可选地,在一些实施中,所述预定的锥形的顶角小于90°。
可选地,在一些实施中,所述步骤B还包括:对具有所述微观结构的载体层1100表面,通过快速成型技术进行所述光催化反应层镀膜工艺。
可选地,在一些实施中,在步骤A之前还包括步骤:通过快速成型技术制备所述载体层。
可选地,在一些实施中,所述光催化剂层上的微观结构是开放的,其中每个微观结构单元呈倒“V”形,所述倒“V”形的顶角小于90°。
可选地,在一些实施中,所述步骤A之后还包括,对载体层表面涂覆过渡层;以及,所述步骤B还包括,在载体层表面的过渡层表面进行光催化反应层镀膜工艺。
可选地,在一些实施中,所述过渡层的涂覆方法包括喷涂和浸涂,所述过渡层的配方为反应型硅烷偶联剂1%-5%,乙醇或异丙醇95%-98%,水0.5%-2%。
可选地,在一些实施中,通过对所述载体层表面进行微观结构处理工艺,使所述载体层表面或所述光催化剂层表面上形成呈规则或不规则排列的凸起、凹孔或沟壑结构。
可选地,在一些实施中,所述光催化剂层的厚度均匀,其厚度范围是30nm-50nm,所述光催化剂层上的凹孔或者沟壑的深度范围是10um-15um。
可选地,在一些实施中,所述光催化反应层镀膜工艺包括喷涂、浸涂、棍涂和磁控溅射。
可选地,在一些实施中,所述载体层的微观结构包括孔道,所述孔道的内壁附着有所述光催化剂层,所述孔道与所述载体层的夹角、载体层的厚度H、孔道直径r的关系符合
Figure PCTCN2020133150-appb-000001
的关系。
可选地,在一些实施中,方法还包括孔道加工步骤:通过精密机械加工、激光加工、3D打印,在所述载体层和/或所述光催化剂层上形成所述孔道。
可选地,在一些实施中,所述的孔道加工步骤进一步包括:
(A)通过精密机械加工的方式在载体层进行打孔;
(B)通过精密机械加工的方式,使用刀具在所述孔道内加工微观结构。
可选地,在一些实施中,所述刀具的顶角小于30°。
在本发明的另一个实施例中,还提供了一种高效光催化反应紫外灯的制造方法包括如下步骤:
(A)通过模具的方式制造紫外灯的灯壳,灯壳由玻璃制成;
(B)在灯壳镀二氧化钛膜;
其特征在于,所述模具为轴对称结构,在模具内腔壁的边缘对称地分布着锯齿形的沟槽,该沟槽的顶角小于98°。
附图说明
图1为本申请的一个实施例的一种载体层表面具备规则或不规则排列的凸起或凹孔结构的微观结构处理示意图。
图2为本申请的一个实施例的一种载体层表面具备规则或不规则排列的多种形式的沟壑结构的微观结构处理示意图。
图3为本申请的一个实施例的一种载体层表面具备规则或不规则纵横交错排列形式的沟壑结构微观结构示意图。
图4为本申请的一个实施例的反应装置流程图
图5为本申请的一个实施例的一种光催化反应层、光路的结构位置示意图。
图6为本申请的一个实施例的一种光催化反应层、光路的结构位置示意图。
图7为本申请的一个实施例的光催化反应层的结构位置示意图。
图8为本申请的一个实施例的光催化剂层厚度u与凹孔或者沟壑的深度h的示意图。
图9为本申请的一个实施例的一种具备光催化反应功能的紫外灯的示意图。
图10为本申请的一个实施例的反应腔体内多程气流通道的示意图。
图11为本申请的一个实施例的一种流化床净化装置示意图。
图12为本申请的一个实施例的微观结构表面积比率示意图。
图13为本申请的一个实施例的一种应用了光催化反应层水净化装置示意图。
图14为本申请的一个实施例的一种表面微观结构处理工艺流程图。
图15为本申请的一个实施例的一种表面微观结构处理工艺流程图。
图16为本申请的一个实施例的具有倾斜孔道的载体层示意图。
图17为本申请的一个实施例的载体层材底层具有全反射结构示意图。
图18为本申请的一个实施例的增透原理示意图。
图19为本申请的一个实施例的制作特定微观结构工艺示意图。
图20为本申请的一个实施例的顶角为30°的“V”特定微观结构光路示意图。
图21为本申请的一个实施例的具备特定微观结构的光催化剂层示意图。
图22为本申请的一个实施例的紫外灯具备全反射特性的结构的局部剖面示意图。
图23为本申请的一个实施例的紫外灯具备全反射特性的结构的局部剖面示意图。
图中:1100—载体层;1110—透明载体层;1300—反射层;1400—催化剂填料;1500—a’的投影面积;1600—a的表面积;2100—凹孔;2200—凸起;2300—沟壑;3100—进气口;3500—出气口;3200—紫外灯;3300—气流挡板;3400—风机;3600-光源;5000—光催化剂层。
具体实施方式
术语表
1.光催化反应层:光催化反应层是具备光催化功能的多层结构。
2.载体层:在光催化反应过程中,指用于承载光催化剂层的结构性材料,可以是均质的材料,也可以是不同材料进行的拼接。
3.光催化剂层:光催化剂层是光催化剂以及辅助材料构成的薄层,可以在光的激发作用下,起到加速化学反应的功能。
4.反射层:反射层是由镜面反射材料构成的材料层,可以将光线反射回原来的材料,材 料的反射系数大于0.6。
5.微观结构:本发明所涉及技术方案中提及的微观结构是指光催化反应层经表面处理,在表面形成的微观结构,可以是催化剂层与载体层同时产生表面积增大的结构,也可以是仅催化剂层出现的表面积增大的结构。
6.微观反射:是指在光催化反应层的微观结构中具备了光反射特性,使得该微观结构可以使光线在该结构内的实现多次反射。
7.紫外灯:包含灯管形式的紫外灯与led形式的紫外灯。
8.光源:包括人工光源,或可以接收或导入自然光源的结构。
9.高效光催化反应功能:如果一种光催化材料,应用光催化纳米材料光解指数测试方法(GB/T30452-2013),其光解指数R可以达到35以上,则这种光催化材料具备高效光催化反应功能。
光学反射性能:材料的反射系数大于0.6以上,我们称这种材料具备光学反射性能。这种材料可以是一种单独的材料如银、抛光的玻璃等,也可以是多种材料的组合,如经过镀膜处理的陶瓷材料等。
一种光催化反应层,光催化反应层包括载体层1100、光催化剂层5000,其光催化反应层具备特定微观结构,特定微观结构可以增加光催化反应层的表面积,从而增加催化剂的承载量,进而扩大了反应物与催化剂的接触面积,从而提升了反应效率。
定义光催化剂层5000表面积比为η,η的宏观计算方式如下:
Figure PCTCN2020133150-appb-000002
其中S′表示经表面处理后的催化剂层表面积,S表示表面处理前的催化剂层表面积,η表示经表面处理后的催化剂层表面积与表面处理前的催化剂层表面积比,η值越大则说明经处理后的催化剂层表面积比未处理的催化剂层表面积多。
研究表明,当催化剂反应层的表面积提升1.2倍以上时,在其他条件不变的情况下,可以带来光催化反应效率约15%以上的效率提升,在光催化反应领域为显著的效率提升。本发明所涉及技术方案中的特定微观结构是指η大于1.2的微观结构。
处理后的光催化反应层表面微观结构相对于原有光催化反应层表面微观结构,可以是增加了凹孔2100、凸起2200或者是沟壑,其结构的形式可以如图1、图2、图3所示,在此情况下η的计算方式可以为:
Figure PCTCN2020133150-appb-000003
如图12所示,其中a’为凹孔2100、凸起2200或者是沟壑结构的投影面积;a为凹孔2100、凸起2200或者是沟壑结构的表面积,另外a’可以取凹孔2100、凸起2200或者是沟壑结构的表面积的平均值、中值、中位数等。如图8所示,其中凹孔2100或者沟壑的深度h,这个深度也可以是凹孔2100或者沟壑深度的平均值,如算数平均值、几何平均值、加权平均值等,还可以是整体凹孔2100或者沟壑深度的代表数值,如中位数、中数、众数等。光催化剂层5000镀膜的厚度为u,h应当是纳米二氧化钛镀膜厚度u的5倍以上,深度h是厚度u的10-50倍是优选的深度与厚度倍数。
前述的制造方法,涉及表面的处理工艺。表面处理可以同时针对催化剂层和载体层1100,如通过在载体层1100通过激光、蚀刻、3D打印等方式形成了载体层1100的表面微观结构后,再通过喷涂、浸涂、棍涂、磁控溅射等工艺,将催化剂层附着于载体层1100表面。表面处理还可以只针对催化剂层开展。可以通过3D打印的方式,制备催化剂层,直接制取具有特定微观结构的催化剂层。还可以通过3D打印的方式直接制取具备特定微观结构的光催化反应层。
光催化剂层5000的厚度为u,光催化剂层5000厚度不应当影响载体层1100表面微观结构的角度,在纳米级为优选的厚度范围。光催化剂层5000镀膜厚度应当在10nm-200nm之间,过于薄的镀膜会影响附着成膜。光催化剂层5000镀膜的方式可以采用:喷涂、浸涂、棍涂、磁控溅射等方式。
光催化剂是具有光催化特性的材料,可以在光照射下产生强氧化性的物质(如羟基自由基、氧气等),并且可用于分解有机化合物、部分无机化合物、细菌及病毒等的材料,包含TiO 2、ZrO 2、ZnO、CdS、WO 3、Fe 2O 3、PbS、SnO 2、ZnS、SrTiO 3、SiO 2等金属氧化物材料,还可以是铂、铑、钯等纳米贵金属材料。可以被净化的物质可以是气体,也可以是液体。
方案1
本发明的一个实施例所涉及的一个技术方案是通过载体层1100表面微观结构处理工艺,使得载体层1100表面具备特定的微观结构,所述的表面处理工艺可以是化学处理法、机械加工法、光刻法、激光雕刻法等。本发明中可以选用透光或者非透光的材料作为载体层1100材料,如玻璃、陶瓷、金属、塑料等材料。
化学处理法:化学处理法是指通过化学手段,对载体表面进行处理而得到所需的微观结构。玻璃蚀刻技术是对催化剂载体表面进行深加工处理,得到所需的表面结构。蚀刻、蒙砂和化学抛光都属于利用的化学方式对载体表面进行处理的方法。
机械加工法:载体层1100表面可以通过机械加工法如研磨(数控研磨和抛光技术、离子束抛光技术、应力盘抛光技术)、抛光、喷砂、刻花(人工刻花和自动刻花、等离子弧刻花) 等方式对载体表面进行加工处理,得到所需的表面结构。
光刻法:载体层1100表面可以通过光刻法得到所需的表面结构。光刻法通过光照作用,使得所需的图案、围观结构转移、呈现到在体表面。
激光雕刻法:载体层1100表面可以通过激光雕刻的方式得到所需表面结构。
本工艺还可以在载体层1100表面增加光学反射处理工艺,使得载体层1100具备光学反射性能,更高效的利用光源发出的光;本工艺还可以在载体层1100表面的镀膜工艺,使得载体层1100上生成一层光催化反应层,具备光催化特性,同时该光催化剂层5000具备与载体层1100牢靠的结合特性。
光学反射处理工艺可以是通过化学镀膜的方式,将铝、银、铜等金属镀在载体层1100的表面;还可以是真空电镀的形式,将铝、银、铜等金属镀在载体层1100的表面;还可以是物理抛光的方式,将载体层1100抛光至一定光洁度,从而具备光学反射特性;还可以是涂覆含有反光填料的涂料,该填料中添加了玻璃微珠、微棱镜。对于不透明的载体层1100,光学反射处理工艺通常应当在载体层1100进行过微观结构处理工艺的第一侧进行;对于透明载体层1110,光学反射处理工艺通常应当在载体层1100进行过微观结构处理工艺的第二侧进行。第一侧指与污染物接触并发生光催化反应的一侧,第二侧指远离光源的一侧。
催化剂负载工艺是指在载体层1100表面,通过一系列工艺的处理,在载体层1100上生成一层光催化剂层5000,将光催化剂附着于载体层1100的表面。所述载体层1100可以是经过通过表面微观结构处理的载体层1100,也可以是没有经过表面微观结构处理的载体层1100。所述的负载工艺通常可以使用喷涂、浸涂、棍涂、磁控溅射等方式。
相关流程是可以先进行载体层1100表面微观结构处理工艺,再进行光催化剂层5000镀膜工艺。光学反射处理工艺根据载体特性,可以在上述流程的任意环节开展。
方案2
本发明的另一个实施例所涉及的一个技术方案是通过载体层1100表面微观结构处理工艺,使得载体表面具备特定的微观结构,所述的载体是透明的载体,如玻璃、有机玻璃等材料,所述的表面处理工艺可以是化学处理法、机械加工法、光刻法等。
还需要在载体表面的进行镀膜工艺,使得载体层1100上生成一层光催化反应层,使得光催化反应层具备光催化特性;通过在载体表面进行光学反射处理工艺,使得载体具备光学反射性能,所述的光学反射处理工艺应用于透明载体层1110具有光催化剂层5000的对侧,更高效的利用光源发出的光。
方案3
本发明的另一个实施例中基础方案3通过载体层1100表面微观结构处理工艺,使得载体层1100表面具备特定的微观结构,所述的载体层1100是本身具备光学反射特性,如具备光学反射性能的金属材料如铝合金、不锈钢、铜合金等,还可以无机非金属材料如陶瓷,还可以是有机材料如塑料等,所述的表面处理工艺可以是化学处理法、机械加工法、光刻法等。
还需要通过在具备光学反射特性载体表面的镀膜工艺,在载体层1100上生成光催化反应层,使得载体层1100具备光催化特性,所述的光催化剂层5000镀膜工艺应用于载体层1100经表面处理工艺的一侧。
实施例1
在实现本发明的过程中,发明人发现,通过在光催化反应层的特定微观结构中增加微观反射的功能,可以使得入射光线在进入该微观结构中因多次反射而实现光能被光催化剂层5000充分反应的现象,即通过微观结构实现“锁光”现象。要实现“锁光”现象的微观结构,可以是倒“V”、倒梯形、扇形、半圆弧、菱形、倒圆锥等多种微观结构。
目前,主流的紫外灯产品可以发出的紫外线波长范围在300nm-400nm之间,以二氧化钛为例,二氧化钛光催化剂层5000对于这个波段紫外光的一次吸收效率在40%-80%。按照最低的吸收率40%可以测算,通过3次反射,3次吸收,对一次入射光可以实现75%以上的吸收率,即实现“基本锁光”;通过6次反射,6次吸收,对一次入射光可以实现超过95%的吸收率,即实现“完全锁光”。如下表格为所示的是吸收率。
反射次数 单次吸收 光能剩余 综合吸收率
1 40.00% 60.00% 40.00%
2 24.00% 36.00% 64.00%
3 14.40% 21.60% 78.40%
4 8.64% 12.96% 87.04%
5 5.18% 7.78% 92.22%
6 3.11% 4.67% 95.33%
实施例2
本发明的另一个实施例提供了一种载体层1100表面具备特定微观结构的光催化反应装置的制造方法。该方法首先对金属模具表面进行激光加工得到微结构阵列,然后进行载体层1100的倒模,所制得的载体层1100表面具有特定微观结构。过程如图19所示。
使用激光打印机对金属模具进行锥形阵列结构加工,将融化的玻璃载体层1100倾覆在金属模具上,得到的载体层1100表面具有特定微观结构,主要步骤如下:
第一步,金属模具预处理。对金属基底进行打磨,然后使用清洗剂进行超声清洗5min-30min。所述清洗剂为丙酮、乙醇、异丙醇或去离子水中的一种或两种以上混合;所述的金属基底为1060铝合金、5052铝合金、6061铝合金或7075航空铝合金中的一种或两种以上混合。
第二步,在预处理后的金属模具上进行激光加工,在金属基底上加工出预定的锥形阵列结构。所述的锥形阵列结构的单元为三角形、四边形、五边形和六边形的一种或两种以上组合;单锥尺寸:锥高度200~800μm,锥间距100~1200μm。
第三步,将第二步获得的具有锥形阵列结构的金属基体进行去毛刺处理。将具有锥形阵列结构的金属基体放置在2~4mol/L酸溶液中刻蚀10~20分钟,去除加工表面的金属残屑;用去离子水冲洗3~5min后,吹干;所述的酸溶液为盐酸、草酸、稀硝酸或硫酸中的一种或两种以上混合。
第四步,将融化的玻璃倾覆在第三步中获得的金属基底上,冷却,然后将冷却的载体层1100从金属模具上取下,得到表面具有特定微观结构的载体层1100。
其中第二步激光加工的锥形单元顶角小于30°的情况下,经倒模过程获得的载体层1100具有特定微观结构,锥形单元顶角小于30°,垂直入射光在此结构内可以实现6次的反射,利用超过95%的光能利用效率;第二步激光加工的锥形单元顶角小于90°,经倒模过程获得的载体层1100具有特定微观结构,锥形单元顶角小于90°,可以实现对垂直入射光实现3次以上的反射,实现78%的光能利用效率。
第五步是是通过真空蒸镀法对载体层1100进行镜面处理,首先是将载体层1100洗净,置于0.1~10Pa真空度的蒸镀装置中,将螺旋状钨丝通电,产生的高温使螺旋中铝合金蒸发成气态,沉积在载体层1100表面形成镜面。亦可用电子枪代替钨丝加热。真空蒸镀法的载体层1100可以是非金属材料如玻璃,还可是金属。
第六步是通过提拉浸渍的方式将光催化剂层5000附着于载体层1100表面,首先用纯水清洗载体层1100确保载体层1100表面无脏污;将配置好的纳米级镀膜液装入液槽中;将载体层1100垂直插放于定制卡篮中;将卡篮浸渍于液槽中,直至液体全部浸没载体层1100,浸渍时间5分钟;将整卡篮提拉出液面并转移到沥干槽沥干至载体层1100表面镀膜表干;将整卡篮转移至烤箱中使用500℃烘烤30分钟(载体层1100材料为玻璃);将烤好的载体层1100取出(载体层1100材料是非石英玻璃需自然冷却降温到260℃以下取出)降温。
镀膜液配方(体积比)为:5%-15%弱碱性纳米级硅溶胶,10%-20%纳米级二氧化钛;配方中还包括去离子水、聚醚硅氧烷共聚物类基材润湿剂、聚醚硅氧烷共聚物类基材流平剂、聚乙二醇。一种优选的配方为:10%弱碱性纳米级硅溶胶,74%去离子水,15%纳米级二氧化钛;配方中还包括聚醚硅氧烷共聚物类基材润湿剂、聚醚硅氧烷共聚物类基材流平剂、聚乙二醇。
实施例3
本发明的一个实施例所涉及的一种对载体层1100进行蚀刻的方法,配置蚀刻液:氢氟酸60%浓度,3份;5份水;90%浓度硫酸,1份;将载体层1100浸入蚀刻液,蚀刻时间:2-10min,蚀刻温度:20-40℃;取出并清洗。
可选地一种对载体层1100进行蚀刻的方法,配置蚀刻液:水18-20份;氢氟酸铵20-25份;草酸10-15份;硫酸铵12-20份;甘油3-8份;硫酸钡15-25份;将载体层1100浸入蚀刻液;蚀刻时间:1-30min;蚀刻温度:20-60min;取出并清洗。
可选地一种对载体层1100进行蚀刻的方法,配置蚀刻液:将氟化铵:硫酸铵:草酸:水:碳酸氢钠=4.5:2:8.5:70:4.5的配比制成的蚀刻液;将载体层1100浸入蚀刻液;在pH=5.5、温度为40-50℃、蚀刻时长0.5-2h的条件下对载体层1100进行腐蚀。
实施例4
本发明的一个实施例所涉及的一种对载体层1100进行蒙砂处理的方法,配置蒙砂液:氟化钠:氟化钾:氟化钙:硫酸铵:硫酸钾:六偏磷酸钠:水=45:7:0.8:0.8:0.6:0.6:280,为质量比;将载体层1100浸入蒙砂液或将蒙砂液吹喷至载体层1100表面;浸入蒙砂时间3min; 蒙砂温度24℃;硫酸调pH至2.5。
实施例5
本发明的一个实施例所涉及的一种以低压高雾化喷涂或浸涂的方式将光催化剂附着于载体层1100上的方法。所需喷涂液或者浸涂液的溶液配方为:TiO 2 0.1-0.5%;SiO 2 0.3-1.2%;异丙醇3-5%;流平剂0.2-0.5%;润湿剂0.2-0.5%;附着力促进剂0.5-1%;其中,纳米TiO 2和纳米SiO 2经过表面改性,粒径为5-20nm;喷涂压力:0.8-1.2MPa;成膜温度:常温;所需时间10-24h。
实施例6
本发明的一个实施例是在光催化剂层5000与载体层1100之间,增加一层过渡层,使得光催化剂层5000与载体层1100的结合更加紧密,提高光催化剂层5000与载体层1100的结合强度,提升光催化剂的耐久性。过渡层还可以提高光催化剂的活性。
过渡层以喷涂或浸涂的形式附着于载体层1100上。所需过渡层的配方:反应型硅烷偶联剂(1-5%),乙醇或异丙醇(95-98%),水(0.5-2%),调节pH9-9.5。
实施例7
本发明的一个实施例所涉及的一种使用镀银的方式进行载体层1100的光学反射处理方法,所述载体层1100为金属载体层1100,载体层1100表面需要经过除尘、除油和活化处理,主要流程为:除油—水洗—化学抛光—水洗—钝化—水洗—酸活化—水洗—纯水洗—镀铜—水洗—酸活化—水洗—纯水洗—镀镍—水洗—酸活化—水洗—纯水洗—预镀银—光亮镀银—水洗—纯水洗—热水洗—离干脱水—银保护—纯水洗—脱水烘干。所述化学抛光的抛光剂所含成分有硫酸、盐酸、硝酸钠、水、光亮剂,化学抛光温度20-35℃;所述钝化的钝化液成分有铬酸、硫酸、硝酸、水,钝化时间5-10s;所述的酸活化的酸活化剂成分有盐酸、水或硫酸、水,酸活化时间3-5min;所述银保护的银保护剂主要成分为硫醇,处理温度60±5℃,处理时间1min。
可选地一种镀银的方式过程是:表面除膜—去除应力—去除油脂—化学粗化—中和还原—敏化—化学镀银—银保护。所述表面除膜使用40℃无水乙醇溶液,载体层1100在溶液中浸渍5min,去除表面黏膜;所述去除应力使用丙酮水溶液(体积比1:3),浸泡载体层30min;所述去除油脂使用的除油液配方为:氢氧化铝60g/L,碳酸钠20g/L,OP乳化剂4mL/L,除油脂温度60℃,在超声环境下20min;所述粗化使用的粗化液配方为:浓硫酸30mL,三氧化铬1.1g,蒸馏水20mL,粗化时间30min;所述中和还原的方式为,在50-100g/L氢氧化钠溶液中浸泡载体层30min,然后用5-10g/L焦亚硫酸钠溶液浸泡载体层30min;所述敏化过程使用的敏化液配方为:SnCl2 10g/L,HCl 40mL/L,Sn粒少量,在温度20-25℃浸泡载体层5min,并清洗载体层3-5min;所述化学镀银的镀银液配方为:硝酸银2.0g/L,氢氧化钠0.24g/L,氨水含量0.53%,葡萄糖浓度7.27g/L,硫代硫酸钠24mg/L,镀银温度20℃所述银保护的银保护剂主要成分为硫醇,处理温度60±5℃,处理时间1min。
实施例8
本发明的一个实施例是通过过渡层和增强光催化剂的附着性能以及活性,有如下步骤:
制备过渡层溶胶:以钛酸正丁酯为前驱体,前驱体溶液中各成分的体积比为:钛酸正丁酯∶乙醇∶二乙醇胺∶水=1∶8-12∶0.1-0.15∶0.05-0.06配成溶液,四种物质的加入顺序为:首先将水加入乙醇溶液中,再加入二乙醇胺作为稳定剂,然后将钛酸正丁酯溶液滴加到上述混合溶液中,这样能得到淡黄色均匀透明的溶液。密闭静置3-7天进行成胶化,得到具有一定粘度的透明溶胶。
过渡层的制备:利用提拉镀膜的方法将上述第一步制备的过渡层溶胶涂覆于经清洗以及表面粗糙化处理的载体层1100上,粗糙化采用4%HF溶液进行,提拉速度可以为20cm/min的速度,通过旋转甩去多余的溶胶,可以通过调节溶胶的粘度以及提拉次数来控制薄膜层的厚度。得到的湿凝胶薄膜经过冷风干燥后,以2-5℃/min的升温速率于空气氛中在250-500℃下保温0.5-3小时,形成过渡膜。为了保证过渡层薄膜的均匀性和致密性,最后制备好的过渡层的厚度控制在50-250纳米。
实施例9
本发明的一个实施例是通过光刻的方法将微观结构印在基材上。其具体操作过程为:先利用紫外光(通常200-450nm)通过掩膜版,照射到涂有一层光刻胶的基材上,通过掩膜版的选择性曝光,使得曝光区域发生光子累积效应;再利用显影液溶解去除曝光区域(正胶)或者未曝光区域(负胶)的光刻胶,这样,就把掩膜版上的微观结构传递到光刻胶上了;最后利用刻蚀再将图案转移到载体层1100上。
实施例10
本发明的一个实施例是电镀镜面处理方法,是将镀层金属或其他不溶性材料做阳极,待镀的载体层1100做阴极,镀层金属的阳离子在待镀工件表面被还原形成镀层。为排除其它阳离子的干扰,且使镀层均匀、牢固,需用含镀层金属阳离子的溶液做电镀液,以保持镀层金属阳离子的浓度不变。
实施例11
本发明的一个实施例所涉及的一种结构是光化学反应腔体材料、腔体内部单独设置的催化剂载体层1100材料的具有光催化剂一侧,在材料与光催化剂之间,还可以设置一层镜面反射层1300,光催化剂附着于反射层1300上。镜面反射层1300可以通过镜面镀银、真空蒸镀的方法,使得光化学反应腔体内部、腔体内部设置的催化剂载体层1100材料具备光学反射功能,更加高效的利用光源发出的光,如图6所示。
镜面处理的光化学反应腔体材料、腔体内部设置的催化剂载体层1100材料还需要经过表面微观结构处理,微观表面结构处理的方式可以是激光雕刻、化学处理法、机械加工法、光刻法。处理后的表面应当具备图3所示的结构。这些微观结构可以增加催化剂的承载量,微观的结构呈倒“V”形,这些结构可以在微观层面增强光反射,光可以在“V”形结构内多次反射,增强光源利用效率。
光化学反应腔体材料、腔体内部单独设置的光催化剂载体层1100材料用于负载光催化剂,光催化剂通过镀膜的方式附着于载体层1100表面。镀膜的方法可以采用:喷涂、浸涂、棍涂、磁控溅射等方式。
如图8所示的光催化剂层5000的镀膜厚度u应当在30nm-50nm之间,凹孔2100或者沟 壑的深度h应当在10-15um,优选的镀膜方式为喷涂和浸涂,优选的光波波长范围是350-400nm,365-385nm的光波波长可以实现更好的光催化效果。
实施例12
本发明的一个实施例所涉及的一种结构是光化学反应腔体材料、催化剂载体层1100材料是利用具备光反射特性的镜面材料制作而成,这些材料可以是经过镜面处理的铝、不锈钢、钛合金、铜合金等金属材料,也可以是陶瓷等非金属材料,还可以是有机玻璃等有机材料。镜面处理的方式可以是抛光如化学抛光、物理抛光等方式。光源发出的光经过这些镜面的多次反射,可以得到更高效的利用。
经过镜面处理的光化学反应腔体材料、腔体内部单独设置的催化剂载体层1100材料还需要经过表面微观结构处理,处理后的表面应当具备图1、图2、图3所示的结构。图1是一种光催化载体层1100表面微观结构处理示意图,微观结构可以为呈规则或不规则排列的多种形式的凸起2200或凹孔2100结构。图2是一种光催化载体层1100表面微观结构处理示意图,微观结构可以为呈规则或不规则排列的多种形式的沟壑2300结构。图3是一种光催化载体层1100表面微观结构处理示意图,微观结构可以为呈规则或不规则纵横交错排列的多种形式的沟壑2300结构。
这些微观结构可以增加催化剂的承载量,如结构呈倒圆锥、倒金字塔、圆柱的形式,沟槽的形状可以呈“V”形状,可以在微观层面增强光反射,光可以在沟槽内多次反射,如图6所示,增强光源利用效率。
光化学反应腔体材料、腔体内部单独设置的光催化剂载体层1100用于负载光催化剂,光催化剂通过镀膜的方式附着于载体层1100表面。镀膜的方法可以采用:喷涂、浸涂、棍涂、磁控溅射等方式。
光催化剂层5000的镀膜厚度应当在50-400nm之间,应用不同的镀膜方式可以实现不同的光催化剂镀膜厚度。优选的镀膜厚度在100-200nm之间,实现100-200nm的镀膜厚度可以采用喷涂和浸涂方式。
Figure PCTCN2020133150-appb-000004
净化装置内部除了光化学反应腔体,还可以设置活性炭吸附模块、臭氧/静电模块、颗粒物过滤模块等,通过这些模块与光化学反应腔体的联用,净化装置更高效的处理VOCs、细菌的污染物,也可以处理其他的污染物如颗粒物。
光催化反应所需光波的波长范围是300-500nm,优选的光波波长范围是350-400nm;365-385nm的光波波长可以实现更好的光催化效果。
反应腔体内部具备多程气流流道,反应腔体内具备气流挡板3300,格挡气流流动方向,在催化模块内部上半部分和下半部分交错设置多个半圆形挡板,涂覆有二氧化钛的载体层 1100贯穿半圆形挡板,形成多程气流通道,或在涂覆二氧化钛的载体层1100的间隙之间设置一个挡板,与光催化反应外壳内部相连,形成多程气流,半圆形挡板示意图见图10。从进气口3100流入的空气依次流过各个挡板之间的间隙然后从出气口3500流出,延长了待净化空气停留在净化模块中的时间,在相同的反应腔体体积下,增加气体与光催化催化剂接触时间,使光催化反应进行的更充分,提高了光催化反应效率。挡板可以根据空气中污染物浓度、净化需求开关闭合,在多程气流与单程气流切换,优化净化效率。反应腔体内部设置气体扰动装置,增加气体扰动,提高气体与催化剂接触效果与接触时间,提高反应效率。气体扰动机构可以是翅片形式,如图10所示,翅片的类型可以但不限于有:直齿型、双向波纹型、直角波纹型等。反应腔体内部还可以是柱体形状,但直径由沿轴向方向不规则变化,形成一个不规则柱体。气体流经不规则柱体时由于直径不规则,因此流速会有变化,气流在腔体内部扰动增大,增加与光催化剂表面接触效果,进而提高了光催化效果。反应腔体内的催化剂承载形式,可以是流化床形式,如图11所示,催化腔体内的催化剂载体层1100为颗粒,催化剂可以附着在载体层1100颗粒表面、内部。光催化反应模块腔体内填充催化剂载体层1100。通过吹入一定流速的气体,使得催化剂载体层1100被气流带动并在反应模块内部搅动,搅动起的催化剂载体层1100可以极大增强气体与催化剂的接触效果,提高光催化反应效率。
实施例13
本发明的一个实施例是所涉及的一种光催化反应层结构还可以与紫外灯3200结合,使得紫外灯3200成为具备高效光催化反应功能的紫外灯3200,这种紫外灯3200的灯壳接触空气的一侧具备光催化反应层结构,从而具有光催化反应功能,灯壳外面的空气与灯壳外侧的催化剂层接触,可以直接利用紫外灯3200发出的紫外光进行光催化反应。
位于紫外灯3200的光催化剂层5000表面可以形成锯齿形的宏观或微观结构,锯齿形的微观结构可以使得紫外灯3200发出的紫外光在锯齿形的界面上发生全反射的效应,使得光线可以在紫外灯3200内部多次反射,充分利用紫外灯3200发出的紫外线。锯齿形的微观结构顶角应当小于133°。
紫外灯3200灯壳的外侧还可以进行表面处理,使其表面承载的光催化剂层5000的表面积比η应当大于1.2,具备特定微观结构。紫外灯3200的灯壳具备的微观结构,其结构可以如图9所示。紫外灯3200灯壳外侧的光催化剂层5000也可以直接具备特定微观结构,其特定微观结构可以如图22所示。
另外,紫外灯3200的灯壳的结构可以为锯齿形的结构,如图23所示,锯齿形顶角的可以使得垂直射出灯壳的光在界面处的入射角度大于全反射临界角,光线在界面发生全反射现象,从而使得光线再次反射回紫外灯3200内部,并得到多次的利用。在透光材料为玻璃的情况下,锯齿形的顶角应当小于98°。这种紫外灯3200的制造步骤为:
(A)通过模具的方式制造紫外灯3200的灯壳,灯壳的材料为玻璃;
(B)在灯壳镀二氧化钛膜。
在模具形状的边缘对称的分布着锯齿形的沟槽,沟槽的顶角小于98°。在紫外灯3200上的光催化剂层5000的厚度控制在32nm-39nm的奇数倍情况下,可以实现对紫外灯3200发出的光实现增透的作用,使得更多的紫外光投射出光催化剂层5000,让更多的紫外光作用在光催化剂层5000表面,提高光线利用效率与光催化反应效率。
实施例14
本发明的一个技术方案是微观结构为倒“V”形的特定微观结构,具有微观反射功能。载体层1100的表面需要经过微观结构处理,处理后的表面的单元结构可以是图20所示的结构,结构包含载体层1100、反射层1300、光催化剂层5000。载体层1100表面镀有反射层1300,本实施例中的反射层1300是具有光反射功能的材料,银、不锈钢等有光学反射性能的材料。载体层1100表面具备的微观结构单元呈倒“V”形,“V”形下方的角度为30°,“V”形深度在10-15um。垂直入射光在此结构内可以实现6次的反射,利用超过95%的光能利用效率,从而使本实施例的结构具备微观反射,增强光源利用效率。同时这些微观结构也可以增加催化剂的承载量。“V”结构的顶角在小于30°的情况下可以实现对垂直入射光超过6次以上的反射。“V”结构的顶角在小于90°的情况下,可以实现对垂直入射光实现3次以上的反射,实现78%的光能利用效率。
实施例15
本发明的一个实施例所涉及的反应腔体还用于水处理,可以如图13所示,反应腔体可以与其他辅助装置的设备配合使用。反应腔体内部承载有光催化剂,并设置光源;其他辅助装置包括控制系统、污染物传感器、进水口、出水口、水泵等。反应腔体内设置的光源用于发出的所需波段的光,作用于光催化剂分解水中的有害物质,是有机废水的中的有机物。
反应腔体材料、腔体内部填料具有光催化反应层结构,包括载体层1100、光催化剂层5000、反射层1300,光催化反应层具备微观结构,具备的微观结构可以是如图1、图2、图3所示的结构。这些结构可以增加载体层1100的比表面积,增加催化剂的承载量,提高反应效率。具体表面处理方法可以是化学蚀刻方法、激光雕刻方法、机械处理方法等。
光催化剂层5000通过镀膜的方式附着于载体层1100表面。镀膜的方法可以采用:喷涂、浸涂、棍涂、磁控溅射等方式。光催化剂为二氧化钛。载体层1100可以是非金属材料如玻璃、陶瓷等;也可以是有机材料如有机玻璃等;也可以是金属类材料,如不锈钢、铝合金等。
控制系统用于控制净化装置的工作,包括光源的开关、水泵的功率和光源功率。污染物传感器可以设置于进水口或出水口,用于监测水中污染物况以及净化效果;同时污染物传感器的数据信息可以反馈给控制系统用于净化器的自动工作。如在出水口监测到的污染物数据低于设定值,则可以发生的动作包括关闭净化装置,降低水泵功率,降低光源功率等;如果出水口监测到的污染物数据高于设定值,则可以发生的动作包括打开净化装置,提升水泵功率,增加光源功率等。
实施例16
反应腔体还可与其他净化手段结合联用提高净化效果。例如活性炭吸附模块、臭氧模块、静电吸附模块、HEPA高效过滤模块等。
反应腔体与活性炭吸附模块联用,气体先进入反应腔体进行光催化反应,反应排出的气进入活性炭模块进一步吸附净化,最终排出;反应腔体与活性炭吸附模块联用可以使得联用装置具备更强的有机物去除能力。
反应腔体与臭氧模块联用,在光催化反应装置内设置臭氧发生器或臭氧注入孔,还设有 光源,并承载光催化剂,在出风口还可以设置臭氧过滤网用于去除残余臭氧;光催化腔体与臭氧模块联用可以增强有机物去除效果与杀菌消毒效果。
反应腔体与静电吸附模块联用,气体先进入静电吸附模块吸附颗粒物等物质,经静电吸附模块排出的气体再进入,反应腔体进行光催化反应,最终排出;反应腔体与静电吸附模块可以使得联用装置除了具备有机物去除能力和杀菌能力,还可以使得联用装置具备颗粒物的去除能力。由于静电吸附模块降低了气体中颗粒物的浓度,可以使后续的光催化反应模块具备更长的使用寿命。
反应腔体与HEPA高效过滤模块联用,气体先进入HEPA高效过滤模块过滤掉颗粒物,过滤之后的气体进入光催化腔体进行光催化反应去除有机物和杀菌消毒,最终排出;反应腔体与HEPA高效过滤模块还可以使得联用装置具备颗粒物的去除能力。由于HEPA高效过滤模块降低了气体中颗粒物的浓度,可以使后续的光催化反应模块具备更长的使用寿命。
实施例17
用于传送流体的管道也可以经过表面微观结构的处理,从而具备微观结构,并作为光催化反应层。这种管道可以是楼宇中使用的通风管道,或者用于液体输送的管道。具备这种结构的管道可以对内部的细菌病毒等有抑制作用,并且可以持续的分解污染物,如VOCs等。
实施例18
如图18所示,n 1、n 2、n 3为光在三种介质中的折射率,介质2为光催化膜,l为介质2的厚度。根据菲涅尔公式
Figure PCTCN2020133150-appb-000005
λ为光波的波长;当在n 1<n 2<n 3或n 1>n 2>n 3情况下,同时l是
Figure PCTCN2020133150-appb-000006
奇数倍的情况下,光催化剂层5000可以实现对光线的增透作用。在载体层1100为折射率大于2.6,镀膜厚度是32nm-39nm的奇数倍情况下,可以实现增透的作用。
实施例19
本发明所涉及的一个技术方案是,载体层1100表面具备孔道,孔道内部附着有光催化剂层5000,孔道内部的光催化剂下层还可以有反射层1300。孔道的内部表面同样可以具备微观结构。通过孔道的设置,可以使得气流更顺畅的流通,减小气流阻力,使得待反应的流体更充分的接触光催化剂层5000,从而提升反应效率。
载体层1100结构可以是图16的形式,孔道相对于载体层1100可以是倾斜布置的,倾斜布置的孔道可以使得垂直于载体层1100的入射光在孔道内部实现多次反射,更高效的利用光能。
为了便于描述,选择位于孔道中央的垂直入射光作为标准。为了使位于孔道中央的垂直 入射光可以在孔道内发生3次以上的反射,达到75%以上的光能利用率。孔道与载体层1100的夹角γ、载体层1100的厚度H、孔道的直径r可以为如下关系
Figure PCTCN2020133150-appb-000007
孔道以及孔道内部的微观结构可以通过精密机械加工(CNC)方法、激光加工、3D打印方法制造出来。其中一种优选的加工方法为,首先在载体层1100进行打孔;接下来使用刀具在孔内加工出特定微观结构。所用的刀具顶角可以小于30°。
倾斜孔道与载体层的夹角γ 载体层的厚度H与孔道直径r的关系
30° H>0.577r
45° H>1.5r
60° H>3.464r
75° H>8.830r
对倾斜具有孔道载体层
一种本发明所涉及的一个实施例是在打孔平板玻璃上进行提拉浸渍生成二氧化钛镀层,最终获得光催化反应层,相关工艺及相关配方如下。
首先用纯水清洗载体层1100(上述的载体层材料是玻璃)表面无脏污;将配置好的纳米级镀膜液装入液槽中;将一组打孔的载体层1100垂直插放于定制卡篮中;将卡篮浸渍于液槽中,直至液体全部浸没载体层1100,浸渍时间5分钟;将整卡篮提拉出液面并转移到沥干槽沥干至载体层1100表面镀膜表干;将整卡篮转移至烤箱中使用500℃烘烤30分钟;将烤好的卡篮取出(如果载体层1100是非石英玻璃需自然冷却降温到260℃以下取出)降温。
具备倾斜孔道的载体层1100可以通过CNC数控机床对载体层1100进行打孔加工,此时载体层可以是平板玻璃材料。镀膜液配方(体积比)为:5%-15%弱碱性纳米级硅溶胶,10%-20%纳米级二氧化钛;配方中还包括去离子水、聚醚硅氧烷共聚物类基材润湿剂、聚醚硅氧烷共聚物类基材流平剂、聚乙二醇。一种优选的配方为:10%弱碱性纳米级硅溶胶,74%去离子水,15%纳米级二氧化钛;配方中还包括聚醚硅氧烷共聚物类基材润湿剂、聚醚硅氧烷共聚物类基材流平剂、聚乙二醇。
实施例20
载体层1100可以是透明的材料,光线在进入透明载体层1110时候,会发生反射与折射现象。光催化剂层5000的对侧可以具备一定结构,从而使穿透催化剂层并进入载体层1100的折射光线利用上述结构,实现对射入载体层1100的光进行全反射,将这些折射进入载体层1100的光线,反射回光催化剂层5000,更充分的利用这些光线的能量。其结构可以是锯齿形状或者三角形状,如图17所示。如果载体层1100材料为玻璃,玻璃折射率为1.52,空气折射率为1的情况下,光线的全反射临界角为41°,则如图17中所示结构的α角度应当小于98°,从而可以使得垂直入射进入载体层1100的光线可以发生全反射回到承载有光催化剂层5000的表面。光催化剂层5000一侧的表面同样可以经表面微观结构处理,具备微观结构。优选的α角度为90°,使得入射光可以原路返回。
对不同的载体层1100材料,可以对垂直射入的光实现全反射的锯齿形沟槽α角度要求 为,α<180°-2*全反射临界角。
Figure PCTCN2020133150-appb-000008
实施例21
本发明所涉及的一个实施例是,通过如3D打印等快速成型技术,直接生产出具有特定微观结构的光催化剂层5000,并附着于载体层1100之上,如图22所示。还可以通过3D打印等快速成型技术,直接生产出具有特定微观结构的载体层1100,用于承载光催化剂层5000。还可以通过3D打印等快速成型技术,直接生产出具有特定微观结构的光催化剂层5000与载体层1100。
快速成型技术生产出的载体层1100或光催化剂层5000表面具备的微观结构单元呈倒“V”形,“V”形下方的角度为30°,“V”形深度在10-15um。垂直入射光在此结构内可以实现6次的反射,利用超过95%的光能利用效率,从而使本实施例的结构具备微观反射,增强光源利用效率。同时这些微观结构也可以增加催化剂的承载量。“V”结构的顶角在小于30°的情况下可以实现对垂直入射光超过6次以上的反射。“V”结构的顶角在小于90°的情况下,可以实现对垂直入射光实现3次以上的反射,实现78%的光能利用效率。
快速成型技术还可以直接生产出如图22所示的具备特定微观结构的光催化剂层5000,图22所示的光催化剂层5000的特定微观结构可以是凹孔2100、沟壑2300,也可以是凸起的锥形或者凸起的楔形体。
实施例22
本发明所涉及的一个实施例是玻璃表面蚀刻形成微观结构的工艺步骤及配方。先在玻璃制品上涂上一层石蜡,在石蜡表面刻画出矩阵点,露出所需蚀刻的玻璃部分,将玻璃制品浸渍于配制好的蚀刻液中15分钟,最终洗净蚀刻液与石蜡,得到经过蚀刻的玻璃纸制品。蚀刻液的配方为:3%-6%盐酸,0.5%-3%氢氟酸,0.03%-0.1%酸洗缓蚀剂。一种优选的蚀刻液的配方为:4%-5%盐酸,1%氢氟酸,0.05%酸洗缓蚀剂。

Claims (16)

  1. 一种光催化反应层的处理方法,其特征在于,所述光催化反应层包括载体层和光催化剂层,对所述光催化反应层进行表面处理工艺包括:
    (A-1)对载体层表面进行微观结构处理工艺以在所述载体层表面形成微观结构;
    (A-2)对具有所述微观结构的载体层表面进行光催化反应层镀膜工艺;
    经过以上表面处理工艺后,所述光催化反应层表面积增大1.2倍以上。
  2. 如权利要求1所述的方法,其特征在于,对所述载体层表面进行微观结构处理工艺包括如下步骤:
    (B-1)金属模具预处理;
    (B-2)在预处理后的金属模具上进行激光加工,以在金属基体上形成预定的锥形阵列结构;
    (B-3)将获得的具有锥形阵列结构的金属基体进行去毛刺处理;
    (B-4)将融化的玻璃载体层倾覆在去毛刺处理后的金属基体上,待融化的玻璃冷却后将所述玻璃载体层与所述金属基体分离。
  3. 如权利要求2所述的方法,其特征在于,金属模具预处理步骤还包括,使用清洗剂对金属模具进行超声清洗5min-30min;所述清洗剂为丙酮、乙醇、异丙醇或去离子水中的一种或两种以上混合;所述的金属基底为1060铝合金、5052铝合金、6061铝合金或7075航空铝合金中的一种或两种以上混合。
  4. 如权利要求2所述的方法,其特征在于,在预处理后的金属模具上进行激光加工步骤中,所述的锥形阵列结构单元为三角形、四边形、五边形和六边形的一种或两种以上组合;单锥尺寸的锥高度为200μm-800μm,锥间距为100μm-1200μm。
  5. 如权利要求2所述的方法,其特征在于,将获得的具有锥形阵列结构的金属基体进行去毛刺处理步骤还包括,将具有锥形阵列结构的金属基体置入2-4mol/L酸溶液中刻蚀10-20分钟,以去除加工表面的金属残屑,其中,所述的酸溶液为盐酸、草酸、稀硝酸或硫酸中的一种或两种以上混合。
  6. 如权利要求4所述的方法,其特征在于,所述预定的锥形的顶角小于90°。
  7. 如权利要求1所述的方法,其特征在于,所述步骤A-2还包括:对具有所述微观结构的载体层表面,通过快速成型技术进行所述光催化反应层镀膜工艺。
  8. 如权利要求7所述的方法,其特征在于,在步骤A-1之前还包括步骤:通过快速成型技术制备所述载体层。
  9. 如权利要求7或8所述的方法,其特征在于,所述光催化剂层上的微观结构是开放的,其中每个微观结构单元呈倒“V”形,所述倒“V”形的顶角小于90°。
  10. 如权利要求1所述的方法,其特征在于,所述步骤A-1之后还包括,对载体层表面涂覆过渡层;以及所述步骤A-2还包括,在载体层表面的过渡层表面进行光催化反应层镀膜工艺。
  11. 如权利要求10所述的方法,其特征在于,所述过渡层的涂覆方法包括喷涂和浸涂,所述过渡层的配方为反应型硅烷偶联剂1%-5%,乙醇或异丙醇95%-98%,水0.5%-2%。
  12. 如权利要求1所述方法,其中,所述载体层上的微观结构包括孔道,所述孔道的内壁附着有所述光催化剂层,所述孔道与所述载体层的夹角、载体层的厚度H、孔道直径r的关系符合
    Figure PCTCN2020133150-appb-100001
    的关系。
  13. 如权利要求12所述的方法,还包括孔道加工步骤:通过精密机械加工、激光加工、3D打印,在所述载体层和/或所述光催化剂层上形成所述孔道。
  14. 如权利要求13所述的方法,其特征在于,所述的孔道加工步骤进一步包括:
    (C-1)通过精密机械加工的方式在载体层进行打孔;
    (C-2)通过精密机械加工的方式,使用刀具在所述孔道内加工微观结构。
  15. 如权利要求14所述的方法,其特征在于,所述刀具的顶角小于30°。
  16. 一种高效光催化反应紫外灯的制造方法,包括如下步骤:
    (D-1)通过模具的方式制造紫外灯的外壳,外壳由玻璃制成;
    (D-2)在外壳镀二氧化钛膜;
    其特征在于,所述模具为轴对称结构,在模具内腔壁对称地分布着锯齿形的沟槽,该沟槽的顶角小于98°。
PCT/CN2020/133150 2020-12-01 2020-12-01 一种高效光催化装置的生产方法 WO2022116004A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/133150 WO2022116004A1 (zh) 2020-12-01 2020-12-01 一种高效光催化装置的生产方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/133150 WO2022116004A1 (zh) 2020-12-01 2020-12-01 一种高效光催化装置的生产方法

Publications (1)

Publication Number Publication Date
WO2022116004A1 true WO2022116004A1 (zh) 2022-06-09

Family

ID=81852905

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/133150 WO2022116004A1 (zh) 2020-12-01 2020-12-01 一种高效光催化装置的生产方法

Country Status (1)

Country Link
WO (1) WO2022116004A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117019153A (zh) * 2023-09-07 2023-11-10 安徽华钛高新材料有限公司 一种臭氧消除催化剂及其制备装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104226287A (zh) * 2014-08-18 2014-12-24 江苏恒智纳米科技有限公司 纳米二氧化钛光催化剂薄膜的制备工艺
CN104437304A (zh) * 2014-12-06 2015-03-25 绍兴明透装甲材料有限责任公司 一种光催化灯及其制造方法
CN104874384A (zh) * 2015-05-19 2015-09-02 大连理工大学 一种微纳复合结构二氧化钛薄膜的制备方法
CN105271393A (zh) * 2015-12-06 2016-01-27 北京工业大学 一种在钛基底上制备锐钛矿型二氧化钛微纳米结构的方法
CN105514188A (zh) * 2015-12-25 2016-04-20 中国科学院上海高等研究院 一种减反射自清洁薄膜及其制备方法
CN105609580A (zh) * 2015-12-28 2016-05-25 江南大学 一种基于p/n异质结协同消反射性能的硅/二氧化钛三维复合材料及应用
CN106637080A (zh) * 2016-12-21 2017-05-10 蚌埠玻璃工业设计研究院 一种自清洁用氮掺杂二氧化钛薄膜的制备方法
CN108212156A (zh) * 2016-12-15 2018-06-29 优维科斯株式会社 光催化剂片、空气净化器以及光催化剂片的制造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104226287A (zh) * 2014-08-18 2014-12-24 江苏恒智纳米科技有限公司 纳米二氧化钛光催化剂薄膜的制备工艺
CN104437304A (zh) * 2014-12-06 2015-03-25 绍兴明透装甲材料有限责任公司 一种光催化灯及其制造方法
CN104874384A (zh) * 2015-05-19 2015-09-02 大连理工大学 一种微纳复合结构二氧化钛薄膜的制备方法
CN105271393A (zh) * 2015-12-06 2016-01-27 北京工业大学 一种在钛基底上制备锐钛矿型二氧化钛微纳米结构的方法
CN105514188A (zh) * 2015-12-25 2016-04-20 中国科学院上海高等研究院 一种减反射自清洁薄膜及其制备方法
CN105609580A (zh) * 2015-12-28 2016-05-25 江南大学 一种基于p/n异质结协同消反射性能的硅/二氧化钛三维复合材料及应用
CN108212156A (zh) * 2016-12-15 2018-06-29 优维科斯株式会社 光催化剂片、空气净化器以及光催化剂片的制造方法
CN106637080A (zh) * 2016-12-21 2017-05-10 蚌埠玻璃工业设计研究院 一种自清洁用氮掺杂二氧化钛薄膜的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
FURUSAWA KENTARO, TAKAHASHI KOUSUKE, CHO SUNG-HAK, KUMAGAI HIROSHI, MIDORIKAWA KATSUMI, OBARA MINORU: "Femtosecond laser micromachining of TiO2 crystal surface for robust optical catalyst", JOURNAL OF APPLIED PHYSICS, vol. 87, no. 4, 15 February 2000 (2000-02-15), 2 Huntington Quadrangle, Melville, NY 11747, pages 1604 - 1609, XP012049466, ISSN: 0021-8979, DOI: 10.1063/1.372066 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117019153A (zh) * 2023-09-07 2023-11-10 安徽华钛高新材料有限公司 一种臭氧消除催化剂及其制备装置
CN117019153B (zh) * 2023-09-07 2024-02-02 安徽华钛高新材料有限公司 一种臭氧消除催化剂及其制备装置

Similar Documents

Publication Publication Date Title
CN111069001B (zh) 一种具有仿生疏水-亲水表面的材料及其制备方法和应用
ES2912993T3 (es) Unidad de purificación de aire de aeronave y de reducción de compuestos orgánicos volátiles que comprende un fotocatalizador activado por diodos emisores de luz ultravioleta
WO2003027187A1 (en) Self-cleaning uv reflective coating
US20050224335A1 (en) Apparatus and method for photocatalytic purification and disinfection of fluids
US20080308405A1 (en) Optical Fiber Photocatalytic Reactor And Process For The Decomposition Of Nitrogen Oxide Using Said Reactor
CN206705734U (zh) 光催化降解有机污染物废水处理装置
CN1711131A (zh) 用于光催化净化和消毒流体的装置和方法
WO2022116004A1 (zh) 一种高效光催化装置的生产方法
CN110056996A (zh) 空气净化装置和空气净化系统
Birnie et al. Photocatalytic reactors: design for effective air purification
JP2009247546A (ja) 空気浄化フィルターおよび空気浄化装置
CN207913507U (zh) 箱式废气处理装置
CN204159209U (zh) 一种新型管状光催化空气净化装置
WO2006112493A1 (ja) 光触媒モジュールとこれを用いた被処理気体乃至液体の浄化処理装置
WO2021224358A1 (en) A filter and a method for manufacturing thereof
CN111871192A (zh) 一种基于点凸冲洗式光触媒除甲醛装置
WO2022116003A1 (zh) 一种光催化净化装置
CN205308350U (zh) 一种光催化网
CN202621182U (zh) 多孔陶瓷板光触媒载体
CN211886242U (zh) 一种螺旋翅片式光触媒催化装置
CN110694605A (zh) 一种光催化剂的制备工艺
CN2706238Y (zh) 低压雾化喷枪的喷嘴
CN207769547U (zh) 光触媒板
WO2020160638A1 (en) Photoreactor and formulations for environmental remediation and methods of use thereof
KR200411427Y1 (ko) 광촉매 필터

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20963852

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 06/11/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20963852

Country of ref document: EP

Kind code of ref document: A1