WO2017110116A1 - 作業車 - Google Patents

作業車 Download PDF

Info

Publication number
WO2017110116A1
WO2017110116A1 PCT/JP2016/067995 JP2016067995W WO2017110116A1 WO 2017110116 A1 WO2017110116 A1 WO 2017110116A1 JP 2016067995 W JP2016067995 W JP 2016067995W WO 2017110116 A1 WO2017110116 A1 WO 2017110116A1
Authority
WO
WIPO (PCT)
Prior art keywords
traveling
steering
vehicle
unit
work
Prior art date
Application number
PCT/JP2016/067995
Other languages
English (en)
French (fr)
Inventor
直本哲
森下孝文
青田和樹
宮本惇平
久保田祐樹
石見憲一
宮西吉秀
永田康弘
吉田和正
目野鷹博
林繁樹
高瀬竣也
Original Assignee
株式会社クボタ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015254613A external-priority patent/JP6576237B2/ja
Priority claimed from JP2016002832A external-priority patent/JP6552419B2/ja
Priority claimed from JP2016004591A external-priority patent/JP6552420B2/ja
Priority claimed from JP2016004590A external-priority patent/JP6643091B2/ja
Priority claimed from JP2016006431A external-priority patent/JP6643094B2/ja
Priority to KR1020187012520A priority Critical patent/KR102660752B1/ko
Priority to CN202111046329.8A priority patent/CN113728771B/zh
Priority to CN201680068273.7A priority patent/CN108289408B/zh
Priority to KR1020247025575A priority patent/KR20240122918A/ko
Priority to KR1020247013131A priority patent/KR102689825B1/ko
Priority to KR1020247013134A priority patent/KR102691389B1/ko
Priority to CN202310217728.9A priority patent/CN116034683A/zh
Application filed by 株式会社クボタ filed Critical 株式会社クボタ
Priority to KR1020247025578A priority patent/KR20240122919A/ko
Priority to KR1020247013135A priority patent/KR20240056785A/ko
Priority to KR1020247013104A priority patent/KR102691393B1/ko
Publication of WO2017110116A1 publication Critical patent/WO2017110116A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01CPLANTING; SOWING; FERTILISING
    • A01C11/00Transplanting machines
    • A01C11/003Transplanting machines for aquatic plants; for planting underwater, e.g. rice
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01CPLANTING; SOWING; FERTILISING
    • A01C11/00Transplanting machines
    • A01C11/02Transplanting machines for seedlings
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01BSOIL WORKING IN AGRICULTURE OR FORESTRY; PARTS, DETAILS, OR ACCESSORIES OF AGRICULTURAL MACHINES OR IMPLEMENTS, IN GENERAL
    • A01B51/00Undercarriages specially adapted for mounting-on various kinds of agricultural tools or apparatus
    • A01B51/02Undercarriages specially adapted for mounting-on various kinds of agricultural tools or apparatus propelled by a motor
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01BSOIL WORKING IN AGRICULTURE OR FORESTRY; PARTS, DETAILS, OR ACCESSORIES OF AGRICULTURAL MACHINES OR IMPLEMENTS, IN GENERAL
    • A01B69/00Steering of agricultural machines or implements; Guiding agricultural machines or implements on a desired track
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01BSOIL WORKING IN AGRICULTURE OR FORESTRY; PARTS, DETAILS, OR ACCESSORIES OF AGRICULTURAL MACHINES OR IMPLEMENTS, IN GENERAL
    • A01B69/00Steering of agricultural machines or implements; Guiding agricultural machines or implements on a desired track
    • A01B69/007Steering or guiding of agricultural vehicles, e.g. steering of the tractor to keep the plough in the furrow
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01CPLANTING; SOWING; FERTILISING
    • A01C11/00Transplanting machines
    • A01C11/006Other parts or details or planting machines
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/10Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
    • G01C21/12Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
    • G01C21/16Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
    • G01C21/165Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation combined with non-inertial navigation instruments
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/45Determining position by combining measurements of signals from the satellite radio beacon positioning system with a supplementary measurement
    • G01S19/47Determining position by combining measurements of signals from the satellite radio beacon positioning system with a supplementary measurement the supplementary measurement being an inertial measurement, e.g. tightly coupled inertial
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions

Definitions

  • the present invention relates to a work vehicle such as a farm work vehicle (hereinafter also referred to as “agricultural work machine”) and a construction work vehicle.
  • the work vehicle includes, but is not limited to, a riding rice transplanter, a riding direct seeder, a tractor, and a combine.
  • a conventional work vehicle capable of automatic steering control of a traveling machine body is described in JP2001-161112A, for example.
  • a traveling machine body having a traveling device (“front wheel”, “rear wheel”), a working device (“planting planting device”) for performing work on a field, and a traveling device can be steered.
  • Steering units (“power steering valve”, “power steering cylinder”, “automatic control valve”, etc.) are provided.
  • the work vehicle has a receiving device (“GPS receiver”) that acquires position information by a satellite positioning system, and a steering unit that controls the steering unit so that the traveling body travels straight based on the acquired position information.
  • GPS receiver receiving device
  • the name in parentheses is the name of a component in JP2001-161112A).
  • US7346452B2 describes a measurement unit in which a receiving device that acquires position information by a satellite positioning system and an inertial measurement device that measures inertial information are integrated.
  • a conventional riding type rice transplanter includes a traveling vehicle body having a riding-type driving unit, a seedling planting device connected to a rear portion of the traveling vehicle body so as to be lifted and lowered, and a side of the driving unit.
  • On the side there is a handrail provided with a handrail erected upward from the vehicle body portion and a spare seedling storage device provided in front of the handrail (see, for example, JP2013-074841A).
  • This riding type rice transplanter includes a boarding operation unit, a side railing unit (corresponding to a handrail), a spare seedling placement device (corresponding to a spare seedling storage device), and the spare seedling placement device is a spare seedling of a front movable frame.
  • the stand and the rear movable frame spare seedling stand are folded over the fixed frame spare seedling stand, the front movable frame spare seedling stand is deployed on the front side of the fixed frame, and the rear movable frame spare seedling stand is the fixed frame. It is possible to switch to the deployed state deployed on the rear side.
  • the work vehicle includes position detection means for detecting the position of the vehicle body and direction detection means for detecting the direction of the vehicle body, and the vehicle body travels along the target movement path based on the detection information. Some are configured to do so.
  • the vehicle body of a work vehicle is provided with a satellite positioning unit such as GPS (Global Positioning System) and an inertial navigation unit which is an example of a direction detection means, and the vehicle body should travel in the field to be worked.
  • a target movement path is set in advance, so that the position of the vehicle body detected by the satellite positioning system becomes a target position corresponding to the target movement path, and the detected direction becomes a target direction corresponding to the target movement path.
  • the target direction is always set to the direction corresponding to the target movement route (see JP2009-245002A, for example).
  • the measurement processing by the satellite positioning unit may take time, and when applied to a work vehicle that is guided to move the vehicle body along the set route, steering the work vehicle with high accuracy only by position information. Control is difficult. Therefore, the current direction of the vehicle body is detected by the direction detection means, and the steering control is performed based on the position information and the direction information.
  • Some farm machines perform farm work by setting a travel line using a positioning system using a satellite such as GPS.
  • a satellite such as GPS.
  • this type of farm work machine using the positioning system, while measuring the position of the traveling machine body, it automatically travels on the set traveling line and plantes seedlings in a predetermined planting range.
  • There was a rice transplanter configured see JP2008-092818A for example). In order to perform automatic traveling, the rice transplanter needs to set a reference traveling line that serves as a reference for the traveling line in advance (hereinafter referred to as teaching).
  • the traveling machine body travels in the field and reaches the position that is the starting point of the reference traveling line
  • the position information of the traveling machine body at that position is obtained by operating the designation switch provided on the meter panel. It is read by the positioning system and input to the recording unit as the starting point position. Subsequently, the traveling machine body is traveled to a position where it is the end point of the reference travel line, and similarly, by operating the designation switch, the end position information of the reference travel line can be recorded, and the start point position and the end point position are connected.
  • the reference travel line is set.
  • the setting of the setting travel line that serves as an index for automatically traveling the traveling machine body is based on the reference traveling line, with a certain interval dimension determined from the number of planting strips of the traveling machine body, and the like.
  • working of a traveling body it is comprised so that a traveling body may be automatically traveled to an end point position along a setting traveling line.
  • the traveling machine body is controlled to automatically turn (180 degrees).
  • the control part is comprised so that the automatic driving
  • JP 2008-092818A discloses a rice transplanter that automatically travels on a target route using position information measured by a GPS device as an example of such a farm work vehicle.
  • seedling planting work is performed while traveling autonomously on a straight target route, and if the driver confirms that it has reached the border area also called headland, the aircraft direction in the desired direction
  • the border area also called headland
  • the turning travel for changing the direction is automatically performed in the border area.
  • the planting operation is performed again while autonomously traveling on the linear target route.
  • JP2001-161112A US Patent 7345542 (US7346452B2) Japanese Unexamined Patent Publication No. 2013-074841 (JP2013-074841A) Japanese Unexamined Patent Publication No. 2009-245002 (JP2009-245002A) JP 2008-092818 (JP2008-092818A)
  • the positional information acquired from the receiving device by the satellite positioning system may be significantly different from the actual position.
  • automatic steering control of the traveling machine body is performed. It has become difficult to accurately perform work using the working device. Further, under a situation where radio interference or the like is likely to occur, the amount of position information acquired by the receiving device is insufficient, and it is difficult to perform automatic steering control of the traveling machine itself.
  • the work unit described in JP2001-161112A is equipped with a measurement unit that integrates a receiver that acquires position information with a satellite positioning system and an inertial measurement device that measures inertia information, as described in US7346452B2. Then, based on the position information acquired by the receiving device and the inertia information measured by the inertia measuring device, automatic steering control of the traveling machine body is performed, and the accuracy of work by the work device can be further improved. It was examined.
  • the receiving device tends to exhibit characteristics that the accuracy of the acquired position information is high by placing it in a place where there are few shields that block radio waves in the surroundings and the shaking is relatively large
  • Inertial measuring devices tend to exhibit characteristics in which errors in inertial information are reduced by placing them at locations where shaking is relatively small. For this reason, if a measurement unit in which the receiving device and the inertial measurement device are integrated in one place of the traveling machine body, there is a possibility that the characteristics of both the reception device and the inertial measurement device cannot be fully utilized.
  • a work vehicle is desired that can accurately perform work by the work device using automatic steering control of the traveling machine body.
  • the spare seedling storage device is provided with a plurality of spare seedling placement stands, and the plurality of spare seedling placement stands are arranged in the vertical direction of the traveling vehicle body and the plurality of spare seedlings
  • the spare seedling storage device is configured to be switchable to a second state in which the mounting table is arranged in the front-rear direction of the traveling vehicle body, so that the standby seedling storage device is switched to the first state and a plurality of preliminary seedling mounting platforms are arranged in a plurality of stages.
  • the preliminary seedling storage device is switched to the second state, and a plurality of preliminary seedlings are placed in the longitudinal direction of the traveling vehicle body. It becomes possible to accommodate them side by side.
  • the preliminary seedling storage device is positioned more on the front side of the vehicle body. That is, when the spare seedling storage device is switched to the second state, it is necessary to prevent the first spare seedling placement table from hitting the handrail afterward. Therefore, there is a demand for a riding type rice transplanter that can increase the length of the upper end of the handrail in the longitudinal direction of the vehicle body without moving the spare seedling storage device toward the vehicle body front side or too much.
  • the control means operates the steering operation means so that the detected position of the vehicle body is located on the target movement path and the detected direction is the direction along the target movement path. Then, for example, when the vehicle body is displaced laterally from the target travel route, but the position is corrected from a traveling state where the vehicle body direction is the same as the target orientation, the vehicle body is used to correct the position. If the traveling direction of the vehicle is changed, the direction of the vehicle body deviates from the target direction, and there is a case where a wasteful operation is performed in order to cope with the deviation from the target direction. As a result, it may take time to return to the traveling state along the target movement route. Therefore, it is desirable to be able to quickly return to the traveling state along the target movement path when the vehicle body is displaced laterally from the target movement path and the direction of the vehicle body is the same as the target direction.
  • the planting situation such as the position and posture of the planted seedling may change.
  • it is handled so that planting is performed while traveling on a course (or a separated course) close to the adjacent set travel line side. It may be preferable.
  • the set travel line is set in parallel to the reference travel line and at equal intervals, in order to take the above-mentioned countermeasures, the automatic travel is switched to the manual travel with the changeover switch, and the driver's manual steering is performed. It is necessary to continue manual driving while changing the course. Therefore, there is a possibility that the driver cannot release his / her hand from the driving operation, and it is difficult to perform other work concurrently on the traveling machine body.
  • the means for solving the problem [1] is as follows.
  • the work vehicle of the present invention is A traveling body having a traveling device; A working device for working on the field; A steering unit capable of steering the traveling device; A receiving device for acquiring position information by a satellite positioning system; An inertial measurement device for measuring inertial information; A generating unit that generates a target line for running the traveling aircraft; A control unit that controls the steering unit so that the traveling body travels along the target line based on the position information and the inertia information; The receiving device and the inertial measurement device are arranged at different locations in the traveling machine body.
  • the receiving device that acquires position information by the satellite positioning system and the inertial measurement device that measures inertial information are arranged at different locations in the traveling machine body. For this reason, for example, it is possible to improve the acquisition accuracy of the position information of the receiving device by arranging the receiving device at a location where the shaking is relatively large, and to arrange the inertia measuring device at a location where the shaking is relatively small, Errors in inertia information measured by the measuring device can be reduced. That is, both the accuracy of the position information acquired by the receiving device and the accuracy of the inertial information measured by the inertial measurement device are improved, and both the characteristics of the reception device and the inertial measurement device can be utilized.
  • steering control of the steering unit can be performed using highly accurate position information and inertia information, and the traveling machine body can be accurately and automatically operated so that the traveling machine body and the work device travel along the target line. Steering control is possible. Therefore, according to the present invention, it is possible to accurately perform the work by the work device using the automatic steering control of the traveling machine body.
  • the said structure WHEREIN It is suitable when the said inertial measurement apparatus is arrange
  • the portion in the vicinity of the center in the front-rear direction of the total length in the front-rear direction of the traveling machine body and the working device is, for example, in the vicinity of the yawing axis that is the turning center of the entire traveling machine body and the working device. It is a location.
  • the said structure WHEREIN It is suitable when the said inertial measurement apparatus is attached to the attachment member located in the vicinity of the rear axle of the said traveling apparatus. According to this configuration, the mounting member located in the vicinity of the rear axle of the traveling device is less likely to sway during traveling of the traveling machine body. By attaching an inertial measurement device to such an attachment member, an error in inertial information measured by the inertial measurement device is reduced, and accurate measurement of inertial information is facilitated.
  • the working device is a seedling planting device capable of planting seedlings on a farm field, A plurality of preliminary seedling stands on which preliminary seedlings for replenishing the seedling planting device can be placed; A pair of left and right spare seedling frames that support the spare seedling table; A connection frame connected over the upper part of the left and right preliminary seedling frame, It is preferable that the receiving device is attached to the connection frame.
  • the receiving device since the receiving device is attached to the connecting frame installed at a certain high position, which connects the left and right auxiliary seedling frames that support the auxiliary seedling stand, it is received at a place where there are few shielding objects that block radio waves. Device can be placed. This makes it difficult for the position information acquired by the receiving apparatus to be interrupted. Further, since the preliminary seedling frame and the connecting frame are relatively easily shaken during traveling, for example, it is possible to improve the detection accuracy of the direction in which the traveling machine travels based on the position information acquired by the receiving device.
  • connection frame is vertically inverted with respect to the use state in which the receiving device is located above the upper end portion of the spare seedling frame and the use state. It is preferable that the state can be changed to the storage state located below the unit.
  • the connection frame by setting the connection frame to the use state, the receiving device is positioned higher than the upper end of the spare seedling frame, so that it is possible to improve radio wave reception sensitivity when the receiving device is used.
  • the connecting frame when the connecting frame is in the retracted state, it is positioned at a position lower than the upper end of the spare seedling frame. For example, it is possible to avoid inconveniences such as hitting the receiving device on the upper part of the entrance of the barn.
  • connection frame is supported by the left and right spare seedling frames so as to be rotatable about a left and right axis along the left and right direction and to be fixed in the use state and the retracted state. Is preferred. According to this configuration, since the connection frame can be rotated around the left and right axis, the state of the connection frame is changed between a use state in which the reception device is used and a storage state in which the reception device is stored. It will be easy.
  • the said structure WHEREIN It is suitable when the said connection frame is detachable with respect to the said reserve seedling frame on either side. According to this configuration, since the connecting frame is detachable, when the receiving apparatus is not used, the connecting frame in use is detached from the spare seedling frame, and the connecting frame is stored and used as a spare seedling frame. Can be attached.
  • the receiving device includes a connector portion for connecting a harness, It is preferable that the connector portion extends outward in the left-right direction from the receiving device. According to this configuration, since the connector portion that connects the harness in the receiving device extends outward in the left-right direction from the receiving device, for example, compared to the case where the connector portion extends from the receiving device to the front side, It becomes difficult for the connector part of the receiving apparatus to hit an obstacle such as an approaching tree branch.
  • the receiving device includes a connector portion for connecting a harness, It is preferable that a guard member for protecting the connector portion is provided. According to this configuration, the guard member can be suitably protected so that an obstacle such as a tree branch does not collide with the connector portion during traveling.
  • the means for solving the problem [2] is as follows.
  • the riding rice transplanter according to the present invention is A traveling vehicle body having a boarding type driving unit; A seedling planting device coupled to the rear portion of the traveling vehicle body so as to be capable of moving up and down; On the lateral side of the driving part, a handrail erected upward from the vehicle body part, A preliminary seedling storage device provided in front of the handrail, and The preliminary seedling storage device includes a plurality of preliminary seedling mounting bases, wherein the plurality of preliminary seedling mounting bases are arranged in the vertical direction of the traveling vehicle body, and the plurality of preliminary seedling mounting bases are arranged in front of and behind the traveling vehicle body.
  • the rear end side portion of the first preliminary seedling placement table enters the empty space, so the length of the upper end portion of the handrail in the longitudinal direction of the vehicle body is increased. Even if the length is longer, the rear end side portion of the first preliminary seedling mounting table from the rear is not necessary even if the spare seedling storage device is moved closer to the front side of the vehicle body. By entering the empty space, it is possible to avoid the contact between the spare seedling placing table and the handrail.
  • the length of the upper end of the handrail in the longitudinal direction of the vehicle body can be increased without bringing the spare seedling storage device toward the front side of the vehicle body, or even if the spare seedling storage device is switched to the second state.
  • the handrail can be made easy to use while making the traveling vehicle body easy to operate, for example, because the seedling mounting table does not protrude forward from the traveling vehicle body so long.
  • the first spare seedling placement table is stored in a spare seedling placement table main body, a use posture projecting backward from the preliminary seedling placement table main body, and an inward side of the preliminary seedling placement table main body.
  • the placement area of the first spare seedling placement table can be increased later by setting the extended placement stand to the use posture. This makes it easier to put and remove spare seedlings on the mounting table.
  • the rear end side portion of the first preliminary seedling mounting table enters the entrance / exit of the operating unit.
  • the entrance / exit is closed with a simple structure utilizing the rear end side of the first reserve seedling placement table as a closing member of the entrance / exit. Or narrow.
  • the upper end portion of the handrail has a fixed portion fixed to a vehicle body portion, and a closed state in which the front end side portion closes the entrance / exit of the driving portion, extending forward from the fixed portion. It is preferable that a movable portion that can be switched to an open state in which the entrance / exit is opened is provided, and the empty space is formed below the movable portion in the closed state. According to this configuration, by closing the movable part, the entrance and exit can be closed or narrowed with a simple structure utilizing the movable part as a closing member for the entrance and exit.
  • the movable part is supported by the fixed part so as to be able to swing and switch between the closed state and the open state. According to this configuration, the movable part can be easily switched between the closed state and the open state simply by swinging the movable part.
  • the movable part in the closed state of the movable part, it is preferable that the front end side part of the movable part is supported by a column of the preliminary seedling storage device. According to this configuration, the movable part can be firmly supported in a closed state with a simple structure in which the support of the preliminary seedling storage device is utilized as a member that supports the front end side part of the movable part.
  • the means for solving the problem [3] is as follows.
  • the characteristic configuration of the work vehicle according to the present invention is: Steering operation means capable of changing the traveling direction of the vehicle body; Route setting means for setting a target movement route on which the vehicle body should travel; Position detecting means for detecting the position of the vehicle body; Direction detecting means for detecting the direction of the vehicle body; The detection position of the vehicle body detected by the position detection means is a position on the target movement path, and the detection direction of the vehicle body detected by the direction detection means is in the target movement path.
  • Control means for executing automatic steering control for operating the steering operation means so as to be a target orientation includes When the detected position is laterally deviated from the target movement path and the detected direction is the same as the target direction, the target direction is changed to an inclined target direction inclined to the target movement path side. Thus, a misalignment correction process for operating the steering operation means is performed.
  • the control means when the control means is performing automatic steering control, the detected position of the vehicle body detected by the position detection means is shifted laterally from the target movement path, but the direction detection means If the detected direction of the vehicle body detected at is the same as the target direction on the target movement path (hereinafter referred to as the reference target direction), the steering operation is performed by changing the target direction to the tilted target direction inclined toward the target movement path. Operate means. That is, the control means operates the steering operation means so that the detected position of the vehicle body becomes a position on the target movement route and the detected direction of the vehicle body becomes the tilt target direction.
  • the vehicle body When the vehicle body travels in a direction inclined toward the target movement path in order to correct the lateral displacement, the vehicle body should travel in a posture along the reference target direction and reduce the displacement. become. In other words, since the azimuth of the vehicle body does not deviate from the tilt target azimuth, no unnecessary operation is performed to cope with the deviation of the azimuth. As a result, when the vehicle body is displaced laterally from the target movement path and the vehicle body orientation is the same as the reference target direction, unnecessary operations are reduced and the vehicle is returned to the traveling state along the target movement path as quickly as possible. It becomes possible.
  • control means sets an inclination angle of the inclination target azimuth with respect to the target azimuth to a setting upper limit value or less when executing the positional deviation correction processing. According to this configuration, when the steering control is executed, the target azimuth does not change too much, so that there is little possibility that the vehicle body turns suddenly and the posture becomes unstable.
  • vehicle speed detection means for detecting the vehicle speed.
  • the control means executes the positional deviation correction process
  • the change operation speed when the steering operation means changes the traveling direction is smaller as the vehicle speed is higher.
  • the change operation speed when the steering operation means changes the traveling direction is decreased as the vehicle speed increases.
  • vehicle speed detection means for detecting the vehicle speed.
  • the control means executes the positional deviation correction process
  • the inclination angle for inclining the target azimuth toward the target moving path is smaller as the vehicle speed is higher.
  • the inclination angle for inclining the target azimuth toward the target moving path becomes smaller as the vehicle speed increases. As a result, the amount of change in the direction of the vehicle body is reduced, and there is little possibility that the vehicle body posture becomes unstable, and the positional deviation can be corrected smoothly.
  • the control means maintains the tilt target azimuth as it is until the detected position reaches a position corresponding to the target movement path when executing the positional deviation correction processing.
  • the tilt target azimuth is maintained until the vehicle body reaches a position corresponding to the target movement path.
  • the vehicle body moves to a position corresponding to the target movement path in a state where the azimuth of the vehicle body is along the tilt target azimuth, so that the misalignment can be quickly corrected with little useless movement.
  • the control means executes the positional deviation correction process
  • the inclination of the inclination target azimuth with respect to the target azimuth becomes gentler as the detected position approaches a position corresponding to the target movement path.
  • the reference target azimuth is changed.
  • the tilt target azimuth changes in a state where the tilt becomes gentle.
  • the vehicle body can be quickly brought close to a portion corresponding to the target movement route.
  • the return correction amount is Since it becomes large, there is a disadvantage that the re-correction operation takes time.
  • the re-correction operation for returning the vehicle body to the direction along the target movement path can be performed in a short time without waste while the vehicle body can be brought close to the position corresponding to the target movement path as quickly as possible. .
  • the portion corresponding to the target movement path has a region having a predetermined width in the lateral direction on both the left and right sides of the position corresponding to the target movement path.
  • the azimuth of the vehicle body is returned to the azimuth along the target movement path slightly before the position of the vehicle body reaches the position corresponding to the target movement path. Therefore, the recorrection operation can be performed with a small response delay.
  • the vehicle body travels straight along the target movement path while working, and toward the next target movement path parallel to the target movement path at the end position of the target movement path. It is to travel by repeatedly turning and turning to turn, In the state where the vehicle body is displaced toward the already-worked area side and the position deviation correction process is executed, the control means is compared with the state where the vehicle body is displaced toward the unworked area side, It is preferable that the tilt target azimuth is set by largely tilting toward the target moving path. According to this configuration, the vehicle body travels so as to alternately repeat straight traveling and turning traveling, and the work is performed during the straight traveling.
  • the inclination with respect to the target azimuth relative to the target azimuth is compared with the state where the vehicle body is displaced toward the unworked area side.
  • Increase If it is a work vehicle that works to plant crop seedlings in the field as it travels, crop seedlings are already planted in the existing work area, so it is necessary to avoid the body from entering the existing work area There is. Therefore, when the vehicle body is displaced toward the existing work area, the position is corrected as quickly as possible by steering the vehicle in a slightly inclined direction, and the vehicle body is prevented from entering the existing work area. Can be made.
  • the vehicle body travels straight along the target movement path while working, and toward the next target movement path parallel to the target movement path at the end position of the target movement path. It is to travel by repeatedly turning and turning to turn,
  • the control means is compared with the state where the vehicle body is displaced to the already worked area side, It is preferable that the tilt target azimuth is set by largely tilting toward the target moving path. According to this configuration, the vehicle body travels so as to alternately repeat straight traveling and turning traveling, and the work is performed during the straight traveling.
  • the inclination target azimuth with respect to the reference target direction is compared to the state where the vehicle body is displaced toward the already worked area side. Increase the slope. If it is a work vehicle that works to reap crops that have been planted as it travels, planted crops are present in the unworked area, so it is necessary to avoid the body from entering the unworked area. There is. Therefore, when the vehicle body is displaced toward the unworked area, the position is corrected as quickly as possible by performing a steering operation in a slightly inclined direction so that the vehicle body enters the unworked area. Can be avoided.
  • the vehicle body travels straight along the target movement path while working, and toward the next target movement path parallel to the target movement path at the end position of the target movement path. It is to travel by repeatedly turning and turning to turn, It is preferable that the control means does not execute the misalignment correction process until a predetermined determination condition is satisfied immediately after the vehicle body starts the straight traveling after the turning. Immediately after starting the straight running after turning, the running state may not be stable, and the vehicle body may be shifted laterally from the target movement route. As a result, immediately after the start of straight traveling, the vehicle body cannot always travel in a stable state on the target movement route.
  • the position deviation correction process is not executed immediately after the straight traveling is started and until the predetermined determination condition is satisfied, so that unnecessary steering operation can be avoided.
  • the predetermined determination condition for example, various conditions such as a set time elapses after turning, traveling a set distance, and the azimuth of the vehicle body approaches a predetermined azimuth can be considered. In short, this is a condition for stabilizing the running state.
  • a manual steering operation tool that commands a change in the traveling direction of the vehicle body based on a manual operation, and a manual operation detection unit that detects that a manual operation on the manual steering control tool has been performed
  • the control unit preferably reduces an operation force when operating the steering operation unit in the automatic steering control.
  • the traveling direction of the vehicle body can be changed by operating the steering operation means also by manual operation.
  • the control means reduces the operation force when operating the steering operation means in the automatic steering control.
  • the control unit when the manual operation is detected by the manual operation detection unit, the control unit reduces the operation force, and even if the manual operation by the manual operation detection unit is not detected, It is preferable to maintain a state where the operating force is reduced. According to this configuration, once the manual operation is detected and the operation force of the steering operation means is reduced, the state is supported even if the manual operation is not performed, so the manual operation is repeated intermittently. In such a case, manual operation is possible, and it is easy to use.
  • the control means when the manual operation is detected by the manual operation detecting means, the control means reduces the operating force, and when the manual operation by the manual operation detecting means is not detected, the control means It is preferable to return the force to its original magnitude. According to this configuration, when the manual operation is detected and the operation force of the steering operation unit is reduced and then the manual operation is stopped, the operation force of the steering operation unit is restored, so that the manual operation is performed once. However, if the manual operation is not performed thereafter, the automatic steering control is continuously performed, so that the usability is improved.
  • a manual steering operation tool that commands a change in the traveling direction of the vehicle body based on a manual operation
  • a manual operation detection unit that detects that a manual operation has been performed on the manual steering control tool.
  • the control means stops the automatic steering control when a change command by the manual steering operation tool is continuously commanded for a set time or longer.
  • the automatic steering control is stopped.
  • the operation in the direction contrary to the intention of the manual operator accompanying the automatic steering control is eliminated, and the manual operation becomes easy.
  • a manual steering operation tool that commands a change in the traveling direction of the vehicle body based on a manual operation
  • a manual operation detection unit that detects that a manual operation has been performed on the manual steering control tool.
  • the steering operation means is operated so that the steering state corresponding to the change command by the manual steering operation tool is obtained. Therefore, when the steering operation by the manual operation is performed, the steering operation means is operated in the direction intended by the manual operator, so that the manual operation can be easily performed with a small operation load.
  • the position detecting means is a satellite positioning unit that receives radio waves from a satellite and detects the position of the vehicle body.
  • a satellite positioning unit such as GPS receives radio waves from the satellite and detects the position of the vehicle body, so that the absolute position on the earth can be measured. Therefore, it is possible to accurately detect the position of the work vehicle in the field.
  • a feature of the present invention is that a traveling machine body capable of switching between manual travel by manual steering and automatic travel by automatic steering along a set travel line set in parallel to a reference travel line, the manual travel, A changeover switch capable of switching between automatic travel and a start point setting unit for setting a plane position of the traveling machine body at the time when switching from the manual travel to the automatic travel is performed by the changeover switch as a start point of the set travel line And is equipped with.
  • the driver can adjust the field condition. It is possible to freely set the set travel line at a preferred position while viewing.
  • the setting operation of the set travel line is an operation in which the driver switches the changeover switch from manual travel to automatic travel, automatic switching is performed after the changeover operation of the changeover switch, which can reduce the burden on the driver. It becomes possible.
  • the changeover switch is provided in a speed change operation tool that swings along the front-rear direction of the traveling aircraft body, and the operation direction of the changeover switch is set along the left-right direction of the traveling aircraft body. It is preferable that According to this configuration, since the changeover switch is provided on the speed change operation tool, it is possible to operate the changeover switch while keeping the hand on the speed change operation tool, and the hand can be moved to another position or gripped. The changeover switch can be operated efficiently without changing. Further, since the operation direction (front-rear direction) of the speed change operation tool is different from the operation direction (left / right direction) of the changeover switch, when operating either the speed change operation tool or the changeover switch, It becomes easy to prevent.
  • a displacement switch for displacing the set travel line in parallel is provided.
  • the set travel line can be displaced in parallel by operating the displacement switch even during the automatic travel along the set travel line. Therefore, while driving automatically, the driver approached the adjacent setting travel line where planting was completed, for example, while looking at the field conditions (for example, ups and downs of the field or planting of seedlings in the adjacent planting completion route).
  • the setting travel line can be displaced in parallel to the side (or the separated side), and the setting can be changed so that a more preferable course can be automatically traveled. Therefore, it is possible to carry out farm work that closely matches the field conditions.
  • the displacement switch is also used as an instruction switch capable of inputting a planar position of the traveling machine body to the recording unit in the manual travel when setting the reference travel line.
  • the instruction switch used for setting the reference travel line can also be used as the displacement switch, the number of switches is reduced, and for example, a switch panel or the like can be configured to be easy to see.
  • the displacement switch includes a displacement switch for right displacement that displaces the set travel line to the right and a displacement switch for left displacement that displaces the set travel line to the left. It is preferable. According to this configuration, the displacement switch for right displacement and the displacement switch for left displacement are provided and provided at different positions, so that it is difficult to perform an erroneous operation, and the traveling machine body is accurately placed in the direction intended by the driver. Can be displaced.
  • the displacement switch for right displacement is provided on the right side with respect to the front side of the traveling machine body than the displacement switch for left displacement.
  • the displacement switch for right displacement is arranged on the right side
  • the displacement switch for left displacement is arranged on the left side.
  • the direction in which the traveling machine body is displaced coincides with the left and right arrangements of the corresponding displacement switches, and it is easy to prevent erroneous operations. As a result, the displacement operation of the set travel line can be performed more accurately.
  • an operation canceling unit that does not reflect an initial predetermined number of operations among the operations to the displacement switch in the displacement control of the set travel line is preferable. According to this configuration, for example, even if the displacement switch is accidentally touched and turned on, if the number of operations is within a predetermined number set by the operation canceling unit, the displacement control of the set travel line is performed. Therefore, it is possible to prevent malfunction. Therefore, more accurate travel control can be performed in accordance with the driver's operation intention. Incidentally, if the number of operations of the displacement switch exceeds the predetermined number set by the operation canceling unit, the displacement operation in the intended direction is reflected, and the set travel line can be displaced in the indicated direction.
  • an operation canceling unit that does not reflect the displacement switch operation in the displacement control of the set travel line until a set time elapses from the operation of the displacement switch.
  • the elapsed time from the first operation is If it is within the set predetermined time, the second and subsequent operations are not reflected in the displacement control of the set travel line, so that malfunction can be prevented. Therefore, more accurate travel control can be performed in accordance with the driver's operation intention.
  • the elapsed operation time of the displacement switch exceeds the predetermined time set in the operation cancellation unit, the next switch operation is reflected in the displacement control, and the set travel line is displaced in the indicated direction. Can do.
  • the operation of the displacement switch when the displacement switch is operated, the operation of the displacement switch is performed until the traveling machine body reaches an error region having a predetermined width set around the set travel line after displacement. It is preferable to provide an operation cancel unit that is not reflected in the displacement control. According to this configuration, for example, even when the displacement switch is continuously turned on for a plurality of times, the traveling machine body is automatically traveling toward the target setting traveling line set for displacement by the first operation. Since the operation of the displacement switch is not reflected in the displacement control by the operation canceling unit until the error area of a predetermined width set around the target setting travel line is reached, it is possible to prevent a malfunction or a sudden course change. Therefore, more accurate travel control can be performed in accordance with the driver's operation intention.
  • a field work vehicle includes a traveling machine that travels in a field while changing direction in a border area, a field work device that performs work on the field, and a positioning unit that outputs positioning data indicating the position of the vehicle. And an artificial steering unit that steers the traveling vehicle body based on an artificial operation, an automatic steering unit that automatically steers the traveling vehicle body, and that the traveling vehicle body has reached the crest region based on the vehicle position. And a border detection module for detection.
  • positioning data indicating the position of the vehicle can be obtained from a positioning unit using GNSS (Global Navigation Satellite System) or GPS (Global Positioning System).
  • GNSS Global Navigation Satellite System
  • GPS Global Positioning System
  • the coasting detection module can detect that the traveling vehicle body has reached the coasting region, and can transmit this to the driver and the control system for automatic steering. As a result, it is possible to stably and accurately detect the arrival of the traveling vehicle body that has been visually confirmed by the driver, and to reduce the burden on the driver.
  • One method for presetting the position of the border area is to equip the map data of the field including the border area and set the border area in the map data.
  • the position of the traveling field work vehicle in the field is calculated in real time. Therefore, it is possible to notify the control system of the automatic steering and the driver when the traveling machine body reaches the crest region.
  • an agricultural field map storage unit for storing the map data of the agricultural field is provided, and the border detection module uses the vehicle position and the map data. By performing map matching, it is detected that the traveling aircraft has reached the border area.
  • the behavior of the vehicle includes the behavior of the traveling machine body and the behavior of the field work device. In particular, it detects the vehicle behavior that occurs when entering from the non-binged region to the coasting region and the vehicle behavior that occurs when entering the non-binged region from the coasting region, and determines the vehicle position at the time of detection. By combining them, a boundary point between the bordering area and the non-bordering area can be obtained.
  • the interval between adjacent boundary points is approximately equal to the interval of the trajectory in reciprocating operation, that is, the work width, so the next boundary point should be estimated from the boundary point obtained first.
  • a vehicle behavior recording unit that records the behavior of the traveling machine body and / or the field work device or both as the vehicle behavior in association with the position of the traveling machine body is provided.
  • the coasting detection module detects that the traveling vehicle body has reached the coasting region based on the vehicle behavior.
  • Vehicle behavior that occurs when entering from the non-border region to the coast region vehicle behavior that occurs when entering the vehicle behavior that occurs when entering the non-border region, and non-bright from the coast region
  • the vehicle behavior that occurs when entering the area varies depending on the type of the field work vehicle and the work content.
  • the common vehicle behaviors are the start and stop of work of the field work device, the transition to the work position of the field work device and the non-work position. Transition, and start and stop of the traveling change of the traveling body.
  • the vehicle behavior recording unit records the work start and work stop of the field work device as the vehicle behavior.
  • the vehicle behavior recording unit records the transition of the field work device to the work position and the transition to the non-work position as the vehicle behavior. In still another embodiment, the vehicle behavior recording unit records the start and stop of the traveling change of the traveling body as the vehicle behavior.
  • these embodiments may be applied in any combination.
  • the boundary point between the non-border area and the brink area may be artificially determined. For this reason, in one of the embodiments of the present invention, an artificial operation is performed at the time of transition between traveling in the coasting area (border traveling mode) and traveling other than the coasting area (non-border traveling mode).
  • a travel mode switching operation tool is provided, and the vehicle behavior recording unit records an operation of the travel mode switching operation tool as the vehicle behavior.
  • the collision detection module estimates the next arrival timing of the traveling machine body to the collision area from the vehicle behavior on the adjacent previous work travel route. It has an estimation part. Accordingly, it is possible to calculate the approaching state to the coasting area while traveling in the non-collision area, and to perform appropriate and necessary control before or after reaching the coasting area.
  • an approach notification command for notifying the approaching area is output before the arrival timing estimated by the approaching estimation unit
  • the driver may perform an operation that must be performed in the approaching area. Confirmation can be performed with a margin.
  • an implementation is performed in which a deceleration command for decelerating the traveling aircraft is output before the arrival timing estimated by the collision estimation section. A form can be adopted.
  • a vehicle stop command for stopping the traveling machine body is output or the arrival timing estimated by the collision estimation unit It is also possible to adopt an embodiment in which a vehicle stop command for stopping the traveling machine body is output in response to the above.
  • ⁇ ⁇ ⁇ ⁇ Steering is completely different between running in a non-binged area and running in a drowning area where the direction is changed. For this reason, whether the two different travelings are performed by automatic steering or artificial steering differs depending on the type of field work vehicle, the type of field work, the skill level of the driver, and the like. For this reason, in one preferred embodiment of the present invention, a steering mode for managing the artificial steering mode in which the artificial steering by the artificial steering unit is executed and the automatic steering mode in which the automatic steering by the automatic steering unit is executed. And a management department. In this configuration, if an appropriate algorithm is incorporated in advance, automatic steering and human-steering can be appropriately assigned according to the driving situation and the surrounding situation.
  • the steering mode management unit selects an artificial steering mode in the coasting area, and selects an automatic steering mode in other areas than the coasting area.
  • a configuration to be selected can be adopted.
  • an embodiment provided with a steering mode switching operation tool for artificially selecting the automatic steering mode and the artificial steering mode may be adopted.
  • a travel distance calculation unit that calculates a travel distance based on the number of rotations of the wheel is provided, and when the positioning unit is inoperable, the coasting detection module is Based on the travel distance calculated by the calculation unit, it is detected that the traveling aircraft has reached the border area. As a result, even if the positioning unit temporarily becomes inoperable, it is detected that the traveling aircraft has reached the border area. At that time, when it is detected by the travel distance calculation unit that the positioning unit has become inoperable, the traveling machine body may be stopped at that time.
  • the attitude of the traveling aircraft is substantially determined by the inclination of the traveling aircraft with respect to the ground.
  • a pitching angle or rolling angle that is greater than or equal to a predetermined value adversely affects running.
  • an attitude determination unit that determines the attitude of the traveling aircraft body is provided, and braking that decelerates or stops the traveling aircraft body when the attitude deviates from a predetermined condition.
  • a command (including a stop command and a deceleration command) is output.
  • FIG. 8 It is a figure which shows 1st Embodiment (hereinafter, it is the same also to FIG. 8), and is a side view which shows the rice transplanter as an example of a working vehicle. It is a top view which shows a rice transplanter. It is a front view which shows a rice transplanter. It is a schematic diagram which shows a steering unit typically. It is a block diagram which shows the control structure which concerns on automatic steering control. It is explanatory drawing of the top view explaining operation
  • FIG. 1 It is a figure which shows a steering unit. It is a block diagram which shows a control structure. It is explanatory drawing of the planar view in the whole surface explaining the operation
  • a riding-type rice transplanter (an example of “work vehicle”), which is a planting paddy field work vehicle among farm work vehicles, includes a travel machine body C having a travel device A, and a farm field. And a working device for performing the work on.
  • the working device of the rice transplanter is a seedling planting device W that can plant seedlings in a field.
  • the arrow F shown in FIG. 2 is “front” of the traveling machine body C
  • the arrow B is “rear” of the traveling machine body C
  • the arrow L is “left” of the traveling machine body C
  • the arrow R is “right” of the traveling machine body C. is there.
  • the traveling device A includes a pair of left and right front wheels 10 and a pair of left and right rear wheels 11.
  • the traveling machine body C is provided with a steering unit U capable of steering the left and right front wheels 10 in the traveling device A.
  • an openable bonnet 12 is provided at the front of the traveling machine body C.
  • An engine 13 is provided in the bonnet 12.
  • a rod-shaped center mascot 14 for confirming the index line LN is provided at the tip position of the bonnet 12.
  • the traveling machine body C includes a frame-shaped machine body frame 15 extending along the front-rear direction.
  • a support column frame 16 is erected on the front portion of the body frame 15.
  • the seedling planting device W is connected to the rear end of the traveling machine body C so as to be movable up and down via a link mechanism 21 that moves up and down by an expansion and contraction operation of a lifting cylinder 20 constituted by a hydraulic cylinder. Yes.
  • the seedling planting device W includes four transmission cases 22, a rotary case 23 rotatably supported on the left side and the right side of the rear part of each transmission case 22, and each rotation.
  • a pair of rotary type planting arms 24 provided at both ends of the case 23, a plurality of leveling floats 25 for leveling the field of the field, a seedling platform 26 on which mat-like seedlings for planting are placed, and the like are provided. ing. That is, the seedling planting apparatus W is configured in an 8-row planting type.
  • the seedling planting device W configured as described above drives each of the rotating cases 23 by the power transmitted from the transmission case 22 while driving the seedling mounting table 26 to reciprocate horizontally and horizontally.
  • the seedlings are taken out alternately by the planting arms 24 from below and planted on the field of the field.
  • a plurality of (for example, four) normal spare seedlings on which spare seedlings to be supplied to the seedling planting device W can be placed on the left and right sides of the bonnet 12 in the traveling machine body C.
  • a stand 28 an example of “spare seedling stand”
  • a single rail-type spare seedling stand 29 an example of “spare seedling stand” on which a spare seedling for supplying to the seedling planting device W can be placed are provided. Yes.
  • a pair of left and right spare seedling frames 30 that support the respective normal spare seedling stands 28 and rail-type spare seedling stands 29, and upper portions of the left and right spare seedling frames 30 are provided on the left and right sides of the bonnet 12 in the traveling machine body C.
  • a connecting frame 31 connected over the connecting frame 31.
  • the connection frame 31 has a U-shape when viewed from the front.
  • the left and right end portions of the connection frame 31 are connected to the upper portions of the left and right spare seedling frames 30 via connection brackets 32, respectively.
  • marker devices 33 for forming index lines LN are provided on the left and right sides of the seedling planting device W, respectively, on the field surface of the field.
  • the left and right marker devices 33 are respectively operated in a working posture in which an indicator line LN is formed on the field surface of the farm field as the traveling machine body C is grounded on the field surface of the farm field and in a retracted posture away from the field surface of the farm field. It is configured freely.
  • the left and right marker devices 33 are supported by a marker arm 34 supported by the seedling planting device W so as to be swingable up and down, and freely supported by the tip of the marker arm 34.
  • a rotating body 35 having a plurality of convex bodies in the circumferential direction.
  • a marker electric motor (not shown) is provided for operating the left and right marker devices 33 to the working posture and the retracted posture.
  • the rotating body 35 rolls on the ground as the traveling machine body C is steered to form a dotted index line LN (see FIG. 6) in a top view. It is supposed to be.
  • a driving unit 40 for performing various driving operations is provided at the center of the traveling machine body C.
  • the driving unit 40 includes a driver seat 41 on which a driver can sit, a control tower 42, a steering handle 43 including a steering wheel for manual steering operation of the front wheels 10, a forward / reverse switching operation and a traveling speed.
  • a main transmission lever 44, an operation lever 45, and the like are provided.
  • the driver seat 41 is provided at the center of the traveling machine body C.
  • the control tower 42 is provided with a steering handle 43, a main transmission lever 44, an operation lever 45, and the like so as to be freely operated.
  • a boarding step 46 is provided at the foot portion of the driving unit 40.
  • An auxiliary step 47 is provided at the left and right outer positions of the boarding step 46.
  • a boarding / unloading step 48 is provided as a boarding / alighting passage that continues to the boarding step 46 without a step.
  • the left and right preliminary seedling frames 30 are respectively arranged on the lateral sides of the getting-on / off step 48.
  • the operation lever 45 shown in FIGS. 2 and 3 is provided on the right side below the steering handle 43. Although not shown in detail, the operation lever 45 is configured to be freely movable in a cross direction from a neutral position to an upward ascending position, a downward descending position, a rear right marker position, and a front left marker position. Biased to position.
  • the planting clutch (not shown) is operated in the disconnected state, the seedling planting device W is raised, and the left and right marker devices 33 (see FIG. 1) are operated to the retracted position.
  • the planting clutch (not shown) is operated in the disconnected state, the left and right marker devices 33 are operated to the retracted posture, and the seedling planting device W is lowered.
  • the center leveling float 25 contacts the field surface of the farm field, the seedling planting device W contacts the field surface of the field and stops.
  • the operation lever 45 When the operation lever 45 is operated to the right marker position, the right marker device 33 changes from the retracted posture to the acting posture.
  • the operating lever 45 When the operating lever 45 is operated to the left marker position, the left marker device 33 changes from the retracted posture to the operating posture.
  • the control tower 42 of the operation unit 40 is provided with a push operation type automatic steering switch 50 (see FIG. 5).
  • the automatic steering switch 50 is configured to be able to perform an automatic steering on / off switching operation of the steering unit U.
  • the main transmission lever 44 is provided with a registration switch 52 (see FIG. 5) for registering the teaching direction TA (see FIG. 6) used for the automatic steering control of the steering unit U.
  • the registration switch 52 includes a pressing operation type first registration button 52A and a pressing operation type second registration button 52B.
  • the steering unit U includes the steering handle 43 described above, a steering operation shaft 54 that is linked to the steering handle 43, and a pitman arm that swings as the steering operation shaft 54 rotates. 55, a left and right linkage mechanism 56 linked to the pitman arm 55, a steering motor 58, a gear mechanism 57 linked to the steering operation shaft 54, and the like.
  • the steering operation shaft 54 is linked to the left and right front wheels 10 via a pitman arm 55 and a left and right linkage mechanism 56, respectively.
  • the amount of rotation of the steering operation shaft 54 is detected by a steering angle sensor 60 (see FIG. 5) including a rotary encoder provided at the lower end of the steering operation shaft 54.
  • the traveling machine body C can detect the receiving device 63 that acquires position information by a satellite positioning system and mainly the inclination (pitch angle, roll angle) of the traveling machine body C.
  • a measuring unit 61 having a secondary inertial measuring device 64 and a main inertia measuring device 62 (corresponding to an “inertia measuring device”) for measuring inertial information are provided.
  • the main inertia measuring device 62 and the sub inertia measuring device 64 are each configured by an IMU (Inertial Measurement Unit).
  • the measuring unit 61 having the receiving device 63 and the sub inertia measuring device 64 and the main inertia measuring device 62 are arranged at different locations in the traveling machine body C. Further, the measurement unit 61 having the receiving device 63 and the sub inertia measuring device 64 and the main inertia measuring device 62 are arranged on the left and right center line CL in the traveling machine body C.
  • the above-mentioned satellite positioning system includes GPS (Global Positioning System) as a typical example.
  • the position of the receiving device 63 is determined by using a receiving device 63 included in a plurality of GPS satellites that orbit the earth, a control station that tracks and controls the GPS satellites, and a target (running vehicle body C) that performs positioning. Is to measure.
  • the receiving device 63 is used to acquire the position information of the traveling machine body C by the satellite positioning system.
  • the measurement unit 61 having the receiving device 63 is attached to the connection frame 31 via a plate-like support plate 65.
  • the measuring unit 61 having the receiving device 63 is disposed at the front position of the traveling machine body C (particularly, in front of the front wheels 10). For this reason, when the traveling machine body C changes the traveling direction, the front unit position of the traveling machine body C has a larger amount of displacement in the left-right direction than the rear end position of the traveling machine body C.
  • the change in the own position NM of the traveling machine body C acquired can be detected with high sensitivity.
  • connection frame 31 is inverted upside down with respect to the use state S1 in which the measurement unit 61 having the receiving device 63 is located above the upper end of the preliminary seedling frame 30, and the use state S1.
  • the receiving device 63 can be changed to the storage state S2 in which the receiving device 63 is located below the upper end portion of the preliminary seedling frame 30.
  • the connecting frame 31 can be rotated around the left and right axis X along the left-right direction, and the connecting bracket 32 can be fixed in positions in the use state S1 and the retracted state S2. It is supported by the preliminary seedling frame 30.
  • the receiving device 63 is supported by the connection frame 31 and the spare seedling frame 30 at a high place.
  • the receiving device 63 easily shakes due to the bending of the preliminary seedling frame 30 and the connecting frame 31, and the own machine position NM and the own machine direction of the traveling machine body C based on the position information acquired by the receiving device 63. NA can be detected with high accuracy.
  • the receiving device 63 is positioned at the highest position in the traveling machine body C by setting the connection frame 31 to the use state S1, the reception sensitivity of the radio wave of the receiving device 63 can be increased. It is difficult for radio interference to occur at 63.
  • the receiving device 63 of the measuring unit 61 is provided with a connector portion 67 for connecting a harness 66. As shown in FIG. The connector portion 67 extends outward from the receiving device 63 of the measurement unit 61 in the left-right direction.
  • the harness 66 is routed along the connection frame 31 and the spare seedling frame 30.
  • a guard member 68 that protects the connector portion 67 is provided. The guard member 68 is attached to the support plate 65. The guard member 68 protects the front side of the connector portion 67.
  • the main inertia measuring device 62 is arranged at a location near the center in the front-rear direction in the total length in the front-rear direction of the traveling machine body C and the seedling planting device W.
  • the main inertia measuring device 62 is arranged in the vicinity of the turning center (the axis of the yaw axis of the traveling machine body C) in the traveling direction of the traveling machine body C.
  • a rear axle frame 73 (corresponding to an “attachment member”) that rotatably supports a rear axle 72 that transmits driving force to the rear wheels 11 is provided at the rear of the traveling machine body C.
  • the rear axle frame 73 is a member having rigidity positioned in the vicinity of the rear axle 72 of the traveling device A.
  • the main inertia measuring device 62 is attached to the rear axle frame 73.
  • the main inertia measuring device 62 is located in the vicinity of the seedling planting device W.
  • the main inertia measuring device 62 is located below the rear side of the driver seat 41.
  • the main inertia measuring device 62 mainly includes a gyro sensor 70 capable of detecting the angular velocity of the yaw angle of the traveling machine body C (the turning angle of the traveling machine body C), and three axial directions orthogonal to each other. And an acceleration sensor 71 capable of detecting acceleration. That is, the inertia information measured by the main inertia measuring device 62 includes the azimuth change information detected by the gyro sensor 70 and the position change information detected by the acceleration sensor 71.
  • the main inertia measuring device 62 is disposed in the vicinity of the turning center in the traveling direction of the traveling machine body C, it is possible to suppress the integration error of the direction change information generated in the gyro sensor 70 to be small. At the same time, the detection accuracy of the position change information by the acceleration sensor 71 is high.
  • the traveling machine body C includes a control device 75 that controls the automatic steering of the steering unit U.
  • the control device 75 includes an information storage unit 76, a teaching storage unit 77, a turning detection unit 78, a start determination unit 79, an information correction unit 80, and a generation unit that generates a target line LM that causes the traveling machine body C to travel. 81, a state detection unit 82, and a control unit 83 that controls the steering unit U so that the traveling machine body C travels along the target line LM based on position information and inertia information. ing.
  • the control device 75 includes information on the receiving device 63, the sub inertia measuring device 64, the gyro sensor 70, the acceleration sensor 71, the steering angle sensor 60, the automatic steering switch 50, the registration switch 52, etc. in the main inertia measuring device 62. Is entered.
  • the information storage unit 76 is configured to store the position information acquired from the receiving device 63 for each time.
  • the teaching storage unit 77 is configured to calculate the teaching direction TA using the position information of two points among the position information stored in the information storage unit 76 based on the operation of the registration switch 52.
  • the turning detection unit 78 detects the start of turning of the traveling machine body C and the end of turning of the traveling machine body C based on the steering angle information of the steering operation shaft 54 of the steering unit U input from the steering angle sensor 60. Is configured to do.
  • the start determination unit 79 is configured to determine whether or not to start the automatic steering control of the traveling machine body C.
  • the information correction unit 80 acquires, by the receiving device 63, an integration error of information detected by the gyro sensor 70 among the inertia information measured by the main inertia measuring device 62 every time the automatic steering control of the traveling machine body C is started. Correction processing is performed on the basis of the positional information and the information measured by the sub inertia measuring device 64.
  • the generating unit 81 is configured to generate the target line LM based on the teaching direction TA, the own machine position NM at the start of the automatic steering control of the traveling machine body C, and the own machine direction NA.
  • the state detection unit 82 detects the distance deviation (deviation distance) between the own machine position NM of the traveling machine body C and the target line LM, the own machine direction NA, and the teaching direction of the traveling machine body C.
  • An angle deviation (deviation angle) from TA is detected.
  • the control unit 83 is configured to control the driving of the steering motor 58 of the steering unit U based on information input from the state detection unit 82.
  • the traveling machine body C is manually turned by operating the steering handle 43.
  • the turning angle sensor 60 detects the turning start of the traveling machine body C
  • the seedling planting device W the leveling float 25, and the marker device 33 are automatically raised from the field surface of the field.
  • the turning end position Q3 of the traveling machine body C is detected based on the detection result of the steering angle sensor 60.
  • the information measured by the main inertia measuring device 62 includes the position information of the own device position NM acquired by the receiving device 63 and the position information of the own device position NM acquired by the receiving device 63 and the previous position. Correction is performed based on the own aircraft orientation NA calculated based on the position information.
  • the index line LN formed by the marker device 33 and the target line LM are slightly shifted, but in reality, the driver's line of sight is the tip of the center mascot 14 and the index. Since manual alignment is performed so that the line LN coincides with the line LN, the target line LM is generated so as to substantially coincide with the index line LN.
  • the main inertia measuring device 62 is mainly used, and the receiving device 63 is used for correcting the main inertia measuring device 62.
  • the own position NM and own direction NA based on the position information acquired by the receiving device 63 at the control start position Q4 and the angular velocity measured by the gyro sensor 70 of the main inertia measuring device 62 are integrated.
  • the steering unit U is automatically steered so that the current position NM and the heading direction NA coincide with the target line LM and the teaching direction TA, and automatic steering control of the traveling machine body C is performed. .
  • the steering unit U is not steered. Further, during the automatic steering control of the traveling machine body C, there is an angle deviation (deviation angle) between the own machine direction NA and the teaching direction TA, and there is no distance deviation (deviation distance) between the own machine position NM and the target line LM. In this case, the steering unit U is steered in a direction that eliminates an angular deviation (deviation angle) between the own machine direction NA and the teaching direction TA.
  • the steering unit U is steered in a direction that eliminates an angular deviation (deviation angle) between the own machine direction NA and the teaching direction TA.
  • the steering unit U is steered in such a direction as to eliminate the distance deviation (deviation distance) between the own position NM and the target line LM.
  • the position information acquired by the receiving device 63 is not essential during the automatic steering control of the traveling machine body C, it is assumed that the reception device 63 has a radio interference during the automatic steering control of the traveling machine body C. Even if the above occurs, the automatic steering control of the traveling machine body C can be continued based on the inertia information measured by the main inertia measuring device 62, and the planting of the seedling by the seedling planting device W to the target line LM Can be done accurately along.
  • the driver operates the automatic steering switch 50, whereby the automatic steering control of the traveling machine body C is stopped and switched to manual steering. Then, the turning operation is performed in the same manner at the heel, and the same operation is repeated to plant seedlings in the field.
  • the receiving device 63 is disposed in the front part of the traveling machine body C.
  • the own aircraft position NM serving as a reference for data processing is not the actual installation position of the receiving device 63, but the main inertia. It is set in the vicinity of the measuring device 62.
  • the setting of the own machine position NM that serves as a reference for data processing includes the distance between the receiving device 63 and the location of the own machine position NM, and the own machine direction NA calculated based on the receiving device 63 and the main inertia measuring device 62.
  • the seedling planting device W that wants to accurately travel along the target line LM, by setting the own machine position NM in the vicinity of the seedling planting device W in this way, the seedling planting device
  • the automatic steering control of the traveling machine body C can be performed so that W travels accurately along the target line LM.
  • the left and right spare seedling frames 30 each have a fixing portion 85 fixed to the support column frame 16, and an inclined portion 86 that extends upward from the fixing portion 85 and inclines toward the left and right inner sides. And a vertical portion 87 extending upward from the inclined portion 86. That is, the vertical portion 87 of the preliminary seedling frame 30 is offset by a predetermined distance D to the left and right inside with respect to the support column frame 16 and the fixing portion 85 of the preliminary seedling frame 30.
  • each of the plurality of normal spare seedling stands 28 has a longitudinal axis Y that is inclined inward and leftward as it goes forward along the longitudinal direction provided in the vertical portion 87 of the preliminary seedling frame 30.
  • the spare seedling frame 30 is supported so as to be able to swing around.
  • the preliminary seedling stand 28 is configured so that the posture can be changed between a horizontal posture E1 and a vertical posture E2.
  • each normal preliminary seedling stand 28 is swung around the longitudinal axis Y to be in the vertical direction.
  • each of the normal preliminary seedling stands 28 in the vertical posture E ⁇ b> 2 is in a compact state in the left-right direction close to the vertical portion 87 side of the preliminary seedling frame 30.
  • the rail-type preliminary seedling table 29 shown in FIGS. 1 to 3 includes a front mounting table 88, a central mounting table 89, and a rear mounting table 90.
  • the central mounting table 89 is fixed to the support column frame 16 via a pair of support brackets 91.
  • the front mounting table 88 is connected to the front end portion of the central mounting table 89 so as to be swingable around the front horizontal axis P1 along the left-right direction.
  • the rear mounting table 90 is connected to the rear end portion of the central mounting table 89 so as to be swingable around the rear horizontal axis P2 along the left-right direction.
  • the rail-type preliminary seedling stand 29 is configured to be changeable between an unfolded state F1 and a folded state F2.
  • the front mounting table 88 is expanded on the front side of the central mounting table 89 with the central mounting table 89 as the center, and the rear mounting table 90 is positioned on the rear side of the central mounting table 89. Be expanded. That is, when the rail-type preliminary seedling table 29 is set to the unfolded state F1, the front mounting table 88, the center mounting table 89, and the rear mounting table 90 are sequentially arranged in the front-rear direction.
  • the front mounting table 88 is swung around the front horizontal axis P1 located at the front end of the center mounting table 89.
  • the front mounting table 88 is folded and positioned on the upper side of the central mounting table 89, and the rear mounting table 90 is swung around the rear horizontal axis P2 located at the rear end of the central mounting table 89.
  • the rear mounting table 90 is positioned above 89.
  • the plurality of normal spare seedling stands 28 are arranged vertically, and the rail-type preliminary seedling stand 29 is arranged below the lowermost normal spare seedling stand 28.
  • the vertical portion 87 of the preliminary seedling frame 30 is set at a predetermined distance D on the left and right inner sides with respect to the support support frame 16 and the fixing portion 85 of the preliminary seedling frame 30.
  • a plurality of normal spare seedling stands 28 can be offset to the left and right inner sides by changing the posture to a vertical posture E2 which is in a compact state in the left-right direction near the vertical portion 87 side of the spare seedling frame 30 As a result, the state of the rail-type spare seedling stand 29 can be changed from the deployed state F1 to the folded state F2 without any interference without interfering with the spare seedling frame 30 and the normal spare seedling stand 28.
  • the plurality of normal spare seedling stands 28 can be offset to the left and right inner sides, for example, the entire lateral width of the traveling machine body C is made smaller than when the rail-type spare seedling stands 29 are offset to the left and right outer sides. it can.
  • automatic steering control of the traveling machine body C is performed mainly based on the inertia information measured by the main inertia measuring device 62, and the inertia information measured by the main inertia measuring device 62 is received by the receiving device.
  • the inertial information measured by the main inertia measuring device 62 is mainly obtained by performing the automatic steering control of the traveling machine body C based on the position information acquired by the receiving device 63 and the position information acquired by the receiving device 63. You may make it correct
  • connection frame 31 can be turned around the left and right axis X along the left-right direction and can be fixed in the use state S1 and the storage state S2.
  • the left and right spare seedling frames 30 may be detachable.
  • the connection frame 31 in the use state S1 is removed from the preliminary seedling frame 30, turned upside down, and attached again to the preliminary seedling frame 30, so that the connection frame 31 enters the storage state S2.
  • the receiving device 63 is fixed at a certain location, but the present invention is not limited to this.
  • the receiving device 63 is arranged on the rail member 100 that is attached and fixed to the preliminary seedling frame 30 and extends along the front-rear direction of the traveling machine body C in a state that it can move along the front-rear direction. It may be. Thereby, by moving the receiving device 63 between two points on the rail member 100, the traveling device body C is stopped, and the own aircraft direction NA of the traveling device body C, the two positions acquired by the receiving device 63. It can be determined based on information.
  • an apparatus including only one receiving device 63 is illustrated, but the present invention is not limited to this.
  • two or more receiving devices 63 may be provided. By doing in this way, even when the traveling machine body C is stopped, the traveling machine body C is based on the positional information acquired by one receiving device 63 and the positional information acquired by the other receiving device 63. It is possible to obtain the own machine direction NA.
  • the connector 67 extends from the side surface of the receiving device 63 outward in the left-right direction, but is not limited thereto.
  • the connector portion 67 extends upward from the upper surface portion of the receiving device 63, extends downward from the lower surface portion of the receiving device 63, extends forward from the front surface portion of the receiving device 63, It may extend rearward from the rear surface portion.
  • the guard member 68 for protecting the connector portion 67 is also provided at the connector portion 67.
  • the guard member 68 is attached to the support plate 65.
  • the present invention is not limited to this.
  • the guard member 68 may be attached to the receiving device 63 itself.
  • the thing provided with the seedling planting apparatus W is illustrated as a working apparatus, it is not restricted to this.
  • a fertilizer application device, a chemical spraying device, or the like may be provided as a working device.
  • the present invention is, for example, a riding type direct seeding machine that is a planting-type paddy field work vehicle provided with a seeding device as a working device.
  • the present invention can be used for various work vehicles such as a tractor provided with a plow as a device, a farm vehicle such as a combine provided with a cutting unit as a work device, or a construction work vehicle provided with a bucket as a work device.
  • FIG. 9 is a left side view showing the entirety of the riding type rice transplanter in which the lower preliminary seedling storage device 150 is in the second state.
  • FIG. 11 is a plan view showing the entirety of the riding type rice transplanter in which the lower preliminary seedling storage device 150 is in the second state.
  • the direction [F] is [front side] of the traveling vehicle body 104
  • the direction [B] is [rear side] of the traveling vehicle body 104
  • the direction [L] is [left side] of the traveling vehicle body 104.
  • the direction of [R] is defined as [right side] of the traveling vehicle body 104.
  • a traveling vehicle body 104 equipped with a pair of left and right front wheels 102 and a pair of left and right rear wheels 103 is provided at the bottom of the body frame 101.
  • a driving unit 106 having an engine 105 is provided at the front of the traveling vehicle body 104.
  • the front wheels 102 are driven by the driving force transmitted from the engine 105 to the transmission 107, and the driving force transmitted from the engine 105 to the rear wheel drive case 109 via the mission 107 and the rotating shaft 108.
  • the rear wheel 103 is driven by the force, the vehicle runs on its own.
  • a riding type driving unit 111 having a driving seat 110 is provided at the rear of the traveling vehicle body 104.
  • the traveling vehicle body 104 is configured as a riding type so as to be mounted on and operated by the driving unit 111.
  • a seedling planting device 120 is connected to the rear portion of the traveling vehicle body 104 via a link mechanism 112.
  • the link mechanism 112 is supported by the body frame 101 so as to be swingable up and down.
  • the link mechanism 112 is swung by the hydraulic cylinder 113, so that the grounding float 121 is raised from the field scene S and the grounding float 121 is raised from the field scene S.
  • the ascending / descending operation is performed over the raised non-working state.
  • the seedling planting device 120 includes eight seedling planting mechanisms 122 arranged in the lateral width direction of the traveling vehicle body 104 and one seedling mounting base 123.
  • the seedling mounting base 123 is provided with eight seedling mounting portions 123 a for mounting the mat-like seedlings in the lateral width direction of the traveling vehicle body 104.
  • the seedling stage 123 is reciprocated in the width direction of the traveling vehicle body 104 in a state interlocked with the seedling planting movement of the seedling planting mechanism 122 and supplies seedlings to the seedling planting mechanisms 122 from the seedling placement unit 123a.
  • the riding type rice transplanter performs a seedling planting operation in which eight seedlings can be planted by the seedling planting device 120 by running the traveling vehicle body 104 in a state where the seedling planting device 120 is lowered to the descending state.
  • a receiving device 114 is mounted on the front portion of the traveling vehicle body 104. As shown in FIGS. 9, 11, and 12, the support frame 115 of the receiving device 114 is connected to a column 141 of the left and right spare seedling storage devices 140 and 150 described later.
  • the receiving device 114 acquires position information of the traveling vehicle body 104 by a satellite positioning system, and inputs the acquired position information to an automatic steering control device (not shown) of the traveling vehicle body 104.
  • the extended seedling mounting table 124 is extended from each seedling mounting portion 123 a of the seedling mounting table 123.
  • a pair of left and right partition plates 125 are erected on both lateral ends of the seedling stage 123.
  • the left and right partition plates 125 at both lateral ends of the seedling stage 123 span the seedling placement part 123a at the lateral end of the seedling stage 123 and the extended seedling stage 124 corresponding to the seedling stage 123a. Is provided.
  • the left and right partition plates 125 extend from the partition wall portion 123b located on the side of the seedling placement portion 123a toward the upper side of the seedling placement stand 123, and from the partition wall portion 123b to the upper side of the extended seedling placement stand 124. It extends toward.
  • the mat-like seedlings are supplied to the seedling placement unit 123a at the lateral end of the seedling stage 123, the mat-like seedlings are separated by the left and right partition plates 125 even if the seedling stage 123 is being laterally transferred. It can be replenished while properly guiding to. That is, it is possible to avoid replenishing the mat-like seedlings from the lateral seedling placement part 123a to the lateral outer side for the lateral transfer of the seedling placement base 123.
  • the partition plate 125 is provided only on the lateral seedling placement portion 123a, but may be provided on all seedling placement portions 123a.
  • a work step 116 is provided in a portion of the traveling vehicle body 104 that extends on both lateral sides of the driver seat 110 and behind the driver seat 110.
  • Handrails 130 are provided on both lateral sides of the driving unit 111.
  • the left and right handrails 130 are erected upward from an entry / exit step frame as a vehicle body portion of the traveling vehicle body 104 and a work step frame as a vehicle body portion of the traveling vehicle body 104.
  • An upper end 131 of the left and right handrails 130 is located at a position on the rear side of the entrance 111 a of the driving unit 111 and above the horizontal edge of the work step 116. As shown in FIGS.
  • a rear guard 117 extending in the lateral direction of the traveling vehicle body 104 is provided behind the driver seat 110.
  • the rear guard 117 is disposed above the rear edge of the work step 116.
  • the rear guard 117 is connected across the left handrail 130 and the right handrail 130.
  • the left and right handrails 130 can be used when riding on the driving unit 111 or getting off the driving unit 111 or when positioned at the work step 116.
  • the rear guard 117 can be used as a handrail when positioned at the work step 116.
  • the fertilizer tank and the fertilizer feeding mechanism of the fertilizer application apparatus are not provided behind the driver seat 110, but the fertilizer tank and the fertilizer feeding mechanism may be provided.
  • an empty space 200 is provided below the upper end 131 of the handrail 130 on the left and right sides.
  • the empty space 200 is provided by configuring the handrail 130 by a bent pipe member.
  • upper and lower two-stage reserve seedling storage devices 140 and 150 are provided on both lateral sides of the traveling vehicle body 104.
  • the left and right two-stage reserve seedling storage devices 140 and 150 are provided in front of the left handrail 130.
  • the right and left two-stage reserve seedling storage devices 140 and 150 are provided in front of the right handrail 130.
  • the upper left stage preliminary seedling storage device 140 is provided with four levels of preliminary seedling mounting bases 142.
  • the four-stage preliminary seedling stage 142 is supported by a pair of front and rear columns 141.
  • the front column 141 is erected upward from the engine support frame of the traveling vehicle body 104.
  • the rear column 141 is erected upward from the getting-on / off step frame of the traveling vehicle body 104.
  • the reserve seedling storage device 140 in the upper right stage has the same configuration as the reserve seedling storage device 140 in the upper left stage.
  • four spare mat-shaped seedlings to be supplied to the seedling planting device 120 can be stored side by side in the vertical direction of the traveling vehicle body 104. .
  • the preliminary seedling storage device 150 in the lower left stage includes three preliminary seedling mounting tables 151, 152, and 153.
  • the three preliminary seedling mounting tables 151, 152, and 153 include mounting table frames 151a, 152a, and 153a and preliminary seedling mounting base bodies 151b, 152b, and 153b.
  • the spare seedling placement base main bodies 151b, 152b, 153b are supported in a fixed state on the placement base frames 151a, 152a, 153a.
  • two preliminary seedling placement stands 152, 153 are provided with extended placement stands 152c, 153c.
  • the extension mounting tables 152c and 153c are supported by the spare seedling mounting table main bodies 152b and 153b and the mounting table frames 152a and 153a so as to be slidable.
  • the preliminary seedling placement stand 151 has the placement stand frame 151 a fixed to the front and rear struts 141, so that the seedling placement surface faces upward, It is fixed to the column 141.
  • the preliminary seedling placement table 151 is referred to as a fixed preliminary seedling placement table 151.
  • the preliminary seedling mounting table 152 among the three preliminary seedling mounting tables 151, 152, 153, one end portion of the mounting table frame 152 a is connected to the front end side of the mounting table frame 151 a of the fixed preliminary seedling mounting table 151 via a connecting shaft 154. It is rotatably supported.
  • the preliminary seedling mounting table 152 can be swung with respect to the fixed preliminary seedling mounting table 151 with an axis 154a extending in the lateral direction of the traveling vehicle body of the connecting shaft 154 as a rocking center.
  • this preliminary seedling placement table 152 is referred to as the previous movable preliminary seedling placement table 152.
  • the mounting posture of the previous movable preliminary seedling mounting table 152 is changed to the seedling mounting surface side of the fixed preliminary seedling mounting table 151 as shown in FIGS.
  • a stowed position in which the seedling placement surface of the previous movable spare seedling placement table 152 is folded downward and the seedling placement is extended from the fixed preliminary seedling placement table 151 to the front side of the traveling vehicle body as shown in FIGS. It can be switched to a use posture in which the placement surface is directed upward.
  • the end of the mounting table frame 153 a opposite to the side on which the extended placement table 153 c is located is the fixed preliminary seedling placement table 151.
  • the mounting table frame 151a is rotatably supported via a connecting shaft 155 on the rear end side.
  • the spare seedling placement table 153 can be swung with respect to the fixed preliminary seedling placement table 151 with an axis 155a extending in the lateral direction of the traveling vehicle body of the connecting shaft 155 as a swing center.
  • this preliminary seedling mounting table 153 will be referred to as a later movable preliminary seedling mounting table 153.
  • the mounting posture of the subsequent movable preliminary seedling mounting base 153 is changed to a state before folding over the fixed preliminary seedling mounting base 151 as shown in FIGS. 9 and FIG. 11, and a traveling vehicle body from the fixed spare seedling placement table 151 as shown in FIGS. 9 and 11. It can be switched to a use posture in which the seedling placement surface of the rear movable preliminary seedling placement table 153 is directed upward while projecting rearward.
  • the mounting posture of the extended mounting base 153c is changed from the subsequent movable preliminary seedling mounting base 153 as shown in FIGS. It is possible to switch back and forth between a use posture protruding in the front-rear direction of the rear movable preliminary seedling placement table 153 and a stored posture stored on the inner side of the rear movable preliminary seedling placement table 153.
  • the lower left stage reserve seedling storage device 150 switches the fixed movable seedling placement table by switching the front movable standby seedling placement table 152 and the rear movable spare seedling placement table 153 to the retracted position.
  • the first movable spare seedling mounting table 152 and the rear movable preliminary seedling mounting table 153 are stored side by side in the vertical direction of the traveling vehicle body 104.
  • the reserve seedling storage device 150 in the lower left stage is configured to switch the front movable reserve seedling placement table 152 and the rear movable reserve seedling placement table 153 to the use posture, thereby fixing the fixed reserve seedling placement table.
  • 151, the front movable preliminary seedling mounting table 152 and the rear movable preliminary seedling mounting table 153 are arranged in the front-rear direction of the traveling vehicle body 104, and the fixed preliminary seedling mounting table 151, the front movable preliminary seedling mounting table 152, and the rear movable preliminary seedling. It will be in the 2nd state which can mount a mat-like seedling on the mounting base 153.
  • the lower right-stage reserve seedling storage device 150 has the same configuration as the lower left-stage reserve seedling storage device 150.
  • the seedling planting device 120 is added to the lower left standby seedling storage device 150 and the lower right standby seedling storage device 150 by switching the lower left standby seedling storage device 150 and the lower right standby seedling storage device 150 to the second state.
  • Three spare mat-like seedlings to be supplied to the vehicle body can be accommodated side by side in the front-rear direction of the traveling vehicle body 104.
  • the extended mounting table 153c As shown in FIGS. 9, 11 and 13, in the lower left stage reserve seedling storage device 150 and the lower right stage reserve seedling storage device 150, when the reserve seedling storage device 150 is switched to the second state, the extended mounting table 153c , The rear movable preliminary seedling placement table 153 (the first spare seedling from the back) by the extended placement base 153c and the rear seedling placement base main body 151b of the subsequent movable preliminary seedling placement base 153.
  • a rear end side portion 153r is formed, and the rear end side portion 153r enters the empty space 200, and the rear end side portion 153r and the upper end portion 131 overlap in plan view. Further, the rear end side portion 153r enters the entrance / exit 111a.
  • the entrance / exit 111a can be closed by utilizing the rear end side portion 153r as a closing member.
  • the end portions on the lateral side of the traveling vehicle body of the upper and lower four stages of preliminary seedling mounting table 142 are front and rear columns. 141 is rotatably connected via a connecting shaft (not shown).
  • the upper and lower four-stage standby seedling mounting table 142 is in a lowered use posture in a state of being lowered like the upper right-stage preliminary seedling mounting table 142 shown in FIG. And a raised storage posture in a raised state like the preliminary seedling mounting table 142 in the upper left stage shown in FIG.
  • the front and rear struts 141 are formed in a bent state in which the upper part supporting the upper stage seedling storage device 140 is located on the inner side of the traveling vehicle body from the lower part supporting the lower stage seedling storage apparatus 150. That is, when the front movable seedling placement table 152 and the rear movable preliminary seedling placement table 153 are swung between the storage posture and the use posture, the front seedling placement table 142 is switched to the upward storage posture by switching The movable spare seedling placement table 152 and the subsequent movable preliminary seedling placement table 153 are not allowed to come into contact with each other, and are retracted from the moving path of the previous movable preliminary seedling placement table 152 and the subsequent movable preliminary seedling placement table 153 to the inner side of the traveling vehicle body. be able to.
  • FIG. 18 is a left side view showing a portion where the handrail 130 of the riding type rice transplanter having the second embodiment structure is disposed.
  • the upper end 131 of the handrail 130 includes a fixed part 131a and a movable part 131b.
  • the fixing portion 131a is fixed to the vehicle body portion of the traveling vehicle body 104.
  • a support portion 132 is provided at the rear portion of the fixed portion 131a.
  • a rear end portion of the movable portion 131b is rotatably connected to the support portion 132 via a connecting shaft 133.
  • the movable portion 131b includes a lowered use state in which the connecting shaft 133 extends forward from the fixed portion 131a as shown by a solid line in FIG. As shown by the chain line, the swinging operation is supported in the ascending storage state stored in the rear portion of the fixed portion 131a.
  • the front end side portion 131f enters the entrance / exit 111a, and the front end side portion 131f closes the entrance / exit 111a.
  • the front end side portion 131f of the movable portion 131b is projected forward from the fixed portion 131a, and an empty space 200 is formed below the front end side portion 131f.
  • the portion of the movable portion 131b that is located closer to the free end side than the connecting shaft 133 is received and supported by the support portion 134, and the movable portion 131b can be held in the lowered use state.
  • the movable portion 131b is in the raised storage state, the movable portion 131b is positioned on the rear side of the entrance / exit 111a and is in an open state in which the entrance / exit 111a is opened.
  • the movable part 131b By switching the movable part 131b to the raised storage state, the movable part 131b can be released from closing the entrance 111a, and the fixed part 131a can be used as a handrail to get on the driving part 111 or to get off the driving part 111. it can. Except when riding on the driving part 111 or getting off the driving part 111, the moving part 131b can be used as a closing member to close the entrance 111a by switching the movable part 131b to the lowered use state.
  • FIG. 19 is a left side view showing a portion where the handrail 130 of the riding type rice transplanter having the third embodiment structure is disposed.
  • the upper end portion 131 of the handrail 130 includes a fixed portion 131a and a movable portion 131b.
  • the support part 134 is provided in the support
  • the front end side part 131f of the movable part 131b is received and supported by the support part 134, and is thereby received and supported by the rear column 141.
  • FIG. 20 is a left side view showing the rear guard 117 provided with the first alternative embodiment structure. As shown in FIG. 20, the rear guard 117 having the first different embodiment structure is supported by the front leg portion 131c of the left and right handrails 130 and the front and rear leg portions 131c of the right handrail 130. Has been.
  • FIG. 21 is a front view showing a rear guard 117 provided with a second alternative embodiment structure.
  • the rear guard 117 having the second different implementation structure includes an upper rear guard 117u that also serves as a rear handrail, a middle rear guard 117n, and a lower rear guard 117d.
  • FIG. 22 is a front view showing a rear guard 117 provided with a third alternative embodiment structure.
  • the rear guard 117 having the third different embodiment structure includes an upper rear guard 117u that also serves as a rear handrail, a lower rear guard 117d, and a pair of left and right side guard plates 118. Yes.
  • the left and right side guard plates 118 are connected to the upper rear guard 117u and the lower rear guard 117d at positions located on both sides of the driver seat 110.
  • a plurality of preliminary seedling mounting tables are supported by a link mechanism supported by the support post 141 so as to be swingable, and a plurality of preliminary seedling mounting tables are arranged in the vertical direction of the vehicle body by the swinging operation of the link mechanism.
  • the example in which the state in which the spare seedling placement tables 151, 152, and 153 are stored is the first state of the spare seedling storage device 150 has been described.
  • a state in which the traveling vehicle body is arranged in the vertical direction in a state in which the seedling can be placed and accommodated may be configured to be the first state of the preliminary seedling accommodation device 150.
  • the extended mounting table 153c is provided in the subsequent movable spare seedling mounting table 153.
  • the extended mounting table 153c is not provided, and the subsequent movable spare seedling mounting table 153 is reserved. You may comprise so that the rear-end side part of the seedling mounting base main body 151b may enter the empty space 200.
  • the preliminary seedling storage device 140 that is not provided with the upper preliminary seedling storage device 140 can be switched between the first state and the second state. Only the storage device 150 may be provided.
  • the present invention is not limited to a riding type rice transplanter to which a seedling planting device 120 capable of eight-row planting is connected, and seedlings for planting seedlings with fewer than eight rows, such as four and six.
  • the present invention can be applied to a planting device or a riding type rice transplanter to which a seedling planting device capable of planting more than 8 strips is connected. Further, the present invention can also be applied to a riding type rice transplanter equipped with a fertilizer tank provided with a fertilizer tank and a fertilizer feeding device provided behind the driver's seat 110.
  • the riding type rice transplanter will be described as an example of a work vehicle.
  • the riding type rice transplanter has a pair of left and right front wheels 210 that can freely change the direction as a traveling device and a pair of left and right rear wheels 211 that are fixed in direction.
  • a seedling planting device W as a working device capable of planting seedlings in the field.
  • the seedling planting device W is connected to the rear end of the traveling vehicle body 300 through a link mechanism 221 that moves up and down by the expansion and contraction operation of the lifting hydraulic cylinder 220.
  • the arrow F shown in FIG. 24 is the front side of the vehicle body of the traveling vehicle body 300
  • the arrow B is the vehicle body rear side of the traveling vehicle body 300
  • the arrow L is the vehicle body left side of the traveling vehicle body 300
  • the arrow R is the vehicle body of the traveling vehicle body 300. The right side is shown.
  • an opening-and-closing bonnet 212 is provided at the front portion of the traveling vehicle body 300.
  • An engine 213 is provided in the bonnet 212.
  • a bar-shaped center mascot 214 is provided as a guide for traveling along the index line LN (see FIG. 28) drawn on the field.
  • the traveling vehicle body 300 includes a frame-shaped body frame 215 extending along the front-rear direction, and a support column frame 216 is erected on the front portion of the body frame 215.
  • the seedling planting device W includes four transmission cases 222 and a total of eight rotation cases rotatably supported on the left side and the right side of the rear part of each transmission case 222. 223, a pair of rotary planting arms 224 provided at both ends of each rotary case 223, a plurality of leveling floats 225 for leveling the field of the field, and a seedling platform 226 on which mat-like seedlings for planting are placed.
  • a marker device 233 for forming an index line LN (see FIG. 28) on the field surface of the field is provided.
  • the seedling planting apparatus W configured as described above drives each of the rotating cases 223 by the power transmitted from the transmission case 222 while driving the seedling mounting table 226 to reciprocate horizontally and horizontally.
  • the seedlings are alternately taken out from the lower part of each by the planting arms 224 and planted on the rice field in the field. Therefore, the seedling planting apparatus W is configured in an eight-row planting type in which seedlings are planted by the planting arms 224 provided in the eight rotating cases 223.
  • the marker device 233 is provided on the left and right side portions of the seedling planting device W, touches the field surface of the field, and moves along the traveling line of the traveling vehicle body 300 to the surface corresponding to the next work process. It is configured to be operable to an action posture that forms the LN and a retracted posture that is spaced upward from the field surface of the field.
  • the posture switching of the marker device 233 is performed by an electric motor (not shown).
  • a plurality of (for example, four) normal spare seedlings on which spare seedlings to be supplied to the seedling planting device W can be placed on the left and right sides of the bonnet 212 in the traveling vehicle body 300.
  • a stand 228 and one rail-type spare seedling stand 229 on which a spare seedling for supplying to the seedling planting device W can be placed are provided.
  • the left and right sides of the bonnet 212 in the traveling vehicle body 300 are provided with a pair of left and right spare seedling frames 230 that support the normal spare seedling stands 228 and the rail-type spare seedling stands 229. Are connected by a connecting frame 231.
  • a driving section 240 for performing various driving operations is provided at the center of the traveling vehicle body 300.
  • the driver 240 includes a driver's seat 241 on which a driver can sit, a control tower 242, a steering handle 243 as a manual steering operation tool including a steering wheel for manual steering operation of the front wheel 210, front and rear
  • a main speed change lever 244, an operation lever 245, and the like that can change the forward speed and change the traveling speed are provided.
  • the driver seat 241 is provided at the center of the traveling vehicle body 300.
  • the steering tower 242 is provided with a steering handle 243, a main transmission lever 244, an operation lever 245, and the like that can be operated.
  • a boarding step 246 is provided at the foot portion of the driving unit 240.
  • An auxiliary step 247 is provided at the left and right outer positions of the boarding step 246.
  • the boarding step 246 also extends to the left and right sides of the bonnet 212.
  • the operation lever 245 is provided on the right side below the steering handle 243.
  • the operation lever 245 is configured to be movable in the cross direction from the central neutral position to the ascending position, the descending position, the right marker position, and the left marker position, and is biased to the neutral position. ing.
  • the operating lever 245 When the operating lever 245 is operated to the raised position, transmission to the seedling planting device is cut off, the seedling planting device W is raised, and the left and right marker devices 233 (see FIG. 23) are operated to the retracted posture.
  • the operation lever 245 When the operation lever 245 is operated to the lowered position, the seedling planting device W is lowered, comes into contact with the rice field, and stops.
  • the operating lever 245 is operated to the right marker position in this lowered state, the right marker device 233 changes from the retracted posture to the acting posture.
  • the operation lever 245 When the operation lever 245 is operated to the left marker position, the left marker device 233 changes from the retracted posture to the operating posture.
  • the driver When starting the seedling planting operation, the driver operates the operation lever 245 to lower the seedling planting device W, and transmission to the seedling planting device W is started to start the seedling planting operation.
  • the operation lever 245 When stopping the seedling planting operation, the operation lever 245 is operated to raise the seedling planting device W, and the transmission to the seedling planting device W is interrupted.
  • a display device 248 capable of displaying various information using a liquid crystal display is provided above the control tower 242 of the operation unit 240. Further, a start point setting switch 249A used for automatic steering control described later is provided on the right side of the display device 248, and an end point setting switch 249B is provided on the left side of the display device 248.
  • the grip portion of the main transmission lever 244 is provided with a push-operated automatic steering switch 250.
  • the automatic steering switch 250 is provided in an automatic return type, and instructs the automatic steering control to be switched on / off every time it is pushed.
  • the automatic steering switch 250 is disposed at a position where it can be pressed with, for example, a thumb in a state where the grip portion of the main transmission lever 244 is gripped by hand.
  • the traveling vehicle body 300 is provided with a steering unit U capable of steering the left and right front wheels 210.
  • the steering unit U includes a steering operation shaft 254 that is linked to the steering handle 243, a pitman arm 255 that swings as the steering operation shaft 254 rotates, and a left and right linkage mechanism that is linked to the pitman arm 255.
  • a steering motor 258, a gear mechanism 257 for interlockingly connecting the steering motor 258 to the steering operation shaft 254, and the like are provided.
  • the steering operation shaft 254 is linked to the left and right front wheels 210 via the pitman arm 255 and the left and right linkage mechanisms 256, respectively.
  • a steering angle sensor 260 including a rotary encoder is provided at the lower end of the steering operation shaft 254, and the amount of rotation of the steering operation shaft 254 is detected by the steering angle sensor 260.
  • a torque sensor 261 as manual operation detecting means for detecting torque applied to the steering handle 243 is provided in the middle of the steering operation shaft 254. For example, when the steering handle 243 is manually operated in a direction opposite to the rotation direction when the steering motor 258 is rotated in a predetermined direction, the torque sensor 261 Can be detected.
  • the steering motor 258 When the steering unit U is automatically steered, the steering motor 258 is driven, the steering operation shaft 254 is rotated by the driving force of the steering motor 258, and the steering angle of the front wheel 210 is changed. It is supposed to be. Therefore, the steering motor 258 corresponds to the steering operation means. When automatic steering is not performed, the steering unit U can be rotated by manual operation of the steering handle 243.
  • GNSS Global Navigation Satellite System
  • GPS Global Positioning System
  • a position measuring unit 264 (an example of a satellite positioning unit) having a receiving device 263 with an antenna 262 that receives radio waves transmitted from a plurality of GPS satellites orbiting the earth as position detecting means.
  • the position of the receiving device 263, that is, the position measuring unit 264 can be measured based on the information of the received radio wave that is provided in the object to be measured (the traveling vehicle body 300).
  • the position measuring unit 264 is attached to the connection frame 231 via a plate-like support plate 265 in a state of being positioned at the front portion of the traveling vehicle body 300.
  • the connection frame 231 is turned upside down with respect to the use state S1 in which the position measurement unit 264 is located above the upper end portion of the spare seedling frame 230 and the use state S1, and the reception device 263 is set in the standby state
  • the state can be changed to the storage state S2 located below the upper end of the seedling frame 230.
  • the connecting frame 231 can be rotated around the left and right axis X along the horizontal direction of the machine body via the connecting bracket 232 and can be fixed in each state of the use state S1 and the storage state S2.
  • the left and right spare seedling frames 230 are supported.
  • the receiving device 263 is supported by the connecting frame 231 and the reserve seedling frame 230 at a high place by setting the connecting frame 231 to the use state S1. There is little possibility of radio wave interference in the receiving device 263, and the radio device reception sensitivity of the receiving device 263 can be increased.
  • the traveling vehicle body 300 is provided with an inertial measurement unit 266 having a gyro sensor 266A and the like as azimuth detecting means for detecting the azimuth of the traveling vehicle body 300.
  • the inertial measurement unit 266 is provided, for example, at a lower position on the rear side of the driver's seat 241 and at the lower center of the traveling vehicle body 300 in the lateral width direction.
  • the inertial measurement unit 266 can detect the angular velocity of the turning angle of the traveling vehicle body 300, and can obtain the azimuth change angle of the vehicle body by integrating the angular velocity. Therefore, the direction information of the traveling vehicle body 300 is included in the measurement information measured by the inertial measurement unit 266.
  • the inertial measurement unit 266 can measure the angular velocity of the traveling vehicle body 300 in addition to the angular velocity of the turning angle of the traveling vehicle body 300, the angular velocity of the traveling vehicle body 300, the angular velocity of the traveling vehicle body 300, and the like.
  • the traveling vehicle body 300 is provided with a control device 267 for controlling the steering motor 258.
  • the control device 267 is measured by the route setting unit 268 that sets a target movement route that the traveling vehicle body 300 should travel, the position information of the traveling vehicle body 300 that is measured by the position measurement unit 264, and the inertia measurement unit 266.
  • a steering control unit 269 that controls the steering motor 258 is provided so that the traveling vehicle 300 travels along the target movement path based on the direction information of the traveling vehicle 300.
  • the control device 267 includes a microcomputer, and the route setting unit 268 and the steering control unit 269 are configured by a control program.
  • a setting switch 249 for setting a target movement path used for automatic steering control by teaching processing is provided.
  • the setting switch 249 includes a start point setting switch 249A for setting the start point position and an end point setting switch 249B for setting the end point position.
  • the start point setting switch 249A is provided on the right side of the display device 248, and is the end point.
  • the setting switch 249B is provided on the left side of the display device 248.
  • the control device 267 includes a position measurement unit 264, inertia measurement unit 266, automatic steering switch 250, start point setting switch 249A, end point setting switch 249B, steering angle sensor 260, torque sensor 261, vehicle speed. Information on the sensor 270 and the like is input.
  • the vehicle speed sensor 270 detects the vehicle speed based on the rotational speed of the transmission shaft in the transmission mechanism with respect to the rear wheel 211, for example.
  • the route setting unit 268 sets a teaching route corresponding to the target route to be automatically steered by teaching processing based on the operation of the start point setting switch 249A and the end point setting switch 249B, and at the start of the teaching route when performing actual work.
  • the target movement path LK parallel to the teaching path at that position is set.
  • the steering control unit 269 causes the detected position (own position) NM of the traveling vehicle body 300 detected by the position measurement unit 264 to be a position on the target movement route LK.
  • automatic steering control for operating the steering motor 258 is executed so that the detected direction (own direction) of the traveling vehicle body 300 detected by the inertial measurement unit 266 becomes the target direction in the target movement route LK.
  • the lateral position deviation ⁇ P between the own position NM of the traveling vehicle body 300 and the target movement route LK see FIG. 29.
  • “positional displacement amount ⁇ P” is also referred to.
  • the angle deviation between the own vehicle direction NA and the target direction TD of the traveling vehicle body 300 is obtained, and the steering motor 258 is controlled so that the deviation becomes small.
  • the steering control unit when executing the automatic steering control, when the own machine position NM is shifted laterally from the target movement route LK and the own machine direction NA is the same as the target direction TD Performs a positional deviation correction process in which the target azimuth as a control target is changed to the tilt target azimuth KA tilted toward the target movement path and the steering motor 258 is operated.
  • the steering control unit 269 sets the inclination with respect to the target direction TD of the inclination target direction KA to the larger side, and increases the inclination with respect to the target direction TD of the inclination target direction KA as the vehicle speed increases. It comes to be loose.
  • the inclination angle ⁇ of the inclination target azimuth KA with respect to the target azimuth has an upper limit. Even if the vehicle speed is extremely low or the positional deviation amount ⁇ P is large, the inclination angle ⁇ is a value equal to or less than the set upper limit value. Set to This is because if the inclination angle ⁇ is too large, the traveling vehicle body 300 may turn sharply and the traveling state may become unstable (in the following description, the inclination angle ⁇ is also referred to as “set inclination angle ⁇ ”). .
  • the steering control unit 269 decreases the change operation speed when the steering motor 258 changes the traveling direction as the vehicle speed increases when the position deviation correction process is executed. Therefore, if the vehicle speed is low, the change operation speed is set higher, and the change operation speed is decreased as the vehicle speed increases.
  • the rice transplanter travels straight along the target movement path LK while performing the seedling planting operation in the paddy field, and the next time parallel to the target movement path LK at the end position of the target movement path LK.
  • the vehicle travels by alternately repeating the turning traveling that turns toward the target movement route LK.
  • the steering control unit 269 executes automatic steering control during straight traveling in which seedling planting work is performed, and does not execute automatic steering control for traveling other than straight traveling. .
  • the traveling vehicle body 300 is positioned at the starting point position R1 at the end of the field, and the starting point setting switch 249A is operated.
  • the control device 267 is set to the automatic cut mode.
  • the traveling vehicle body 300 travels straight from the starting point position R1 along the linear shape on the side of the side portion in a non-working state, and moves to the end point position R2 near the opposite side on the opposite side.
  • the end point setting switch 249B is operated. Thereby, teaching processing is executed.
  • a teaching path that connects the start point position R1 and the end point position R2 is set from the position information acquired by the receiver 263 at the start point position R1 and the position information acquired by the receiver 263 at the end point position R2.
  • a direction along the teaching path is set as a reference target orientation TD (hereinafter also referred to as teaching orientation TD).
  • the driver manually operates the steering handle 243 to turn the traveling vehicle body 300.
  • the control device 267 can determine that the traveling vehicle body 300 has been turned by reversing the vehicle direction NA.
  • the predetermined determination condition is that a predetermined time has elapsed after the turning of the traveling vehicle body 300 is completed, and that the deviation angle between the own vehicle direction NA and the teaching direction TD is within a predetermined range.
  • the control check state is set, the automatic steering control is not started even if the automatic steering switch 250 is operated. At that time, the driver manually operates the steering handle to align the traveling vehicle body 300 so that the index line LN formed on the surface coincides with the line of sight of the tip of the center mascot 214. be able to.
  • the position measurement unit 264 obtains information on the own machine position NM, and the inertial measurement unit 266 obtains the own machine direction NA.
  • the own machine position NM serving as a reference for data processing is set not in the actual installation position of the position measurement unit 264 but in the vicinity of the inertial measurement unit 266.
  • steering control is performed by operating the steering motor 258 so that the current own machine position NM and own machine direction NA coincide with the target movement path LK and the teaching direction TD.
  • the traveling vehicle body 300 travels accurately along the target movement route LK.
  • the driver has released his hand from the steering handle 243. However, the vehicle speed is adjusted manually.
  • the steering control unit 269 When the steering control unit 269 is traveling straight ahead while executing automatic steering control, as shown in FIG. 29, the detected position of the own aircraft is shifted laterally from the target movement path, and the detection is performed.
  • the steering control unit 269 changes the target azimuth from the teaching azimuth TD to the inclined target azimuth KA tilted by the set inclination angle ⁇ toward the target moving path, and the steering motor 258.
  • a misalignment correction process is performed to operate.
  • the target azimuth for the automatic steering control is not the teaching azimuth TD, but the inclination inclined by the set inclination angle ⁇ from the teaching azimuth TD toward the target moving path.
  • Automatic steering control is executed by changing to the target orientation KA. Therefore, when the position deviation correction process is being executed, the position deviation ⁇ P can be quickly reduced because the vehicle travels in an oblique direction with a small azimuth deviation.
  • the set inclination angle ⁇ is set to the larger side as the position of the own machine NM is farther from the position corresponding to the target movement path LK, and the closer the own position NM is to the position corresponding to the target movement path LK, Decrease the set inclination angle ⁇ . Further, when the vehicle speed is low, the set inclination angle ⁇ is set to the larger side, and the set inclination angle is made gentler as the vehicle speed is higher. However, an upper limit value is set for the set tilt angle ⁇ , and the set tilt angle ⁇ does not exceed the set upper limit value no matter how the vehicle speed is low or the positional deviation is large.
  • the portion corresponding to the target movement route LK described above has a region having a predetermined width in the lateral direction on both the left and right sides of the position corresponding to the target movement route LK. That is, the control dead zone for the position deviation is set, and when the position deviation is not zero but falls within the dead zone, the positional deviation correction process ends. That is, the target azimuth is set not in the tilt target azimuth but in the direction along the original teaching azimuth TD.
  • the magnitude of the inclination with respect to the target azimuth of the inclination target azimuth KA varies depending on the magnitude of the positional deviation amount ⁇ P of the traveling vehicle body 300 and the magnitude of the vehicle speed.
  • the correlation between ⁇ P and vehicle speed can be obtained in advance by experiment and set as map data, or can be determined by an arithmetic expression or the like. If the vehicle speed is constant, the set inclination angle ⁇ decreases as the positional deviation amount ⁇ P decreases, in other words, as the own vehicle position NM of the traveling vehicle body 300 approaches a location corresponding to the target movement route LK.
  • the steering control unit 269 sets the set inclination angle ⁇ to be larger than that in the state where the traveling vehicle body 300 is displaced toward the unworked area Z2.
  • the misalignment correction process is executed by setting the set inclination angle ⁇ to be inclined from the teaching direction TD to be larger. That is, since the seedling has already been planted in the already-worked area Z1, the position is promptly corrected toward the target movement route LK so that the traveling vehicle body 300 does not step on the already-planted seedling.
  • the steering control unit 269 detects that the driver has manually operated the steering handle 243 against the operation of the steering motor 258 during the automatic steering control. In other words, when a change command is issued by the steering handle 243, the operation force when operating the steering motor 258 in the automatic steering control is allowed to the extent that the manual operation is permitted. Reduce.
  • the automatic steering control is stopped and the automatic switching mode is switched. Yes.
  • a set time for example, tens of seconds to several tens of seconds
  • the return to the automatic entry mode can be performed by pressing the automatic steering switch.
  • the driver When the traveling vehicle body 300 reaches the terminal position R4 (see FIG. 28) of the straight traveling route, the driver operates the automatic steering switch 250 to switch the steering control unit 269 to the automatic cutting mode. At this time, the operation lever 245 is operated, the transmission to the seedling planting device W is interrupted, and the seedling planting device W is raised. Thereafter, the driver manually operates the steering handle 243 to turn the traveling vehicle body 300 toward the next straight traveling route. Thereafter, as in the previous straight traveling route, when the automatic steering switch 250 is operated after the determination condition is satisfied after the turn, the automatic steering control is started. The traveling vehicle body 300 travels straight while executing automatic steering control. Then, the above-described turning traveling and straight traveling are repeated.
  • the steering control unit 269 executes assist control for operating the steering motor 258 so as to be in a traveling state corresponding to a change command by the steering handle 243 when the automatic cut mode is set.
  • assist control when the steering control unit 269 detects that the steering handle 243 is operated based on the detection information of the torque sensor 261 and the steering angle sensor 260 and the operation direction thereof, The steering motor 258 is operated in the same direction. When the manual operation is stopped, the operation of the steering motor 258 is also stopped.
  • the tilt target azimuth may be maintained as it is until the position (detected position) NM of the aircraft reaches a position corresponding to the target movement route LK. Good.
  • the part corresponding to the target movement route LK has a predetermined width region (dead zone) in the lateral direction on both the left and right sides of the position corresponding to the target movement route. That is, when the own position (detected position) NM reaches the end of the dead zone set with respect to the position corresponding to the target movement path, the position deviation correction process is terminated. As a result, there is little control delay, and the azimuth of the vehicle body can be corrected to the azimuth along the target movement path.
  • the steering control unit 269 allows the manual operation when the change command by the steering handle 243 is instructed while the automatic steering control is being executed.
  • the automatic steering control the operating force when operating the steering motor 258 is reduced.
  • the following configuration may be used.
  • the steering control unit 269 immediately stops the automatic steering control when a change command is issued by the steering handle 243 while executing the automatic steering control.
  • the steering operation shaft 254 is rotated by applying an assisting force corresponding to the operation of the steering handle 243 by the steering motor 258 to the operating force for the operator to operate the steering handle 243, and the steering angle of the front wheel 210 is Assist control may be executed to change.
  • the steering control unit moves the traveling vehicle body to the unworked region Z2 side when the misalignment correction process is executed in a state where the traveling vehicle body is displaced to the already-worked region Z1 side.
  • the set inclination angle ⁇ is set to a larger value than that in the case where the position is shifted.
  • the following configuration may be used instead of this configuration.
  • the set inclination angle ⁇ may be set to a large value as compared with the state in which it is present. This configuration can be suitably used as long as it is a work vehicle that performs an operation such as harvesting a crop planted with traveling, such as a combine.
  • the determination condition for allowing the positional deviation correction process is that a certain time has elapsed after the turning of the traveling vehicle body 300 has ended, and although the deviation angle between the own machine direction NA and the teaching direction TD is within a predetermined range, instead of this configuration, the determination condition may be as follows.
  • the present invention is not limited to this, and any device that can determine that the direction of the vehicle body is stable may be used.
  • the thing provided with the seedling planting apparatus W is illustrated as a working device, it is not restricted to this.
  • a fertilizer application device, a chemical spraying device, or the like may be provided as a working device.
  • the GPS is used as the satellite positioning unit as the position detecting means, but other types of satellite positioning units such as Galileo may be used. Further, instead of the satellite positioning unit, for example, another measurement system including an optical measurement device that projects a laser beam on the ground side and measures the position of the vehicle body may be used.
  • the present invention is, for example, a riding type direct seeding machine that is a planting-type paddy field work vehicle provided with a seeding device as a working device.
  • the present invention can be used for various work vehicles such as a tractor provided with a plow as a device, a farm vehicle such as a combine provided with a cutting unit as a work device, or a construction work vehicle provided with a bucket as a work device.
  • a riding type rice transplanter (an example of an agricultural work machine or an agricultural work vehicle) that is a planting paddy field work vehicle of an agricultural work machine or an agricultural work vehicle includes a traveling machine body having a traveling device A. C and a working device that performs work on the field.
  • the working device of the rice transplanter is a seedling planting device W that can plant seedlings in a field.
  • the arrow Hf is “front” of the traveling machine body C
  • the arrow Hb is “rear” of the traveling machine body C
  • the arrow Hl is “left” of the traveling machine body C
  • the arrow Hr is “right” of the traveling machine body C. is there.
  • the rice transplanter is equipped with a positioning system composed of GNSS (Global Navigation Satellite Systems) and IMU (Inertial Measurement Unit), and as shown in FIG.
  • the position information of the start point and the end point is acquired and stored by the positioning system, and the set travel line SL parallel to the reference travel line KL can be set.
  • the traveling machine body C is configured to perform automatic travel (corresponding to automatic travel by automatic steering) along the set travel line SL. It is also possible to switch to manual travel (equivalent to manual travel by manual steering) in which the driver operates by operating the steering handle 343.
  • manual traveling is first performed, teaching is completed, and then manual operation is performed up to the planting start position.
  • An example is a method in which planting travel is performed by generating a set travel line SL by switching to automatic travel in a state where the vehicle is turned by travel.
  • the planting is temporarily stopped, the automatic travel is switched to the manual steering, the turn is performed, and the next set travel line SL is generated again and the planting automatic travel is performed again. The cycle of transition is repeated.
  • the rice transplanter has a function of displacing the position of the set travel line SL in parallel as shown in FIG. 39 when performing automatic travel along the set travel line SL. It also has.
  • This function changes the driving course G according to the boundary of the driver when the boundary of the planting completion area E adjacent to the driving position shows a displacement shape as shown in the figure. It is possible to prevent the planting areas from overlapping or discontinuous.
  • the traveling device A is provided with a pair of left and right front wheels 310 and a pair of left and right rear wheels 311.
  • the traveling machine body C is provided with a steering unit U capable of steering the left and right front wheels 310 in the traveling device A.
  • An openable bonnet 312 is provided at the front of the traveling machine body C.
  • An engine 313 is provided in the bonnet 312.
  • a rod-shaped center mascot 314 is provided at the tip of the bonnet 312.
  • the center mascot 314 is used as a reference for checking the position of the traveling machine body C with respect to an index line drawn on the field surface of the field by a marker device 333 described later. If the index line is located on an extension of the line of sight when the vehicle is viewed, it can be determined that the position of the traveling machine body C is correct.
  • the position check of the traveling machine body C using the center mascot 314 can be performed not only during automatic traveling but also during manual traveling.
  • the traveling machine body C is provided with a frame-shaped machine body frame 315 extending along the front-rear direction.
  • a support column frame 316 is erected on the front portion of the body frame 315.
  • the seedling planting device W is connected to the rear end of the traveling machine body C so as to be movable up and down via a link mechanism 321 that moves up and down by an expansion and contraction operation of a lifting cylinder 320 constituted by a hydraulic cylinder. Yes.
  • the seedling planting device W includes four transmission cases 322, a rotation case 323 rotatably supported on the left side and the right side of the rear part of each transmission case 322, and each rotation.
  • a pair of rotary planting arms 324 provided at both ends of the case 323, a plurality of leveling floats 325 for leveling the field of the field, a seedling platform 326 on which mat-like seedlings for planting are placed, and the like are provided. ing.
  • the seedling planting device W is configured in an eight-row planting type, but may be a multiple-row planting type other than eight.
  • the seedling planting apparatus W configured as described above rotates and rotates each rotary case 323 with power transmitted from the transmission case 322 while driving the seedling stage 326 to reciprocate laterally to the left and right.
  • the seedlings are alternately taken out from the lower part of each by the planting arms 324 and planted on the rice field in the field.
  • a plurality of spare seedling stands 328 on which spare seedlings to be supplied to the seedling planting device W can be placed are provided on the left and right sides of the bonnet 312 in the traveling machine body C. Yes. Further, on the left and right sides of the bonnet 312 in the traveling machine body C, a pair of left and right spare seedling frames 330 that support the respective spare seedling stands 328, and a connection frame 331 that is connected to the upper part of the left and right spare seedling frames 330, , Is provided.
  • the connection frame 331 has a U-shape when viewed from the front. The left and right end portions of the connection frame 331 are connected to the upper portions of the left and right spare seedling frames 330 via connection brackets 332, respectively.
  • a marker device 333 for forming an index line on the field surface of the farm field is provided on the left and right sides of the seedling planting device W, respectively.
  • the left and right marker devices 333 each have a marker arm 334 supported by the seedling planting device W so as to be swingable up and down, and a plurality of protrusions in the circumferential direction supported at the tip of the marker arm 334 so as to be freely rotatable.
  • a rotating body 335 having a body.
  • a marker electric motor (not shown) is provided for operating the left and right marker devices 333 to the working posture and the retracted posture. By operating the marker device 333 to the acting posture, the rotator 335 can be in contact with the paddy field to record a locus, and the locus becomes an index line.
  • a driving unit 340 for performing various driving operations is provided at the center of the traveling machine body C.
  • the driving unit 340 includes a driver's seat 341 on which a driver can be seated, a control tower 342, a steering handle 343 including a steering wheel for manual steering operation of the front wheels 310, a forward / reverse switching operation and a traveling speed.
  • a main transmission lever 344 (corresponding to a transmission operation tool) that can be changed, an operation lever 345 for operating the seedling planting device W, and the like.
  • a boarding step 346 is provided at the foot portion of the driving unit 340.
  • An auxiliary step 347 is provided at the left and right outer positions of the boarding step 346.
  • a boarding / alighting step 348 is provided as a boarding / alighting passage that continues to the boarding step 346 without a step.
  • the left and right spare seedling frames 330 are respectively arranged on the lateral sides of the getting-on / off step 348.
  • the control tower 342 includes a steering handle 343, a main transmission lever 344, an operation lever 345, a meter panel 349, and the like.
  • the main speed change lever 344 shown in FIGS. 33, 34, and 37 is provided on the left side of the steering handle 343. It is configured to be swingable in the front-rear direction, and a forward shift operation can be performed by swinging forward from the neutral position, and a reverse shift operation can be performed by swinging backward from the neutral position.
  • the grip 344A provided at the upper end of the main transmission lever 344 has a push operation type automatic steering switch 350 (an example of a switching switch) that performs switching operation of automatic steering of the steering unit U (see FIG. 5). 37).
  • the automatic steering switch 350 is arranged at a position where the left hand can hold the grip 344A, for example, with the thumb of the left hand, and each time the manual steering switch and the automatic steering are pressed, the automatic steering switch 350 is alternately arranged. It is comprised so that it may switch.
  • the operation direction of the automatic steering switch 350 is set along the left-right direction of the traveling machine body C and is different from the operation direction (front-rear direction) of the main transmission lever 344, thereby preventing erroneous operation. Furthermore, since the automatic steering switch 350 can be operated while holding the grip portion 344A, there is no need to carry it around, and the efficiency of the steering switching operation can be improved.
  • a meter panel 349 is disposed in front of the steering handle 343 at the rear end position of the bonnet 312.
  • the meter panel 349 includes a liquid crystal display unit 349A having a backlight at the center in the left and right directions.
  • a pair of instruction buttons 352 (corresponding to instruction switches) for setting the start point and the end point of the reference travel line KL are provided on both the left and right sides of the liquid crystal display unit 349A.
  • a plurality of display lamps are provided around the liquid crystal display unit 349A so that work information can be displayed.
  • the liquid crystal display unit 349A includes “sensor warming up”, “necessity of resetting IMU”, “GPS signal” ”Receiving status”, “Manual steering during automatic driving”, “Detection status of heel end point”, “Grounding status of seedling planting device”, etc., “Response method” etc. for those notification contents are displayed .
  • an oil-out lamp, a charge lamp, a seedling-out lamp, a planting display lamp, a hot spring clutch lamp, a marker lamp, and the like are provided as a plurality of display lamps.
  • the instruction button 352 is pressed during manual driving for teaching (when the automatic steering switch 350 is switched to manual steering) and the reference travel is performed based on the position information of the traveling machine body C at that time.
  • the start point and end point of the line KL can be set.
  • the right instruction button 352A on the right side is configured to indicate the start point of the reference travel line KL
  • the left instruction button 352B on the left side is the end point of the reference travel line KL. Is configured to direct.
  • the instruction button 352 is used not only as a setting operation unit for the reference travel line KL, but also as a displacement switch 359 for displacing the set travel line SL in parallel during automatic travel.
  • the right instruction button 352A functions as the right displacement switch 359A that displaces the set travel line SL to the right with respect to the forward direction.
  • the left instruction button 352B functions as a left displacement switch 359B that displaces the set travel line SL to the left with respect to the forward direction.
  • the parallel displacement of the set travel line SL is controlled by a line displacement unit 382, which will be described later. (See FIG. 39).
  • the parallel displacement control of the set travel line SL is performed according to the flowchart shown in FIG.
  • the steering unit U includes the steering handle 343, the steering operation shaft 354 linked to the steering handle 343, and a pitman arm that swings as the steering operation shaft 354 rotates. 355, left and right linking mechanisms 356 linked to the pitman arm 355, a steering motor 358, a gear mechanism 357 linking the steering motor 358 to the steering operation shaft 354, and the like.
  • the steering operation shaft 354 is linked to the left and right front wheels 310 via the pitman arm 355 and the left and right linkage mechanism 356, respectively.
  • the amount of rotation of the steering operation shaft 354 is detected by a steering angle sensor 360 (see FIG. 36) formed of a rotary encoder provided at the lower end portion of the steering operation shaft 354.
  • the traveling machine body C can detect the receiving device 363 that acquires position information by the satellite positioning system, and the inclination (pitch angle, roll angle) of the traveling machine body C.
  • a measurement unit 361 having a sub inertia measurement device 364 and a main inertia measurement device 362 (corresponding to “inertia measurement device”) for measuring inertia information are provided.
  • the main inertia measuring device 362 and the sub inertia measuring device 364 are each configured by an IMU (Inertial Measurement Unit).
  • the measuring unit 361 and the main inertia measuring device 362 are arranged at different locations on the traveling machine body C and on the left and right center line CL of the traveling machine body C.
  • GNSS Global Navigation Satellite System
  • GPS Global Positioning System
  • the position of the receiving device 363 is determined by using a receiving device 363 provided in a plurality of GPS satellites orbiting over the earth, a control station that tracks and controls the GPS satellite, and a target (running vehicle body C) that performs positioning. Is to measure.
  • the receiving device 363 is used for acquiring position information of the traveling machine body C by the satellite positioning system.
  • the measuring unit 361 is attached to the connection frame 331 via a plate-like support plate 365.
  • the main inertia measuring device 362 is arranged at a location near the center in the front-rear direction in the total length in the front-rear direction of the traveling machine body C and the seedling planting device W.
  • the traveling machine body C is provided with a control device 375 for controlling the automatic steering of the steering unit U.
  • the control device 375 includes an information storage unit 376 (corresponding to a recording unit), a teaching storage unit 377, a turning detection unit 78, a start determination unit 79, an information correction unit 380, and a set travel that causes the traveling machine body C to travel.
  • the traveling machine body C Based on the start point setting unit 381 that generates the line SL, the line displacement unit 382 that sets the set travel line SL in parallel, the state detection unit 383, the position information, and the inertia information, the traveling machine body C performs the set travel.
  • a control unit 384 that controls the steering unit U so as to travel along the line SL.
  • the control device 375 includes a receiving device 363, a sub inertia measurement device 364, a gyro sensor 370 provided in the main inertia measurement device 362, an acceleration sensor 371, a steering angle sensor 360, an automatic steering switch 350, and an instruction button 352. Information of the displacement switch 359 and the like is input.
  • the information storage unit 376 is configured to store the position information acquired from the receiving device 363 for each time.
  • the teaching storage unit 377 calculates the reference travel line KL using the position information of the start point K1 and the end point K2 among the position information stored in the information storage unit 376. It is configured.
  • the turning detection unit 378 detects the turning start of the traveling machine body C and the turning end of the traveling machine body C based on the steering angle information of the steering operation shaft 354 of the steering unit U input from the steering angle sensor 360. Is configured to do.
  • the start determination unit 379 is configured to determine whether or not to start the automatic steering control of the traveling machine body C.
  • the information correction unit 380 obtains an integration error of information detected by the gyro sensor 370 among the inertia information measured by the main inertia measuring device 362 every time the automatic steering control of the traveling machine body C is started. Correction processing is performed on the basis of the positional information and the information measured by the sub inertia measuring device 364.
  • the start point setting unit 381 is configured to generate the set travel line SL based on the reference travel line KL, the own vehicle position at the start of the automatic steering control of the traveling machine body C, and the own aircraft orientation. .
  • the line displacement unit 382 is configured to set the displacement of the set travel line SL in parallel to the right (or left) by a predetermined amount b by operating the right displacement switch 359A (or left displacement switch 359B).
  • the state detection unit 383 detects the distance deviation (deviation distance) between the own machine position of the traveling machine body C and the set traveling line SL, the own machine direction of the traveling machine body C and the set traveling line. An angle deviation (deviation angle) from the SL is detected.
  • the control unit 384 is configured to control driving of the steering motor 358 of the steering unit U based on information input from the state detection unit 383.
  • the position information of the traveling machine body C at that time is acquired by the positioning system and stored in the information storage unit 376 as the position information of the end point K2 of the reference travel line KL. To be recorded.
  • the teaching storage unit 377 sets the reference travel line KL as a straight line connecting the start point K1 and the end point K2.
  • the steering handle 343 is turned to change the direction of the traveling machine body C, and manual travel is performed to the start position of the adjacent set travel line SL.
  • the traveling machine body C can be aligned to a predetermined position by using the index line drawn on the surface by the marker device 333 and the center mascot 314 described above while traveling on the reference traveling line KL.
  • [4] Cancel the automatic travel on the set travel line SL.
  • the automatic travel switch 350 is pressed to cancel the automatic travel.
  • the steering handle 343 is turned to change the direction of the traveling machine body C, and the manual steering is performed up to the start position of the next adjacent set traveling line SL.
  • the planting operation of the set travel line SL by automatic travel and the direction change by manual travel are repeated alternately.
  • the displacement can be set in parallel by a predetermined amount b by pressing the displacement switch 359 on the side to be displaced. it can.
  • the automatic steering switch (an example of a changeover switch) 50 is used to set the point as the start point S0 of the set travel line SL by simply performing a switching operation from manual travel to automatic travel. Therefore, the driver can freely set the set travel line SL at a preferred position while looking at the state of the field. Therefore, various operations on the traveling machine body C can be performed efficiently, and the burden on the driver can be reduced.
  • the set travel line SL can be easily displaced in parallel only by operating the displacement switch 359 during the automatic travel of the set travel line SL once set. Can be implemented. Further, since the displacement switch 359 has the same switch arrangement and displacement operation direction, it is possible to prevent an erroneous operation and to obtain a good handling property.
  • the agricultural machine is not limited to the rice transplanter of the type described in the previous embodiment, and may be another type of rice transplanter or an agricultural machine other than the rice transplanter. Collectively called agricultural machines.
  • the changeover switch (automatic steering switch 350) is not limited to the automatic steering switch having the structure described in the previous embodiment.
  • a swing operation type or a rotation operation type It may be provided with the structure. Therefore, the operation direction of the changeover switch (automatic steering switch 350) is not limited to that along the left-right direction of the traveling machine body C.
  • the installation location of the changeover switch may be provided at a location other than the speed change operation tool, or may be shared with other function switches. These are collectively referred to as a “switch”.
  • the instruction switch is not limited to the instruction button 352 described in the previous embodiment.
  • the switch structure includes a swing operation type or a rotation operation type structure instead of the pressing operation type. It may be a thing.
  • the right instruction button 352A and the left instruction button 352B are not limited to be arranged in correspondence with the left and right directions of the traveling machine body C, and may be arranged side by side in the front-rear direction or at completely different positions, for example. May be.
  • the instruction switch may be used as a switch different from the displacement switch 359 or may be configured as a single switch. These are collectively referred to as “instruction switches”.
  • the displacement switch 359 is not limited to the displacement switch described in the previous embodiment.
  • the switch structure includes a swing operation type or a rotation operation type structure instead of the pressing operation type. It may be a thing.
  • the displacement switch 359 may be used as a switch different from the instruction switch, or may be configured as a single switch. Further, the displacement switch 359 is not limited to providing two switches, and for example, a single switch may be configured to indicate the displacement direction of the set travel line SL. These are collectively referred to as a displacement switch 359.
  • the control device 375 may include an operation canceling unit 385 that prevents the operation of the displacement switch 359 from being reflected in the displacement control.
  • Examples of the mode in which the operation canceling unit 385 cancels the operation of the displacement switch 359 include the following.
  • the initial predetermined number of operations are not reflected in the displacement control of the set travel line SL.
  • the operation for a predetermined number of times for example, four times
  • the displacement of the set travel line SL becomes the predetermined amount b for one time, and an excessive parallel displacement can be prevented.
  • the operation of the displacement switch 359 is not reflected in the displacement control of the set travel line SL until a set time elapses from the operation of the displacement switch 359.
  • the set time is set to 5 seconds
  • the displacement of the set travel line SL is equivalent to one time, regardless of how many times the first time the displacement switch 359 is operated for 5 seconds. It becomes the predetermined amount b, and an excessive parallel displacement can be prevented.
  • the traveling machine body C when the displacement switch 359 is operated, until the traveling machine body C reaches the error region of the predetermined width SB set around the set travel line SL after the displacement, The operation of the displacement switch 359 is not reflected in the displacement control of the set travel line SL.
  • the position information of the traveling machine body C acquired by the positioning system is the plane position information of the measuring unit 361, and the starting point K1 and the ending point K2 of the reference traveling line KL set based on the upper side, and
  • the starting point S0 of the set travel line SL is not necessarily set as a planar position of the measurement unit 361 in the traveling machine body C.
  • the present invention is, for example, a riding type direct seeding machine that is a planting-type paddy field work vehicle provided with a seeding device as a working device.
  • the present invention can be used for a tractor provided with a plow as an apparatus, or an agricultural working machine such as a combine provided with a cutting unit as a working apparatus.
  • FIG. 43 Before describing a specific embodiment of a field work vehicle according to the present invention, the basic principle of vehicle control employed in the field work vehicle will be described with reference to FIG.
  • a rice transplanter, a seeder, a tractor, and a combiner are assumed as the farm work vehicle.
  • the rice transplanter includes a planting device
  • the seeder includes a seeding device
  • the tractor includes a tilling device
  • the combine includes a cutting device.
  • These field work apparatuses are connected to each traveling machine body so as to be movable up and down between a work position and a non-work position.
  • this farm field working vehicle sandwiches a field bordered by parallel upper and lower ridges with a 180-degree turn change traveling (U-turn traveling). It travels while repeating the reciprocating linear travel.
  • An upper side area is set near the upper side, and a lower side area is set near the lower side.
  • the vehicle performs a direction change travel in the border area, and performs a linear work travel in the other field areas.
  • the vehicle is equipped with a positioning unit that outputs positioning data indicating the vehicle position. Furthermore, not only an artificial steering unit that steers the traveling machine body based on an artificial operation but also an automatic steering unit that automatically steers the traveling machine body.
  • the positioning data output from the positioning unit is based on the position of the antenna.
  • the position of the vehicle is not the position of the antenna, but an appropriate position of the vehicle, for example, the ground action point of the field work device. Correction processing is performed so that
  • the field work device When the direction change travel in the shore area is completed, the field work device is lowered again to the work position at the point A2, and the straight work travel (return path) is started. This descent of the field work device is also recorded as the vehicle behavior indicating the work start together with the positioning data indicating the position of the point A2.
  • the position of the point A2 can be estimated from the position of the point B1 in consideration of the reciprocal work travel interval corresponding to the work width (planting width and tillage width). Therefore, if the vehicle approaches the estimated point A2 during the direction change driving in the coasting region, the driver is notified that the vehicle is approaching the work position. Can be encouraged. It is also possible to automatically lower the field work device to the work position when the vehicle reaches the estimated point A2. The position where the vehicle starts the linear work travel (return path) again is set as the final point A2.
  • the point B2 which is the end point of this linear work travel (return), that is, the point where the vehicle reaches the shore area again can be estimated from the position of the point A1. Therefore, when the vehicle approaches the point B2, it is possible to notify the driver that the field work device is raised to the non-working position and preparation for the direction change traveling is performed before reaching the border area. It is also possible to automatically raise the field working device to the non-working position when the vehicle reaches the estimated point B2. When the vehicle reaches the coasting area, the vehicle automatically or artificially shifts to a turning direction in the coasting area. When the direction change travel ends, a straight work travel (return path) starts again from the point A3.
  • the work travel and the direction change travel are repeated while passing through the points B3, A4, B4, A5.
  • the point A1 is set, the point B2, the point A3,... Can be estimated from the point A1 in consideration of the reciprocal work travel interval.
  • the point A3 is estimated, it can be estimated from the point A1, but since the point B2 as the position where the actual traveling from the work traveling to the direction changing traveling is actually detected, the point B2 from the point B2 is detected. It is also possible to estimate A3.
  • the actual ridge area does not extend linearly but extends obliquely or stepwise, it is possible to estimate such a ridge area by estimating from a newly set point in the middle. Boundary points can be detected correctly.
  • the points A1, A2,..., Which are the starting points of work travel can be automatically set based on specific vehicle behavior. Suitable examples of such specific vehicle behavior include, for example, a work start command for the field work device, detection of a position change of the field work device to the work position, detection of the power transmission clutch for the field work device being engaged, and the like. is there. Furthermore, you may utilize the state of the operating tool operated by the driver
  • Appropriate examples of such specific vehicle behavior include, for example, a work stop command for the field work device, detection of a shift of the field work device to a non-working position, detection of disconnection of a power transmission clutch for the field work device, and the like. . Furthermore, you may utilize the state of the operating tool operated by the driver
  • the first work travel route defined by the points A1 and B1 is a reference work travel route
  • a target work route for subsequent automatic steering can be calculated based on the reference work travel route. Since the work travel is generally a straight travel, it is easier to steer than the direction change travel, so it is controllable that the work travel is performed by automatic steering and the direction change travel is performed by human steering. Convenient.
  • the field shape is a simple rectangle
  • the transition timing between the subsequent work travel and the direction change travel that is, the arrival timing to the coast area and the distance from the coast area The departure timing can be estimated from the points A1 and B1.
  • the point A1 and the point B1 are set in the first work travel, and the points between the subsequent work travel and the direction change travel (the arrival point to the coasting area of the vehicle and the departure point from the coasting area) ), A2, A3..., B2, B3... Were estimated from the points A1 and B1.
  • the vehicle has a field map storage unit that stores the map data of the field, map matching using the vehicle position and the map data allows the vehicle to reach the border area or from the border area. Since it can be detected that the vehicle has left, it is not necessary to set such points A1 and B1 and to estimate from other points A1 and B1.
  • FIG. 45 is a side view of a riding type rice transplanter as an example of a farm work vehicle
  • FIG. 46 is a plan view.
  • the rice transplanter includes a traveling machine body C and a field work device that performs work on the field.
  • the field work device here is a seedling planting apparatus W capable of planting seedlings in the field.
  • the arrow F is “front” of the traveling machine body C
  • the arrow B is “rear” of the traveling machine body C
  • the arrow L is “left” of the traveling machine body C
  • the arrow R is “right” of the traveling machine body C. is there.
  • the traveling device includes a pair of left and right front wheels 410 and a pair of left and right rear wheels 411.
  • the traveling machine body C includes a steering unit U1 that can steer the left and right front wheels 410 in the traveling device.
  • an opening-and-closing bonnet 412 is provided at the front of the traveling machine body C.
  • An engine 413 is provided in the bonnet 412.
  • the traveling machine body C is provided with a frame-shaped machine body frame 415 extending along the front-rear direction.
  • a support column frame 416 is erected on the front portion of the body frame 415.
  • the seedling planting device W is connected to the rear end of the traveling machine body C so as to be lifted and lowered via a link mechanism 421 that is lifted and lowered by a telescopic action of a lifting cylinder 420 constituted by a hydraulic cylinder.
  • the seedling planting device W includes four transmission cases 422, a rotation case 423 rotatably supported on the left and right sides of the rear portion of each transmission case 422, and a pair provided at both ends of each rotation case 423.
  • the left and right sides of the bonnet 412 in the traveling machine body C are replenished to a plurality of (for example, four) normal spare seedling stands 428 and a seedling planting device W on which spare seedlings to be replenished to the seedling planting device W can be placed.
  • One rail-type spare seedling table 429 on which a spare seedling for carrying out can be placed is provided.
  • a pair of left and right spare seedling frames 430 that support the respective normal spare seedling stands 428 and rail-type spare seedling stands 429, and upper portions of the left and right spare seedling frames 430 are provided.
  • a connecting frame 431 connected over the connecting frame 431.
  • the connection frame 431 has a U-shape when viewed from the front.
  • the left and right end portions of the connection frame 431 are connected to the upper portions of the left and right spare seedling frames 430 via connection brackets 432, respectively.
  • a driving unit 440 for performing various driving operations is provided.
  • the driver 440 includes a driver seat 441 on which a driver can sit, a control tower 442, a steering handle 443 including a steering wheel for manual steering operation of the front wheels 410, a forward / reverse switching operation and a traveling speed.
  • a main transmission lever 444, an operation lever 445, and the like that can be changed are provided.
  • the driver seat 441 is provided at the center of the traveling machine body C.
  • a steering handle 443 and a main transmission lever 444 are provided on the control tower 442 so as to be freely operated.
  • a boarding step 446 is provided at the foot portion of the driving unit 440.
  • An operation lever 445 is provided on the right side below the steering handle 443.
  • a planting clutch (not shown), which is a kind of work clutch, is operated in a disconnected state, and the seedling planting device W is raised.
  • the planting clutch (not shown) is operated in a disconnected state, and the seedling planting device W is lowered.
  • the center float 425 contacts the field surface of the farm field, the seedling planting device W contacts the field surface of the field and stops.
  • the steering unit U1 includes the steering handle 443, the steering operation shaft 454 linked to the steering handle 443, and the pitman arm 455 that swings as the steering operation shaft 454 rotates.
  • a left and right linkage mechanism 456 linked to the pitman arm 455, a steering motor 458, a gear mechanism 457 linked to the steering motor 458 on the steering operation shaft 454, and the like are provided.
  • the steering unit U1 can operate in an automatic steering mode and an artificial steering mode.
  • the steering operation shaft 454 is rotated by applying an assisting force according to the operation of the steering handle 443 by the steering motor 458 to the operating force for the driver to operate the steering handle 443, and the front wheels The steering angle of 410 is changed.
  • the steering motor 458 is automatically controlled, the steering operation shaft 454 is rotated by the driving force of the steering motor 458, and the steering angle of the front wheel 410 is changed.
  • the steering handle 443 and the steering motor 458 function as components of an artificial steering unit that artificially steers the traveling machine body C.
  • an automatic steering control function for automatically steering the traveling machine body C is constructed in a control device 408 (see FIG. 48) described later, and the steering motor 458 is driven based on a control command from the control device 408.
  • the operation displacement of the steering handle 443 is not directly transmitted to the steering operation shaft 454, but the operation displacement of the steering handle 443 is detected by a sensor, and the steering motor 458 is driven based on the detected value.
  • a control function for artificial steering is also built in the control device 408.
  • the traveling machine body C is provided with a positioning unit 461, and the position of the traveling machine body C is obtained from the positioning data from the positioning unit 461.
  • the positioning unit 461 includes a satellite navigation module configured as a GNSS module, and an inertial navigation module configured as a module incorporating a gyro acceleration sensor and a magnetic bearing sensor.
  • a satellite antenna for receiving GPS signals and GNSS signals is connected to the satellite navigation module. At least the satellite antenna is attached to a location where radio wave reception sensitivity is good, in this embodiment, to the connection frame 431.
  • the satellite navigation module and the inertial navigation module may be provided at different locations.
  • FIG. 48 shows a control device 408 equipped in this rice transplanter.
  • the control device 408 employs the basic principle relating to automatic steering and artificial steering described with reference to FIGS. 43 and 44.
  • the control device 408 is connected to the positioning unit 461, the vehicle state detection sensor group 409, the contact detector 490, the travel mode switching operation tool 465, and the steering mode switching operation tool 466 via the input signal processing unit 408a.
  • the control device 408 is connected to the notification device 407, the vehicle travel device group 471, and the work device device group 472 via the output signal processing unit 408b.
  • the travel mode switching operation tool 465 and the steering mode switching operation tool 466 are configured by switches and buttons.
  • the vehicle state detection sensor group 409 includes various sensors and switches provided to detect the operation and posture of the traveling machine body C and the operation and posture of the seedling planting device W as a field work device. Since the contact detector 490 is well known per se, it is not shown in FIGS. 45 and 46, but has a structure for detecting contact between the rice transplanter and the obstacle. When the contact between the rice transplanter and the obstacle is detected by the contact detector 490, the rice transplanter stops urgently.
  • the steering mode switching operation tool 466 is a switch for selecting either an automatic steering mode for traveling by automatic steering or an artificial steering mode for traveling by artificial steering. For example, by operating the steering mode switching operation tool 466 while driving by automatic steering, the vehicle can be switched to driving by artificial steering, and by operating the steering mode switching operation tool 466 while driving by artificial steering, It can be switched to running.
  • the travel mode switching operation tool 465 is a teaching switch for instructing the control device 408 the boundary between the border area and the non-border area.
  • the travel mode switching operation tool 465 includes an A button and a B button. Have The driver presses the A button when the vehicle transitions from the direction change travel to the work travel, and the B button is pressed when the vehicle shifts from the work travel to the direction change travel.
  • the notification device 407 includes a ramp and a buzzer, and various information desired to be notified to the driver, such as approach to the coasting area and departure from the target travel route in automatic steering travel, is output from the control device 408. Output visually or audibly based on the command. Furthermore, if the notification device 407 includes a flat panel display or the like, it is possible to provide character information.
  • the vehicle travel device group 471 includes various operation devices and control devices for traveling that are mounted on the traveling machine body C.
  • operation devices such as a steering motor 458 constituting the steering unit U1 and an engine These include control devices that adjust the rotational speed, transmission operation devices such as clutches and shifters, and brake operation devices.
  • the work traveling device group includes operating devices such as a lifting cylinder 420 that lifts and lowers the seedling planting device W mounted as a field work device and a planting clutch that functions as a work clutch for the seedling planting device W. It is included.
  • the control device 408 substantially includes a collision detection module 481, an automatic steering unit 482, a vehicle behavior recording unit 483, a steering mode management unit 484, a travel route calculation unit 485, a travel distance calculation unit 486, an attitude determination unit 487, and the like. Is built with computer programs.
  • the coast detection module 481 is a travel route reference point set in the first work travel, the point A1 where the travel from the coast region to the work travel is changed, and the direction change travel from the work travel to the coast region. Based on the point B1 to be transferred and the own vehicle position obtained from the positioning data of the positioning unit 461, it is detected whether or not the traveling machine body C has reached the border area. As described with reference to FIGS. 43 and 44, the point A1 is detected by the lowering of the seedling planting device (working device) W to the lowered position (working position), and the point B1 is raised by the seedling planting device W. Detection is performed by raising to a position (non-working position), and each is recorded in the vehicle behavior recording unit 483 as a vehicle behavior.
  • a travel route (generally a straight line) between the point A1 and the point B1 is a reference work travel route, and the reciprocating work travel is performed on the reference work travel route regardless of whether the steering is automatic steering or artificial steering.
  • the next work travel route is obtained by sequentially translating the distance. That is, the points B2, A3, B4, A5... Corresponding to the point A1 and the points A2, B3, B4, A4, B5.
  • This estimation algorithm is constructed in the border estimation unit 810. Since the estimation method of the point which shows the boundary of a border area changes with shapes of a field, the structure which can select an appropriate estimation algorithm for every shape of a field is preferable.
  • the distance until the traveling machine body C that has been working on the vehicle reaches the coasting area is detected.
  • Commands such as approach notification when approaching, arrival notification when arriving at the coasting area, deceleration of the traveling machine body C, stop of the traveling machine body C, and the like can be output.
  • the travel route calculation unit 485 calculates travel route data necessary for performing the subsequent work travel by automatic steering from the reference work travel route described above.
  • the automatic steering unit 482 calculates a deviation between the travel route data calculated by the travel route calculation unit 485 and the own vehicle position, generates an automatic steering command, and outputs it to the steering unit U1.
  • the steering mode management unit 484 manages an artificial steering mode that is a travel by artificial steering and an automatic steering mode that is a travel by automatic steering. For example, it is possible to set so that the artificial steering mode is selected in the coasting area, and the automatic steering mode is selected in areas other than the coasting area (generally linear work travel). It is also possible to forcibly select the artificial steering mode and the automatic steering mode by a switching command from the steering mode switching operation tool 466. Furthermore, by operating the steering handle 443, it is possible to forcibly switch from the automatic steering mode to the artificial steering mode.
  • the vehicle behavior recording unit 483 is output to the vehicle travel device group 471 and the work device group 472 through the various sensor detection signals input through the input signal processing unit 408a, the operation signals of various operation devices, and the output signal processing unit 408b.
  • the state of the vehicle particularly the vehicle behavior related to the start and end of work travel, is recorded. In that case, each vehicle behavior is recorded with the own vehicle position acquired when the said vehicle behavior occurred.
  • FIG. 49 shows an example of vehicle behavior recorded in time series by the vehicle behavior recording unit 483 when traveling on a simplified field as shown in FIG.
  • the record items of the vehicle behavior recording unit 483 include recording NO, behavior time, own vehicle position, and behavior content.
  • the behavior time is the time (time stamp) when the behavior time vehicle behavior is detected.
  • the own vehicle position is the own vehicle position when the vehicle behavior is detected.
  • the behavior content identifies the detected vehicle behavior.
  • the operation content of the travel mode switching operation tool 465 (A means operation of the A button, B means operation of the B button), seedling planting
  • the positions of the device W and the float 425, the state of the planting clutch (working clutch), and the steering state (steering from straight to turning, or steering from turning to straight) are recorded.
  • FIG. 1 means operation of the A button
  • B means operation of the B button
  • seedling planting The positions of the device W and the float 425, the state of the planting clutch (working clutch), and the steering state (steering from straight to
  • the vehicle position of each vehicle behavior is the same, but the position of the vehicle is different because the raising / lowering timing of the seedling planting device W, the steering timing of turning, and the like are different.
  • the vehicle position to be recorded is recorded after correction for replacement with a reference position of a specific vehicle.
  • various states of the traveling machine body C and the seedling planting device W which is the work device, in particular, the work start and work end can be read from the record of the vehicle behavior recording unit 483.
  • the vehicle enters the ridge area from the heel and records NO “0001” at the timing of leaving the ridge area.
  • the content of the record NO “0001” is a record of the point A1 in FIG. 43, and includes the behavior time, the vehicle position, and the behavior content at that time.
  • the traveling operation mode is “A”
  • the seedling planting device position is “lowering position”
  • the float position is “grounding”
  • the clutch state is “on”.
  • the timing at which these behavior contents are detected is slightly different, but here the timing is the same. That is, at the timing when the record NO “0001” is recorded, the A button of the travel mode switching operation tool 465 is pressed by the driver and the setting for working travel is performed.
  • the content of the record NO “0002” is a record of the point B1 in FIG. 43, and includes the behavior time, the vehicle position, and the behavior content at that time.
  • the traveling operation mode is “B”
  • the seedling planting device position is “ascending position”
  • the float position is “disengaged”
  • the clutch state is “disengaged”
  • the steering is “straight to turn”. That is, at the timing when the record NO “0002” is recorded, the driver presses the B button of the travel mode switching operation tool 465 and the setting for traveling in a direction is changed.
  • the positions of the points A1 and B1 are recorded.
  • a line connecting the points A1 and B1 can be used as a reference work travel route for estimating a travel route for subsequent work travel. Therefore, the operation of the travel mode switching operation tool 465 is not required except for the points A1 and B1.
  • Record No. “0003” is recorded at the timing of exiting the coasting area and performing work traveling after finishing the direction change traveling in the coasting area.
  • the content of the record NO “0003” is a record of the point A2 in FIG. 43, and includes the behavior time, the vehicle position, and the behavior content at that time.
  • the position of the point A2 is estimated from the point B1 by the estimator 810 if the field is a field as shown in FIG. Therefore, when the own vehicle position acquired from the positioning unit 461 approaches or coincides with the estimated point B1, it is possible to automatically set work travel. Alternatively, it is possible to notify the driver that the vehicle is approaching the point B1 and to prompt the driver to set work travel.
  • the position of the point B2 is also estimated from the point A1. Therefore, when the own vehicle position acquired from the positioning unit 461 approaches or coincides with the estimated point B2, the direction change travel setting can be automatically performed. Alternatively, it is possible to notify the driver that the vehicle is approaching the point B2 and to prompt the driver to set the direction change travel.
  • the timing of reaching or exiting the heeling region can be determined from the position change of the seedling planting device W and the float 425, the switching operation of the work clutch, and the steering angle change.
  • the travel mode switching operation tool 465 as a teaching operation tool for recognizing the boundary of the border area is not essential.
  • the border of the drowning region can be determined by one or a combination of the vehicle behaviors described above.
  • the state showing the descending operation of the seedling planting device W from the ascending posture to the descending posture Based on the signal, it determines the transition point from the heeling area of the vehicle to the work area (non-cooking area), and based on the state signal indicating the ascending operation from the descending posture of the seedling planting device W to the ascending posture, The transition point from the work area (non-bright area) of the vehicle to the close area can be determined.
  • the controller 408 can be equipped with an algorithm that outputs various commands for executing various operations based on the determination result of the collision detection module 481 regarding the arrival of the vehicle in the collision area. Some of them are listed below. (1) If the vehicle behavior is not executed even when the recorded vehicle behavior is scheduled to be executed, the vehicle is decelerated and the engine is stopped. (2) In traveling on the field, the position and time at which each vehicle behavior to be recorded occurs can be limited to a specific range. For this reason, recording accuracy is improved by excluding the vehicle behavior outside the specific range from the recording target. (3) When it is detected that the vehicle has entered the coasting area, automatic steering is prohibited.
  • the recording in the vehicle behavior recording unit 483 is stopped.
  • the turning radius is large, it is regarded as a travel that is not a normal work travel, such as a travel away from the field, rather than a direction change travel.
  • the vehicle is forcibly stopped.
  • the travel distance calculation unit 486 is configured to detect the traveling machine body C based on a detection signal from a sensor (one of the vehicle state detection sensor group 409) that detects the rotational speed of the rear wheel 411 or the rotational speed of the transmission system to the rear wheel 411. Calculate the mileage. At that time, if the slip rate estimated from the state of the field is taken into consideration, the travel distance can be calculated more accurately. In the case of the positioning unit 461 that calculates the position of the vehicle based on the radio signal from the satellite, if the reception sensitivity of the radio signal is lowered for some reason, the positioning data cannot be output. The mileage calculation unit 486 is used as the recovery. For example, when the positioning data from the positioning unit 461 is not input, the coasting detection module 481 detects that the traveling machine body C has reached the coasting region based on the traveling distance calculated by the traveling distance calculation unit. can do.
  • the attitude determination unit 487 determines the attitude of the traveling aircraft body based on a detection signal from an inclination sensor (one of the vehicle state detection sensor groups 409) that detects the inclination angle (rolling angle and pitching angle) of the traveling aircraft body C. Compare to slope threshold. In this embodiment, the posture determination unit 487 issues a braking command for decelerating or stopping the traveling machine body to a braking device that is one of the vehicle traveling device groups 471 when the posture of the traveling machine body deviates from a predetermined condition. give.
  • the points A1 and B1 which are the boundary points between the dredging area in which the direction turning travel is performed and the non-braking area in which the work travel is performed, are the A button and B of the travel mode switching operation tool.
  • the operation of the button, the subsequent points A2, A3... And the points B2, B3... Were estimated from the points A1 and B1 and determined based on the vehicle behavior.
  • the points A2, A3... And the points B2, B3... Are estimated from the points A1 and B1, and the positions different from the estimated positions are used without using the vehicle behavior.
  • each functional unit in the functional block diagram shown in FIG. 48 is divided mainly for the purpose of explanation. Actually, each functional unit in FIG. 48 can be integrated with other functional units or divided into a plurality of functional units. Independent functional units are connected by an in-vehicle LAN or the like.
  • the present invention is not limited to the above riding type rice transplanter provided with a seedling planting device as a working device, for example, a riding type direct seeding machine, which is a planting paddy field work vehicle provided with a sowing device as a working device, work
  • a riding type direct seeding machine which is a planting paddy field work vehicle provided with a sowing device as a working device
  • work can be applied to various work vehicles such as a tractor provided with a plow as a device, a farm vehicle such as a combine provided with a cutting unit as a work device, or a construction work vehicle provided with a bucket as a work device.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Environmental Sciences (AREA)
  • Soil Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Guiding Agricultural Machines (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

作業車は、走行装置Aを有する走行機体Cと、圃場に対する作業を行う苗植付装置Wと、走行装置Aを操向可能な操向ユニットUと、衛星測位システムにより位置情報を取得する受信装置63と、慣性情報を計測する主慣性計測装置62と、走行機体Cを走行させる目標ラインを生成する生成部と、位置情報及び慣性情報に基づいて、走行機体Cが目標ラインに沿って走行するように、操向ユニットUを制御する制御部と、を備える。受信装置63と主慣性計測装置62とは、走行機体Cにおける異なる箇所に配置されている。

Description

作業車
 本発明は、農作業車(以下では「農作業機」ともいう。)、建設作業車等の作業車に関する。作業車には、乗用型田植機、乗用型直播機、トラクタ、コンバイン等が含まれるが、これらに限定するものではない。
[1]走行機体の自動操向制御が可能な従来の作業車が、例えば、JP2001-161112Aに記載されている。この作業車には、走行装置(「前車輪」、「後車輪」)を有する走行機体と、圃場に対する作業を行う作業装置(「苗植付作業装置」)と、走行装置を操向可能な操向ユニット(「パワステバルブ」、「パワステシリンダ」、「自動制御弁」等)と、が備えられている。さらに、この作業車には、衛星測位システムにより位置情報を取得する受信装置(「GPS受信機」)と、取得される位置情報に基づいて走行機体が直進走行するように、操向ユニットを制御する制御部(「コントローラ」)と、が備えられている(カッコ内の名称はJP2001-161112Aにおける構成要素の名称である。)。この作業車は、受信装置で取得される位置情報のみに基づいて操向ユニットを制御し、走行機体の自動操向制御を行うようになっている。
 また、US7346452B2には、衛星測位システムにより位置情報を取得する受信装置と慣性情報を計測する慣性計測装置とが一体となった計測ユニットが記載されている。
[2]従来の乗用型田植機の中には、搭乗型の運転部を有した走行車体と、前記走行車体の後部に昇降操作可能に連結された苗植付装置と、前記運転部の横側方において、車体部分から上方向きに立設された手摺りと、前記手摺りの前方に設けられた予備苗収容装置と、を備えたものがある(例えば、JP2013-074841Aを参照)。
 この乗用型田植機は、搭乗運転部、横手摺り部(手摺りに相当)、予備苗載置装置(予備苗収容装置に相当)を備え、予備苗載置装置は、前可動フレームの予備苗台及び後可動フレームの予備苗台が固定フレームの予備苗台の上方に折り重なる折り畳み状態と、前可動フレームの予備苗台が固定フレームの前側に展開し、後可動フレームの予備苗台が固定フレームの後側に展開した展開状態とに切り換え可能である。
[3]作業車の中には、車体の位置を検出する位置検出手段と、車体の方位を検出する方位検出手段とを備えて、それら検出情報に基づいて車体が目標移動経路に沿って走行するように構成されているものがある。
 従来では、作業車の車体に、GPS(Global Positioning System)等の衛星測位用ユニットと、方位検出手段の一例である慣性航法用ユニットとを備え、作業対象となる圃場において、車体が走行すべき目標移動経路が予め設定されており、衛星測位システムにより検出された車体の位置が目標移動経路に対応する目標位置になるように、且つ、検出方位が目標移動経路に対応する目標方位になるように操向制御するものがあり、目標方位は、常に、目標移動経路に対応する方位に設定されていた(例えば、JP2009-245002A参照)。
 説明を加えると、車体を操向制御する場合、衛星測位用ユニットにより得られた位置情報だけでは、車体が現在どの方向に進んでいるのか分からない。しかも、衛星測位用ユニットによる計測処理には時間がかかる場合があり、設定経路に沿って車体を移動案内される作業車に適用する場合においては、位置情報だけでは精度のよい作業車の操向制御は難しい。そこで、方位検出手段にて車体の現在の方位を検出して、位置情報と方位情報とに基づいて操向制御するようにしている。
[4]農作業機の中には、GPS等の衛星を用いた測位システムを利用して走行ラインを設定して農作業を行うものがある。このような農作業機の中には、手動操舵による手動走行と、基準走行ラインに平行に設定される設定走行ラインに沿って自動操舵により走行する自動走行との間で切替自在であり、前記手動走行と前記自動走行とを切替自在な切替スイッチを備えるものがある。
 従来、この種の農作業機としては、前記測位システムを利用して、走行機体の位置を計測しながら、設定された走行ライン上を、自動走行し、所定の植付範囲に苗を植え付けるように構成された田植機があった(例えばJP2008-092818A参照)。
 この田植機は、自動走行を行うのに、予め、走行ラインの基準となる基準走行ラインを設定(ここでは、ティーチング(teaching)という)する必要がある。
 ティーチングの具体例としては、圃場で走行機体を走行させ、基準走行ラインの始点とする位置に到達したら、メータパネルに備えた指定スイッチを操作することで、その位置での走行機体の位置情報を測位システムで読み取って記録部に始点位置として入力する。
続いて、走行機体を基準走行ラインの終点とする位置まで走行させ、同様に、指定スイッチの操作を行うことで、基準走行ラインの終点位置情報を記録でき、それら始点位置と終点位置とを結ぶことで基準走行ラインが設定される。
 また、走行機体を自動走行させる指標となる設定走行ラインの設定は、前記基準走行ラインを基にして、走行機体の植付条数等から割り出された一定間隔寸法をあけて、基準走行ラインに平行な複数の線分を想定し、それらの各平行線分が設定走行ラインとして設定される。
 そして、走行機体の自動走行を制御する制御部としては、設定走行ラインに沿って終点位置まで走行機体を自動走行させるように構成されている。また、隣設する設定走行ライン間は、走行機体を自動旋回(180度)するように制御される。そして、隣接する設定走行ラインの始点からは、その設定走行ラインに沿った自動走行が繰り返されるように制御部は構成されている。
[5]圃場作業車両の中には、畦際領域で方向転換しながら圃場内を走行する走行機体と、前記圃場に対して作業を行う圃場作業装置と、自車位置を示す測位データを出力する測位ユニットとを備えたものがある。
 このような圃場作業車両の一例として、GPS装置により計測される位置情報を用いて目標経路上を自動走行する田植機が、JP2008-092818Aから知られている。この田植機では、直線状の目標経路上を自律走行しながら苗植付作業が行われ、枕地とも呼ばれる畦際領域に到達したことを運転者が確認すれば、所望の方向での機体方向転換を行うように運転者が旋回操作具を操作することにより、方向転換のための旋回走行が畦際領域において自動的に行われる。方向転換が行われると再び直線状の目標経路上を自律走行しながら植付作業が行われる。
日本国特開2001-161112号公報(JP2001-161112A) 米国特許第7346452号明細書(US7346452B2) 日本国特開2013-074841号公報(JP2013-074841A) 日本国特開2009-245002号公報(JP2009-245002A) 日本国特開2008-092818号公報(JP2008-092818A)
[1]背景技術[1]に対応する課題は、以下の通りである。
 衛星測位システムにより受信装置から取得される位置情報は、実際の位置とのズレが大きくなる場合もあり、そのような場合、JP2001-161112Aに記載の作業車では、走行機体の自動操向制御を用いて作業装置による作業を正確に行うことが難しくなっていた。また、電波障害等が生じやすい状況下では、受信装置により取得される位置情報の情報量が不十分となり、走行機体の自動操向制御を行うこと自体が難しくなっていた。
 このため、JP2001-161112Aに記載の作業車に、US7346452B2に記載のように、衛星測位システムにより位置情報を取得する受信装置と慣性情報を計測する慣性計測装置とが一体となった計測ユニットを搭載し、受信装置により取得される位置情報と、慣性計測装置により計測される慣性情報と、に基づいて、走行機体の自動操向制御を行い、作業装置による作業の正確性をより向上させることが検討された。
 しかし、受信装置は、周囲に電波を遮る遮蔽物が少なく、揺れが比較的大きくなる箇所に配置することで、取得される位置情報の精度が高くなる特性を示す傾向がある一方、逆に、慣性計測装置は、揺れが比較的小さくなる箇所に配置することにより慣性情報の誤差が小さくなる特性を示す傾向がある。このため、走行機体の一箇所に、受信装置と慣性計測装置とが一体となった計測ユニットを配置すると、受信装置と慣性計測装置との両方の特性を十分に生かせないおそれがあった。
 上記実情に鑑み、走行機体の自動操向制御を用いて作業装置による作業を正確に行うことが可能となる作業車が望まれる。
[2]背景技術[2]に対応する課題は、以下の通りである。
 上記したJP2013-074841Aの乗用型田植機においては、予備苗収容装置に複数の予備苗載置台を備え、複数の予備苗載置台が走行車体の上下方向に並ぶ第1状態と、複数の予備苗載置台が走行車体の前後方向に並ぶ第2状態とに予備苗収容装置を切換え可能に構成することにより、予備苗収容装置を第1状態に切換えて、複数の予備苗載台を上下複数段に並べて格納するか、あるいは、複数の予備苗を上下複数段に並べて収容することが可能になり、予備苗収容装置を第2状態に切換えて、複数枚の予備苗を走行車体の前後方向に並べて収容することが可能になる。
 従来の技術を採用することにより、予備苗収容装置の第1状態と第2状態との切り換えを可能にした場合、手摺りの持ち部分となる上端部の車体前後方向長さを長くするほど、予備苗収容装置がより車体前方側に位置することになる。つまり、予備苗収容装置を第2状態に切換えた際、後から1番目の予備苗載置台が手摺りに当たらないようにする必要がある。
 そこで、予備苗収容装置を車体前方側に寄せずとも、あるいはあまり寄せずとも、手摺りの上端部の車体前後方向長さを長くできる乗用型田植機が望まれる。
[3]背景技術[3]に対応する課題は、以下の通りである。
 JP2009-245002Aの上記構成では、衛星測位用ユニットの検出情報と方位検出手段の検出情報に基づいて操向制御するにあたり、目標方位が、常に目標移動経路に沿う方位に設定されるので、次のような不利な面があった。
 すなわち、上記従来構成では、制御手段は、車体の検出位置が目標移動経路上に位置し、且つ、検出方位が目標移動経路に沿う方位になるように操向操作手段を操作する。そうすると、例えば、車体が目標移動経路から横方向に位置ずれしているが、車体の向きが目標方位と同じであるような走行状態から位置の修正を行う場合、位置の修正を行うために車体の進行方向を変更すると、車体の方位は目標方位からずれていくので、目標方位からのずれに対応しようとして無駄な操作を行う場合がある。その結果、目標移動経路に沿う走行状態に戻すのに時間がかかるおそれがあった。
 そこで、車体が目標移動経路から横方向に位置ずれし且つ車体の向きが目標方位と同じであるときに、迅速に目標移動経路に沿う走行状態に戻すことができるようにすることが望まれる。
[4]背景技術[4]に対応する課題は、以下の通りである。
 上述した構成を備えたJP2008-092818A等の農作業機によれば、各設定走行ラインの設定は、基準走行ラインに平行で、且つ、等間隔に設定される。従って、自動走行の経路における圃場コンディション(例えば、圃場の起伏や隣接植付完了経路での苗の植付状況等)の差とは無関係に、等間隔の走行ライン上を走行機体が走行しながら苗の植え付けを行うことになる。
 但し、走行機体が走行する圃場は、表面が必ずしも平坦であるとは限らないから、例えば、圃場に多少の起伏がある個所と、そうではない箇所とでは、走行機体の通過経路に多少のずれが生じたり、植え付けられた苗の位置や姿勢等の植付状況に変化が生じる虞がある。
 このような場合には、隣接植付完了経路の植付状況を見ながら、例えば、その隣接設定走行ライン側に近接したコース(又は、離間したコース)を走行しながら植え付けを行うように対処するのが好ましいこともある。
 しかし、設定走行ラインは、基準走行ラインに平行に且つ等間隔に設定されるから、上述のような対処策を講じるには、切替スイッチで自動走行から手動走行に切り替えて、運転者の手動操舵によってコースを変更しながら、手動走行を続ける必要がある。よって、運転者が運転操作から手を離せなくなり、走行機体上での他の作業を併行して行い難くなる虞がある。
 更には、再度、切替スイッチを自動走行に切り替えると、当初に設定された設定走行ラインに走行コースが戻ってしまい、せっかく現場状況にマッチした走行ラインを走行しても、それ以後の走行には反映されない問題点がある。
 従って、自由なコースに設定走行ラインを設定でき、且つ、運転者への負担を減らすことができる農作業機が望まれる。
[5]背景技術[5]に対応する課題は、以下の通りである。
 田植機などのように、隣り合う作業領域(走行軌跡)の位置合わせに正確さが要求される場合、枕地での自律走行での旋回において正確な位置合わせを自動で行うためには、高度な自機位置検出技術及び自動操舵制御技術が要求される。しかしながら、そのような方向転換走行が、自動操舵または人為操舵で行われる場合、方向転換走行を開始するタイミング、つまり田植機が畦際領域に到達したことを正確に認識すること、及び方向転換走行後の次の作業走行のための開始点での正確な位置合わせが重要であるが、非熟練者にとっては難しい運転操作となる。
 このような実情に鑑み、少なくとも、走行機体の方向転換が行われる畦際領域(枕地)に到達したことを適切に認識し、適正な方向転換走行が行われる圃場作業車両が望まれている。
[1]課題[1]に対応する解決手段は、以下の通りである。
 本発明の作業車は、
 走行装置を有する走行機体と、
 圃場に対する作業を行う作業装置と、
 前記走行装置を操向可能な操向ユニットと、
 衛星測位システムにより位置情報を取得する受信装置と、
 慣性情報を計測する慣性計測装置と、
 前記走行機体を走行させる目標ラインを生成する生成部と、
 前記位置情報、及び、前記慣性情報に基づいて、前記走行機体が前記目標ラインに沿って走行するように、前記操向ユニットを制御する制御部と、が備えられ、
 前記受信装置と、前記慣性計測装置と、が前記走行機体における異なる箇所に配置されているものである。
 本発明によると、衛星測位システムにより位置情報を取得する受信装置と、慣性情報を計測する慣性計測装置と、が走行機体における異なる箇所に配置されている。
 このため、例えば、受信装置を揺れが比較的大きくなる箇所に配置して、受信装置の位置情報の取得精度を向上できるとともに、慣性計測装置を揺れが比較的小さくなる箇所に配置して、慣性計測装置により計測される慣性情報の誤差を少なくできる。つまり、受信装置により取得される位置情報の精度と慣性計測装置により計測される慣性情報の精度との両方が向上し、受信装置と慣性計測装置との特性が両方とも生かすことが可能になる。
 これにより、高精度の位置情報及び慣性情報を用いて操向ユニットの操向制御を行うことが可能になり、走行機体及び作業装置が目標ラインに沿って走行するように走行機体を正確に自動操向制御できるものとなる。
 したがって、本発明によれば、走行機体の自動操向制御を用いて作業装置による作業を正確に行うことが可能となる。
 上記構成において、前記慣性計測装置が、前記走行機体及び前記作業装置の前後方向における全長のうち前後方向中心の近傍の箇所に配置されていると好適である。
 本構成によれば、走行機体及び作業装置の前後方向における全長のうち前後方向中心の近傍の箇所は、例えば、走行機体及び作業装置の全体の旋回中心となるヨー軸(yawing axis)の近傍に位置する箇所となっている。このような箇所に慣性計測装置を配置することにより、慣性計測装置により計測される慣性情報の誤差が小さくなり、慣性情報の正確な計測を行いやすくなる。
 上記構成において、前記慣性計測装置が、前記走行装置の後車軸の近傍に位置する取付部材に取り付けられていると好適である。
 本構成によれば、走行装置の後車軸の近傍に位置する取付部材は、走行機体の走行中に揺れが生じにくくなっている。このような取付部材に慣性計測装置を取り付けることにより、慣性計測装置により計測される慣性情報の誤差が小さくなり、慣性情報の正確な計測を行いやすくなる。
 上記構成において、前記作業装置が、圃場に対する苗の植え付けが可能な苗植付装置であり、
 前記苗植付装置に補給するための予備苗を載置可能な複数の予備苗台と、
 前記予備苗台を支持する左右一対の予備苗フレームと、
 左右の前記予備苗フレームの上部に亘って連結される連結フレームと、が備えられ、
 前記受信装置が、前記連結フレームに取り付けられていると好適である。
 本構成によれば、予備苗台を支持する左右の予備苗フレームを連結する、ある程度高い箇所に設置される連結フレームに受信装置が取り付けられているので、電波を遮る遮蔽物の少ない箇所に受信装置を配置できる。これにより、受信装置により取得される位置情報に途切れが生じにくくなる。また、走行中に予備苗フレームや連結フレームは揺れが比較的生じやすいので、例えば、受信装置により取得される位置情報に基づく走行機体が進行する方向の方位の検出精度を向上できる。
 上記構成において、前記連結フレームは、前記受信装置が前記予備苗フレームの上端部よりも上方に位置する使用状態と、前記使用状態に対して上下反転し、前記受信装置が前記予備苗フレームの上端部よりも下方に位置する格納状態と、に状態変更可能となっていると好適である。
 本構成によれば、連結フレームを使用状態にすることにより、受信装置を予備苗フレームの上端部よりも高い箇所に位置するものとなるので、受信装置の使用時の電波の受信感度を向上できる。一方、連結フレームを格納状態にすることにより、予備苗フレームの上端部よりも低い箇所に位置するものとなるので、例えば、走行機体を納屋等に収容する際に、受信装置が邪魔にならず、例えば、納屋の入口上部等に受信装置をぶつけてしてしまう等の不都合を回避できる。
 上記構成において、前記連結フレームが、左右方向に沿った左右軸心周りに回動可能、且つ、前記使用状態と前記格納状態で位置固定可能に、左右の前記予備苗フレームに支持されていると好適である。
 本構成によれば、連結フレームが左右軸心周りに回動可能となっているので、連結フレームを、受信装置を使用する使用状態と、受信装置を格納する格納状態と、に状態変更をしやすいものとなる。
 上記構成において、前記連結フレームが、左右の前記予備苗フレームに対して着脱可能となっていると好適である。
 本構成によれば、連結フレームが着脱可能となっているので、受信装置を使用しない場合には、使用状態の連結フレームを予備苗フレームから取り外して、連結フレームを格納状態にして予備苗フレームに取り付けておくことができる。
 上記構成において、前記受信装置に、ハーネスを接続するコネクタ部が備えられ、
 前記コネクタ部が、前記受信装置から左右方向外側に延びていると好適である。
 本構成によれば、受信装置においてハーネスを接続するコネクタ部が、受信装置から左右方向外側に延びているので、例えば、コネクタ部を受信装置から前側に延ばす場合に比べて、走行中に前方から接近する木の枝等の障害物に受信装置のコネクタ部をぶつけにくくなる。
 上記構成において、前記受信装置に、ハーネスを接続するコネクタ部が備えられ、
 前記コネクタ部を保護するガード部材が備えられていると好適である。
 本構成によれば、走行中に木の枝等の障害物がコネクタ部に衝突しないようにガード部材により好適に保護されるものとなる。
[2]課題[2]に対応する解決手段は、以下の通りである。
 本発明による乗用型田植機は、
 搭乗型の運転部を有した走行車体と、
 前記走行車体の後部に昇降操作可能に連結された苗植付装置と、
 前記運転部の横側方において、車体部分から上方向きに立設された手摺りと、
 前記手摺りの前方に設けられた予備苗収容装置と、を備え、
 前記予備苗収容装置は、複数の予備苗載置台を備え、複数の前記予備苗載置台が前記走行車体の上下方向に並ぶ第1状態と、複数の前記予備苗載置台が前記走行車体の前後方向に並ぶ第2状態とに切り換え可能であり、
 前記手摺りのうちの上端部の下方に空きスペースが設けられ、
 前記予備苗収容装置の前記第2状態において、複数の前記予備苗載置台のうちの後から1番目の前記予備苗載置台の後端側部が前記空きスペースに入り込み、平面視で、前記上端部と前記後端側部とが重複する乗用型田植機。
 本構成によると、予備苗収容装置を第2状態に切換えると、後から1番目の予備苗載置台の後端側部が空きスペースに入り込むので、手摺りの上端部の車体前後方向長さを長くしても、予備苗収容装置を車体前方側に寄せなくても、寄せたとしても、従来構造の場合ほど大幅に寄せなくても、後から1番目の予備苗載置台における後端側部の空きスペースへの入り込みによって、予備苗載置台と手摺りとの当たりを回避できる。
 従って、予備苗収容装置を車体前方側に寄せずに、あるいはあまり寄せずに、手摺りの上端部の車体前後方向長さを長くでき、予備苗収容装置を第2状態に切換えても、予備苗載置台が走行車体から前方にあまり長く突出しないなどによって走行車体の操縦をし易いものにしつつ、手摺りを使い易くできる。
 本発明においては、前記1番目の予備苗載置台は、予備苗載置台本体と、前記予備苗載置台本体から後方に張り出される使用姿勢と、前記予備苗載置台本体の内方側に格納される格納姿勢とに亘って姿勢変更可能に前記予備苗載置台本体に支持された延長載置台とを備え、前記1番目の予備苗載置台の前記後端側部が前記使用姿勢の延長載置台によって形成されると好適である。
 本構成によれば、予備苗収容装置を第2状態に切換えた場合、延長載置台を使用姿勢にすることにより、後から1番目の予備苗載置台の載置面積を広くでき、この予備苗載置台に予備苗を出し入れし易くなる。このように、予備苗載置台の載置面積を広くできるものでありながら、予備苗収容装置を走行車体の前方側に寄せずに、あるいはあまり寄せずに、手摺りの上端部の車体前後方向長さを長くできる。
 本発明においては、前記予備苗収容装置の前記第2状態において、前記1番目の予備苗載置台の前記後端側部が前記運転部の乗降口に入り込むと好適である。
 本構成によれば、予備苗収容装置を第2状態に切り換えると、後から1番目の予備苗載置台の後端側部を乗降口の閉じ部材に活用した簡単な構造で、乗降口を閉じたり、狭くしたりできる。
 本発明においては、前記手摺りの前記上端部は、車体部分に固定された固定部と、前記固定部から前方に延出されて、前端側部が前記運転部の乗降口を閉じる閉じ状態と、前記乗降口を開く開き状態とに切り換え可能な可動部とを備え、前記閉じ状態の前記可動部の下方に前記空きスペースが形成されると好適である。
 本構成によると、可動部を閉じ状態にすることにより、可動部を乗降口の閉じ部材に活用した簡単な構造で、乗降口を閉じたり、狭くしたりできる。
 本発明においては、前記可動部は、前記閉じ状態と前記開き状態とに亘って揺動切換え可能に前記固定部に支持されていると好適である。
 本構成によれば、可動部を揺動操作するだけで操作簡単に可動部を閉じ状態と開き状態とに切り換えることができる。
 本発明においては、前記可動部の前記閉じ状態において、前記可動部の前端側部が前記予備苗収容装置の支柱に支持されると好適である。
 本構成によれば、予備苗収容装置の支柱を可動部の前端側部を支持する部材に活用した
簡単な構造で可動部を閉じ状態にしっかりと支持できる。
[3]課題[3]に対応する解決手段は、以下の通りである。
 本発明に係る作業車の特徴構成は、
 車体の進行方向を変更可能な操向操作手段と、
 前記車体が走行すべき目標移動経路を設定する経路設定手段と、
 前記車体の位置を検出する位置検出手段と、
 前記車体の方位を検出する方位検出手段と、
 前記位置検出手段にて検出される前記車体の検出位置が、前記目標移動経路上の位置になるように、且つ、前記方位検出手段にて検出される前記車体の検出方位が前記目標移動経路における目標方位になるように、前記操向操作手段を操作する自動操向制御を実行する制御手段とが備えられ、
 前記制御手段は、
 前記検出位置が前記目標移動経路から横方向にずれており、且つ、前記検出方位が前記目標方位と同じであるときは、前記目標方位を前記目標移動経路側に傾斜した傾斜目標方位に変更して前記操向操作手段を操作する位置ずれ修正処理を実行する点にある。
 本発明によれば、制御手段は、自動操向制御を実行しているときに、位置検出手段にて検出される車体の検出位置が目標移動経路から横方向にずれているが、方位検出手段にて検出される車体の検出方位は目標移動経路における目標方位(以下、基準目標方位という)と同じであるときには、目標方位を目標移動経路側に傾斜した傾斜目標方位に変更して操向操作手段を操作する。すなわち、制御手段は、車体の検出位置が目標移動経路上の位置になるように、且つ、車体の検出方位が傾斜目標方位になるように、操向操作手段を操作する。
 車体が、横方向の位置ずれを修正するために、目標移動経路側に傾斜した方向に向けて走行するとき、基準目標方位に沿った姿勢で且つ車体は位置ずれを小さくするように走行することになる。つまり、車体の方位は傾斜目標方位からずれることがないので、方位のずれに対応しようとして無駄な操作を行うことがない。
 その結果、車体が目標移動経路から横方向に位置ずれし且つ車体の向きが基準目標方位と同じであるときに、無駄な操作が少なくなり、極力迅速に、目標移動経路に沿う走行状態に戻すことが可能となる。
 本発明においては、前記制御手段は、前記位置ずれ修正処理を実行するときは、前記傾斜目標方位の前記目標方位に対する傾斜角を設定上限値以下に設定すると好適である。
 本構成によれば、操向制御を実行するときに、目標方位が大きく変化し過ぎることがないので、車体が急旋回して姿勢が不安定になる等のおそれが少ないものになる。
 本発明においては、車速を検出する車速検出手段が備えられ、
 前記制御手段は、前記位置ずれ修正処理を実行するときは、前記車速が大きいほど前記操向操作手段が前記進行方向を変更するときの変更操作速度が小さいと好適である。
 位置ずれを修正する場合、車速が大きいときに素早く操向操作すると、急激な姿勢変更動作になり、車体姿勢が不安定になるおそれがある。そこで、本構成では、位置ずれを修正するときは、車速が大きいほど操向操作手段が進行方向を変更するときの変更操作速度を小さくするようにした。その結果、車体の向き変更の動作が速く行われて車体姿勢が不安定になるおそれが少なく、滑らかに位置ずれ修正を行うことができる。
 本発明においては、車速を検出する車速検出手段が備えられ、
 前記制御手段は、前記位置ずれ修正処理を実行するときは、前記車速が大きいほど前記目標方位を前記目標移動経路側に傾斜させる傾斜角度が小さいと好適である。
 位置ずれを修正する場合、車速が大きいときに素早く操向操作すると、急激な姿勢変更動作になり、車体姿勢が不安定になるおそれがある。そこで、本構成では、車速が大きいほど目標方位を目標移動経路側に傾斜させる傾斜角度が小さくなる。その結果、車体の向き変更量を少なくなり、車体姿勢が不安定になるおそれが少なく、滑らかに位置ずれ修正を行うことができる。
 本発明においては、前記制御手段は、前記位置ずれ修正処理を実行するときは、前記検出位置が前記目標移動経路に相当する箇所に達するまで、前記傾斜目標方位をそのまま維持すると好適である。
 本構成によれば、位置ずれ修正処理においては、一旦、目標方位を傾斜目標方位に変更したのちは、車体が目標移動経路に相当する位置に達するまで傾斜目標方位が維持される。その結果、車体の方位が傾斜目標方位に沿う状態で目標移動経路に相当する位置にまで移動するので、無駄な動きの少ない状態で迅速に位置ずれの修正を行うことができる。
 本発明においては、前記制御手段は、前記位置ずれ修正処理を実行するときは、前記検出位置が前記目標移動経路に相当する箇所に近づくほど、前記傾斜目標方位の前記目標方位に対する傾斜が緩くなると好適である。
 本構成によれば、位置ずれ修正処理においては、先ず最初に、基準目標方位に対する傾斜が急な傾斜目標方位に変更するが、車体が目標移動経路に相当する箇所に近づくほど、基準目標方位に対する傾斜が緩くなる状態で傾斜目標方位が変化することになる。
 位置ずれ修正処理において、基準目標方位に対する傾斜が急な状態で操向操作が行われると迅速に車体を目標移動経路に相当する箇所に近づけることができる。しかし、このような基準目標方位に対する傾斜が急な状態のまま走行すると、目標移動経路に相当する箇所に達したのち、車体の方位を目標移動経路に沿う方位に戻すときに、戻し修正量が大きくなるので、再修正操作に時間がかかる不利がある。
 そこで、位置ずれ修正処理を実行するときに、位置ずれ量が大きい初期の段階では、傾斜が急な傾斜目標方位に変更することで、迅速に車体を目標移動経路に相当する箇所に近づけることができる。そして、車体が目標移動経路に相当する箇所に近づくほど、基準目標方位に対する傾斜が緩い傾斜目標方位に変更する。その結果、目標移動経路に相当する箇所に達したときには、傾斜目標方位と目標移動経路に沿う方位との間の角度ずれが小さくなるので、戻し修正量が小さくなり、再修正操作を迅速に行える。
 従って、極力、迅速に車体を目標移動経路に相当する箇所に近づけることができるものでありながら、目標移動経路に沿う方位に戻す再修正操作を無駄なく短時間で行うことができるものとなった。
 本発明においては、前記目標移動経路に相当する箇所は、前記目標移動経路に相当する位置の左右両側に横方向に所定幅の領域を有していると好適である。
 位置ずれ修正処理において、車体の位置が目標移動経路に相当する位置に達するまで位置ずれ修正処理を実行する構成であれば、車体の位置が目標移動経路に相当する位置に達した後に、車体の方位を目標移動経路に沿う方位に戻すときに、戻し操作に遅れが生じて再修正操作に時間がかかる不利がある。そこで、本構成では、目標移動経路に相当する箇所が所定幅の領域を有するので、車体の位置が目標移動経路に相当する位置に達する少し前に車体の方位を目標移動経路に沿う方位に戻すことができ、応答遅れの少ない状態で再修正操作を行うことができる。
 本発明においては、前記車体は、前記目標移動経路に沿って走行しながら作業を行う直進走行と、前記目標移動経路の終端位置にて前記目標移動経路と平行な次回の目標移動経路に向けて旋回する旋回走行とを交互に繰り返して走行するものであり、
 前記制御手段は、前記車体が既作業領域側に位置ずれしている状態で、前記位置ずれ修正処理を実行するときは、前記車体が未作業領域側に位置ずれしている状態に比べて、前記目標移動経路側に大きく傾斜させて前記傾斜目標方位を設定すると好適である。
 本構成によれば、車体が直進走行と旋回走行とを交互に繰り返すように走行し、直進走行中に作業を行う。そして、車体が既作業領域側に位置ずれしている状態で、位置ずれ修正処理を実行するときは、未作業領域側に位置ずれしている状態に比べて、傾斜目標方位における目標方位に対する傾斜を大きくする。
 走行に伴って作物苗を圃場に植え付けるような作業を行う作業車であれば、既作業領域には、作物苗が既に植え付けられているから、車体は既作業領域内に侵入することは避ける必要がある。そこで、車体が既作業領域側に位置ずれしているときには、大きめに傾斜した方向に操向操作することで、できるだけ迅速に位置を修正して、車体が既作業領域内に侵入するのを回避させることができる。
 本発明においては、前記車体は、前記目標移動経路に沿って走行しながら作業を行う直進走行と、前記目標移動経路の終端位置にて前記目標移動経路と平行な次回の目標移動経路に向けて旋回する旋回走行とを交互に繰り返して走行するものであり、
 前記制御手段は、前記車体が未作業領域側に位置ずれしている状態で、前記位置ずれ修正処理を実行するときは、前記車体が既作業領域側に位置ずれしている状態に比べて、前記目標移動経路側に大きく傾斜させて前記傾斜目標方位を設定すると好適である。
 本構成によれば、車体が直進走行と旋回走行とを交互に繰り返すように走行し、直進走行中に作業を行う。そして、車体が未作業領域側に位置ずれしている状態で、位置ずれ修正処理を実行するときは、既作業領域側に位置ずれしている状態に比べて、傾斜目標方位の基準目標方位に対する傾斜を大きくする。
 走行に伴って植立している作物を刈り取るような作業を行う作業車であれば、未作業領域には、植立作物が存在するので、車体は未作業領域内に侵入することは避ける必要がある。そこで、車体が、未作業領域側に位置ずれしているときには、大きめに傾斜した方向に操向操作することで、できるだけ迅速に位置を修正して、車体が未作業領域内に侵入するのを回避させることができる。
 本発明においては、前記車体は、前記目標移動経路に沿って走行しながら作業を行う直進走行と、前記目標移動経路の終端位置にて前記目標移動経路と平行な次回の目標移動経路に向けて旋回する旋回走行とを交互に繰り返して走行するものであり、
 前記制御手段は、前記車体が前記旋回走行を行ったのちに前記直進走行を開始した直後においては、所定の判別条件が成立までの間は、前記位置ずれ修正処理を実行しないと好適である。
 旋回走行したのちに直進走行を開始した直後は、走行状態が安定していない場合があり、車体が目標移動経路から横ずれしている場合もある。その結果、直進走行の開始直後には、すぐに車体が目標移動経路上を安定した状態で走行できるとは限らない。
 そこで、本構成では、直進走行を開始した直後に所定の判別条件が成立までの間は、位置ずれ修正処理を実行しないので、不要な操向操作を回避させることができる。所定の判別条件としては、例えば、旋回してから設定時間が経過すること、設定距離走行すること、車体の方位が所定の方位に近づいたこと等、種々の条件が考えられる。要するに、走行状態が安定するための条件である。
 本発明においては、
 手動操作に基づいて前記車体の進行方向の変更を指令する手動操向操作具と、前記手動操向操作具に対する手動操作が行われたことを検出する手動操作検出手段とが備えられ、
 前記制御手段は、前記手動操作検出手段にて手動操作が検出されると、前記自動操向制御において前記操向操作手段を操作するときの操作力を低減させると好適である。
 本構成によれば、手動操作によっても操向操作手段を操作して車体の進行方向を変更することができる。そして、手動操作検出手段により手動操作が検出されると、制御手段は、自動操向制御において操向操作手段を操作するときの操作力を低減させる。
 その結果、自動操向制御に優先して手動操作による操向操作手段を操作することが可能となり、例えば、障害物との接触のおそれがあるような場合に、自動操向制御に伴う操作ではなく、手動操作による操向操作により、障害物との接触を回避することが可能である。
 本発明においては、前記制御手段は、前記手動操作検出手段にて手動操作が検出されると、前記操作力を低減させ、且つ、前記手動操作検出手段による手動操作が検出されなくなっても、前記操作力を低減させている状態を維持すると好適である。
 本構成によれば、一旦、手動操作が検出されて、操向操作手段の操作力を低減させたのちは、手動操作されなくなってもその状態が支持されるので、手動操作が間欠的に繰り返し行われるような場合であれば、手動による操作が可能であり、使い勝手がよいものとなる。
 本発明においては、前記制御手段は、前記手動操作検出手段にて手動操作が検出されると、前記操作力を低減させ、且つ、前記手動操作検出手段による手動操作が検出されなくなると、前記操作力を元の大きさに戻すと好適である。
 本構成によれば、手動操作が検出されて、操向操作手段の操作力を低減させたのち、手動操作されなくなると、操向操作手段の操作力を元に戻すので、手動操作が1回だけ行われて、その後は手動操作を行わないような場合であれば、自動操向制御が引き続き行われるので、使い勝手がよいものとなる。
 本発明においては、手動操作に基づいて前記車体の進行方向の変更を指令する手動操向操作具と、前記手動操向操作具に対する手動操作が行われたことを検出する手動操作検出手段とが備えられ、
 前記制御手段は、前記手動操向操作具による変更指令が設定時間以上継続して指令されると、前記自動操向制御を停止すると好適である。
 本構成によれば、設定時間以上の長い時間にわたり手動操作が行われると、手動操作による操向操作を継続して行う意思があると判断して、自動操向制御を停止するのである。その結果、自動操向制御に伴う手動操作者の意思に反した方向への操作が無くなり、手動操作が行い易いものになる。
 本発明においては、手動操作に基づいて前記車体の進行方向の変更を指令する手動操向操作具と、前記手動操向操作具に対する手動操作が行われたことを検出する手動操作検出手段とが備えられ、
 前記制御手段は、前記手動操作検出手段にて手動操作が検出されると、前記自動操向制御を停止するとともに、前記手動操向操作具による変更指令に対応する走行状態となるように、前記操向操作手段を操作するアシスト制御を実行する好適である。
 本構成によれば、手動操作によっても操向操作手段を操作して車体の進行方向を変更することができる。そして、手動操作検出手段にて手動操作が検出されると、制御手段は、自動操向制御を停止してアシスト制御を実行する。すなわち、手動操向操作具による変更指令に対応する操向状態となるように、操向操作手段を操作する。
 従って、手動操作による操向操作を行うとき、手動操作者が意図する方向へ操向操作手段を操作するので、手動操作を操作負担の少ない状態で楽に行うことができる。
 本発明においては、前記位置検出手段が、衛星からの電波を受信して前記車体の位置を検出する衛星測位用ユニットであると好適である。
 本構成によれば、例えばGPS等の衛星測位用ユニットにより、衛星からの電波を受信して車体の位置を検出するので、地球上の絶対位置を計測することができる。従って、圃場内における作業車の位置を精度よく検出することができる。
[4]課題[4]に対応する解決手段は、以下の通りである。
 本発明の特徴は、手動操舵による手動走行と、基準走行ラインに平行に設定される設定走行ラインに沿って自動操舵により走行する自動走行と、を切替自在な走行機体と、前記手動走行と前記自動走行とを切替自在な切替スイッチと、前記切替スイッチによって前記手動走行から前記自動走行への切り替えを行った時点における前記走行機体の平面位置を、前記設定走行ラインの始点として設定する始点設定部と、を備えているところにある。
 本発明によれば、切替スイッチで手動走行から自動走行へ切替操作を行うだけで、その地点を、始点設定部によって設定走行ラインの始点として設定することができるから、運転者が、前記圃場コンディションを見ながら、好ましい位置に自由に設定走行ラインを設定することができる。
 しかも、運転者が、設定走行ラインの設定操作は、切替スイッチを手動走行から自動走行へ切り替える操作であるから、切替スイッチの切替操作後は自動走行となり、運転者への負担を軽減することが可能となる。
 本発明においては、前記切替スイッチは、前記走行機体の前後方向に沿って揺動操作する変速操作具に設けてあり、前記切替スイッチの操作方向は、前記走行機体の左右方向に沿って設定してあると好適である。
 本構成によれば、変速操作具に切替スイッチを設けてあるから、変速操作具に手を添えた状態のまま、切替スイッチを操作することが可能となり、手を別の位置に移動させたり握り替えたりせずに、効率よく、切替スイッチの操作を行えるようになる。
 また、変速操作具の操作方向(前後方向)と切替スイッチの操作方向(左右方向)とが異なっているので、変速操作具と切替スイッチとの何れか一方を操作する際に、他方の誤操作を防止し易くなる。
 本発明においては、前記設定走行ラインを平行に変位させる変位スイッチを備えていると好適である。
 本構成によれば、設定走行ラインに沿って自動走行を行っている途中でも、変位スイッチを操作することで、設定走行ラインを平行に変位させることができる。
 従って、自動走行中に、運転者が圃場コンディション(例えば、圃場の起伏や隣接植付完了経路での苗の植付状況等)を見ながら、例えば、植え付けを完了した隣接設定走行ラインに近接した側(又は、離間した側)に設定走行ラインを平行変位させて、より好ましいコースを自動走行できるように設定変更できるようになる。
 従って、圃場の状況によく合致した農作業を実施できるようになる。
 本発明においては、前記変位スイッチは、前記基準走行ラインを設定する際の前記手動走行において、前記走行機体の平面位置を記録部に入力自在な指示スイッチと兼用であると好適である。
 本構成によれば、基準走行ラインの設定に用いる指示スイッチを、前記変位スイッチとして兼用することができるから、スイッチ類の数が少なくなり、例えば、スイッチパネル等を、見易く構成することができる。
 本発明においては、前記変位スイッチは、前記設定走行ラインを、右側に変位させる右変位用変位スイッチと、前記設定走行ラインを左側に変位させる左変位用変位スイッチとを、異なる位置に備えていると好適である。
 本構成によれば、右変位用変位スイッチと左変位用変位スイッチとを、それぞれ設けると共に、異なる位置に備えているから、誤操作し難くなり、運転者の意図した方向へ、走行機体を、正確に変位させることができる。
 本発明においては、前記右変位用変位スイッチは、前記左変位用変位スイッチより、前記走行機体の前方に対する右側に備えていると好適である。
 本構成によれば、右変位用変位スイッチと左変位用変位スイッチとの相対的な位置関係において、右側に右変位用変位スイッチが配され、左側に左変位用変位スイッチが配されているから、走行機体を変位させる方向と、対応する変位スイッチの左右配置とが一致し、誤操作を防止し易くなる。
 その結果、設定走行ラインの変位操作を、より正確に実施できるようになる。
 本発明においては、前記変位スイッチへの操作のうち、初期の所定回数の操作を、前記設定走行ラインの変位制御に反映させない操作キャンセル部を備えていると好適である。
 本構成によれば、例えば、誤って変位スイッチに触れてオン操作してしまった場合でも、その操作回数が、操作キャンセル部で設定されている所定回数以内であれば、設定走行ラインの変位制御に反映されないから、誤動作防止を図ることができる。
 従って、運転者の操作意図に沿って、より正確な走行制御を行うことができる。
 因みに、変位スイッチの操作回数が、操作キャンセル部で設定されている所定回数を超えれば、意図する方向への変位操作が反映され、その指示方向へ、設定走行ラインを変位させることができる。
 本発明においては、前記変位スイッチを操作すると、前記変位スイッチの操作から設定時間が経過するまで、前記変位スイッチの操作を、前記設定走行ラインの変位制御に反映させない操作キャンセル部を備えていると好適である。
 本構成によれば、例えば、変位スイッチを一回だけ操作するつもりが、誤って複数回にわたって連続的にオン操作してしまった場合でも、一回目の操作からの経過時間が、操作キャンセル部で設定されている所定時間以内であれば、二回目以降の操作は、設定走行ラインの変位制御に反映されないから、誤動作防止を図ることができる。
 従って、運転者の操作意図に沿って、より正確な走行制御を行うことができる。
 因みに、変位スイッチの操作経過時間が、操作キャンセル部で設定されている所定時間を超えていれば、その次のスイッチ操作は変位制御に反映され、その指示方向へ、設定走行ラインを変位させることができる。
 本発明においては、前記変位スイッチを操作すると、変位後の前記設定走行ラインを中心として設定される所定幅の誤差領域に、前記走行機体が達するまで、前記変位スイッチの操作を、前記設定走行ラインの変位制御に反映させない操作キャンセル部を備えていると好適である。
 本構成によれば、例えば、複数回にわたって連続的に変位スイッチをオン操作してしまった場合でも、一回目の操作によって変位設定された目標設定走行ラインに向けて走行機体が自動走行中においては、目標設定走行ラインを中心として設定される所定幅の誤差領域に達するまでは、操作キャンセル部によって変位スイッチの操作が変位制御に反映されないから、誤動作や、急激な進路変更等を防止できる。
 従って、運転者の操作意図に沿って、より正確な走行制御を行うことができる。
[5]課題[5]に対応する解決手段は、以下の通りである。
 本発明による圃場作業車両は、畦際領域で方向転換しながら圃場内を走行する走行機体と、前記圃場に対して作業を行う圃場作業装置と、自車位置を示す測位データを出力する測位ユニットと、前記走行機体を人為操作に基づいて操舵する人為操舵部と、前記走行機体を自動操舵する自動操舵部と、前記自車位置に基づいて前記走行機体が前記畦際領域に到達したことを検知する畦際検知モジュールとを備えている。
 この構成によれば、GNSS(Global Navigation Satellite System)やGPS(Global Positioning System)などを用いた測位ユニットから自車位置を示す測位データが得られるので、畦際領域の位置さえ予め設定しておけば、走行機体が前記畦際領域に到達したことを、畦際検知モジュールが検知することができ、これを運転者や自動操舵の制御系に伝えることができる。その結果、運転者が視覚的な確認で行っていた走行機体の畦際領域への到達を、安定的にかつ正確に検知することができ、運転者の負担を軽減することができる。
 畦際領域の位置を予め設定するための方法の1つは、畦際領域を含む圃場の地図データを装備し、当該地図データにおいて畦際領域を設定しておくことである。この地図データに基づく圃場地図と測位ユニットから得られる自車位置とをマッチングすることにより、走行する圃場作業車両の圃場内での位置がリアルタイムで算定される。したがって、走行機体が畦際領域に到達する時点を自動操舵の制御系や運転者に報知することが可能となる。このことから、本発明の好適な実施形態の1つでは、前記圃場の地図データを格納する圃場地図格納部が備えられ、前記畦際検知モジュールは、前記自車位置と前記地図データとを用いてマップマッチングすることで、前記走行機体が前記畦際領域に到達したことを検知する。
 圃場作業車両による実際の圃場作業において、圃場に対する作業を実施する非畦際領域(作業領域:一般には圃場の枕地以外の領域)での走行と、方向転換を行う畦際領域での走行とでは、車両の挙動が異なる。この車両の挙動には、走行機体の挙動と圃場作業装置の挙動とが含まれる。特に、非畦際領域から畦際領域への進入時に発生する車両挙動と、畦際領域から非畦際領域への進入時に発生する車両挙動とを検出し、その検出時点の自車位置とを組み合わせることで、畦際領域と非畦際領域との境界点が得られる。一般的な圃場では、隣接する境界点の間隔は、往復作業走行での走行軌跡の間隔、つまり作業幅にほぼ等しくなるので、最初に得られた境界点から、次の境界点を推定することも可能である。このことから、本発明の好適な実施形態の1つでは、前記走行機体または前記圃場作業装置あるいはその両方の挙動を前記走行機体の位置と関係付けて車両挙動として記録する車両挙動記録部が備えられ、前記畦際検知モジュールは、前記車両挙動に基づいて、前記走行機体が前記畦際領域に到達したことを検知する。
 非畦際領域から畦際領域への進入時に発生する車両挙動、畦際領域から非畦際領域への進入時に発生する車両挙動への進入時に発生する車両挙動、及び畦際領域から非畦際領域への進入時に発生する車両挙動は、圃場作業車両の種類や作業内容によって異なる。田植機による植付け作業や播種作業、トラクタによる耕耘作業、コンバインによる刈取り収穫作業では、共通する車両挙動として、圃場作業装置の作業開始と作業停止、圃場作業装置の作業位置への移行と非作業位置への移行、走行機体の方向転換走行の開始と停止が挙げられる。このことから、本発明の好適な実施形態の1つでは、前記車両挙動記録部は、前記圃場作業装置の作業開始と作業停止とを前記車両挙動として記録する。他の1つの実施形態では、前記車両挙動記録部は、前記圃場作業装置の作業位置への移行と非作業位置への移行とを前記車両挙動として記録する。さらに他の1つの実施形態では、前記車両挙動記録部は、前記走行機体の方向転換走行の開始と停止とを前記車両挙動として記録する。もちろん、これらの実施形態を、任意に組み合わせて適用してもよい。
 また、非畦際領域と畦際領域との境界点を人為的に決定してもよい。このため、本発明の実施形態の1つでは、前記畦際領域の走行(畦際走行モード)と前記畦際領域以外の走行(非畦際走行モード)との間の移行時に人為操作される走行モード切替操作具が備えられ、前記車両挙動記録部は、前記走行モード切替操作具の操作を前記車両挙動として記録する。
 上述したように、一度、非畦際領域と畦際領域との境界を車両挙動に基づいて決定すれば、それ以降の非畦際領域と畦際領域との境界を推定することが可能なので、本発明の好適な実施形態の1つでは、前記畦際検知モジュールは、隣接する前回の作業走行経路における前記車両挙動から次回の前記走行機体の前記畦際領域への到達タイミングを推定する畦際推定部を有する。これにより、非畦際領域の走行中に畦際領域への接近状態を算定することができ、畦際領域への到達前または到達後に適切かつ必要な制御を行うことができる。
 例えば、前記畦際推定部によって推定された到達タイミングの前に前記畦際領域への接近を報知する接近報知指令が出力されるならば、運転者は、畦際領域において行わなければならない操作や確認を、余裕をもって行うことができる。また、走行機体の畦際領域への不測の接近に伴う不都合を回避するため、前記畦際推定部によって推定された到達タイミングの前に前記走行機体を減速させる減速指令が出力されるような実施形態を採用することができる。さらには、記畦際推定部によって推定された到達タイミングから所定距離だけ走行した場合、走行機体を停止させる車両停止指令が出力されるような実施形態や前記畦際推定部によって推定された到達タイミングに応答して、走行機体を停止させる車両停止指令が出力されるような実施形態を採用することも可能である。
 非畦際領域での走行と、方向転換を行う畦際領域での走行とでまったく異なった操舵が行われる。このため、この2つの異なる走行を、自動操舵で行うか、人為操舵で行うかは、圃場作業車両の種類、圃場作業の種類、運転者の熟練度などによっても異なる。このため、本発明の好適な実施形態の1つでは、前記人為操舵部による人為操舵が実行される人為操舵モードと前記自動操舵部による自動操舵が実行される自動操舵モードとを管理する操舵モード管理部とが備えられている。この構成では、前もって適切なアルゴリズムを組み込んでおけば、走行状況や周囲状況に応じて自動操舵と人為操舵とを適切に割り当てることができる。
 例えば、方向転換走行の操舵を自動で行うことが技術的に負担となる場合、前記操舵モード管理部は、前記畦際領域では人為操舵モードを選択し、前記畦際領域以外は自動操舵モードを選択するような構成を採用することができる。
 また、自動操舵と人為操舵とをフレキシブルに適用する場合には、前記自動操舵モードと前記人為操舵モードとを人為的に選択する操舵モード切替操作具が備えられている実施形態を採用するとよい。
 GNSSやGPSなど、衛星からの電波を用いた測位ユニットでは、受信状態が悪化などで動作不能が発生すれば、測位データが得られない不都合が生じる。このため、本発明の好適な実施形態では、車輪の回転数に基づいて走行距離を算定する走行距離算定部が備えられ、前記測位ユニットの動作不能時には、前記畦際検知モジュールは、前記走行距離算定部によって算定された走行距離に基づいて、前記走行機体が前記畦際領域に到達したことを検知する。これにより、一時的に測位ユニットが動作不能となっても、走行機体が畦際領域に到達したことが検知される。その際、測位ユニットの動作不能により走行距離算定部によって畦際領域に到達したことを検知した場合には、その時点で、走行機体を停止させてもよい。
 特に自動操舵で走行する場合、自動操舵の制御系が車両の種々の状況を把握しながら走行することは難しい。圃場での走行において重要な車両状況の1つは、走行機体の姿勢である。走行機体の姿勢は、実質的には走行機体の地面の対する傾斜によって決定される。特に、所定以上のピッチング角やローリング角は、走行に悪影響を及ぼす。このため、本発明の好適な実施形態の1つでは、前記走行機体の姿勢を判定する姿勢判定部が備えられ、前記姿勢が所定条件から外れた場合に、前記走行機体を減速または停止させる制動指令(停止指令や減速指令が含まれる)が出力される。
 その他の特徴、及び、これから奏する有利な効果については、添付図面を参照しながら以下の説明を読めば明らかになるだろう。
第1実施形態を示す図であって(以下、図8まで同じ。)作業車の一例としての田植機を示す側面図である。 田植機を示す上面図である。 田植機を示す前面図である。 操向ユニットを模式的に示す模式図である。 自動操向制御に係る制御構成を示すブロック図である。 自動操向制御の動作を説明する上面視の説明図である。 目標ラインの生成等について説明する上面視の説明図である。 別実施形態を示す側面図である。 本発明の第2実施形態を示す図であって(以下、図22まで同じ。)、下段の予備苗収容装置が第2状態にある乗用型田植機の全体を示す左側面図である。 下段の予備苗収容装置が第1状態にある乗用型田植機の全体を示す左側面図である。 下段の予備苗収容装置が第2状態にある乗用型田植機の全体を示す平面図である。 走行車体の前面図である。 第2状態の左下段の予備苗収容装置の後部を示す左側面図である。 後ガードを示す正面図である。 後ガードを示す斜視図である。 苗載台の上端側部分を示す斜視図である。 仕切りプレートを示す縦断面図である。 第2の実施構造を備えた手摺りを示す左側面図である。 第3の実施構造を備えた手摺りを示す左側面図である。 第1の別実施構造を備えた後ガードを示す左側面図である。 第2の別実施構造を備えた後ガードを示す正面図である。 第3の別実施構造を備えた後ガードを示す正面図である。 第3実施形態を示す図であって(以下、図32まで同じ。)、作業車の一例としての田植機の全体側面図である。 田植機の全体平面図である。 田植機の正面図である。 操向ユニットを示す図である。 制御構成を示すブロック図である。 自動操向制御の動作を説明する田面全体での平面視の説明図である。 自動操向制御の動作を説明する田植機の平面視の説明図である。 自動操向制御の動作を説明する田植機の平面視の説明図である。 自動操向制御の動作を説明する田植機の平面視の説明図である。 自動操向制御の動作を説明する田植機の平面視の説明図である。 第4実施形態を示す図であって(以下、図42まで同じ。)、農作業機又は農作業車の一例としての田植機を示す側面図である。 田植機を示す上面図である。 操向ユニットを模式的に示す模式図である。 自動操向制御に係る制御構成を示すブロック図である。 メータパネルの周囲を示す上面図である。 走行ラインの生成等について説明する上面視の説明図である。 設定走行ラインの平行変位操作を説明する上面視の説明図である。 設定走行ラインの平行変位制御のフロー図である。 別実施形態の自動操向制御に係る制御構成を示すブロック図である。 別実施形態の設定走行ラインの平行変位操作を説明する上面視の説明図である。 第5実施形態を示す図であって(以下、図49まで同じ。)圃場作業車両に採用されている車両制御の基本原理を説明する模式図である。 圃場作業車両に採用されている車両制御の基本原理を説明する模式図である。 圃場作業車両の実施形態の1つである田植機の側面図である。 圃場作業車両の実施形態の1つである田植機の平面図である。 田植機の操舵系を示す模式図である。 田植機の走行制御に関する機能を示す機能ブロック図である。 記録された車両挙動の一例を示す説明図である。
[第1実施形態]
 図1~図3に示すように、農作業車のうちの植播系水田作業車である乗用型の田植機(「作業車」の一例)には、走行装置Aを有する走行機体Cと、圃場に対する作業を行う作業装置と、が備えられている。田植機の作業装置は、圃場に対する苗の植え付けが可能な苗植付装置Wである。なお、図2に示す矢印Fが走行機体Cの「前」、矢印Bが走行機体Cの「後」、矢印Lが走行機体Cの「左」、矢印Rが走行機体Cの「右」である。
 図1に示すように、走行装置Aとしては、左右一対の前車輪10と左右一対の後車輪11とが備えられている。走行機体Cには、走行装置Aにおける左右の前車輪10を操向可能な操向ユニットUが備えられている。
 図1~図3に示すように、走行機体Cの前部には、開閉式のボンネット12が備えられている。ボンネット12内には、エンジン13が備えられている。ボンネット12の先端位置には、指標ラインLN(図6参照)を確認するための棒状のセンターマスコット14が備えられている。図1、図3に示すように、走行機体Cには、前後方向に沿って延びる枠状の機体フレーム15が備えられている。機体フレーム15の前部には、支持支柱フレーム16が立設されている。
〔苗植付装置について〕
 図1に示すように、苗植付装置Wは、油圧シリンダで構成される昇降シリンダ20の伸縮作動により昇降作動するリンク機構21を介して、走行機体Cの後端に昇降自在に連結されている。
 図1、図2に示すように、苗植付装置Wには、4個の伝動ケース22、各伝動ケース22の後部の左側部及び右側部に回転自在に支持された回転ケース23、各回転ケース23の両端部に備えられた一対のロータリ式の植付アーム24、圃場の田面を整地する複数の整地フロート25、植え付け用のマット状苗が載置される苗載せ台26等が備えられている。つまり、苗植付装置Wは、8条植え型式に構成されている。
 このように構成された苗植付装置Wは、苗載せ台26を左右に往復横送り駆動しながら、伝動ケース22から伝達される動力により各回転ケース23を回転駆動して、苗載せ台26の下部から各植付アーム24により交互に苗を取り出して圃場の田面に植え付けるようになっている。
〔予備苗台について〕
 図1~図3に示すように、走行機体Cにおけるボンネット12の左右側部には、苗植付装置Wに補給するための予備苗を載置可能な複数(例えば4つ)の通常予備苗台28(「予備苗台」の一例)、苗植付装置Wに補給するための予備苗を載置可能な1つのレール式予備苗台29(「予備苗台」の一例)が備えられている。また、走行機体Cにおけるボンネット12の左右側部には、各通常予備苗台28とレール式予備苗台29とを支持する左右一対の予備苗フレーム30と、左右の予備苗フレーム30の上部に亘って連結される連結フレーム31と、が備えられている。連結フレーム31は、前面視で、U字状の形状となっている。連結フレーム31の左右端部は、それぞれ、連結ブラケット32を介して、左右の予備苗フレーム30の上部に連結されている。
〔マーカ装置について〕
 図1に示すように、苗植付装置Wの左右側部には、それぞれ、圃場の田面に指標ラインLN(図6、図7参照)を形成するためのマーカ装置33が備えられている。左右のマーカ装置33は、それぞれ、圃場の田面に接地して走行機体Cの走行に伴い圃場の田面に指標ラインLNを形成する作用姿勢、及び、圃場の田面から上方に離れた格納姿勢に操作自在に構成されている。
 図1に示すように、左右のマーカ装置33には、それぞれ、上下に揺動自在に苗植付装置Wに支持されたマーカアーム34と、マーカアーム34の先端部に自由回転自在に支持された周方向に複数の凸部体を有する回転体35と、が備えられている。また、左右右のマーカ装置33を作用姿勢及び格納姿勢に操作するマーカ用電動モータ(図示なし)が備えられている。各マーカ装置33は、作用姿勢にすることにより、走行機体Cの操向に伴って回転体35が地面を転動して、上面視で、点線状の指標ラインLN(図6参照)を形成するようになっている。
〔運転部について〕
 図1~図3に示すように、走行機体Cの中央部には、各種の運転操作が行われる運転部40が備えられている。運転部40には、運転者が着座可能な運転座席41、操縦塔42、前車輪10の手動の操向操作用のステアリングホイールにより構成される操向ハンドル43、前後進の切り換え操作や走行速度を変更操作が可能な主変速レバー44、操作レバー45等が備えられている。運転座席41は、走行機体Cの中央部に備えられている。操縦塔42に、操向ハンドル43、主変速レバー44、操作レバー45等が操作自在に備えられている。運転部40の足元部位には、搭乗ステップ46が設けられている。搭乗ステップ46の左右の外側位置には、補助ステップ47が設けられている。ボンネット12の左右両側には、搭乗ステップ46に段差なく連なる乗降通路としての乗降ステップ48が設けられている。乗降ステップ48の横外側に、左右の予備苗フレーム30がそれぞれ配置されている。
〔操作レバーについて〕
 図2、図3に示される操作レバー45は、操向ハンドル43の下側の右横側に備えられている。詳細な図示はしないが、操作レバー45は中立位置から、上方の上昇位置、下方の下降位置、後方の右マーカ位置、及び、前方の左マーカ位置、の十字方向に操作自在に構成され、中立位置に付勢されている。
 操作レバー45を上昇位置に操作すると、植付クラッチ(図示なし)が遮断状態に操作されて、苗植付装置Wが上昇し、左右のマーカ装置33(図1参照)が格納姿勢に操作される。操作レバー45を下降位置に操作すると、植付クラッチ(図示なし)が遮断状態に操作され、左右のマーカ装置33が格納姿勢に操作され、苗植付装置Wが下降する。中央の整地フロート25が圃場の田面に接地すると、苗植付装置Wが圃場の田面に接地して停止した状態となる。
 操作レバー45を右マーカ位置に操作すると、右のマーカ装置33が格納姿勢から作用姿勢になる。操作レバー45を左マーカ位置に操作すると、左のマーカ装置33が格納姿勢から作用姿勢になる。
 運転部40の操縦塔42には、押圧操作式の自動操向スイッチ50(図5参照)が備えられている。自動操向スイッチ50は、操向ユニットUの自動操向の入り切りの切り換え操作を行うことが可能に構成されている。また、主変速レバー44には、操向ユニットUの自動操向制御に用いるティーチング方向TA(図6参照)を登録するための登録スイッチ52(図5参照)が備えられている。登録スイッチ52には、押圧操作式の第一登録ボタン52Aと、押圧操作式の第二登録ボタン52Bと、が備えられている。
〔操向ユニットについて〕
 図4に示すように、操向ユニットUには、上述の操向ハンドル43、操向ハンドル43に連動連結されるステアリング操作軸54、ステアリング操作軸54の回動に伴って揺動するピットマンアーム55、ピットマンアーム55に連動連結される左右の連繋機構56、ステアリングモータ58、ステアリング操作軸54にステアリングモータ58を連動連結するギヤ機構57等が備えられている。
 ステアリング操作軸54は、ピットマンアーム55、左右の連繋機構56を介して、左右の前車輪10に、それぞれ、連動連結されている。ステアリング操作軸54の回転量は、ステアリング操作軸54の下端部に備えられるロータリエンコーダからなる操向角センサ60(図5参照)により検出されるようになっている。
 操向ユニットUの手動操向を行う場合には、運転者が操向ハンドル43を操作する操作力に、ステアリングモータ58による操向ハンドル43の操作に応じた補助力を付与してステアリング操作軸54を回動操作し、前車輪10の操向角度を変更するようになっている。一方、操向ユニットUの自動操向を行う場合には、ステアリングモータ58を駆動して、ステアリングモータ58の駆動力によりステアリング操作軸54を回動操作し、前車輪10の操向角度を変更するようになっている。
〔受信装置を有する計測ユニットと慣性計測装置について〕
 図1~図3、図5に示すように、走行機体Cには、衛星測位システムにより位置情報を取得する受信装置63及び主に、走行機体Cの傾き(ピッチ角、ロール角)を検出可能な副慣性計測装置64を有する計測ユニット61と、慣性情報を計測する主慣性計測装置62(「慣性計測装置」に相当)と、が備えられている。
 主慣性計測装置62、及び、副慣性計測装置64は、それぞれ、IMU(Inertial Measurement Unit)により構成されている。
 受信装置63及び副慣性計測装置64を有する計測ユニット61と、主慣性計測装置62と、は走行機体Cにおける異なる箇所に配置されている。また、受信装置63及び副慣性計測装置64を有する計測ユニット61と、主慣性計測装置62と、は走行機体Cにおける左右中心線CL上に配置されている。
 上述の衛星測位システム(GNSS:Global Navigation Satellite System)には、その代表的なものとしてGPS(Global Positioning System)が挙げられる。GPSは、地球の上空を周回する複数のGPS衛星や、GPS衛星の追跡と管制を行う管制局や、測位を行う対象(走行機体C)が備える受信装置63を使用して受信装置63の位置を計測するものである。受信装置63は、衛星測位システムにより走行機体Cの位置情報を取得するために用いられる。
 図1~図3に示すように、受信装置63を有する計測ユニット61は、板状の支持プレート65を介して、連結フレーム31に取り付けられている。受信装置63を有する計測ユニット61は、走行機体Cの前部位置(特に、前車輪10よりも前側)に配置されている。このため、走行機体Cが進行方位を変更した場合には、走行機体Cの後端位置と比較して走行機体Cの前部位置の方が左右方向への変位量が大きく、受信装置63により取得される走行機体Cの自機位置NMの変化を高感度で検知できる。
 図3等に示すように、連結フレーム31は、受信装置63を有する計測ユニット61が予備苗フレーム30の上端部よりも上方に位置する使用状態S1と、使用状態S1に対して上下反転し、受信装置63が予備苗フレーム30の上端部よりも下方に位置する格納状態S2と、に状態変更可能となっている。説明を加えると、連結フレーム31は、左右方向に沿った左右軸心X周りに回動可能、且つ、連結ブラケット32により、使用状態S1と格納状態S2の各状態で位置固定可能に、左右の予備苗フレーム30に支持されている。
 図1、図3等に示すように、連結フレーム31を使用状態S1にすることにより、受信装置63が、連結フレーム31と予備苗フレーム30とにより、高い箇所に支持されるものとなるので、走行機体Cの走行に伴い、予備苗フレーム30と連結フレーム31の撓みにより、受信装置63が揺れやすく、受信装置63により取得される位置情報に基づく走行機体Cの自機位置NMや自機方位NAの検出を精度よく行うことができる。さらに、連結フレーム31を使用状態S1にすることにより、受信装置63が走行機体Cにおける最上位の箇所に位置するものとなるため、受信装置63の電波の受信感度を高めることができ、受信装置63に電波障害が生じにくいものとなる。
 図2、図3に示すように、計測ユニット61の受信装置63には、ハーネス66を接続するコネクタ部67が備えられている。コネクタ部67は、計測ユニット61の受信装置63から左右方向外側に延びている。ハーネス66は、連結フレーム31、予備苗フレーム30に沿わせて配索されている。さらに、コネクタ部67を保護するガード部材68が備えられている。ガード部材68は、支持プレート65に取り付けられている。ガード部材68は、コネクタ部67の前側を保護するようになっている。
 図1に示すように、主慣性計測装置62は、走行機体C及び苗植付装置Wの前後方向における全長のうち前後方向中心の近傍の箇所に配置されている。説明を加えると、主慣性計測装置62は、走行機体Cの進行方向の旋回中心(走行機体Cのヨー軸の軸心)の近傍に配置されている。
 具体的には、走行機体Cの後部には、後車輪11に駆動力を伝達する後車軸72を回動自在に支持する後車軸フレーム73(「取付部材」に相当)が備えられている。後車軸フレーム73は、走行装置Aの後車軸72の近傍に位置する剛性を有する部材となっている。主慣性計測装置62は、この後車軸フレーム73に取り付けられている。
 説明を加えると、図1、図2に示すように、主慣性計測装置62は、苗植付装置Wの近傍に位置している。また、主慣性計測装置62は、運転座席41の後側下方に位置している。
 図5に示すように、主慣性計測装置62には、主に、走行機体Cのヨー角度(走行機体Cの旋回角度)の角速度を検出可能なジャイロセンサ70と、互いに直交する3軸方向の加速度を検出可能な加速度センサ71と、が備えられている。つまり、主慣性計測装置62により計測される慣性情報には、ジャイロセンサ70により検出される方位変化情報と、加速度センサ71により検出される位置変化情報と、が含まれている。上述のように、主慣性計測装置62を、走行機体Cの進行方向の旋回中心の近傍に配置していることから、ジャイロセンサ70に生じる方位変化情報の積算誤差を小さく抑えることが可能になるとともに、加速度センサ71による位置変化情報の検出精度が高いものとなる。
〔制御構成について〕
 図5に示すように、走行機体Cには、操向ユニットUの自動操向についての制御を行う制御装置75が備えられている。制御装置75には、情報記憶部76と、ティーチング記憶部77と、旋回検出部78と、開始判定部79と、情報補正部80と、走行機体Cを走行させる目標ラインLMを生成する生成部81と、状態検出部82と、位置情報、及び、慣性情報に基づいて、走行機体Cが目標ラインLMに沿って走行するように、操向ユニットUを制御する制御部83と、が備えられている。
 制御装置75には、受信装置63と、副慣性計測装置64と、主慣性計測装置62におけるジャイロセンサ70、加速度センサ71、操向角センサ60、自動操向スイッチ50、登録スイッチ52等の情報が入力されている。
 情報記憶部76は、受信装置63から取得される位置情報を、時間毎に記憶していくように構成されている。
 ティーチング記憶部77は、登録スイッチ52の操作に基づいて、情報記憶部76に記憶された位置情報のうち2点の位置情報を用いて、ティーチング方向TAを算出するように構成されている。
 旋回検出部78は、操向角センサ60から入力される操向ユニットUのステアリング操作軸54の操向角情報に基づいて、走行機体Cの旋回開始、及び、走行機体Cの旋回終了を検出するように構成されている。
 開始判定部79は、走行機体Cの自動操向制御を開始するか否かの判定を行うように構成されている。
 情報補正部80は、走行機体Cの自動操向制御の開始毎に、主慣性計測装置62により計測される慣性情報のうちジャイロセンサ70により検出される情報の積算誤差を、受信装置63により取得される位置情報、及び、副慣性計測装置64により計測される情報と、に基づいて補正処理を行うように構成されている。
 生成部81は、ティーチング方向TAと、走行機体Cの自動操向制御の開始時の自機位置NM、及び、自機方位NAに基づいて、目標ラインLMを生成するように構成されている。
 状態検出部82は、走行機体Cの自動操向制御中に、走行機体Cの自機位置NMと目標ラインLMとの距離偏差(ズレ距離)と、走行機体Cの自機方位NAとティーチング方向TAとの角度偏差(ズレ角度)と、を検出するように構成されている。
 制御部83は、状態検出部82から入力される情報に基づいて、操向ユニットUのステアリングモータ58の駆動を制御するように構成されている。
〔自動操向制御について〕
 一例として、上面視で四角形の水田において苗の植え付け作業を行う場合について説明する。
 図6に示すように、まず、走行機体Cを圃場内の畦際の或る第一位置Q1に位置させ、登録スイッチ52の第一登録ボタン52A(図5参照)を操作する。そして、苗植付装置Wを上昇させ、且つ、整地フロート25を接地させた状態で、第一位置Q1から側部側の畦際の直線形状に沿って、走行機体Cを直進走行させ、反対側の畦際近くの第二位置Q2まで移動させてから、登録スイッチ52の第二登録ボタン52B(図5参照)を操作する。これにより、第一位置Q1において受信装置63により取得された位置情報と第二位置Q2において受信装置63により取得された位置情報とから、第一位置Q1と第二位置Q2とを結ぶ方向であるティーチング方向TAが生成される。
 次に、図6に示すように、操向ハンドル43の操作により、走行機体Cを手動で旋回させる。操向角センサ60により、走行機体Cの旋回開始が検出されると、苗植付装置W、整地フロート25、マーカ装置33とが、圃場の田面から自動的に上昇される。走行機体Cの旋回が終了すると、走行機体Cの旋回終了位置Q3が、操向角センサ60の検出結果に基づいて検出される。
 走行機体Cの旋回終了位置Q3が検出されてから一定時間が経過するまで、且つ、自機方位NAとティーチング方向TAとのズレ角度が所定範囲内となるまで、自動操向スイッチ50の操作入力を受け付けない不感帯が設定されている。つまり、走行機体Cの状態が不感帯にある間は、自動操向スイッチ50が操作されても、自動操向制御は開始されない。走行機体Cの状態が不感帯にある間に、運転者は、センターマスコット14の先端部を見る目線の先に、指標ラインLNが合致するように、操向ユニットUを手動操向して、走行機体Cの位置合わせを行うことができる。
 そして、走行機体Cの状態が不感帯を抜けると、自動操向スイッチ50の操作入力が受け付けられ、自動操向スイッチ50が操作されると、制御開始位置Q4において受信装置63における位置情報い基づく走行機体Cの自機位置NM、自機方位NAが記憶される。そして、受信装置63が設置されている位置から、走行機体Cの自機方位NAの方向に所定距離離れた箇所から、ティーチング方向TAと平行な直線状の目標ラインLMが生成される。これとともに、主慣性計測装置62により計測される情報が、受信装置63により取得された自機位置NMの位置情報、及び、受信装置63により取得された自機位置NMの位置情報と直前位置の位置情報に基づいて算出された自機方位NAに基づいて補正される。
 なお、図6では、図示の都合上、マーカ装置33により形成された指標ラインLNと、目標ラインLMとを少しずらしてあるが、実際は、運転者の目線が、センターマスコット14の先端部と指標ラインLNとが一致するように、手動の位置合わせが行われるので、指標ラインLNと略一致するように目標ラインLMが生成される。
 そして、これとともに、主に主慣性計測装置62に基づく、走行機体Cの自動操向制御が開始される。つまり、自動操向制御においては、主慣性計測装置62が主に用いられ、受信装置63が主慣性計測装置62の補正用に用いられる。具体的には、制御開始位置Q4における受信装置63により取得された位置情報に基づく自機位置NMと自機方位NAと、主慣性計測装置62のジャイロセンサ70により計測される角速度を積分処理して求められる方位変化情報と、主慣性計測装置62の加速度センサ71により計測される加速度を積分処理して求められる位置変化情報と、に基づいて、現在の自機位置NMや自機方位NAを求める。そして、現在の自機位置NMや自機方位NAが、目標ラインLM、ティーチング方向TAと合致するように操向ユニットUの自動操向が行われ、走行機体Cの自動操向制御が行われる。
 走行機体Cの自動操向制御中に、自機方位NAとティーチング方向TAとの角度偏差(ズレ角度)がなく、自機位置NMと目標ラインLMとの距離偏差(ズレ距離)がない場合、操向ユニットUは操向制御されない。
 また、走行機体Cの自動操向制御中に、自機方位NAとティーチング方向TAとの角度偏差(ズレ角度)があり、自機位置NMと目標ラインLMとの距離偏差(ズレ距離)がない場合、操向ユニットUは、自機方位NAとティーチング方向TAとの角度偏差(ズレ角度)をなくす方向に操向制御される。
 また、走行機体Cの自動操向制御中に、自機方位NAとティーチング方向TAとの角度偏差(ズレ角度)があり、自機位置NMと目標ラインLMとの距離偏差(ズレ距離)がある場合には、操向ユニットUは、自機方位NAとティーチング方向TAとの角度偏差(ズレ角度)をなくす方向に操向制御される。
 また、走行機体Cの自動操向制御中に、自機方位NAとティーチング方向TAとの角度偏差(ズレ角度)がなく、自機位置NMと目標ラインLMとの距離偏差(ズレ距離)がある場合、操向ユニットUは、自機位置NMと目標ラインLMとの距離偏差(ズレ距離)をなくす方向に操向制御される。
 これにより、走行機体Cが、目標ラインLMに沿って正確に走行するものとなる。
 このように、走行機体Cの自動操向制御中には、受信装置63により取得される位置情報が必須ではないので、仮に、走行機体Cの自動操向制御中に、受信装置63に電波障害等が発生した場合であっても、主慣性計測装置62により計測される慣性情報に基づいて走行機体Cの自動操向制御を継続でき、苗植付装置Wによる苗の植え付けを目標ラインLMに沿って正確に行うことができる。
 そして、走行機体Cが畦際に接近すると、運転者が自動操向スイッチ50を操作することにより、走行機体Cの自動操向制御が停止され、手動操向に切り換わる。そして、畦際で同様に旋回操作を行い、同様の操作を繰り返して、圃場への苗の植え付けを行ってゆく。これにより、運転者は、苗植付装置Wによる圃場への苗の植え付け中に操向ハンドル43の手動操作を行う必要がなく、苗の植え付け作業を、より正確に、より簡単に行うことができる。
〔自機位置の設定について〕
 図7に示すように、受信装置63は、走行機体Cの前部に配置されているが、データ処理の基準となる自機位置NMは、受信装置63の実際の設置位置ではなく、主慣性計測装置62の近傍位置に設定されている。データ処理の基準となる自機位置NMの設定は、受信装置63と自機位置NMとする箇所までの距離、及び、受信装置63や主慣性計測装置62に基づいて算出される自機方位NAに基づいて求められるようになっている。目標ラインLMに沿って正確に走行させたいのは、苗植付装置Wであるので、自機位置NMを、このように、苗植付装置Wの近傍に設定することにより、苗植付装置Wが目標ラインLMに沿って正確に走行するように、走行機体Cの自動操向制御が行うことができるものとなる。
〔予備苗フレーム、通常予備苗台、レール式予備苗台、の関係について〕
 図3に示すように、左右の予備苗フレーム30には、それぞれ、支持支柱フレーム16に固定される固定部85と、固定部85から上向きに延びて左右内側に向けて傾斜する傾斜部86と、傾斜部86から上向きに延びる縦部87と、が備えられている。つまり、予備苗フレーム30の縦部87は、支持支柱フレーム16、及び、予備苗フレーム30の固定部85に対して、左右内側に所定距離Dだけオフセットしている。
 図1~図3に示すように、複数の通常予備苗台28は、それぞれ、予備苗フレーム30の縦部87に設けられる前後方向に沿いつつ前方に向かうにつれて左右内側に傾斜した前後軸心Y周りに揺動可能に予備苗フレーム30に支持されている。通常予備苗台28は、横姿勢E1と、縦姿勢E2と、に姿勢変更可能に構成されている。
 図1~図3に示すように、通常予備苗台28を、横姿勢E1にすると、通常予備苗台28の載置面が略水平な状態となる。一方、通常予備苗台28を、横姿勢E1から縦姿勢E2にする際には、各通常予備苗台28を前後軸心Y周りに揺動して縦向きにする。これにより、縦姿勢E2の各通常予備苗台28が、予備苗フレーム30の縦部87側に寄った左右方向にコンパクトな状態となる。
 図1~図3に示されるレール式予備苗台29には、前載置台88と、中央載置台89と、後載置台90と、が備えられている。中央載置台89は、一対の支持ブラケット91を介して、支持支柱フレーム16に固定されている。前載置台88は、左右方向に沿った前横軸心P1周りに揺動可能に中央載置台89の前端部に連結されている。後載置台90は、左右方向に沿った後横軸心P2周りに揺動自在に中央載置台89の後端部に連結されている。図1に示すように、レール式予備苗台29は、展開状態F1と、折り畳み状態F2とに状態変更可能に構成されている。レール式予備苗台29を展開状態F1にすると、中央載置台89を中心にして、中央載置台89の前側に前載置台88が展開され、中央載置台89の後側に後載置台90が展開される。つまり、レール式予備苗台29を展開状態F1にすると、前載置台88と、中央載置台89と、後載置台90と、が前後に順に並ぶ状態となる。
 図1に示すように、レール式予備苗台29を展開状態F1から折り畳み状態F2にする際には、中央載置台89の前端に位置する前横軸心P1周りに前載置台88を揺動させて、中央載置台89の上側に前載置台88を折り畳んで位置させ、中央載置台89の後端に位置する後横軸心P2周りに後載置台90を揺動させて、中央載置台89の上側に後載置台90を位置させる。これにより、レール式予備苗台29を前後方向にコンパクトな折り畳み状態F2とすることができる。
 図1に示すように、複数の通常予備苗台28は、縦並びで配置され、レール式予備苗台29は、最下段の通常予備苗台28の下方に配置されている。
 すなわち、図1~図3から理解されるように、予備苗フレーム30の縦部87を、支持支柱フレーム16、及び、予備苗フレーム30の固定部85に対して、左右内側に所定距離Dだけオフセットさせていることに加え、複数の通常予備苗台28を予備苗フレーム30の縦部87側に寄った左右方向にコンパクトな状態となった縦姿勢E2に姿勢変更して左右内側にオフセット可能にしていることにより、レール式予備苗台29を、予備苗フレーム30や通常予備苗台28に干渉することなく、展開状態F1から折り畳み状態F2に支障なく状態変更できるようになっている。また、複数の通常予備苗台28の方を左右内側にオフセット可能にしていることにより、例えば、レール式予備苗台29を左右外側にオフセットさせるよりも、走行機体Cの全体の左右幅を小さくできる。
〔第1実施形態の別実施形態〕
 以下、第1実施形態の別実施形態について説明する。下記の各別実施形態は、矛盾が生じない限り、複数組み合わせて上記実施形態に適用してもよい。なお、本発明の範囲は、これら実施形態の内容に限定されるものではない。
(1)上記実施形態では、主に、主慣性計測装置62により計測される慣性情報に基づいて走行機体Cの自動操向制御を行い、主慣性計測装置62により計測される慣性情報を受信装置63により取得される位置情報に基づいて補正するものが例示されているが、これに限られない。例えば、主に、受信装置63により取得される位置情報に基づいて走行機体Cの自動操向制御を行い、受信装置63により取得される位置情報を、主慣性計測装置62により計測される慣性情報に基づいて補正するようにしてもよい。
(2)上記実施形態では、連結フレーム31が、左右方向に沿った左右軸心X周りに回動可能、且つ、使用状態S1と格納状態S2で位置固定可能に、左右の予備苗フレーム30に支持されているものが例示されているが、これに限られない。例えば、左右の予備苗フレーム30に対して着脱可能となっていてもよい。この場合、使用状態S1の連結フレーム31を、予備苗フレーム30から取り外し、上下反転させて、予備苗フレーム30に再び取り付けることにより、連結フレーム31が格納状態S2になる。
(3)上記実施形態では、受信装置63を一定の箇所に固定しているものが例示されているが、これに限られない。例えば、図8に示すように、予備苗フレーム30に取り付け固定され、走行機体Cの前後方向に沿って延びるレール部材100上に、前後方向に沿って移動可能な状態で受信装置63が配置されていてもよい。これにより、受信装置63を、レール部材100上の2点間を移動させることにより、走行機体Cが停止したまま、走行機体Cの自機方位NA、受信装置63により取得される2点の位置情報に基づいて求めることができる。
(4)上記実施形態では、受信装置63を一つだけ備えているものが例示されているが、これに限られない。例えば、受信装置63が二つ以上備えられていてもよい。このようにすることで、走行機体Cが停止中においても、一つの受信装置63により取得される位置情報と、他の受信装置63により取得される位置情報と、に基づいて、走行機体Cの自機方位NAを求めることが可能となる。
(5)上記実施形態では、コネクタ部67が、受信装置63の側面部から左右方向外側に延びているものが例示されているが、これに限られない。例えば、コネクタ部67が、受信装置63の上面部から上方に延びていたり、受信装置63の下面部から下方に延びていたり、受信装置63の前面部から前方に延びていたり、受信装置63の後面部から後方に延びていたりしてもよい。この場合、コネクタ部67を保護するガード部材68も、コネクタ部67の箇所に設けてあると好ましい。
(6)上記実施形態では、ガード部材68が支持プレート65に取り付けられているものが例示されているが、これに限られない。例えば、ガード部材68が受信装置63自体に取り付けられていてもよい。
(7)上記実施形態では、作業装置として、苗植付装置Wが備えられているものが例示されているが、これに限られない。例えば、作業装置として、苗植付装置Wに加えて、施肥装置や薬剤散布装置等が備えられていてもよい。
(8)本発明は、作業装置として苗植付装置を備える上記乗用型の田植機以外にも、例えば、作業装置として播種装置を備える植播系水田作業車である乗用型の直播機、作業装置としてプラウ等を備えるトラクタ、若しくは、作業装置として刈取部等を備えるコンバイン等の農作業車、または、作業装置としてバケット等を備える建設作業車等の種々の作業車に利用できる。
[第2実施形態]
 以下、第2実施形態を説明する。以下の説明では、この第2実施形態における第1~第3の実施構造を、順に「実施例1」、「実施例2」、「実施例3」と称する。
〔実施例1〕
 図9は、下段の予備苗収容装置150が第2状態にある乗用型田植機の全体を示す左側面図である。図11は、下段の予備苗収容装置150が第2状態にある乗用型田植機の全体を示す平面図である。図9,図11に示す[F]の方向が走行車体104の[前側]、[B]の方向が走行車体104の[後側]、[L]の方向が走行車体104の[左側]、[R]の方向が走行車体104の[右側]と定義する。
 図9,図11に示すように、車体フレーム101の下部に左右一対の前車輪102及び左右一対の後車輪103が装備された、走行車体104が備えられている。走行車体104の前部に、エンジン105を有した原動部106が設けられている。走行車体104は、エンジン105からミッション(transmission device)107に伝達される駆動力によって前車輪102が駆動され、エンジン105からミッション107及び回転軸108を介して後輪駆動ケース109に伝達される駆動力によって、後車輪103が駆動されることによって自走する。走行車体104の後部には、運転座席110を有した搭乗型の運転部111が設けられている。走行車体104は、運転部111に搭乗して操縦するように、乗用型に構成されている。
 走行車体104の後部には、リンク機構112を介して苗植付装置120が連結されている。リンク機構112は、車体フレーム101に上下揺動可能に支持されている。苗植付装置120は、リンク機構112が油圧シリンダ113によって揺動操作されることにより、接地フロート121が圃場面Sに接地した状態の下降作業状態と、接地フロート121が圃場面Sから高く上昇した上昇非作業状態とに亘って昇降操作される。
 図9,図11に示すように、苗植付装置120は、走行車体104の横幅方向に並ぶ8つの苗植付機構122と、1つの苗載台123とを備えている。苗載台123には、図11に示すように、マット状苗を走行車体104の横幅方向に並べて載置する8つの苗載置部123aが備えられている。苗載台123は、苗植付機構122の苗植え運動に連動する状態で走行車体104の横幅方向に往復移送され、各苗植付機構122に苗載置部123aから苗供給する。
 乗用型田植機は、苗植付装置120を下降作業状態に下降させた状態で走行車体104を走行させることにより、苗植付装置120によって8条植えが可能な苗植え作業を行なう。
 図9,図11に示すように、走行車体104の前部に受信装置114が装備されている。受信装置114の支持フレーム115は、図9,図11,図12に示すように、後述する左右の予備苗収容装置140,150の支柱141に連結されている。受信装置114は、衛星測位システムにより走行車体104の位置情報を取得し、取得した位置情報を走行車体104の自動操向制御装置(図示せず)に入力させるものである。
 図16,図17に示すように、苗載台123の各苗載置部123aから延長苗載置台124が延出されている。苗載台123の両横端部に左右一対の仕切りプレート125が立設されている。苗載台123の両横端部における左右の仕切りプレート125は、苗載台123の最も横端の苗載置部123aと、この苗載置部123aに対応する延長苗載置台124とに亘って設けられている。左右の仕切りプレート125は、苗載置部123aの横側に位置する仕切壁部123bから苗載台123の上方に向けて延出し、かつ、仕切壁部123bから延長苗載置台124の上方に向けて延出している。
 苗載台123の横端の苗載置部123aにマット状苗を補給するとき、苗載台123が横移送中であっても、マット状苗を左右の仕切りプレート125によって苗載置部123aへ適確に案内させつつ補給することができる。つまり、苗載台123の横移送のためにマット状苗を横端の苗載置部123aから横外側へ外れて補給することを回避できる。本実施例では、仕切りプレート125を横端の苗載置部123aだけに設けているが、全ての苗載置部123aに設けてもよい。
 図9,図11に示すように、走行車体104のうち、運転座席110の両横側方と、運転座席110の後方とに亘る部位に、作業ステップ116が設けられている。運転部111の両横側方に手摺り130が設けられている。左横及び右横の手摺り130は、走行車体104の車体部分としての乗降ステップフレームと、走行車体104の車体部分としての作業ステップフレームとから上方向きに立設されている。左横及び右横の手摺り130の上端部131は、運転部111の乗降口111aの後側の部位であって、作業ステップ116の横縁部の上方に位置する部位に位置している。図9,図11,図14,図15に示すように、運転座席110の後方に、走行車体104の横方向に延びる後ガード117が設けられている。後ガード117は、作業ステップ116の後縁部の上方に配置されている。後ガード117は、左横の手摺り130と右横の手摺り130とに亘って連結されている。左横及び右横の手摺り130は、運転部111に乗ったり、運転部111から降りたりするときに、また、作業ステップ116に位置するときに使用できる。後ガード117は、作業ステップ116に位置するとき、手摺りとして使用できる。本実施例では、施肥装置の肥料タンク及び肥料繰出機構が運転座席110の後方に設けられていないが、肥料タンク及び肥料繰出機構を設けて実施してもよい。
 図9,図15に示すように、左横及び右横の手摺り130の上端部131の下方に空きスペース200が設けられている。空きスペース200は、手摺り130を曲げ成形された管部材によって構成することによって設けられている。
 図9,図11,図12に示すように、走行車体104の両横側部に上下二段の予備苗収容装置140,150が設けられている。左の上下二段の予備苗収容装置140,150は、左横の手摺り130の前方に設けられている。右の上下二段の予備苗収容装置140,150は、右横の手摺り130の前方に設けられている。
 左上段の予備苗収容装置140には、図9,図12に示すように、上下4段の予備苗載置台142が備えられている。4段の予備苗載置台142は、前後一対の支柱141に支持されている。前の支柱141は、走行車体104のうちのエンジン支持フレームから上方向きに立設されている。後の支柱141は、走行車体104のうちの乗降ステップフレームから上方向きに立設されている。
 右上段の予備苗収容装置140は、左上段の予備苗収容装置140と同じ構成を備えている。左上段の予備苗収容装置140及び右上段の予備苗収容装置140には、苗植付装置120に供給する予備の4枚のマット状苗を走行車体104の上下方向に並べて収容することができる。
 左下段の予備苗収容装置150には、図9,図10,図11に示すように、3つの予備苗載置台151,152,153が備えられている。3つの予備苗載置台151,152,153は、載置台フレーム151a,152a,153aと、予備苗載置台本体151b,152b,153bと、を備えている。予備苗載置台本体151b,152b,153bは、載置台フレーム151a,152a,153aに固定状態で支持されている。3つの予備苗載置台151,152,153のうちの2つの予備苗載置台152,153には、延長載置台152c,153cが備えられている。延長載置台152c,153cは、予備苗載置台本体152b,153bと載置台フレーム152a,153aとにスライド操作可能に支持されている。
 3つの予備苗載置台151,152,153のうちの予備苗載置台151は、載置台フレーム151aが前後の支柱141に固定されていることにより、苗載置面が上向きの状態で、前後の支柱141に固定されている。以下、この予備苗載置台151を固定予備苗載置台151と呼称する。
 3つの予備苗載置台151,152,153のうちの予備苗載置台152では、載置台フレーム152aの一端部が固定予備苗載置台151の載置台フレーム151aの前端側に連結軸154を介して回転可能に支持されている。この予備苗載置台152は、連結軸154の走行車体横方向に延びる軸芯154aを揺動中心として固定予備苗載置台151に対して揺動操作できる。以下、この予備苗載置台152を前の可動予備苗載置台152と呼称する。前の可動予備苗載置台152を揺動操作することにより、前の可動予備苗載置台152の取付姿勢を、図10,図12に示す如く固定予備苗載置台151の苗載置面側の上に折り重なると共に前の可動予備苗載置台152の苗載置面が下向きになる格納姿勢と、図9,図11に示す如く固定予備苗載置台151から走行車体前方側に張り出ると共に苗載置面が上向きになる使用姿勢とに切り換えることができる。
 3つの予備苗載置台151,152,153のうちの予備苗載置台153では、載置台フレーム153aのうちの延長載置台153cが位置する側と反対側の端部が固定予備苗載置台151の載置台フレーム151aの後端側に連結軸155を介して回転可能に支持されている。この予備苗載置台153は、連結軸155の走行車体横方向に延びる軸芯155aを揺動中心として固定予備苗載置台151に対して揺動操作できる。以下、この予備苗載置台153を後の可動予備苗載置台153と呼称する。後の可動予備苗載置台153を揺動操作することにより、後の可動予備苗載置台153の取付姿勢を、図10,図12に示す如く固定予備苗載置台151の上に折り重なっている前の可動予備苗載置台152の上に折り重なると共に後の可動予備苗載置台153の苗載置面が下向きになる格納姿勢と、図9,図11に示す如く固定予備苗載置台151から走行車体後方側に張り出ると共に後の可動予備苗載置台153の苗載置面が上向きになる使用姿勢とに切り換えることができる。
 後の可動予備苗載置台153の使用姿勢において、延長載置台153cをスライド操作することにより、延長載置台153cの取付姿勢を、図9,図11に示す如く後の可動予備苗載置台153から後方に、後の可動予備苗載置台153の前後方向に沿う状態で張り出た使用姿勢と、後の可動予備苗載置台153の内方側に格納された格納姿勢とに切り換え操作できる。
 左下段の予備苗収容装置150は、図10,図12に示すように、前の可動予備苗載置台152及び後の可動予備苗載置台153を格納姿勢に切り換えることにより、固定予備苗載置台151、前の可動予備苗載置台152及び後の可動予備苗載置台153が走行車体104の上下方向に並んで格納された第1状態になる。
 左下段の予備苗収容装置150は、図9,図11に示すように、前の可動予備苗載置台152及び後の可動予備苗載置台153を使用姿勢に切り換えることにより、固定予備苗載置台151、前の可動予備苗載置台152及び後の可動予備苗載置台153が走行車体104の前後方向に並び、固定予備苗載置台151、前の可動予備苗載置台152及び後の可動予備苗載置台153にマット状苗を載置できる第2状態になる。
 右下段の予備苗収容装置150は、図11,図12に示すように、左下段の予備苗収容装置150と同じ構成を備えている。左下段の予備苗収容装置150及び右下段の予備苗収容装置150を第2状態に切換えることにより、左下段の予備苗収容装置150及び右下段の予備苗収容装置150に、苗植付装置120に供給する予備の3枚のマット状苗を走行車体104の前後方向に並べて収容することができる。
 左下段の予備苗収容装置150及び右下段の予備苗収容装置150において、図9,図11,図13に示すように、予備苗収容装置150を第2状態に切換えた場合、延長載置台153cを使用姿勢にすることで、延長載置台153cと、後の可動予備苗載置台153の予備苗載置台本体151bの後部とによって、後の可動予備苗載置台153(後から1番目の予備苗載置台)の後端側部153rが形成され、この後端側部153rが空きスペース200に入り込み、平面視で、後端側部153rと上端部131とが重複する。また、後端側部153rが乗降口111aに入り込む。後端側部153rを閉じ部材に活用して乗降口111aを閉じることができる。
 左上段の予備苗収容装置140及び右上段の予備苗収容装置140において、図9,図12に示すように、上下4段の予備苗載置台142の走行車体横内側の端部が前後の支柱141に連結軸(図示せず)を介して回転可能に連結されている。上下4段の予備苗載置台142は、連結軸の走行車体前後方向に延びる軸芯Yを揺動中心として、図12に示す右上段の予備苗載置台142の如く下降した状態の下降使用姿勢と、図12に示す左上段の予備苗載置台142の如く上昇した状態の上昇格納姿勢とに亘って揺動操作可能に支持されている。前後の支柱141は、上段の予備苗収容装置140を支持する上部が下段の予備苗収容装置150を支持する下部よりも走行車体横内側に位置する曲がり状態に成形されている。つまり、前の可動予備苗載置台152及び後の可動予備苗載置台153を格納姿勢と使用姿勢とに亘って揺動操作するとき、予備苗載置台142を上昇格納姿勢に切り換えることにより、前の可動予備苗載置台152及び後の可動予備苗載置台153が当たらないように、前の可動予備苗載置台152及び後の可動予備苗載置台153の移動経路から走行車体横内側に退避させることができる。
〔実施例2〕
 図18は、第2の実施構造を備えた乗用型田植機の手摺り130が配設された部位を示す左側面図である。第2の実施構造を備えた乗用型田植機では、手摺り130の上端部131は、固定部131aと可動部131bとを備えている。
 固定部131aは、走行車体104の車体部分に固定されている。固定部131aの後部に支持部132が備えられている。可動部131bの後端部が連結軸133を介して支持部132に回転可能に連結されている。可動部131bは、連結軸133の走行車体横方向に延びる軸芯133aを揺動中心として、図18に実線で示す如く固定部131aから前方に延出した下降使用状態と、図18に二点鎖線で示す如く固定部131aの後部に格納された上昇格納状態とに揺動操作可能に支持されている。
 可動部131bは、下降使用状態にすると、前端側部131fが乗降口111aに入り込み、前端側部131fで乗降口111aを閉じる閉じ状態になる。可動部131bは、下降使用状態にすると、可動部131bのうちの前端側部131fが固定部131aから前方に突出した状態になり、前端側部131fの下方に空きスペース200が形成される。可動部131bを下降使用状態にした場合、可動部131bの連結軸133よりも遊端側に位置する部分が支持部134によって受け止め支持され、可動部131bを下降使用状態に保持できる。可動部131bは、上昇格納状態にすると、乗降口111aの後側に位置し、乗降口111aを開ける開き状態になる。
 可動部131bを上昇格納状態に切り換えることにより、可動部131bによる乗降口111aの閉じを解除し、固定部131aを手摺として使用しつつ運転部111に乗ったり、運転部111から降りたりすることができる。運転部111に乗ったり、運転部111から降りたりするとき以外には、可動部131bを下降使用状態に切換えることにより、可動部131bを閉じ部材に活用して乗降口111aを閉じることができる。
〔実施例3〕
 図19は、第3の実施構造を備えた乗用型田植機の手摺り130が配設された部位を示す左側面図である。第3の実施構造を備えた乗用型田植機では、手摺り130の上端部131は、固定部131aと可動部131bとを備えている。
 予備苗収容装置150の後側の支柱141に支持部134が備えられている。可動部131bを開き状態に切換えた場合、可動部131bの前端側部131fが支持部134に受け止め支持されることで、後側の支柱141に受け止め支持される。
〔第2実施形態の別実施形態〕
(1)図20は、第1の別実施構造を備えた後ガード117を示す左側面図である。図20に示すように、第1の別実施構造を備えた後ガード117は、左横の手摺り130及び右横の手摺り130の前後の脚部131cのうちの前側の脚部131cに支持されている。
(2)図21は、第2の別実施構造を備えた後ガード117を示す正面図である。図21に示すように、第2の別実施構造を備えた後ガード117は、後手摺りを兼ねる上段の後ガード117uと、中段の後ガード117nと、下段の後ガード117dとを備えている。
(3)図22は、第3の別実施構造を備えた後ガード117を示す正面図である。図22に示すように、第3の別実施構造を備えた後ガード117は、後手摺りを兼ねる上段の後ガード117uと、下段の後ガード117dと、左右一対のサイドガードプレート118とを備えている。左右のサイドガードプレート118は、運転座席110の両横側の後方に位置する箇所で上段の後ガード117uと下段の後ガード117dとに連結されている。
(4)上記した実施例では、予備苗収容装置150に3枚の予備苗載置台151,152,153を設けた例を示ししたが、3枚に限らず、2枚あるいは4枚以上の予備苗載置台を設けて実施してもよい。
(5)上記した実施例では、前の可動予備苗載置台152及び後の可動予備苗載置台153を揺動によって格納姿勢と使用姿勢とに切り換わる例を示したが、この構成に限らず、前の可動予備苗載置台152及び後の可動予備苗載置台153を固定予備苗載置台151と支柱141とに付け替えることにより、予備苗載置台151,152,153が車体上下方向に並ぶ状態と車体前後方向に並ぶ状態とに切り換える構成を採用してもよい。また、支柱141に揺動可能に支持されるリンク機構によって複数枚の予備苗載置台を支持し、リンク機構の揺動操作によって複数枚の予備苗載置台が車体上下方向に並ぶ状態と車体前後方向に並ぶ状態とに切り換わる構成を採用してもよい。
(6)上記した実施例では、予備苗載置台151,152,153が格納される状態を予備苗収容装置150の第1状態とした例を示したが、複数枚の予備苗載置台が予備苗の載置収容が可能な状態で走行車体の上下方向に並ぶ状態を予備苗収容装置150の第1状態となるよう構成して実施してもよい。
(7)上記した実施例では、後の可動予備苗載置台153に延長載置台153cが備えられた例を示したが、延長載置台153cを備えず、後の可動予備苗載置台153の予備苗載置台本体151bの後端側部が空きスペース200に入り込むよう構成してもよい。
(8)上記した実施例では、上段の予備苗収容装置140を設けた例を示したが、上段の予備苗収容装置140を設けず、第1状態と第2状態とに切り換え可能な予備苗収容装置150だけを設けて実施してもよい。
(9)本発明は、8条植えが可能な苗植付装置120が連結された乗用型田植機に限らず、4条、6条など8条よりも少ない条数の苗植付を行なう苗植付装置、あるいは、8条よりも多い条数の植付が可能な苗植付装置が連結された乗用型田植機に適用できる。また、運転座席110の後方に設けた肥料タンク及び肥料繰出し装置を有した施肥装置が装備された乗用型田植機にも、本発明を適用することができる。
[第3実施形態]
 以下、第3実施形態について説明する。ここでは、作業車の一例として乗用型の田植機を例に挙げて説明する。
 図23~図25に示すように、乗用型の田植機には、走行装置としての向き変更操作自在な左右一対の前車輪210と、向き固定の左右一対の後車輪211とを有する走行車体300と、圃場に対する苗の植え付けが可能な作業装置としての苗植付装置Wとが備えられている。苗植付装置Wは、昇降用油圧シリンダ220の伸縮作動により昇降作動するリンク機構221を介して、走行車体300の後端に昇降自在に連結されている。
 この実施形態では、図24に示す矢印Fが走行車体300の機体前部側、矢印Bが走行車体300の機体後部側、矢印Lが走行車体300の機体左側、矢印Rが走行車体300の機体右側を示している。
 図23~図25に示すように、走行車体300の前部には、開閉式のボンネット212が備えられている。ボンネット212内には、エンジン213が備えられている。ボンネット212の先端位置には、圃場に描かれた指標ラインLN(図28参照)に沿って走行するための目安となる棒状のセンターマスコット214が備えられている。走行車体300には、前後方向に沿って延びる枠状の機体フレーム215が備えられ、機体フレーム215の前部には支持支柱フレーム216が立設されている。
 図23及び図24に示すように、苗植付装置Wには、4個の伝動ケース222、各伝動ケース222の後部の左側部及び右側部に回転自在に支持された合計8個の回転ケース223、各回転ケース223の両端部に備えられた一対のロータリ式の植付アーム224、圃場の田面を整地する複数の整地フロート225、植え付け用のマット状苗が載置される苗載せ台226、圃場の田面に指標ラインLN(図28参照)を形成するためのマーカ装置233等が備えられている。
 このように構成された苗植付装置Wは、苗載せ台226を左右に往復横送り駆動しながら、伝動ケース222から伝達される動力により各回転ケース223を回転駆動して、苗載せ台226の下部から各植付アーム224により交互に苗を取り出して圃場の田面に植え付けるようになっている。従って、苗植付装置Wは、8個の回転ケース223に備えられた植付アーム224により苗を植え付ける8条植え型式に構成されている。マーカ装置233は、詳述はしないが、苗植付装置Wの左右側部に備えられ、圃場の田面に接地して走行車体300の走行に伴い、次回の作業行程に対応する田面に指標ラインLNを形成する作用姿勢、及び、圃場の田面から上方に離れた格納姿勢に操作自在に構成されている。マーカ装置233の姿勢切り換えは図示しない電動モータにより行われる。
 図23~図25に示すように、走行車体300におけるボンネット212の左右側部には、苗植付装置Wに補給するための予備苗を載置可能な複数(例えば4つ)の通常予備苗台228、苗植付装置Wに補給するための予備苗を載置可能な1つのレール式予備苗台229が備えられている。走行車体300におけるボンネット212の左右側部には、各通常予備苗台228とレール式予備苗台229とを支持する左右一対の予備苗フレーム230が備えられ、左右の予備苗フレーム230の上部同士が連結フレーム231にて連結されている。
 図23~図25に示すように、走行車体300の中央部には、各種の運転操作が行われる運転部240が備えられている。運転部240には、運転者が着座可能な運転座席241、操縦塔242、前車輪210の手動の操向操作用のステアリングホイールにより構成される手動操向操作具としての操向ハンドル243、前後進の切り換え操作や走行速度を変更操作が可能な主変速レバー244、操作レバー245等が備えられている。運転座席241は、走行車体300の中央部に備えられている。操縦塔242に、操向ハンドル243、主変速レバー244、操作レバー245等が操作自在に備えられている。運転部240の足元部位には、搭乗ステップ246が設けられている。搭乗ステップ246の左右の外側位置には、補助ステップ247が設けられている。搭乗ステップ246はボンネット212の左右両側にも延びている。
 図23~図25に示すように、操作レバー245は、操向ハンドル243の下側の右横側に備えられている。詳細は図示はしないが、操作レバー245は、中央の中立位置から、上昇位置、下降位置、右マーカ位置、左マーカ位置の夫々に十字方向に移動操作自在に構成され、中立位置に付勢されている。
 操作レバー245を上昇位置に操作すると、苗植付装置に対する伝動が遮断されて、苗植付装置Wが上昇し、左右のマーカ装置233(図23参照)が格納姿勢に操作される。操作レバー245を下降位置に操作すると、苗植付装置Wが下降して田面に接地して停止した状態となる。この下降状態で操作レバー245を右マーカ位置に操作すると、右のマーカ装置233が格納姿勢から作用姿勢になる。操作レバー245を左マーカ位置に操作すると、左のマーカ装置233が格納姿勢から作用姿勢になる。
 運転者は、苗植え付け作業を開始するときは、操作レバー245を操作して苗植付装置Wを下降させるとともに、苗植付装置Wに対する伝動が開始されて苗植付け作業を開始する。そして、苗植え付け作業を停止するときは、操作レバー245を操作して苗植付装置Wを上昇させるとともに、苗植付装置Wに対する伝動が遮断する。
 運転部240の操縦塔242の上部には、液晶表示器を用いて種々の情報を表示可能な表示装置248が備えられている。又、後述する自動操向制御に用いる始点設定スイッチ249Aが表示装置248の右側に位置し、終点設定スイッチ249Bが表示装置248の左側に位置する状態で備えられている。
 主変速レバー244の握り部には、押し操作式の自動操向スイッチ250が備えられている。自動操向スイッチ250は、自動復帰型に設けられ、押し操作する毎に自動操向制御の入り切りの切り換えを指令する。自動操向スイッチ250は、主変速レバー244の握り部を手で握った状態で、例えば、親指で押すことができる位置に配置されている。
 図26に示すように、走行車体300には、左右の前車輪210を操向可能な操向ユニットUが備えられている。操向ユニットUには、操向ハンドル243に連動連結されるステアリング操作軸254、ステアリング操作軸254の回動に伴って揺動するピットマンアーム255、ピットマンアーム255に連動連結される左右の連繋機構256、操向モータ258、ステアリング操作軸254に操向モータ258を連動連結するギヤ機構257等が備えられている。
 ステアリング操作軸254は、ピットマンアーム255及び左右の連繋機構256を介して、左右の前車輪210にそれぞれ連動連結されている。ステアリング操作軸254の下端部に、ロータリエンコーダからなる操向角センサ260が備えられ、ステアリング操作軸254の回転量は操向角センサ260により検出されるようになっている。ステアリング操作軸254の途中部には、操向ハンドル243に掛かるトルクを検出する手動操作検出手段としてのトルクセンサ261が備えられている。例えば、操向モータ258が所定の方向に回動させているときに、その回動方向とは反対方向に向けて手動操作にて操向ハンドル243が操作されると、トルクセンサ261にてそのことを検出することができる。
 操向ユニットUの自動操向を行う場合には、操向モータ258を駆動して、操向モータ258の駆動力によりステアリング操作軸254を回動操作し、前車輪210の操向角度を変更するようになっている。従って、操向モータ258が操向操作手段に対応する。自動操向を行わない場合には、操向ユニットUは、操向ハンドル243の手動操作により回動操作することができる。
 次に、自動操向制御を行うための構成について説明する。
 走行車体に、衛星からの電波を受信して車体の位置を検出する衛星測位用システム(GNSS:Global Navigation Satellite System)の一例として、周知の技術であるGPS(Global Positioning System)を利用して車体の位置を検出する位置検出手段が備えられている。
 具体的には、位置検出手段として、地球の上空を周回する複数のGPS衛星から発信される電波を受信するアンテナ262付きの受信装置263を有する位置計測ユニット264(衛星測位用ユニットの一例)が、測位を行う対象(走行車体300)に備えられ、受信する電波の情報に基づいて受信装置263すなわち位置計測ユニット264の位置を計測することができる。
 図23~図25に示すように、位置計測ユニット264は、走行車体300の前部に位置する状態で、板状の支持プレート265を介して連結フレーム231に取り付けられている。図25に示すように、連結フレーム231は、位置計測ユニット264が予備苗フレーム230の上端部よりも上方に位置する使用状態S1と、使用状態S1に対して上下反転し、受信装置263が予備苗フレーム230の上端部よりも下方に位置する格納状態S2と、に状態変更可能となっている。説明を加えると、連結フレーム231は、連結ブラケット232を介して、機体横方向に沿う左右軸心X周りに回動可能に、且つ、使用状態S1と格納状態S2の各状態で位置固定可能に、左右の予備苗フレーム230に支持されている。
 図23及び図25に示すように、連結フレーム231を使用状態S1にすることにより、受信装置263が、連結フレーム231と予備苗フレーム230とにより、高い箇所に支持されるものとなる。受信装置263に電波障害が生じるおそれが少なく、受信装置263の電波の受信感度を高めることができる。
 走行車体300に、位置計測ユニット264の他に、走行車体300の方位を検出する方位検出手段として,ジャイロセンサ266A等を有する慣性計測ユニット266が備えられている。図示はしないが、慣性計測ユニット266は、例えば、運転座席241の後側下方位置であって走行車体300の横幅方向中央の低い位置に設けられている。慣性計測ユニット266は、走行車体300の旋回角度の角速度を検出可能であり、角速度を積分することで車体の方位変化角を求めることができる。従って、慣性計測ユニット266により計測される計測情報には走行車体300の方位情報が含まれている。詳述はしないが、慣性計測ユニット266は、走行車体300の旋回角度の角速度の他、走行車体300の左右傾斜角度、走行車体300の前後傾斜角度の角速度等も計測可能である。
 図27に示すように、走行車体300には、操向モータ258の制御を行う制御装置267が備えられている。制御装置267は、走行車体300が走行すべき目標移動経路を設定する経路設定部268と、位置計測ユニット264にて計測される走行車体300の位置情報と、慣性計測ユニット266にて計測される走行車体300の方位情報とに基づいて、走行車体300が目標移動経路に沿って走行するように、操向モータ258を制御する操向制御部269とを備えている。具体的には、制御装置267は、マイクロコンピュータを備えており、経路設定部268と操向制御部269とが制御プログラムにて構成されている。
 図27に示すように、自動操向制御に用いる目標移動経路をティーチング処理によって設定するための設定スイッチ249が備えられている。設定スイッチ249には、始点位置を設定する始点設定スイッチ249Aと、終点位置を設定する終点設定スイッチ249Bとがあり、上述したように、始点設定スイッチ249Aは表示装置248の右側に備えられ、終点設定スイッチ249Bは表示装置248の左側に備えられている。
 図27に示すように、制御装置267には、位置計測ユニット264、慣性計測ユニット266、自動操向スイッチ250、始点設定スイッチ249A、終点設定スイッチ249B、操向角センサ260、トルクセンサ261、車速センサ270等の情報が入力されている。車速センサ270は、詳述はしないが、例えば、後車輪211に対する伝動機構中の伝動軸の回転速度により車速を検出する。
 経路設定部268は、始点設定スイッチ249A及び終点設定スイッチ249Bの操作に基づくティーチング処理によって、自動操向すべき目標経路に対応するティーチング経路を設定するとともに、実作業するときに、ティーチング経路の始端部にて自動モードが指令されると、その位置におけるティーチング経路と平行な目標移動経路LKを設定するように構成されている。
 操向制御部269は、自動入りモードが設定されているとき、位置計測ユニット264にて検出される走行車体300の検出位置(自機位置)NMが、目標移動経路LK上の位置になるように、且つ、慣性計測ユニット266にて検出される走行車体300の検出方位(自機方位)が目標移動経路LKにおける目標方位になるように、操向モータ258を操作する自動操向制御を実行する。すなわち、走行車体300の自動操向制御中に、走行車体300の自機位置NMと目標移動経路LKとの横方向の位置偏差ΔP(図29参照。以下の説明では「位置ずれ量ΔP」ともいう。)と、走行車体300の自機方位NAと目標方位TDとの角度偏差とを求め、それらの偏差が小さくなるように、操向モータ258を制御する。
 操向制御部は、自動操向制御を実行しているときに、自機位置NMが目標移動経路LKから横方向にずれており、且つ、自機方位NAが目標方位TDと同じであるときは、制御目標となる目標方位を目標移動経路側に傾斜した傾斜目標方位KAに変更して操向モータ258を操作する位置ずれ修正処理を実行する。
 位置ずれ修正処理を実行するときに、自機位置NMが目標移動経路LKに相当する箇所から大きく離れていれば、傾斜目標方位KAの目標方位TDに対する傾斜を大側に設定し、自機位置NMが目標移動経路LKに相当する箇所に近づくほど、傾斜目標方位KAの目標方位に対する傾斜を緩くする。また、操向制御部269は、車速が低速であれば、傾斜目標方位KAの目標方位TDに対する傾斜を大側に設定し、車速が高速であるほど傾斜目標方位KAの目標方位TDに対する傾斜を緩くするようになっている。
 但し、傾斜目標方位KAの目標方位に対する傾斜角αには上限があり、車速が極低速であったり、位置ずれ量ΔPが大きくなったりしていても、傾斜角αは設定上限値以下の値に設定される。傾斜角αが大き過ぎると、走行車体300が急旋回して走行状態が不安定になるおそれがあるからである(尚、以下の説明では、この傾斜角αを「設定傾斜角α」とも称する。)。
 さらに、操向制御部269は、位置ずれ修正処理を実行するときは、車速が大きいほど操向モータ258が進行方向を変更するときの変更操作速度を小さくする。従って、車速が低速であれば、変更操作速度が大きめに設定され、車速が大きいほど変更操作速度を小さくする。
 次に、矩形状の水田にて苗の植え付け作業を行う場合における制御装置267の動作について説明する。
 図28に示すように、田植機は、水田において、目標移動経路LKに沿って走行しながら苗植付け作業を行う直進走行と、目標移動経路LKの終端位置にて目標移動経路LKと平行な次回の目標移動経路LKに向けて旋回する旋回走行とを交互に繰り返して走行する。そして、操向制御部269は、原則として、苗植付け作業を行う直進走行中に自動操向制御を実行し、直進走行以外の移動走行には、自動操向制御を実行しないようになっている。
 まず、走行車体300を圃場内の畦際の始点位置R1に位置させ、始点設定スイッチ249Aを操作する。このとき、制御装置267は自動切りモードに設定されている。そして、運転者が手動操縦しながら、始点位置R1から側部側の畦際の直線形状に沿って非作業状態で走行車体300を直進走行させ、反対側の畦際近くの終点位置R2まで移動させてから終点設定スイッチ249Bを操作する。これにより、ティーチング処理が実行される。つまり、始点位置R1において受信装置263により取得された位置情報と、終点位置R2において受信装置263により取得された位置情報とから、始点位置R1と終点位置R2とを結ぶティーチング経路が設定される。このティーチング経路に沿う方向が基準となる目標方位TD(以下、ティーチング方位TDともいう。)として設定される。
 次に、運転者が手動で操向ハンドル243を操作して、走行車体300を旋回させる。このとき、制御装置267は、自機方位NAが反転することにより、走行車体300の旋回が行われたことを判別できる。
 操向制御部269は、旋回が行われたことを判別すると、走行車体300の旋回が終了したのち所定の判別条件が成立するまでは、自動操向スイッチ250の操作入力を受け付けない制御牽制状態に設定される。所定の判別条件は、走行車体300の旋回が終了してから一定時間が経過すること、及び、自機方位NAとティーチング方位TDとのズレ角度が所定範囲内となることである。制御牽制状態に設定されている間は、自動操向スイッチ250が操作されても、自動操向制御は開始されない。そのとき、運転者は、センターマスコット214の先端部を見る目線の先に、田面に形成された指標ラインLNが合致するように、操向ハンドルを手動操作して走行車体300の位置合わせを行うことができる。
 図27中の所定の位置R3にて制御牽制状態が解除されると、自動操向スイッチ250の操作入力が受け付けられるので、運転者が自動操向スイッチ250を操作すると自動入りモードに切り換えられ、操向制御部269は、その地点から自動操向制御を開始する。このとき、運転者は操作レバー245を操作して苗植付装置Wを下降させて苗植え付け作業を実行する。
 自動操向制御が開始されると、位置計測ユニット264により自機位置NMの情報を求め、慣性計測ユニット266にて自機方位NAを求める。このとき、図29に示すように、データ処理の基準となる自機位置NMは、位置計測ユニット264の実際の設置位置ではなく、慣性計測ユニット266の近傍位置に設定されている。そして、現在の自機位置NMや自機方位NAが、目標移動経路LK、ティーチング方位TDと合致するように操向モータ258を操作して操向制御される。これにより、走行車体300が、目標移動経路LKに沿って正確に走行するものとなる。運転者は操向ハンドル243から手を離した状態となっている。但し、車速は手動操作にて調節される。
 操向制御部269が自動操向制御を実行しながら直進走行しているときに、図29に示すように、検出される自機位置が目標移動経路から横方向にずれており、且つ、検出方位がティーチング方位TDと同じであるときは、操向制御部269は、目標方位をティーチング方位TDから目標移動経路側に設定傾斜角αだけ傾斜した傾斜目標方位KAに変更して操向モータ258を操作する位置ずれ修正処理を実行する。
 つまり、図30に示すように、位置ずれ修正処理においては、自動操向制御するときの目標方位として、ティーチング方位TDではなく、ティーチング方位TDから目標移動経路側に設定傾斜角αだけ傾斜した傾斜目標方位KAに変更して自動操向制御を実行する。従って、この位置ずれ修正処理を実行しているときは、方位偏差が小さい状態で斜め方向に走行するので迅速に位置偏差ΔPを小さくすることができる。
 このとき、自機位置NMが目標移動経路LKに相当する箇所から離れているほど、設定傾斜角αを大側に設定し、自機位置NMが目標移動経路LKに相当する箇所に近づくほど、設定傾斜角αを緩くする。また、車速が低速であれば、設定傾斜角αを大側に設定し、車速が高速であるほど設定傾斜角を緩くするようになっている。但し、設定傾斜角αには上限値を設定してあり、車速がどのように低速であっても、位置ずれが大きくても、設定傾斜角αが設定上限値を越えることはない。
 ところで、上述した目標移動経路LKに相当する箇所というのは、目標移動経路LKに相当する位置の左右両側に横方向に所定幅の領域を有している。すなわち、位置偏差に対する制御不感帯が設定されており、位置偏差が零ではなく不感帯内に入ると、位置ずれ修正処理が終了する。つまり、目標方位が、傾斜目標方位ではなく、本来のティーチング方位TDに沿う方向に設定される。
 このように傾斜目標方位KAの目標方位に対する傾斜の大きさは、走行車体300の位置ずれ量ΔPの大きさ及び車速の大きさにより変化するが、傾斜の大きさ、走行車体300の位置ずれ量ΔP、車速の夫々についての相関関係は、予め実験により求めてマップデータとして設定したり、演算式等で定めることができる。そして、車速が一定であれば、位置ずれ量ΔPが小さくなるほど、言い換えると、走行車体300の自機位置NMが目標移動経路LKに相当する箇所に近づくほど、設定傾斜角αは小さくなる。
 自動操向制御を実行しながら直進走行しているときに、図31に示すように、走行車体300が既作業領域Z1側に位置ずれしている状態で、位置ずれ修正処理を実行するときは、操向制御部269は、図32に示すように、走行車体300が未作業領域Z2側に位置ずれしている状態に比べて、設定傾斜角αを大きめに設定するようになっている。つまり、走行車体300が既作業領域Z1側に位置ずれしていれば、ティーチング方位TDから傾斜させる設定傾斜角αを大きめに設定して位置ずれ修正処理を実行する。すなわち、既作業領域Z1にて苗が既に植えられているので、この既植苗を走行車体300が踏み荒らさないように、迅速に目標移動経路LKに向けて位置を修正させるようにしている。
 操向制御部269は、自動操向制御を実行しているときに、操向モータ258の操作に反して、運転者が手動で操向ハンドル243を操作したことがトルクセンサ261の検出情報に基づいて判別された場合、言い換えると、操向ハンドル243による変更指令が指令された場合には、その手動操作を許容する程度に、自動操向制御において操向モータ258を操作するときの操作力を低減させる。
 このように手動操作による操向ハンドル243の操作が検出され、操向モータ258の操作力を低減させると、その後は、手動操作が行われなくなった後も、操向モータ258の操作力を低減させた状態を維持するようになっている。この状態は、自動操向スイッチ250が操作されて、自動切りモードに切り換わったのち、再度、自動入りモードに切り換わるまで維持される。
 但し、操向ハンドルによる変更指令が設定時間(例えば、十数秒~数十秒間)以上にわたって長く継続して指令されると、自動操向制御を停止して自動切りモードに切り換わるようになっている。このように手動操縦を優先することで、例えば、障害物との衝突を避けたり、制御が適正に行われないときに軌道修正することが可能になっている。自動入りモードへの復帰は自動操向スイッチの押し操作により行うことができる。
 走行車体300が直進走行経路の終端位置R4(図28参照)に至ると、運転者が自動操向スイッチ250を操作して、操向制御部269を自動切りモードに切り換える。このとき、操作レバー245を操作して、苗植付装置Wに対する伝動を遮断させて、苗植付装置Wを上昇させる。その後、運転者が手動で操向ハンドル243を操作して、次回の直進走行経路に向けて走行車体300を旋回させる。以後、前回の直進走行経路と同様に、旋回後に判別条件が成立したのちに、自動操向スイッチ250が操作されると自動操向制御を開始する。自動操向制御を実行しながら走行車体300が直進走行する。そして、上述したような旋回走行と直進走行とを繰り返す。
 操向制御部269は、自動切りモードが設定されているときは、操向ハンドル243による変更指令に対応する走行状態となるように、操向モータ258を操作するアシスト制御を実行する。このアシスト制御では、トルクセンサ261と操向角センサ260の検出情報に基づいて、操向制御部269が操向ハンドル243が操作されたこと、及び、その操作方向を検出すると、その操作方向と同一方向に向けて操向モータ258を作動させるのである。手動操作が停止されると、操向モータ258の作動も停止する。
〔第3実施形態の別実施形態〕
(1)上記実施形態では、操向制御部269が、位置ずれ修正処理を実行するときに、自機位置NMが目標移動経路LKに相当する箇所から大きく離れていれば、傾斜目標方位KAの目標方位TDに対する傾斜を大側に設定し、自機位置NMが目標移動経路LKに相当する箇所に近づくほど、傾斜目標方位KAの目標方位に対する傾斜を緩くするようにしたが、この構成に代えて、次のように構成してもよい。
 すなわち、操向制御部が、位置ずれ修正処理を実行するときは、自機位置(検出位置)NMが目標移動経路LKに相当する箇所に達するまで、傾斜目標方位をそのまま維持するようにしてもよい。目標移動経路LKに相当する箇所というのは、目標移動経路に相当する位置の左右両側に横方向に所定幅の領域(不感帯)を有している。つまり、自機位置(検出位置)NMが、目標移動経路に相当する位置に対して設定された不感帯の端部に達すると、位置ずれ修正処理を終了する。このことにより、制御の遅れが少なく、車体の方位を目標移動経路に沿う方位に修正することができる。
(2)上記実施形態では、操向制御部269は、自動操向制御を実行しているときに、操向ハンドル243による変更指令が指令された場合には、その手動操作を許容する程度に、自動操向制御において操向モータ258を操作するときの操作力を低減させるようにしたが、この構成に代えて、次のように構成してもよい。
 すなわち、操向制御部269は、自動操向制御を実行しているときに、操向ハンドル243による変更指令が指令された場合には、直ちに、自動操向制御を停止し、その後は、運転者が操向ハンドル243を操作する操作力に、操向モータ258による操向ハンドル243の操作に応じた補助力を付与してステアリング操作軸254を回動操作し、前車輪210の操向角度を変更するアシスト制御を実行するようにしてもよい。
(3)上記実施形態では、操向制御部は、走行車体が既作業領域Z1側に位置ずれしている状態で、位置ずれ修正処理を実行するときは、走行車体が未作業領域Z2側に位置ずれしている状態に比べて、設定傾斜角αを大きい値に設定するようにしたが、この構成に代えて、次のように構成してもよい。
 すなわち、操向制御部269は、走行車体300が未作業領域Z2側に位置ずれしている状態で、位置ずれ修正処理を実行するときは、走行車体300が既作業領域Z1側に位置ずれしている状態に比べて、設定傾斜角αを大きい値に設定するようにしてもよい。
 この構成は、例えば、コンバイン等のように、走行に伴って植立している作物を刈り取るような作業を行う作業車であれば、好適に用いることができる。
(4)上記実施形態では、走行車体が旋回走行を行ったのちに、位置ずれ修正処理を許容するための判別条件が、走行車体300の旋回が終了してから一定時間が経過すること、及び、自機方位NAとティーチング方位TDとのズレ角度が所定範囲内となることであったが、この構成に代えて、判別条件としては、次のように条件にしてもよい。又、これに限らず、要するに、車体の向きが安定したことを判別できるものであればよい。
 (4-1)旋回が終了してから設定距離走行すること。
 (4-2)旋回が終了してから設定時間が経過すること。
 (4-3)自機方位NAとティーチング方位TDとのズレ角度が所定範囲内となること。
 (4-4)上記(4-1)と(4-3)の両方を満たすこと。
 (4-5)上記(4-1)、(4-2)、(4-3)の全てを満たすこと。
(5)上記実施形態では、作業装置として、苗植付装置Wが備えられているものが例示されているが、これに限られない。例えば、作業装置として、苗植付装置Wに加えて、施肥装置や薬剤散布装置等が備えられていてもよい。
(6)上記実施形態では、位置検出手段としての衛星測位用ユニットとして、GPSを用いるようにしたが、ガリレオ等の他の型式の衛星測位用ユニットでもよい。又、衛星測位ユニットに代えて、例えば、地上側にレーザー光を投光して車体の位置を計測するような光学式の計測装置を備えるような他の計測システムを用いてもよい。
(7)本発明は、作業装置として苗植付装置を備える上記乗用型の田植機以外にも、例えば、作業装置として播種装置を備える植播系水田作業車である乗用型の直播機、作業装置としてプラウ等を備えるトラクタ、若しくは、作業装置として刈取部等を備えるコンバイン等の農作業車、または、作業装置としてバケット等を備える建設作業車等の種々の作業車に利用できる。
[第4実施形態]
 以下、本発明の実施形態の一例を、図面に基づいて説明する。
 図33、図34に示すように、農作業機又は農作業車のうちの植播系水田作業車である乗用型の田植機(農作業機又は農作業車の一例)には、走行装置Aを有する走行機体Cと、圃場に対する作業を行う作業装置と、が備えられている。田植機の作業装置は、圃場に対する苗の植え付けが可能な苗植付装置Wである。なお、図34に示す矢印Hfが走行機体Cの「前」、矢印Hbが走行機体Cの「後」、矢印Hlが走行機体Cの「左」、矢印Hrが走行機体Cの「右」である。
 また、田植機には、GNSS(Global Navigation Satellite Systems)やIMU(Inertial Measurement Unit)により構成される測位システムが搭載されており、図38に示すように、圃場に設定される基準走行ラインKLについて、その始点と終点との位置情報を測位システムで取得して記憶し、その基準走行ラインKLに平行する設定走行ラインSLを設定することが可能となる。また、設定走行ラインSLを設定した後には、設定走行ラインSLに沿って、走行機体Cが自動走行(自動操舵による自動走行に相当)を行うように構成されている。
 尚、運転者が操向ハンドル343を操作して走行する手動走行(手動操舵による手動走行に相当)に切り替えることも可能である。
 走行機体Cの走行例としては、図38に示すように、当初に、基準走行ラインKLを設定するために、手動走行(ティーチング)を行い、ティーチングを完了させた後、植付開始位置まで手動走行によって旋回させた状態で、自動走行に切り替えることで設定走行ラインSLを生成して植付走行を行う方法を一例としている。また、設定走行ラインSLの終点においては、植付を一時停止すると共に自動走行から手動操向に切り替えて旋回を行って、再度、次の設定走行ラインSLの生成、及び、植付自動走行に移行するというサイクルを繰り返すものである。
 尚、当該田植機には、後述するように、設定走行ラインSLに沿って自動走行を行っている時に、図39に示すように、その設定走行ラインSLそのものの位置を、平行に変位させる機能も備えている。この機能は、走行位置に隣接する植付完了領域Eの境界が、図に示すように変位形状を示しているような場合に、運転者の判断で、その境界に合わせて走行コースGを変更できるもので、植付領域が重複したり、不連続となったりするのを防止できる。
 図33、図34に示すように、走行装置Aとしては、左右一対の前車輪310と左右一対の後車輪311とが備えられている。走行機体Cには、走行装置Aにおける左右の前車輪310を操向可能な操向ユニットUが備えられている。
 走行機体Cの前部には、開閉式のボンネット312が備えられている。ボンネット312内には、エンジン313が備えられている。ボンネット312の先端位置には、棒状のセンターマスコット314が備えられている。このセンターマスコット314は、後述するマーカ装置333によって圃場の田面に描かれた指標線に対して走行機体Cの位置が合っているかの位置チェックの目安として用いられ、運転座席341からこのセンターマスコット314を見通した時に、その視線の延長線上に前記指標線が位置していれば、走行機体Cの位置が合っていると判断できる。
 センターマスコット314を使用した走行機体Cの位置チェックは、自動走行中は勿論のこと、手動走行の際にも行うことができる。特に、設定走行ラインSLの終点位置で、手動走行に切り換えた状態で旋回して方向転換を図り、次の設定走行ラインSLの始点に位置合わせをする際には有効である。
 走行機体Cには、前後方向に沿って延びる枠状の機体フレーム315が備えられている。機体フレーム315の前部には、支持支柱フレーム316が立設されている。
〔苗植付装置について〕
 図33に示すように、苗植付装置Wは、油圧シリンダで構成される昇降シリンダ320の伸縮作動により昇降作動するリンク機構321を介して、走行機体Cの後端に昇降自在に連結されている。
 図33、図34に示すように、苗植付装置Wには、4個の伝動ケース322、各伝動ケース322の後部の左側部及び右側部に回転自在に支持された回転ケース323、各回転ケース323の両端部に備えられた一対のロータリ式の植付アーム324、圃場の田面を整地する複数の整地フロート325、植え付け用のマット状苗が載置される苗載せ台326等が備えられている。当該実施形態においては、苗植付装置Wは、8条植え型式に構成されているが、8条以外の複数条植え形式であってもよい。
 このように構成された苗植付装置Wは、苗載せ台326を左右に往復横送り駆動しながら、伝動ケース322から伝達される動力により各回転ケース323を回転駆動して、苗載せ台326の下部から各植付アーム324により交互に苗を取り出して圃場の田面に植え付けるようになっている。
〔予備苗台について〕
 図33、図34に示すように、走行機体Cにおけるボンネット312の左右側部には、苗植付装置Wに補給するための予備苗を載置可能な複数の予備苗台328が備えられている。また、走行機体Cにおけるボンネット312の左右側部には、各予備苗台328を支持する左右一対の予備苗フレーム330と、左右の予備苗フレーム330の上部に亘って連結される連結フレーム331と、が備えられている。連結フレーム331は、前面視で、U字状の形状となっている。連結フレーム331の左右端部は、それぞれ、連結ブラケット332を介して、左右の予備苗フレーム330の上部に連結されている。
〔マーカ装置について〕
 図33に示すように、苗植付装置Wの左右側部には、それぞれ、圃場の田面に指標線を形成するためのマーカ装置333が備えられている。
 左右のマーカ装置333には、それぞれ、上下に揺動自在に苗植付装置Wに支持されたマーカアーム334と、マーカアーム334の先端部に自由回転自在に支持された周方向に複数の凸部体を有する回転体335と、が備えられている。また、左右右のマーカ装置333を作用姿勢及び格納姿勢に操作するマーカ用電動モータ(図示なし)が備えられている。
 マーカ装置333を作用姿勢に操作することで、回転体335が田面に当接して軌跡を記すことができ、その軌跡が指標線となる。
〔運転部について〕
 図33、図34に示すように、走行機体Cの中央部には、各種の運転操作が行われる運転部340が備えられている。運転部340には、運転者が着座可能な運転座席341、操縦塔342、前車輪310の手動の操向操作用のステアリングホイールにより構成される操向ハンドル343、前後進の切り換え操作や走行速度を変更操作が可能な主変速レバー344(変速操作具に相当)、苗植付装置Wを操作する操作レバー345等が備えられている。
 運転部340の足元部位には、搭乗ステップ346が設けられている。搭乗ステップ346の左右の外側位置には、補助ステップ347が設けられている。ボンネット312の左右両側には、搭乗ステップ346に段差なく連なる乗降通路としての乗降ステップ348が設けられている。乗降ステップ348の横外側に、左右の予備苗フレーム330がそれぞれ配置されている。
 また、操縦塔342には、操向ハンドル343、主変速レバー344、操作レバー345、メータパネル349等が備えられている。
〔主変速レバーについて〕
 図33、図34、図37に示される主変速レバー344は、操向ハンドル343の左横側に備えられている。
 前後方向に揺動自在に構成されており、中立位置から前方に揺動操作することで、前進の変速操作を行え、中立位置から後方に揺動操作することで、後進の変速操作を行える。
 また、主変速レバー344の上端部に備えた握り部344Aには、操向ユニットUの自動操向の入り切りの切り換え操作を行う押圧操作式の自動操向スイッチ350(切替スイッチの一例)(図37参照)が備えられている。
 自動操向スイッチ350は、握り部344Aを左手で握った状態で、例えば、左手の親指で押すことができる位置に配置してあり、押す度に、手動操向と自動操向とが交互に切り替わるように構成されている。
 即ち、自動操向スイッチ350の操作方向は、走行機体Cの左右方向に沿うように設定されており、主変速レバー344の操作方向(前後方向)と異なる方向であることで、誤操作の防止が図れ、更には、握り部344Aを握ったまま自動操向スイッチ350を操作できるから、持ち替える手間が不要で、操向切替操作の効率を向上させることができる。
〔メータパネル類について〕
 図34、図37に示すように、ボンネット312の後端位置で、操向ハンドル343の前方にはメータパネル349が配置されている。このメータパネル349には、左右中央部に、バックライトを有する液晶表示部349Aを備えている。また、液晶表示部349Aを挟んだ左右両側方には、前記基準走行ラインKLの始点と終点とを設定する一対の指示ボタン352(指示スイッチに相当)が備えられている。
 また、液晶表示部349Aの周囲には、複数の表示ランプが備えられ、作業情報を表示できるように構成されている。
 液晶表示部349Aには、アワーメータ、自動植付クラッチの状態、燃料残量、冷却水の水温等の表示に加えて、「センサ暖気中」、「IMUのリセットの要否」、「GPS信号の受信状況」、「自動走行中の手動操舵」、「畦の終点の検出状況」、「苗植付装置の接地状況」等の告知や、それら告知内容に対する「対応方法」等が表示される。
 また、複数の表示ランプとして、オイル切れランプ、チャージランプ、苗切れランプ、植付表示ランプ、あぜぎわクラッチランプ、マーカランプ等が備えられている。
 前記指示ボタン352は、ティーチングの為の手動走行時(自動操向スイッチ350によって手動操向に切り替えて走行させている時)に押圧することで、その時の走行機体Cの位置情報から前記基準走行ラインKLの始点と終点とを設定することができる。
 当該実施形態においては、一対の指示ボタン352のうち、右側の右指示ボタン352Aは、基準走行ラインKLの始点を指示するように構成され、左側の左指示ボタン352Bは、基準走行ラインKLの終点を指示するように構成されている。
 尚、前記指示ボタン352は、上述のように、基準走行ラインKLの設定操作手段として用いられる他、自動走行中においては、設定走行ラインSLを、平行に変位させる変位スイッチ359としても用いられる。
 従って、指示ボタン352が、変位スイッチ359として機能する時(自動走行中)は、前記右指示ボタン352Aは、設定走行ラインSLを前進方向に対して右側へ変位させる右変位スイッチ359Aとして機能し、前記左指示ボタン352Bは、設定走行ラインSLを前進方向に対して左側へ変位させる左変位スイッチ359Bとして機能する。
 設定走行ラインSLの平行変位の制御は、後述するライン変位部382において行われ、走行機体Cは、ライン変位部382で平行変位された新たな設定走行ラインSLへ走行経路を自動的に変更して走行する(図39参照)。
 この設定走行ラインSLの平行変位制御は、図40に示すフローチャートのとおり実施される。
 即ち、自動操向スイッチ350のオン操作によって走行機体Cが設定走行ラインSL上を自動走行している(#01)状態で、変位スイッチ359が押されると(#02)、設定走行ラインSLが所定量b(図39参照)だけ平行に変位設定される(#03)。
 また、この平行変位制御は、自動操向スイッチ350がオフ操作されるまで(#04)継続される。
〔操向ユニットについて〕
 図35に示すように、操向ユニットUには、上述の操向ハンドル343、操向ハンドル343に連動連結されるステアリング操作軸354、ステアリング操作軸354の回動に伴って揺動するピットマンアーム355、ピットマンアーム355に連動連結される左右の連繋機構356、ステアリングモータ358、ステアリング操作軸354にステアリングモータ358を連動連結するギヤ機構357等が備えられている。
 ステアリング操作軸354は、ピットマンアーム355、左右の連繋機構356を介して、左右の前車輪310に、それぞれ、連動連結されている。ステアリング操作軸354の回転量は、ステアリング操作軸354の下端部に備えられるロータリエンコーダからなる操向角センサ360(図36参照)により検出されるようになっている。
 操向ユニットUの手動操向を行う場合には、運転者が操向ハンドル343を操作する操作力に、ステアリングモータ358による操向ハンドル343の操作に応じた補助力を付与してステアリング操作軸354を回動操作し、前車輪310の操向角度を変更するようになっている。一方、操向ユニットUの自動操向を行う場合には、ステアリングモータ358を駆動して、ステアリングモータ358の駆動力によりステアリング操作軸354を回動操作し、前車輪310の操向角度を変更するようになっている。
〔受信装置を有する計測ユニットと慣性計測装置について〕
 図33、図34、図36に示すように、走行機体Cには、衛星測位システムにより位置情報を取得する受信装置363、及び、走行機体Cの傾き(ピッチ角、ロール角)を検出可能な副慣性計測装置364を有する計測ユニット361と、慣性情報を計測する主慣性計測装置362(「慣性計測装置」に相当)と、が備えられている。
 主慣性計測装置362、及び、副慣性計測装置364は、それぞれ、IMU(Inertial Measurement Unit)により構成されている。
 計測ユニット361と主慣性計測装置362とは、走行機体Cにおける異なる箇所に、且つ、走行機体Cにおける左右中心線CL上に配置されている。
 上述の衛星測位システム(GNSS:Global Navigation Satelite System)には、その代表的なものとしてGPS(Global Positioning System)が挙げられる。GPSは、地球の上空を周回する複数のGPS衛星や、GPS衛星の追跡と管制を行う管制局や、測位を行う対象(走行機体C)が備える受信装置363を使用して受信装置363の位置を計測するものである。受信装置363は、衛星測位システムにより走行機体Cの位置情報を取得するために用いられる。
 図33、図34に示すように、計測ユニット361は、板状の支持プレート365を介して、連結フレーム331に取り付けられている。主慣性計測装置362は、走行機体C及び苗植付装置Wの前後方向における全長のうち前後方向中心の近傍の箇所に配置されている。
〔制御構成について〕
 図37に示すように、走行機体Cには、操向ユニットUの自動操向についての制御を行う制御装置375が備えられている。制御装置375には、情報記憶部376(記録部に相当)と、ティーチング記憶部377と、旋回検出部78と、開始判定部79と、情報補正部380と、走行機体Cを走行させる設定走行ラインSLを生成する始点設定部381と、設定走行ラインSLを平行に変位設定するライン変位部382と、状態検出部383と、位置情報、及び、慣性情報に基づいて、走行機体Cが設定走行ラインSLに沿って走行するように、操向ユニットUを制御する制御部384と、が備えられている。
 制御装置375には、受信装置363と、副慣性計測装置364と、主慣性計測装置362に備えているジャイロセンサ370、加速度センサ371、操向角センサ360、自動操向スイッチ350、指示ボタン352、変位スイッチ359等の情報が入力されている。
 情報記憶部376は、受信装置363から取得される位置情報を、時間毎に記憶していくように構成されている。
 ティーチング記憶部377は、指示ボタン352の操作に基づいて、情報記憶部376に記憶された位置情報のうち前記始点K1、前記終点K2の位置情報を用いて、基準走行ラインKLを算出するように構成されている。
 旋回検出部378は、操向角センサ360から入力される操向ユニットUのステアリング操作軸354の操向角情報に基づいて、走行機体Cの旋回開始、及び、走行機体Cの旋回終了を検出するように構成されている。
 開始判定部379は、走行機体Cの自動操向制御を開始するか否かの判定を行うように構成されている。
 情報補正部380は、走行機体Cの自動操向制御の開始毎に、主慣性計測装置362により計測される慣性情報のうちジャイロセンサ370により検出される情報の積算誤差を、受信装置363により取得される位置情報、及び、副慣性計測装置364により計測される情報と、に基づいて補正処理を行うように構成されている。
 始点設定部381は、基準走行ラインKLと、走行機体Cの自動操向制御の開始時の自機位置、及び、自機方位に基づいて、設定走行ラインSLを生成するように構成されている。
 ライン変位部382は、右変位スイッチ359A(又は左変位スイッチ359B)の操作によって設定走行ラインSLを平行に右側(又は左側)へ所定量bだけ変位設定するように構成されている。
 状態検出部383は、走行機体Cの自動操向制御中に、走行機体Cの自機位置と設定走行ラインSLとの距離偏差(ズレ距離)と、走行機体Cの自機方位と設定走行ラインSLとの角度偏差(ズレ角度)と、を検出するように構成されている。
 制御部384は、状態検出部383から入力される情報に基づいて、操向ユニットUのステアリングモータ358の駆動を制御するように構成されている。
 本実施形態の田植機の具体的な走行例について説明する。
[1]図38に示すように、ティーチングの為の手動走行を開始する。
 この手動走行は、主変速レバー344を中立よりも前方に揺動操作することで開始することができ、畦に近い圃場外周部分から、畦に沿って直線上のコースを走行する。走行中に、右指示ボタン352Aを押すことで、その時の走行機体Cの位置情報が測位システムで取得され、基準走行ラインKLの始点K1の位置情報として情報記憶部376に記録される。
 また、手動走行を継続させた後に、左指示ボタン352Bを押すことで、その時の走行機体Cの位置情報が測位システムで取得され、基準走行ラインKLの終点K2の位置情報として情報記憶部376に記録される。
 その結果、ティーチング記憶部377によって、始点K1と終点K2とを結ぶ直線として基準走行ラインKLが設定される。
[2]基準走行ラインKLにおける直線走行の後、操向ハンドル343を旋回操作して走行機体Cの方向転換を図り、隣接した設定走行ラインSLの開始位置まで手動走行を行う。
 その際、基準走行ラインKLの走行中にマーカ装置333によって田面に描いた指標線と、前述したセンターマスコット314とを利用して、所定位置への走行機体Cの位置合わせを行うことができる。
[3]走行機体Cを自動走行させながら植え付けを行う。
 自動走行の開始は、主変速レバー344を前方に揺動させると共に、前記自動操向スイッチ350を押すことによって実施される。自動操向スイッチ350が押されると、始点設定部381によって、その時の走行機体Cの位置情報が測位システムで取得され、設定走行ラインSLの始点S0の位置情報として情報記憶部376に記録され、更には、その始点S0を通り前記基準走行ラインKLに平行な設定走行ラインSLが生成される。
 設定走行ラインSLが生成されると、制御装置375によって、状態検出部383から入力される走行機体Cのズレ情報に基づいて操向ユニットUがズレ矯正方向にコントロールされ、走行機体Cが設定走行ラインSL上を走行するように制御される。
[4]設定走行ラインSLにおける自動走行を解除する。
 設定走行ラインSLの終端位置まで達すると、自動操向スイッチ350を押すことで、自動走行が解除される。この状態で、操向ハンドル343を旋回操作して走行機体Cの方向転換を図り、隣接した次の設定走行ラインSLの開始位置まで手動操向を行う。
 以後、自動走行による設定走行ラインSLの植付操向と、手動走行による方向転換とを交互に繰り返す。
 尚、設定走行ラインSLを走行途中において、設定走行ラインSLそのものを平行に変位させたい場合には、変位させたい側の変位スイッチ359を押すことで、所定量bだけ平行に変位設定することができる。
 本実施形態の田植機によれば、自動操向スイッチ(切替スイッチの一例)50で手動走行から自動走行へ切替操作を行うだけで、その地点を、設定走行ラインSLの始点S0として設定することができるから、運転者が、圃場の状況を見ながら、好ましい位置に自由に設定走行ラインSLを設定することができる。よって、走行機体C上での各種作業を効率よく実施できると共に、運転者への負担を軽減することが可能となる。
 更には、一度設定した設定走行ラインSLを自動走行している最中に、変位スイッチ359を操作するだけで、設定走行ラインSLを簡単に平行変位させることができ、圃場の状況により合致した農作業を実施できるようになる。
 また、変位スイッチ359は、スイッチの配置と、変位操作方向とを揃えてあるので、誤操作を防止でき、良好な取扱性が得られる。
 〔第4実施形態の別実施形態〕
〈1〉農作業機は、先の実施形態で説明した形式の田植機に限るものではなく、他の形式の田植機であったり、田植機以外の農作業機であってもよく、それらを含めて農作業機と総称する。
〈2〉切替スイッチ(自動操向スイッチ350)は、先の実施形態で説明した構造の自動操向スイッチに限るものではなく、例えば、押圧操作式に替えて、揺動操作式や回転操作式の構造を備えたものであってもよい。
 従って、切替スイッチ(自動操向スイッチ350)の操作方向は、走行機体Cの左右方向に沿ったものに限るものではない。
 また、切替スイッチの設置個所は、変速操作具以外の箇所に設けてあったり、更には、他の機能スイッチと兼用化してもよい。
 それらを含めて「切替スイッチ」と総称する。
〈3〉指示スイッチは、先の実施形態で説明した指示ボタン352に限るものではなく、例えば、スイッチ構造としては、押圧操作式に替えて、揺動操作式や回転操作式の構造を備えたものであってもよい。
 また、右指示ボタン352Aと左指示ボタン352Bとを、走行機体Cの左右方向に対応させて配置することに限らず、例えば、前後方向に並べて配置したり、全く異なった位置に配置してあってもよい。
 また、指示スイッチとして二つのスイッチを設けることに限らず、例えば、一つのスイッチで、基準走行ラインKLの始点K1と終点K2とを指示できるように構成してあってもよい。
 また、指示スイッチは、変位スイッチ359とは別のスイッチと兼用化してあったり、単独のスイッチとして構成してあってもよい。
 それらを含めて「指示スイッチ」と総称する。
〈4〉変位スイッチ359は、先の実施形態で説明した変位スイッチに限るものではなく、例えば、スイッチ構造としては、押圧操作式に替えて、揺動操作式や回転操作式の構造を備えたものであってもよい。
 また、変位スイッチ359は、指示スイッチとは別のスイッチと兼用化してあったり、単独のスイッチとして構成してあってもよい。
 また、変位スイッチ359として二つのスイッチを設けることに限らず、例えば、一つのスイッチで、設定走行ラインSLの変位方向を指示できるように構成してあってもよい。
 それらを含めて変位スイッチ359と総称する。
〈5〉変位スイッチ359の操作に伴う操向制御に関しては、例えば、スイッチの連打等によって、過度の平行変位が実行されるのを防止するために、特定の条件に当て嵌まる場合は、図41に示すように、変位スイッチ359の操作を変位制御に反映させないようにする操作キャンセル部385を、制御装置375に備えてあってもよい。
 操作キャンセル部385によって変位スイッチ359の操作をキャンセルする態様としては、以下のものが挙げられる。
 例えば、変位スイッチ359への操作のうち、初期の所定回数の操作を、設定走行ラインSLの変位制御に反映させないようにする。
 この態様においては、変位スイッチ359の第1回目の操作によって設定走行ラインSLを所定量b変位させたら、第2回目から所定回数(例えば、4回)の操作について変位制御に反映させないようにすることで、5回の操作が連打されても、設定走行ラインSLの変位は、1回分の所定量bになり、過度の平行変位を防止できる。
 また、別の態様としては、変位スイッチ359を操作すると、変位スイッチ359の操作から設定時間が経過するまで、変位スイッチ359の操作を、設定走行ラインSLの変位制御に反映させないようにする。
 この態様においては、例えば、前記設定時間を5秒と設定すれば、変位スイッチ359の第1回目の操作から5秒間は、何回連打しても、設定走行ラインSLの変位は、1回分の所定量bになり、過度の平行変位を防止できる。
 また、別の態様としては、図42に示すように、変位スイッチ359を操作すると、変位後の設定走行ラインSLを中心として設定される所定幅SBの誤差領域に、走行機体Cが達するまで、変位スイッチ359の操作を、設定走行ラインSLの変位制御に反映させないようにする。
 この態様においては、例えば、前記所定量bを10cm、前記所定幅SBを6cm(片側3cm)と設定した場合、変位スイッチ359の第1回目の操作によって走行機体Cが走行コースGを変更している過程で、平行変位方向での(b-SB/2)=10-3=7cmの領域を通過している間は、何回連打しても、設定走行ラインSLの変位はキャンセルされ、過度の平行変位を防止できる。
〈6〉測位システムによって取得される走行機体Cの位置情報は、計測ユニット361の平面位置情報であるが、その上方を基にして設定する前記基準走行ラインKLの始点K1や終点K2、及び、前記設定走行ラインSLの始点S0は、必ずしも、走行機体Cにおける計測ユニット361の平面位置として設定することに限らない。例えば、走行機体Cにおける左右中心線CLでの前端位置(又は後端位置)や、走行機体Cの重心から所定距離だけ前方(又は後方)に離間した位置(例えば、センターマスコット314を通る運転者の視線と田面とが交わる前方の位置等)として設定してあってもよい。
(7)本発明は、作業装置として苗植付装置を備える上記乗用型の田植機以外にも、例えば、作業装置として播種装置を備える植播系水田作業車である乗用型の直播機、作業装置としてプラウ等を備えるトラクタ、若しくは、作業装置として刈取部等を備えるコンバイン等の農作業機に利用できる。
[第5実施形態]
 本発明による圃場作業車両の具体的な実施形態を説明する前に、図43を用いて、その圃場作業車両に採用されている車両制御の基本原理を説明する。
 図43では、圃場作業車両として、田植機、播種機、トラクタ、コンバインが想定されている。圃場作業装置として、田植機は植付け装置を備え、播種機は播種装置を備え、トラクタは耕耘装置を備え、コンバインは刈取装置を備える。これらの圃場作業装置は、それぞれの走行機体に作業位置と非作業位置との間で昇降可能に連結されている。
 この圃場作業車両(以下単に車両と略称する)は、図43では、平行となっている上側畦と下側畦に境界付けられた圃場を、180度の方向転換走行(Uターン走行)を挟んだ往復直線状走行を繰り返しながら走行する。上側畦の近傍には、上側の畦際領域が設定され、下側畦の近傍には、下側の畦際領域が設定されている。車両は、畦際領域で方向転換走行を行い、それ以外の圃場領域で直線状の作業走行を行う。
 車両は、自車位置を示す測位データを出力する測位ユニットを装備している。さらには、走行機体を人為操作に基づいて操舵する人為操舵部だけではなく、走行機体を自動操舵する自動操舵部も装備されている。なお、測位ユニットから出力される測位データは、アンテナの位置が基準となるが、ここでは、自車位置は、アンテナの位置ではなく、車両の適切な位置、例えば、圃場作業装置の対地作用点などとなるように補正処理が施されている。
 この圃場における圃場走行の一例を以下に示す。
 まず、下側畦を乗り越えて圃場内に入り込んだ車両は、地点A1において、運転者の操作により、圃場作業装置を作業位置まで下降させ、直線状の作業走行(往路)を開始する。この圃場作業装置の下降は、作業開始を示す車両挙動として、地点A1の位置を示す測位データとともに記録される。直線状の作業走行を経て、車両が地点B1で方向転換領域に達すると、運転者の操作により、圃場作業装置を非作業位置まで上昇させ、180度の方向転換走行に移行する。この圃場作業装置の上昇は、作業停止を示す車両挙動として、地点B1の位置を示す測位データとともに記録される。
 畔際領域での方向転換走行が終了すれば、地点A2において、再び圃場作業装置を作業位置まで下降させ、直線状の作業走行(復路)を開始する。この圃場作業装置の下降も、作業開始を示す車両挙動として、地点A2の位置を示す測位データとともに記録される。なお、地点A2の位置は、作業幅(植付け幅や耕耘幅)に相当する往復作業走行間隔を考慮して、地点B1の位置から推定することができる。したがって、畦際領域での方向転換走行中に、車両が推定された地点A2に接近してくれば、その旨を運転者に報知して、圃場作業装置を作業位置まで下降させることを運転者に促すことができる。また、車両が推定された地点A2に到達した時に、自動的に圃場作業装置を作業位置まで下降させることも可能である。車両が再び直線状の作業走行(復路)を開始した位置が、最終的な地点A2として設定される。
 この直線状の作業走行(復路)の終点である地点B2、つまり車両が再び畔際領域に到達する地点も、地点A1の位置から推定することができる。したがって、車両が地点B2に接近してくれば、畦際領域に達する前に、圃場作業装置を非作業位置まで上昇させて、方向転換走行の準備を行うことを運転者に報知可能である。また、車両が推定された地点B2に到達した時に、自動的に圃場作業装置を非作業位置まで上昇させることも可能である。車両が畦際領域に到達すれば、自動的に又は人為的に畦際領域内での方向転換走行に移行する。方向転換走行が終了すると、地点A3から再び直線状の作業走行(復路)を開始する。
 このようにして、地点B3、地点A4、地点B4、地点A5・・・を経由しながら、作業走行と方向転換走行を繰り返す。その際、地点A1を設定すれば、地点A1から、往復作業走行間隔を考慮して、地点B2、地点A3・・・を推定することができる。しかしながら、地点A3を推定する際には、地点A1から推定することもできるが、作業走行から方向転換走行に実際に移行した位置としての地点B2が検知されていることから、この地点B2から地点A3を推定することも可能である。特に、実際の畦際領域が直線的に延びているのではなく、斜めや段階的に延びている場合は、途中であらたに設定された地点から推定することで、そのような畦際領域の境界点を正しく検知することができる。
 例えば、図44に示すように、畦際領域が段差をもっている場合、直線状の作業走行を推定された地点B4よりさらに直線状の作業走行を延長する必要がある。直線状の作業走行が自動操舵で行われている場合、自動操舵を解除して、手動操舵で方向転換走行に適した位置(新しく設定される地点B4)まで直線状の作業走行を続行する。地点B4が新しく設定されると、次の地点A5は地点B4から推定される。
 作業走行の開始点である地点A1、A2、・・・は、特定の車両挙動に基づいて自動的に設定することができる。そのような特定の車両挙動として適切なものは、例えば、圃場作業装置に対する作業開始指令、圃場作業装置の作業位置への位置変更の検出、圃場作業装置のための動力伝達クラッチの入り検出などである。さらに、運転者によって操作される操作具の状態を特定の車両挙動として利用してもよい。同様に、作業走行の終了点(方向転換走行の開始点)である地点B1、B2、・・・も、特定の車両挙動に基づいて自動的に設定することができる。そのような特定の車両挙動として適切なものは、例えば、圃場作業装置に対する作業停止指令、圃場作業装置の非作業位置への移行検出、圃場作業装置のための動力伝達クラッチの切り検出などである。さらに、運転者によって操作される操作具の状態を特定の車両挙動として利用してもよい。
 地点A1と地点B1とによって定義される最初の作業走行経路を、基準作業走行経路とすれば、以後の自動操舵用の目標作業経路をこの基準作業走行経路に基づいて算定することができる。作業走行は一般に直線状の走行であることから、方向転換走行に比べて簡単な操舵となるので、作業走行を自動操舵で実施し、方向転換走行を人為操舵で実施することは、制御的に好都合である。圃場形状が単純な矩形である場合、地点A1と地点B1とを設定すれば、その後の作業走行と方向転換走行との間の移行タイミング、つまり畦際領域への到達タイミング及び畦際領域からの離脱タイミングは地点A1と地点B1から推定することができる。
 直線状の作業走行(復路)から畦際領域に入っても、何らかの理由で方向転換走行が行われない場合、車両が畦に乗り上げてしまう不都合が生じる。このような不都合を回避するために、直線状の作業走行(復路)の終点である地点B2、B3、B4・・・を推定し、記録しておくことが重要となる。測位ユニットによって自車位置が算定できるので、この自車位置と作業走行(復路)の終点(畦際領域への進入点)の位置とを常に比較することができる。これにより、車両が畦際領域への進入する手前及び車両が畦際領域への進入した後での車両減速、警告の報知、車両の停止などを実施することができる。
 上述した例では、最初の作業走行で地点A1と地点B1とを設定し、その後の作業走行と方向転換走行との間の地点(車両の畦際領域へ到達点及び畦際領域からの離脱点)、A2、A3・・・、B2、B3・・・は地点A1と地点B1から推定された。車両が圃場の地図データを格納した圃場地図格納部を備えている場合は、自車位置と地図データとを用いてマップマッチングすることで、車両が畦際領域に到達したことや畦際領域から離脱したことが検知できるので、そのような地点A1と地点B1とを設定及びその他の地点の地点A1と地点B1からの推定は不要となる。
 次に、図面を用いて、本発明による圃場作業車両の具体的な実施形態の1つを説明する。図45は、圃場作業車両の一例である乗用型の田植機の側面図であり、図46は平面図である。この田植機は、走行機体Cと、圃場に対する作業を行う圃場作業装置とを備えている。ここでの圃場作業装置は、圃場に対する苗の植え付けが可能な苗植付装置Wである。なお、図46に示す矢印Fが走行機体Cの「前」、矢印Bが走行機体Cの「後」、矢印Lが走行機体Cの「左」、矢印Rが走行機体Cの「右」である。
 図45に示すように、走行装置としては、左右一対の前車輪410と左右一対の後車輪411とが備えられている。走行機体Cには、走行装置における左右の前車輪410を操向可能な操舵ユニットU1が備えられている。
 図45と図46とに示すように、走行機体Cの前部には、開閉式のボンネット412が備えられている。ボンネット412内には、エンジン413が備えられている。走行機体Cには、前後方向に沿って延びる枠状の機体フレーム415が備えられている。機体フレーム415の前部には、支持支柱フレーム416が立設されている。
 図45に示すように、苗植付装置Wは、油圧シリンダで構成される昇降シリンダ420の伸縮作動により昇降作動するリンク機構421を介して、走行機体Cの後端に昇降自在に連結されている。苗植付装置Wには、4個の伝動ケース422、各伝動ケース422の後部の左側部及び右側部に回転自在に支持された回転ケース423、各回転ケース423の両端部に備えられた一対のロータリ式の植付アーム424、圃場の田面を整地する複数のフロート425、植え付け用のマット状苗が載置される苗載せ台426等が備えられている。つまり、苗植付装置Wは、8条植え型式に構成されている。
 走行機体Cにおけるボンネット412の左右側部には、苗植付装置Wに補給するための予備苗を載置可能な複数(例えば4つ)の通常予備苗台428、苗植付装置Wに補給するための予備苗を載置可能な1つのレール式予備苗台429が備えられている。また、走行機体Cにおけるボンネット412の左右側部には、各通常予備苗台428とレール式予備苗台429とを支持する左右一対の予備苗フレーム430と、左右の予備苗フレーム430の上部に亘って連結される連結フレーム431と、が備えられている。連結フレーム431は、前面視で、U字状の形状となっている。連結フレーム431の左右端部は、それぞれ、連結ブラケット432を介して、左右の予備苗フレーム430の上部に連結されている。
 走行機体Cの中央部には、各種の運転操作が行われる運転部440が備えられている。運転部440には、運転者が着座可能な運転座席441、操縦塔442、前車輪410の手動の操向操作用のステアリングホイールにより構成される操向ハンドル443、前後進の切り換え操作や走行速度を変更操作が可能な主変速レバー444、操作レバー445等が備えられている。運転座席441は、走行機体Cの中央部に備えられている。操縦塔442に、操向ハンドル443、主変速レバー444が操作自在に備えられている。運転部440の足元部位には、搭乗ステップ446が設けられている。
 操向ハンドル443の下側の右横側に操作レバー445が備えられている。操作レバー445を上昇位置に操作すると、作業クラッチの一種である植付クラッチ(図示なし)が遮断状態に操作されて、苗植付装置Wが上昇する。操作レバー445を下降位置に操作すると、植付クラッチ(図示なし)が遮断状態に操作され、苗植付装置Wが下降する。中央のフロート425が圃場の田面に接地すると、苗植付装置Wが圃場の田面に接地して停止した状態となる。
 図47に示すように、操舵ユニットU1には、上述の操向ハンドル443、操向ハンドル443に連動連結されるステアリング操作軸454、ステアリング操作軸454の回動に伴って揺動するピットマンアーム455、ピットマンアーム455に連動連結される左右の連繋機構456、ステアリングモータ458、ステアリング操作軸454にステアリングモータ458を連動連結するギヤ機構457等が備えられている。
 操舵ユニットU1は、自動操舵モード及び人為操舵モードで動作可能である。人為操舵モードでは、運転者が操向ハンドル443を操作する操作力に、ステアリングモータ458による操向ハンドル443の操作に応じた補助力を付与してステアリング操作軸454を回動操作し、前車輪410の操向角度を変更する。一方、自動操舵モードでは、ステアリングモータ458を自動制御し、ステアリングモータ458の駆動力によりステアリング操作軸454を回動操作し、前車輪410の操向角度を変更する。この実施形態では、操向ハンドル443とステアリングモータ458とが、走行機体Cを人為操舵する人為操舵部の構成要素として機能する。また、走行機体Cを自動操舵する自動操舵の制御機能は、後で説明する制御装置408(図48参照)に構築され、制御装置408からの制御指令に基づいてステアリングモータ458が駆動する。なお、操向ハンドル443の操作変位が直接ステアリング操作軸454に伝達されるのではなく、操向ハンドル443の操作変位がセンサによって検出され、その検出値に基づいてステアリングモータ458が駆動される場合、いわゆるバイワイヤ方式が採用されている場合、人為操舵の制御機能も、制御装置408に構築される。
 走行機体Cには、測位ユニット461が備えられ、走行機体Cの自機位置は、測位ユニット461からの測位データから求められる。測位ユニット461には、GNSSモジュールとして構成されている衛星航法用モジュールと、ジャイロ加速度センサと磁気方位センサを組み込んだモジュールとして構成されている慣性航法用モジュールとが含まれている。衛星航法用モジュールには、GPS信号やGNSS信号を受信するための衛星用アンテナが接続されている。少なくともこの衛星用アンテナは、電波受信感度が良好となる箇所、この実施形態では連結フレーム431に取り付けられている。衛星航法用モジュールと慣性航法用モジュールとは別の場所に設けてもよい。
 図48には、この田植機に装備されている制御装置408が示されている。なお、図48では、制御装置408に構築されている機能部の内、主に操舵に関する機能部が示されている。この制御装置408は、図43と図44とを用いて説明された自動操舵と人為操舵に関する基本原理を採用している。制御装置408は、入力信号処理部408aを介して、測位ユニット461、車両状態検出センサ群409、接触検出器490、走行モード切替操作具465、操舵モード切替操作具466と接続している。また、制御装置408は、出力信号処理部408bを介して、報知デバイス407、車両走行機器群471、作業装置機器群472と接続している。なお、走行モード切替操作具465や操舵モード切替操作具466はスイッチやボタンで構成される。
 車両状態検出センサ群409は、走行機体Cの動作や姿勢、圃場作業装置としての苗植付装置Wの動作や姿勢を検出するために設けられた各種センサやスイッチからなる。接触検出器490は、それ自体はよく知られているので、図45や図46では図示されていないが、田植機と障害物との接触を検出する構造を有する。接触検出器490によって田植機と障害物との接触が検出されると、田植機は、緊急停止する。操舵モード切替操作具466は、自動操舵で走行する自動操舵モードと人為操舵で走行する人為操舵モードとのいずれかを選択するスイッチである。例えば、自動操舵で走行中に操舵モード切替操作具466を操作することで、人為操舵での走行に切り替えられ、人為操舵で走行中に操舵モード切替操作具466を操作することで、自動操舵での走行に切り替えられる。
 走行モード切替操作具465は、畦際領域と非畦際領域の境界を制御装置408に教えるためのティーチングスイッチであり、この実施の形態では、走行モード切替操作具465はAボタンとBボタンとを有する。運転者は、車両が方向転換走行から作業走行に移行する時にAボタンを押し、車両が作業走行から方向転換走行に移行する時にBボタンが押される。
 報知デバイス407には、ランプやブザーが含まれており、畦際領域への接近や自動操舵走行での目標走行経路からの外れなど、運転者に報知したい種々の情報を,制御装置408からの指令に基づいて視覚的又は聴覚的に出力する。さらに、報知デバイス407にフラットパネルディスプレイなどが含まれておれば、文字情報を提供することも可能である。
 車両走行機器群471には、走行機体Cに搭載されている走行するための種々の動作機器や制御機器が含まれており、例えば、操舵ユニットU1を構成するステアリングモータ458などの動作機器、エンジン回転数を調整する制御機器、クラッチやシフタなどのトランスミッション用動作機器、ブレーキ動作機器などである。作業走行機器群には、この実施形態では、圃場作業装置として搭載されている苗植付装置Wを昇降する昇降シリンダ420や苗植付装置Wの作業クラッチとして機能する植付クラッチなどの動作機器が含まれている。
 制御装置408には、畦際検知モジュール481、自動操舵部482、車両挙動記録部483、操舵モード管理部484、走行経路算定部485、走行距離算定部486、姿勢判定部487などが、実質的にはコンピュータプログラムで構築されている。
 畦際検知モジュール481は、最初の作業走行において設定された走行経路基準点である、畦際領域での走行から作業走行に移行する地点A1と、作業走行から畦際領域での方向転換走行に移行する地点B1と、測位ユニット461の測位データから得られる自車位置とに基づいて、走行機体Cが畦際領域に到達しているかどうかを検知する。図43と図44とを用いて説明したように、地点A1を苗植付装置(作業装置)Wの下降位置(作業位置)への下降により検知し、地点B1を苗植付装置Wの上昇位置(非作業位置)への上昇により検知し、それぞれ車両挙動として車両挙動記録部483に記録する。この地点A1と地点B1との間の走行経路(一般的には直線)が基準作業走行経路であり、自動操舵であっても、人為操舵であっても、この基準作業走行経路を往復作業走行間隔だけ順次平行移動させることで、次の作業走行経路が得られる。つまり、地点A1に対応する地点B2、A3、B4、A5・・・、及び地点B1に対応する地点A2、B3、B4、A4、B5・・・が推定される。この推定アルゴリズムは、畦際推定部810に構築されている。畦際領域の境界を示す地点の推定方法は、圃場の形状によって異なるので、圃場の形状毎に適切な推定アルゴリズムが選択できるような構成が好ましい。当該各地点と自車位置とを比較することにより、作業走行している走行機体Cが畦際領域に到達するまでの距離が検知され、制御装置408は、例えば、畦際領域に所定距離だけ接近した場合の接近報知や、畦際領域に到達した際の到達報知、走行機体Cの減速、走行機体Cの停止などの指令を出力することができる。
 走行経路算定部485は、上述した基準作業走行経路から、それ以降の作業走行を自動操舵で行うために必要となる走行経路データを算定する。自動操舵部482は、走行経路算定部485によって算定された走行経路データと、自車位置とのずれを算定し、自動操舵指令を生成し、操舵ユニットU1に出力する。
 操舵モード管理部484は、人為操舵による走行である人為操舵モードと自動操舵による走行である自動操舵モードとを管理する。例えば、畦際領域では人為操舵モードを選択し、畦際領域以外(一般には直線状の作業走行)は自動操舵モードを選択するように設定可能である。また、操舵モード切替操作具466からの切替指令により、強制的に、人為操舵モードと自動操舵モードとを選択することも可能である。さらには、操向ハンドル443を操作すれば、強制的に自動操舵モードから人為操舵モードに切り替わるように設定することも可能である。
 車両挙動記録部483は、入力信号処理部408aと通じて入力された各種センサ検出信号や各種操作デバイスの操作信号、出力信号処理部408bを通じて車両走行機器群471や作業装置機器群472に出力された制御信号に基づいて、車両に生じた状態、特に作業走行の開始と終了に関する車両挙動を記録する。その際、各車両挙動は、当該車両挙動が生じた時に取得された自車位置とともに記録される。
 図49には、図43に示されたような簡略化された圃場での走行において、車両挙動記録部483によって時系列で記録された車両挙動の一例が示されている。この例では、車両挙動記録部483の記録項目には、記録NO、挙動時刻、自車位置、挙動内容が含まれている。挙動時刻は、挙動時刻車両挙動が検出された時刻(タイムスタンプ)である。自車位置は車両挙動を検出された時の自車位置である。挙動内容は、検出された車両挙動を識別するものであり、ここでは、走行モード切替操作具465の操作内容(AはAボタンの操作、BはBボタンの操作を意味する)、苗植付装置Wやフロート425の位置、植付けクラッチ(作業クラッチ)の状態、操舵の状態(直進から旋回への操舵、又は旋回から直進への操舵)が記録されている。なお、図49では、各車両挙動の自車位置は同一となっているが、苗植付装置Wの昇降タイミングや旋回走行の操舵タイミングなどは異なるので自車位置は異なるが、ここでは、記録される自車位置は、特定の車両の基準位置に置き換える補正を行って記録されている。
 図43及び図49から理解できるように、車両挙動記録部483の記録から、走行機体C及び作業装置である苗植付装置Wの各種状態、特に作業開始及び作業終了を読み取ることができる。この田植機による苗植付け作業の最初のプロセスとして、車両は畦から畦際領域に入り、畦際領域を出るタイミングで、記録NO「0001」が記録される。記録NO「0001」の内容は、図43の地点A1の記録であり、その時の挙動時刻、自車位置、挙動内容が含まれる。挙動内容として、走行操作モードが「A」、苗植付装置位置が「下降位置」、フロート位置が「接地」、クラッチ状態が「入り」となっている。実際は、これらの挙動内容が検出されるタイミングは微妙に異なっているが、ここでは、同じタイミングとしている。つまり、記録NO「0001」が記録されたタイミングで、運転者によって、走行モード切替操作具465のAボタンが押されるとともに、作業走行するための設定が行われたことになる。
 この後、直線状の作業走行を行い、畦際領域に到達したタイミングで、記録NO「0002」が記録される。記録NO「0002」の内容は、図43の地点B1の記録であり、その時の挙動時刻、自車位置、挙動内容が含まれる。挙動内容として、走行操作モードが「B」、苗植付装置位置が「上昇位置」、フロート位置が「離脱」、クラッチ状態が「切り」、操舵が「直進から旋回」となっている。つまり、記録NO「0002」が記録されたタイミングで、運転者によって、走行モード切替操作具465のBボタンが押されるとともに、方向転換走行するための設定が行われたことになる。このような走行モード切替操作具465のAボタンとBボタンの操作で、地点A1と地点B1との位置が記録される。この地点A1と地点B1を結ぶ線は、以後の作業走行の走行経路を推定するための基準作業走行経路として用いることができる。したがって、地点A1と地点B1以外では、走行モード切替操作具465の操作は不要となる。
 畦際領域での方向転換走行を終えて、畦際領域を出て、作業走行を行うタイミングで、記録NO「0003」が記録される。記録NO「0003」の内容は、図43の地点A2の記録であり、その時の挙動時刻、自車位置、挙動内容が含まれる。なお、地点A2の位置は、畦際推定部810によって、圃場が図43のような圃場であれば、往復作業走行間隔を用いて、地点B1から推定される。したがって、この推定された地点B1に、測位ユニット461から取得される自車位置が接近した時に又は一致した時に作業走行の設定を自動で行うことができる。あるいは、車両が地点B1に接近していることを報知して、作業走行の設定を運転者に促すことができる。同様に、地点B2の位置も、地点A1から推定される。したがって、この推定された地点B2に、測位ユニット461から取得される自車位置が接近した時に又は一致した時に方向転換走行の設定を自動で行うことができる。あるいは、車両が地点B2に接近していることを報知して、方向転換走行の設定を運転者に促すことができる。
 上述した説明から、畦際領域に到達したタイミングや畦際領域から出るタイミングは、苗植付装置Wやフロート425の位置変更、作業クラッチの切替操作、操舵角変化から判定することができるので、畦際領域の境界を認識させるティーチング操作具としての走行モード切替操作具465は必須ではない。畦際領域の境界は、上述した車両挙動の1つ又は組み合わせによって判定することができる。例えば、作業開始時には圃場表面に下降し、作業終了時には圃場表面から上昇するという苗植付装置Wの特性を利用する場合、苗植付装置Wの上昇姿勢から下降姿勢への下降動作を示す状態信号に基づいて、車両の畦際領域から作業領域(非畦際領域)への移行点を判定し、苗植付装置Wの下降姿勢から上昇姿勢への上昇動作を示す状態信号に基づいて、車両の作業領域(非畦際領域)から畦際領域への移行点を判定することができる。
 制御装置408には、畦際領域への車両の到達に関する畦際検知モジュール481の判定結果に基づいて、種々の動作を実行させるための各種指令を出力するアルゴリズムが搭載可能である。以下にその一部を列挙する。
(1)記録された車両挙動が実行される予定の地点に到達しても、当該車両挙動が実行されない場合、車両の減速、エンジン停止などを行う。
(2)圃場での走行において、記録すべき各車両挙動が発生する位置や時間は、特定の範囲に限定することができる。このことから、特定範囲外での、車両挙動は記録対象外とすることで、記録精度が向上する。
(3)車両が畦際領域に入ったことが検知されると、自動操舵は禁止される。
(4)車両が畦際領域における操舵角、旋回半径などの操舵挙動が、方向転換走行のものと異なる場合、車両挙動記録部483への記録は停止される。例えば、旋回半径が大きい場合、方向転換走行ではなく、圃場からの離脱走行など、通常の作業走行でない走行とみなされる。
(5)特定の車両挙動の発生時に、当該車両挙動に不適切な車速が検出されている場合、車両を強制停止する。
 走行距離算定部486は、後車輪411の回転数又は後車輪411への伝動系の回転数を検出するセンサ(車両状態検出センサ群409の1つ)からの検出信号に基づいて走行機体Cの走行距離を算定する。その際、圃場の状態から推定されるスリップ率を考慮すれば、より正確に走行距離を算定することができる。衛星からの電波信号に基づいて自車位置を算定する測位ユニット461の場合、何らかの事情で電波信号の受信感度が低下すると、測位データを出力できなくなる。そのリカバリとしてこの走行距離算定部486が利用される。例えば、畦際検知モジュール481は、測位ユニット461からの測位データが入力されない場合には、走行距離算定部によって算定された走行距離に基づいて、走行機体Cが畦際領域に到達したことを検知することができる。
 姿勢判定部487は、走行機体Cの傾斜角(ローリング角及びピッチング角)を検出する傾斜センサ(車両状態検出センサ群409の1つ)からの検出信号に基づいて走行機体の姿勢を、所定の傾斜しきい値と比較する。この実施の形態では、姿勢判定部487は、走行機体の姿勢が所定条件から外れた場合に、車両走行機器群471の1つである制動機器に対して走行機体を減速又は停止させる制動指令を与える。
 姿勢判定部487の判定結果に基づく具体的な制御動作を以下に列挙する。
(1)検出された傾斜角が傾斜しきい値を超えたら、報知、減速、停止を実行する。
(2)検出された傾斜角が頻繁に傾斜しきい値を超えた場合、自動操舵を禁止する。
(3)検出された傾斜角の傾斜しきい値越えが許容時間続いた場合に、報知、減速、停止を実行する。この許容時間は、車速や圃場深さに依存して決定される。なお、圃場深さが所定値を超える場合には、車体の沈み込みを避けるため完全停車を禁止する。
(4)傾斜の加速度変化を算定し、急激な傾斜変動時には、傾斜しきい値以下でも自動操舵は禁止する。
〔第5実施形態の別実施形態〕
(1)上述した実施形態では、方向転回走行を行う畦際領域と、作業走行を行う非畦際領域との境界点である地点A1と地点B1は、走行モード切替操作具のAボタンとBボタンの操作、その後の地点A2、A3・・・と地点B2、B3・・・は、地点A1と地点B1から推定され、車両挙動に基づいて確定された。制御を簡単にするため、車両挙動は利用せずに、地点A2、A3・・・と地点B2、B3・・・は、地点A1と地点B1から推定され、その推定された位置と異なる位置を正式な地点とする場合には、再び走行モード切替操作具のAボタン又はBボタンを操作して、当該地点を決定してもよい。
(2)図48で示された機能ブロック図における各機能部は、主に説明目的で区分けされている。実際には、図48の各機能部は他の機能部と統合又は複数の機能部に分けることができる。独立した機能部同士は、車載LANなどで接続される。
(3)車両挙動記録部483に記録する車両挙動は、田植機では、上述した以外に、マーカの姿勢などを取り入れてもよい。それ以外にも、畦際領域と非畦際領域との境界で行われる車両挙動は車両挙動記録部483に記録すべき車両挙動の対象となる。
(4)本発明は、作業装置として苗植付装置を備える上記乗用型の田植機以外にも、例えば、作業装置として播種装置を備える植播系水田作業車である乗用型の直播機、作業装置としてプラウ等を備えるトラクタ、若しくは、作業装置として刈取部等を備えるコンバイン等の農作業車、又は、作業装置としてバケット等を備える建設作業車等の種々の作業車に適用できる。
〔第1実施形態〕
28   通常予備苗台(予備苗台)
29   レール式予備苗台(予備苗台)
30   予備苗フレーム
31   連結フレーム
62   主慣性計測装置(慣性計測装置)
63   受信装置
66   ハーネス
67   コネクタ部
68   ガード部材
72   後車軸
73   後車軸フレーム(取付部材)
81   生成部
83   制御部
A    走行装置
C    走行機体
U    操向ユニット
W    苗植付装置(作業装置)
S1   使用状態
S2   格納状態
LM   目標ライン
X    左右軸心
〔第2実施形態〕
111  運転部
111a 乗降口
120  苗植付装置
130  手摺り
131  上端部
131a 固定部
131b 可動部
131f 前端側部
150  予備苗収容装置
151  予備苗載置台
152  予備苗載置台
153  予備苗載置台
153b 予備苗載置台本体
153c 延長載置台
153r 後端側部
200  空きスペース
〔第3実施形態〕
243  手動操向操作具(操向ハンドル)
258  操向操作手段(操向モータ)
261  手動操作検出手段(トルクセンサ)
264  位置検出手段(位置計測ユニット)
266  方位検出手段(慣性計測ユニット)
268  経路設定手段(経路設定部)
269  制御手段(操向制御部)
270  車速検出手段(車速センサ)
300  走行車体
KA   傾斜目標方位
LK   目標移動経路
NA   検出方位(自機方位)
NM   検出位置(自機位置)
TD   目標方位(ティーチング方位)
Z1   既作業領域
Z2   未作業領域
α    傾斜角(設定傾斜角)
[第4実施形態]
344  主変速レバー(変速操作具)
350  自動操向スイッチ(切替スイッチ)
352  指示ボタン(指示スイッチ)
359  変位スイッチ
359A 右変位スイッチ
359B 左変位スイッチ
376  情報記憶部(記録部)
381  始点設定部
385  操作キャンセル部
C    走行機体
KL   基準走行ライン
S0   設定走行ラインの始点
SL   設定走行ライン
SB   所定幅
[第5実施形態]
407   報知デバイス
408   制御装置
408a  入力信号処理部
408b  出力信号処理部
409   車両状態検出センサ群
425  フロート
426  苗載せ台
443  操向ハンドル
444  主変速レバー
445  操作レバー
461  測位ユニット
465  走行モード切替操作具
466  操舵モード切替操作具
471  車両走行機器群
472  作業装置機器群
481  畦際検知モジュール
482  自動操舵部
483  車両挙動記録部
484  操舵モード管理部
485  走行経路算定部
486  走行距離算定部
487  姿勢判定部
490  接触検出器
810  畦際推定部
U1   操舵ユニット
W    苗植付装置(圃場作業装置)

Claims (57)

  1.  走行装置を有する走行機体と、
     圃場に対する作業を行う作業装置と、
     前記走行装置を操向可能な操向ユニットと、
     衛星測位システムにより位置情報を取得する受信装置と、
     慣性情報を計測する慣性計測装置と、
     前記走行機体を走行させる目標ラインを生成する生成部と、
     前記位置情報、及び、前記慣性情報に基づいて、前記走行機体が前記目標ラインに沿って走行するように、前記操向ユニットを制御する制御部と、が備えられ、
     前記受信装置と、前記慣性計測装置と、が前記走行機体における異なる箇所に配置されている作業車。
  2.  前記慣性計測装置が、前記走行機体及び前記作業装置の前後方向における全長のうち前後方向中心の近傍の箇所に配置されている請求項1に記載の作業車。
  3.  前記慣性計測装置が、前記走行装置の後車軸の近傍に位置する取付部材に取り付けられている請求項2に記載の作業車。
  4.  前記作業装置が、圃場に対する苗の植え付けが可能な苗植付装置であり、
     前記苗植付装置に補給するための予備苗を載置可能な複数の予備苗台と、
     前記予備苗台を支持する左右一対の予備苗フレームと、
     左右の前記予備苗フレームの上部に亘って連結される連結フレームと、が備えられ、
     前記受信装置が、前記連結フレームに取り付けられている請求項1~3のいずれか一項に記載の作業車。
  5.  前記連結フレームは、前記受信装置が前記予備苗フレームの上端部よりも上方に位置する使用状態と、前記使用状態に対して上下反転し、前記受信装置が前記予備苗フレームの上端部よりも下方に位置する格納状態と、に状態変更可能となっている請求項4に記載の作業車。
  6.  前記連結フレームが、左右方向に沿った左右軸心周りに回動可能、且つ、前記使用状態と前記格納状態で位置固定可能に、左右の前記予備苗フレームに支持されている請求項5に記載の作業車。
  7.  前記連結フレームが、左右の前記予備苗フレームに対して着脱可能となっている請求項5に記載の作業車。
  8.  前記受信装置に、ハーネスを接続するコネクタ部が備えられ、
     前記コネクタ部が、前記受信装置から左右方向外側に延びている請求項1~7のいずれか一項に記載の作業車。
  9.  前記受信装置に、ハーネスを接続するコネクタ部が備えられ、
     前記コネクタ部を保護するガード部材が備えられている請求項1~8のいずれか一項に記載の作業車。
  10.  搭乗型の運転部を有した走行車体と、
     前記走行車体の後部に昇降操作可能に連結された苗植付装置と、
     前記運転部の横側方において、車体部分から上方向きに立設された手摺りと、
     前記手摺りの前方に設けられた予備苗収容装置と、を備え、
     前記予備苗収容装置は、複数の予備苗載置台を備え、複数の前記予備苗載置台が前記走行車体の上下方向に並ぶ第1状態と、複数の前記予備苗載置台が前記走行車体の前後方向に並ぶ第2状態とに切り換え可能であり、
     前記手摺りのうちの上端部の下方に空きスペースが設けられ、
     前記予備苗収容装置の前記第2状態において、複数の前記予備苗載置台のうちの後から1番目の前記予備苗載置台の後端側部が前記空きスペースに入り込み、平面視で、前記上端部と前記後端側部とが重複する乗用型田植機。
  11.  前記1番目の予備苗載置台は、予備苗載置台本体と、前記予備苗載置台本体から後方に張り出される使用姿勢と、前記予備苗載置台本体の内方側に格納される格納姿勢とに亘って姿勢変更可能に前記予備苗載置台本体に支持された延長載置台とを備え、
     前記1番目の予備苗載置台の前記後端側部が前記使用姿勢の延長載置台によって形成される請求項10に記載の乗用型田植機。
  12.  前記予備苗収容装置の前記第2状態において、前記1番目の予備苗載置台の前記後端側部が前記運転部の乗降口に入り込む請求項10又は11に記載の乗用型田植機。
  13.  前記手摺りの前記上端部は、車体部分に固定された固定部と、前記固定部から前方に延出されて、前端側部が前記運転部の乗降口を閉じる閉じ状態と、前記乗降口を開く開き状態とに切り換え可能な可動部とを備え、
     前記閉じ状態の前記可動部の下方に前記空きスペースが形成される請求項10~12のいずれか一項に記載の乗用型田植機。
  14.  前記可動部は、前記閉じ状態と前記開き状態とに亘って揺動切換え可能に前記固定部に支持されている請求項13に記載の乗用型田植機。
  15.  前記可動部の前記閉じ状態において、前記可動部の前端側部が前記予備苗収容装置の支柱に支持される請求項13又は14に記載の乗用型田植機。
  16.  車体の進行方向を変更可能な操向操作手段と、
     前記車体が走行すべき目標移動経路を設定する経路設定手段と、
     前記車体の位置を検出する位置検出手段と、
     前記車体の方位を検出する方位検出手段と、
     前記位置検出手段にて検出される前記車体の検出位置が、前記目標移動経路上の位置に
    なるように、且つ、前記方位検出手段にて検出される前記車体の検出方位が前記目標移動経路における目標方位になるように、前記操向操作手段を操作する自動操向制御を実行する制御手段とが備えられ、
     前記制御手段は、
     前記検出位置が前記目標移動経路から横方向にずれており、且つ、前記検出方位が前記目標方位と同じであるときは、前記目標方位を前記目標移動経路側に傾斜した傾斜目標方位に変更して前記操向操作手段を操作する位置ずれ修正処理を実行する作業車。
  17.  前記制御手段は、
     前記位置ずれ修正処理を実行するときは、前記傾斜目標方位の前記目標方位に対する傾斜角を設定上限値以下に設定する請求項16に記載の作業車。
  18.  車速を検出する車速検出手段が備えられ、
     前記制御手段は、
     前記位置ずれ修正処理を実行するときは、前記車速が大きいほど前記操向操作手段が前記進行方向を変更するときの変更操作速度が小さい請求項16又は17に記載の作業車。
  19.  車速を検出する車速検出手段が備えられ、
     前記制御手段は、
     前記位置ずれ修正処理を実行するときは、前記車速が大きいほど前記目標方位を前記目標移動経路側に傾斜させる傾斜角度が小さい請求項16~18のいずれか一項に記載の作業車。
  20.  前記制御手段は、
     前記位置ずれ修正処理を実行するときは、前記検出位置が前記目標移動経路に相当する箇所に達するまで、前記傾斜目標方位をそのまま維持する請求項16~19のいずれか一項に記載の作業車。
  21.  前記制御手段は、
     前記位置ずれ修正処理を実行するときは、前記検出位置が前記目標移動経路に相当する箇所に近づくほど、前記傾斜目標方位の前記目標方位に対する傾斜を緩くする請求項16~19のいずれか一項に記載の作業車。
  22.  前記目標移動経路に相当する箇所は、前記目標移動経路に相当する位置の左右両側に横方向に所定幅の領域を有している請求項20又は21に記載の作業車。
  23.  前記車体は、前記目標移動経路に沿って走行しながら作業を行う直進走行と、前記目標移動経路の終端位置にて前記目標移動経路と平行な次回の目標移動経路に向けて旋回する旋回走行とを交互に繰り返して走行するものであり、
     前記制御手段は、
     前記車体が既作業領域側に位置ずれしている状態で、前記位置ずれ修正処理を実行するときは、前記車体が未作業領域側に位置ずれしている状態に比べて、前記目標移動経路側に大きく傾斜させて前記傾斜目標方位を設定する請求項16~22のいずれか一項に記載の作業車。
  24.  前記車体は、前記目標移動経路に沿って走行しながら作業を行う直進走行と、前記目標移動経路の終端位置にて前記目標移動経路と平行な次回の目標移動経路に向けて旋回する旋回走行とを交互に繰り返して走行するものであり、
     前記制御手段は、
     前記車体が未作業領域側に位置ずれしている状態で、前記位置ずれ修正処理を実行するときは、前記車体が既作業領域側に位置ずれしている状態に比べて、前記目標移動経路側に大きく傾斜させて前記傾斜目標方位を設定する請求項16~22のいずれか一項に記載の作業車。
  25.  前記車体は、前記目標移動経路に沿って走行しながら作業を行う直進走行と、前記目標移動経路の終端位置にて前記目標移動経路と平行な次回の目標移動経路に向けて旋回する旋回走行とを交互に繰り返して走行するものであり、
     前記制御手段は、
     前記車体が前記旋回走行を行ったのちに前記直進走行を開始した直後においては、所定の判別条件が成立までの間は、前記位置ずれ修正処理を実行しない請求項16~24のいずれか一項に記載の作業車。
  26.  手動操作に基づいて前記車体の進行方向の変更を指令する手動操向操作具と、
     前記手動操向操作具に対する手動操作が行われたことを検出する手動操作検出手段とが備えられ、
     前記制御手段は、
     前記手動操作検出手段にて手動操作が検出されると、前記自動操向制御において前記操向操作手段を操作するときの操作力を低減させる請求項16~25のいずれか一項に記載の作業車。
  27.  前記制御手段は、
     前記手動操作検出手段にて手動操作が検出されると、前記操作力を低減させ、且つ、前記手動操作検出手段による手動操作が検出されなくなっても、前記操作力を低減させている状態を維持する請求項26に記載の作業車。
  28.  前記制御手段は、
     前記手動操作検出手段にて手動操作が検出されると、前記操作力を低減させ、且つ、前記手動操作検出手段による手動操作が検出されなくなると、前記操作力を元の大きさに戻す請求項26に記載の作業車。
  29.  手動操作に基づいて前記車体の進行方向の変更を指令する手動操向操作具と、
     前記手動操向操作具に対する手動操作が行われたことを検出する手動操作検出手段とが備えられ、
     前記制御手段は、
     前記手動操向操作具による変更指令が設定時間以上継続して指令されると、前記自動操向制御を停止する請求項16~28のいずれか一項に記載の作業車。
  30.  手動操作に基づいて前記車体の進行方向の変更を指令する手動操向操作具と、
     前記手動操向操作具に対する手動操作が行われたことを検出する手動操作検出手段とが備えられ、
     前記制御手段は、
     前記手動操作検出手段にて手動操作が検出されると、前記自動操向制御を停止するとともに、前記手動操向操作具による変更指令に対応する走行状態となるように、前記操向操作手段を操作するアシスト制御を実行する請求項16~25のいずれか一項に記載の作業車。
  31.  前記位置検出手段が、衛星からの電波を受信して前記車体の位置を検出する衛星測位用ユニットである請求項16~30のいずれか一項に記載の作業車。
  32.  手動操舵による手動走行と、基準走行ラインに平行に設定される設定走行ラインに沿って自動操舵により走行する自動走行と、を切替自在な走行機体と、
     前記手動走行と前記自動走行とを切替自在な切替スイッチと、
     前記切替スイッチによって前記手動走行から前記自動走行への切り替えを行った時点における前記走行機体の平面位置を、前記設定走行ラインの始点として設定する始点設定部と、を備えている農作業機。
  33.  前記切替スイッチは、前記走行機体の前後方向に沿って揺動操作する変速操作具に設けてあり、前記切替スイッチの操作方向は、前記走行機体の左右方向に沿って設定してある請求項32に記載の農作業機。
  34.  前記設定走行ラインを平行に変位させる変位スイッチを備えている請求項32又は33に記載の農作業機。
  35.  前記変位スイッチは、前記基準走行ラインを設定する際の前記手動走行において、前記走行機体の平面位置を記録部に入力自在な指示スイッチと兼用である請求項34に記載の農作業機。
  36.  前記変位スイッチは、前記設定走行ラインを、右側に変位させる右変位用変位スイッチと、前記設定走行ラインを左側に変位させる左変位用変位スイッチとを、異なる位置に備えている請求項34又は35に記載の農作業機。
  37.  前記右変位用変位スイッチは、前記左変位用変位スイッチより、前記走行機体の前方に対する右側に備えている請求項36に記載の農作業機。
  38.  前記変位スイッチへの操作のうち、初期の所定回数の操作を、前記設定走行ラインの変位制御に反映させない操作キャンセル部を備えている請求項34~37のいずれか一項に記載の農作業機。
  39.  前記変位スイッチを操作すると、前記変位スイッチの操作から設定時間が経過するまで、前記変位スイッチの操作を、前記設定走行ラインの変位制御に反映させない操作キャンセル部を備えている請求項34~37のいずれか一項に記載の農作業機。
  40.  前記変位スイッチを操作すると、変位後の前記設定走行ラインを中心として設定される所定幅の誤差領域に、前記走行機体が達するまで、前記変位スイッチの操作を、前記設定走行ラインの変位制御に反映させない操作キャンセル部を備えている請求項34~37のいずれか一項に記載の農作業機。
  41.  畦際領域で方向転換しながら圃場内を走行する走行機体と、
     前記圃場に対して作業を行う圃場作業装置と、
     自車位置を示す測位データを出力する測位ユニットと、
     前記走行機体を人為操作に基づいて操舵する人為操舵部と、
     前記走行機体を自動操舵する自動操舵部と、
     前記自車位置に基づいて、前記走行機体が前記畦際領域に到達したことを検知する畦際検知モジュールと、
    を備えた圃場作業車両。
  42.  前記圃場の地図データを格納する圃場地図格納部が備えられ、前記畦際検知モジュールは、前記自車位置と前記地図データとを用いてマップマッチングすることで、前記走行機体が前記畦際領域に到達したことを検知する請求項41に記載の圃場作業車両。
  43.  前記走行機体又は前記圃場作業装置あるいはその両方の挙動を前記走行機体の位置と関係付けて車両挙動として記録する車両挙動記録部が備えられ、
     前記畦際検知モジュールは、前記車両挙動に基づいて、前記走行機体が前記畦際領域に到達したことを検知する請求項41に記載の圃場作業車両。
  44.  前記車両挙動記録部は、前記圃場作業装置の作業開始と作業停止とを前記車両挙動として記録する請求項43に記載の圃場作業車両。
  45.  前記車両挙動記録部は、前記圃場作業装置の作業位置への移行と非作業位置への移行とを前記車両挙動として記録する請求項43又は44に記載の圃場作業車両。
  46.  前記車両挙動記録部は、前記走行機体の方向転換走行の開始と停止とを前記車両挙動として記録する請求項43~45のいずれか一項に記載の圃場作業車両。
  47.  前記畦際領域の走行と前記畦際領域以外の走行との間の移行時に人為操作される走行モード切替操作具が備えられ、
     前記車両挙動記録部は、前記走行モード切替操作具の操作を前記車両挙動として記録する請求項43~46のいずれか一項に記載の圃場作業車両。
  48.  前記畦際検知モジュールは、隣接する前回の作業走行経路における前記車両挙動から次回の前記走行機体の前記畦際領域への到達タイミングを推定する畦際推定部を有する請求項43~47のいずれか一項に記載の圃場作業車両。
  49.  前記畦際推定部によって推定された到達タイミングの前に前記畦際領域への接近を報知する接近報知指令が出力される請求項48に記載の圃場作業車両。
  50.  前記畦際推定部によって推定された到達タイミングの前に前記走行機体を減速させる減速指令が出力される請求項48又は49に記載の圃場作業車両。
  51.  前記畦際推定部によって推定された到達タイミングから所定距離だけ走行した場合、走行機体を停止させる車両停止指令が出力される請求項48~50のいずれか一項に記載の圃場作業車両。
  52.  前記畦際推定部によって推定された到達タイミングに応答して、走行機体を停止させる車両停止指令が出力される請求項48~50のいずれか一項に記載の圃場作業車両。
  53.  前記人為操舵部による人為操舵が実行される人為操舵モードと前記自動操舵部による自動操舵が実行される自動操舵モードとを管理する操舵モード管理部とが備えられている請求項41~52のいずれか一項に記載の圃場作業車両。
  54.  前記操舵モード管理部は、前記畦際領域では人為操舵モードを選択し、前記畦際領域以外は自動操舵モードを選択する請求項53に記載の圃場作業車両。
  55.  前記自動操舵モードと前記人為操舵モードとを人為的に選択する操舵モード切替操作具が備えられている請求項53又は54に記載の圃場作業車両。
  56.  車輪の回転数に基づいて走行距離を算定する走行距離算定部が備えられ、
     前記測位ユニットの動作不能時には、前記畦際検知モジュールは、前記走行距離算定部によって算定された走行距離に基づいて、前記走行機体が前記畦際領域に到達したことを検知する請求項41~55に記載の圃場作業車両。
  57.  前記走行機体の姿勢を判定する姿勢判定部が備えられ、前記姿勢が所定条件から外れた場合に、前記走行機体を減速又は停止させる制動指令が出力される請求項41~56に記載の圃場作業車両。
PCT/JP2016/067995 2015-12-25 2016-06-16 作業車 WO2017110116A1 (ja)

Priority Applications (10)

Application Number Priority Date Filing Date Title
KR1020247013104A KR102691393B1 (ko) 2015-12-25 2016-06-16 작업차
KR1020247013135A KR20240056785A (ko) 2015-12-25 2016-06-16 작업차
KR1020247025578A KR20240122919A (ko) 2015-12-25 2016-06-16 작업차
KR1020187012520A KR102660752B1 (ko) 2015-12-25 2016-06-16 작업차
CN202310217728.9A CN116034683A (zh) 2015-12-25 2016-06-16 作业车
CN202111046329.8A CN113728771B (zh) 2015-12-25 2016-06-16 作业车
CN201680068273.7A CN108289408B (zh) 2015-12-25 2016-06-16 作业车
KR1020247025575A KR20240122918A (ko) 2015-12-25 2016-06-16 작업차
KR1020247013131A KR102689825B1 (ko) 2015-12-25 2016-06-16 작업차
KR1020247013134A KR102691389B1 (ko) 2015-12-25 2016-06-16 작업차

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP2015254613A JP6576237B2 (ja) 2015-12-25 2015-12-25 作業車
JP2015-254613 2015-12-25
JP2016002832A JP6552419B2 (ja) 2016-01-08 2016-01-08 乗用型田植機
JP2016-002832 2016-01-08
JP2016004590A JP6643091B2 (ja) 2016-01-13 2016-01-13 農作業機
JP2016-004590 2016-01-13
JP2016004591A JP6552420B2 (ja) 2016-01-13 2016-01-13 作業車
JP2016-004591 2016-01-13
JP2016-006431 2016-01-15
JP2016006431A JP6643094B2 (ja) 2016-01-15 2016-01-15 圃場作業車両

Publications (1)

Publication Number Publication Date
WO2017110116A1 true WO2017110116A1 (ja) 2017-06-29

Family

ID=59091134

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/067995 WO2017110116A1 (ja) 2015-12-25 2016-06-16 作業車

Country Status (3)

Country Link
KR (7) KR20240056785A (ja)
CN (3) CN116034683A (ja)
WO (1) WO2017110116A1 (ja)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109496508A (zh) * 2018-12-03 2019-03-22 李佳奇 新能源插秧机高效率气动插值结构
CN109952834A (zh) * 2017-12-25 2019-07-02 株式会社久保田 田地作业机械
JP2019201612A (ja) * 2018-05-25 2019-11-28 株式会社クボタ 作業車
CN110683302A (zh) * 2019-11-03 2020-01-14 黑龙江八一农垦大学 智能轨道式水稻秧苗运输系统
WO2020023206A1 (en) * 2018-07-26 2020-01-30 Trimble Inc. Vehicle manual guidance systems with steering wheel angle sensors and road wheel angle sensors
JP2020089287A (ja) * 2018-12-04 2020-06-11 井関農機株式会社 苗移植機
WO2020129960A1 (ja) * 2018-12-20 2020-06-25 株式会社クボタ 作業車
CN111448120A (zh) * 2018-01-23 2020-07-24 株式会社久保田 作业车辆
CN111615327A (zh) * 2017-12-18 2020-09-01 株式会社久保田 作业车辆以及拖拉机
JP2020149472A (ja) * 2019-03-14 2020-09-17 ヤンマーパワーテクノロジー株式会社 経路生成システム
JP2021070335A (ja) * 2019-10-29 2021-05-06 三菱マヒンドラ農機株式会社 作業車両
JP2021108576A (ja) * 2020-01-10 2021-08-02 三菱マヒンドラ農機株式会社 作業車両
WO2022004474A1 (ja) * 2020-06-30 2022-01-06 株式会社クボタ 収穫機、収穫機の自動走行方法、プログラム、記録媒体、システム、農作業機、農作業機の自動走行方法、方法、自動操舵管理システム
JP2022011846A (ja) * 2020-06-30 2022-01-17 株式会社クボタ 収穫機及び収穫機の自動走行方法
CN114206703A (zh) * 2019-09-30 2022-03-18 株式会社小松制作所 控制系统、作业车辆的控制方法以及作业车辆
EP3822148A4 (en) * 2018-07-11 2022-04-13 Kubota Corporation COMMERCIAL VEHICLE
EP3822149A4 (en) * 2018-07-11 2022-04-13 Kubota Corporation WORK VEHICLE
US20220183211A1 (en) * 2019-03-25 2022-06-16 Yanmar Power Technology Co., Ltd. Automatic Travel System
WO2022167508A1 (fr) * 2021-02-05 2022-08-11 Kuhn Sas Procédé de semis contrôlé d'une parcelle agricole et systeme pour sa mise en oeuvre
WO2024089987A1 (ja) * 2022-10-25 2024-05-02 株式会社小松製作所 作業機械及び作業機械を制御するための方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6910269B2 (ja) * 2017-10-26 2021-07-28 株式会社クボタ 走行作業機
CN109463084A (zh) * 2018-11-07 2019-03-15 深圳春沐源控股有限公司 定植机及其控制方法
JP7527838B2 (ja) * 2019-06-28 2024-08-05 株式会社クボタ 農作業機
CN110837252B (zh) * 2019-10-23 2022-12-16 江苏大学 一种水稻无人驾驶插秧机全路径规划及断点续航方法
KR102125370B1 (ko) 2019-11-20 2020-06-22 (주)지금강이엔지 파종기용 라인마커의 유압제어장치
US12018945B2 (en) 2021-09-29 2024-06-25 Zimeno Inc. Tractor parameter calibration
US11543246B1 (en) 2021-09-29 2023-01-03 Zimeno, Inc. Rear axle center locating

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09107717A (ja) * 1995-10-24 1997-04-28 Kubota Corp 作業機械の姿勢制御装置
JPH106880A (ja) * 1996-06-24 1998-01-13 Yazaki Corp ワイヤハーネスの配索方法
JP2002186309A (ja) * 2000-12-19 2002-07-02 Yanmar Agricult Equip Co Ltd 農業用作業車
JP2008067617A (ja) * 2006-09-12 2008-03-27 Yanmar Co Ltd 農用作業車
JP2008092818A (ja) * 2006-10-06 2008-04-24 Yanmar Co Ltd 農用作業車
JP2013074841A (ja) * 2011-09-30 2013-04-25 Kubota Corp 乗用田植機の予備苗載置構造
WO2015147149A1 (ja) * 2014-03-28 2015-10-01 ヤンマー株式会社 自律走行作業車両

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000066725A (ja) * 1998-08-18 2000-03-03 Bio Oriented Technol Res Advancement Inst 作業車両及び作業車両の異常検出・対応方法
JP2001161112A (ja) 1999-12-10 2001-06-19 Bio Oriented Technol Res Advancement Inst 農作業機の操向制御装置
JP4088107B2 (ja) 2002-06-19 2008-05-21 ヤンマー農機株式会社 農業用作業車
JP2005078415A (ja) * 2003-09-01 2005-03-24 Fuji Heavy Ind Ltd 走行経路生成方法、走行経路生成装置およびコンピュータプログラム
US7346452B2 (en) 2003-09-05 2008-03-18 Novatel, Inc. Inertial GPS navigation system using injected alignment data for the inertial system
JP4512527B2 (ja) 2005-07-13 2010-07-28 三菱農機株式会社 移植機
JP2008072933A (ja) * 2006-09-20 2008-04-03 Kubota Corp 乗用型田植機
JP2009245002A (ja) 2008-03-28 2009-10-22 Kubota Corp 作業車の走行制御装置
JP4713610B2 (ja) * 2008-03-31 2011-06-29 株式会社クボタ 作業車の制御装置
JP2011062159A (ja) * 2009-09-18 2011-03-31 Kubota Corp 乗用田植機の予備苗収容構造
JP5652000B2 (ja) * 2010-05-28 2015-01-14 井関農機株式会社 移植機
CN104691615A (zh) * 2013-12-06 2015-06-10 刘扬 插秧机转向自动控制系统
CN103749051A (zh) * 2014-01-02 2014-04-30 常州亚美柯机械设备有限公司 具有辅秧储载装置的双乘式插秧机
JP6358828B2 (ja) * 2014-03-28 2018-07-18 株式会社クボタ 乗用型田植機
JP6274016B2 (ja) * 2014-05-29 2018-02-07 井関農機株式会社 苗移植機の予備苗枠

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09107717A (ja) * 1995-10-24 1997-04-28 Kubota Corp 作業機械の姿勢制御装置
JPH106880A (ja) * 1996-06-24 1998-01-13 Yazaki Corp ワイヤハーネスの配索方法
JP2002186309A (ja) * 2000-12-19 2002-07-02 Yanmar Agricult Equip Co Ltd 農業用作業車
JP2008067617A (ja) * 2006-09-12 2008-03-27 Yanmar Co Ltd 農用作業車
JP2008092818A (ja) * 2006-10-06 2008-04-24 Yanmar Co Ltd 農用作業車
JP2013074841A (ja) * 2011-09-30 2013-04-25 Kubota Corp 乗用田植機の予備苗載置構造
WO2015147149A1 (ja) * 2014-03-28 2015-10-01 ヤンマー株式会社 自律走行作業車両

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111615327B (zh) * 2017-12-18 2023-02-28 株式会社久保田 作业车辆以及拖拉机
CN111615327A (zh) * 2017-12-18 2020-09-01 株式会社久保田 作业车辆以及拖拉机
CN109952834A (zh) * 2017-12-25 2019-07-02 株式会社久保田 田地作业机械
CN111448120A (zh) * 2018-01-23 2020-07-24 株式会社久保田 作业车辆
US11866094B2 (en) 2018-01-23 2024-01-09 Kubota Corporation Working vehicle having a display for displaying driving information thereof
JP2019201612A (ja) * 2018-05-25 2019-11-28 株式会社クボタ 作業車
US11917933B2 (en) 2018-07-11 2024-03-05 Kubota Corporation Working vehicle
EP3822149A4 (en) * 2018-07-11 2022-04-13 Kubota Corporation WORK VEHICLE
EP3822148A4 (en) * 2018-07-11 2022-04-13 Kubota Corporation COMMERCIAL VEHICLE
WO2020023206A1 (en) * 2018-07-26 2020-01-30 Trimble Inc. Vehicle manual guidance systems with steering wheel angle sensors and road wheel angle sensors
US10753752B2 (en) 2018-07-26 2020-08-25 Trimble Inc. Vehicle manual guidance systems with steering wheel angle sensors and road wheel angle sensors
US11867516B2 (en) 2018-07-26 2024-01-09 Trimble Inc. Vehicle manual guidance systems with steering wheel angle sensors and road wheel angle sensors
CN109496508A (zh) * 2018-12-03 2019-03-22 李佳奇 新能源插秧机高效率气动插值结构
JP2020089287A (ja) * 2018-12-04 2020-06-11 井関農機株式会社 苗移植機
JP7011225B2 (ja) 2018-12-04 2022-01-26 井関農機株式会社 苗移植機
KR20200128561A (ko) * 2018-12-20 2020-11-13 가부시끼 가이샤 구보다 작업차
WO2020129960A1 (ja) * 2018-12-20 2020-06-25 株式会社クボタ 作業車
JP7546343B2 (ja) 2018-12-20 2024-09-06 株式会社クボタ 作業車
KR102555865B1 (ko) * 2018-12-20 2023-07-17 가부시끼 가이샤 구보다 작업차
CN111988982A (zh) * 2018-12-20 2020-11-24 株式会社久保田 作业车
JP2020099222A (ja) * 2018-12-20 2020-07-02 株式会社クボタ 作業車
US11889779B2 (en) 2018-12-20 2024-02-06 Kubota Corporation Work vehicle
EP3900508A4 (en) * 2018-12-20 2022-09-21 Kubota Corporation COMMERCIAL VEHICLE
JP7236887B2 (ja) 2019-03-14 2023-03-10 ヤンマーパワーテクノロジー株式会社 経路生成システム
WO2020183906A1 (ja) * 2019-03-14 2020-09-17 ヤンマー株式会社 経路生成システム
JP2020149472A (ja) * 2019-03-14 2020-09-17 ヤンマーパワーテクノロジー株式会社 経路生成システム
US20220183211A1 (en) * 2019-03-25 2022-06-16 Yanmar Power Technology Co., Ltd. Automatic Travel System
CN114206703A (zh) * 2019-09-30 2022-03-18 株式会社小松制作所 控制系统、作业车辆的控制方法以及作业车辆
JP2021070335A (ja) * 2019-10-29 2021-05-06 三菱マヒンドラ農機株式会社 作業車両
JP7376314B2 (ja) 2019-10-29 2023-11-08 三菱マヒンドラ農機株式会社 作業車両
CN110683302A (zh) * 2019-11-03 2020-01-14 黑龙江八一农垦大学 智能轨道式水稻秧苗运输系统
JP2021108576A (ja) * 2020-01-10 2021-08-02 三菱マヒンドラ農機株式会社 作業車両
JP7373408B2 (ja) 2020-01-10 2023-11-02 三菱マヒンドラ農機株式会社 作業車両
JP2022011846A (ja) * 2020-06-30 2022-01-17 株式会社クボタ 収穫機及び収穫機の自動走行方法
CN115361861A (zh) * 2020-06-30 2022-11-18 株式会社久保田 收获机、收获机的自动行驶方法、程序、记录介质、系统、农作业机、农作业机的自动行驶方法、方法、自动操舵管理系统
WO2022004474A1 (ja) * 2020-06-30 2022-01-06 株式会社クボタ 収穫機、収穫機の自動走行方法、プログラム、記録媒体、システム、農作業機、農作業機の自動走行方法、方法、自動操舵管理システム
FR3119508A1 (fr) * 2021-02-05 2022-08-12 Kuhn S.A.S. Procédé de semis contrôlé d’une parcelle agricole et système pour sa mise en œuvre
WO2022167508A1 (fr) * 2021-02-05 2022-08-11 Kuhn Sas Procédé de semis contrôlé d'une parcelle agricole et systeme pour sa mise en oeuvre
WO2024089987A1 (ja) * 2022-10-25 2024-05-02 株式会社小松製作所 作業機械及び作業機械を制御するための方法

Also Published As

Publication number Publication date
CN116034683A (zh) 2023-05-02
KR20240056785A (ko) 2024-04-30
KR102660752B1 (ko) 2024-04-26
KR20240056783A (ko) 2024-04-30
KR102691389B1 (ko) 2024-08-05
KR102689825B1 (ko) 2024-07-31
KR20240056784A (ko) 2024-04-30
KR102691393B1 (ko) 2024-08-05
KR20180098525A (ko) 2018-09-04
CN108289408B (zh) 2021-09-24
KR20240122919A (ko) 2024-08-13
KR20240122918A (ko) 2024-08-13
CN113728771A (zh) 2021-12-03
CN113728771B (zh) 2023-05-23
CN108289408A (zh) 2018-07-17
KR20240056781A (ko) 2024-04-30

Similar Documents

Publication Publication Date Title
WO2017110116A1 (ja) 作業車
JP6643094B2 (ja) 圃場作業車両
JP6576237B2 (ja) 作業車
JP6805946B2 (ja) 作業車両
JP7006045B2 (ja) 作業車両
JP6921935B2 (ja) 圃場作業車両
JP2024124447A (ja) 作業車
JP2024096780A (ja) 圃場作業車両
JP2018093793A (ja) 作業車両
JP7044477B2 (ja) 自動操舵制御装置
JP7318764B2 (ja) 作業車両
JP7063365B2 (ja) 作業車両
JP6988972B2 (ja) 作業車両
JP2022020811A (ja) 作業車両
JP2024113158A (ja) 作業車両
JP2021180690A (ja) 作業車両
JP2018202929A (ja) 圃場作業車の自動操舵装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16878019

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20187012520

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16878019

Country of ref document: EP

Kind code of ref document: A1