WO2024089987A1 - 作業機械及び作業機械を制御するための方法 - Google Patents

作業機械及び作業機械を制御するための方法 Download PDF

Info

Publication number
WO2024089987A1
WO2024089987A1 PCT/JP2023/030024 JP2023030024W WO2024089987A1 WO 2024089987 A1 WO2024089987 A1 WO 2024089987A1 JP 2023030024 W JP2023030024 W JP 2023030024W WO 2024089987 A1 WO2024089987 A1 WO 2024089987A1
Authority
WO
WIPO (PCT)
Prior art keywords
work machine
steering
angle
controller
status
Prior art date
Application number
PCT/JP2023/030024
Other languages
English (en)
French (fr)
Inventor
裕貴 長▲崎▼
Original Assignee
株式会社小松製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2022170735A external-priority patent/JP2024062709A/ja
Application filed by 株式会社小松製作所 filed Critical 株式会社小松製作所
Publication of WO2024089987A1 publication Critical patent/WO2024089987A1/ja

Links

Images

Definitions

  • the present disclosure relates to a work machine and a method for controlling a work machine.
  • Some work machines perform automatic steering control so that the work machine moves along a predetermined target route.
  • a travel route is generated based on the position and orientation of the motor grader and the traveling direction of the motor grader. Then, the steering mechanism is controlled so that the motor grader travels along the travel route.
  • the controller corrects the direction of the work machine by steering the front wheels to the left when moving forward and to the right when moving backward. If the work machine deviates to the left from the travel path, the controller corrects the direction of the work machine by steering the front wheels to the right when moving forward and to the left when moving backward. This allows the work machine to be automatically controlled to travel along the travel path.
  • the forward and backward travel direction of the work machine is determined, for example, by a command signal that indicates the forward and backward travel direction of the work machine.
  • the work machine is equipped with a shift lever that is operated to switch the work machine between forward and reverse travel.
  • the controller detects the position of the shift lever and determines the forward and backward travel direction of the work machine according to the position of the shift lever.
  • inertia may cause the work machine to continue moving forward.
  • the controller determines that the work machine is moving in reverse based on the position of the shift lever, the work machine is actually moving forward.
  • the running wheels are steered in the opposite direction to the appropriate direction, causing the work machine to wobble.
  • the purpose of the present disclosure is to prevent the work machine from wobbling when the work machine is switched between forward and reverse during automatic steering control.
  • a work machine includes running wheels, a steering actuator, and a controller.
  • the steering actuator changes the steering angle of the running wheels from a neutral angle to the left or right.
  • the controller controls the steering actuator.
  • the controller executes automatic steering control to control the steering angle by the steering actuator so that the work machine travels along a predetermined target course.
  • the controller determines a travel direction status indicating the forward and backward travel directions of the work machine. If the controller determines during automatic steering control that the travel direction status is unknown, the controller sets the steering angle to a neutral angle.
  • a method for controlling a work machine includes executing automatic steering control to control the steering angle of the work machine so that the work machine travels along a predetermined target course, determining a travel direction status indicating the forward and backward travel directions of the work machine, and setting the steering angle to a neutral angle if it is determined during automatic steering control that the travel direction status is unknown.
  • a method for controlling a work machine is a method for controlling a work machine, which includes executing automatic steering control to control the steering angle of the work machine so that the work machine travels along a predetermined target course, determining a travel direction status indicating the forward and backward travel directions of the work machine, and setting the steering angle to a neutral angle when the forward and backward travel directions of the work machine are switched during the automatic steering control.
  • the steering angle is set to a neutral angle. This prevents the work machine from being steered in the opposite direction to the appropriate direction. Therefore, when the work machine switches between forward and reverse travel during automatic steering control, wobbling of the work machine is suppressed.
  • FIG. 1 is a perspective view of a work machine according to an embodiment.
  • FIG. FIG. FIG. 1 is a schematic diagram showing a configuration of a work machine.
  • FIG. 2 is a top view showing the front of the work machine.
  • 4 is a diagram showing an example of travel of a work machine by operating a steering operation member.
  • FIG. 11 is a diagram illustrating automatic control of the steering angle in a straight ahead mode.
  • 13 is a flowchart showing a process for determining a target angle according to a traveling direction status.
  • FIG. 13 is a block diagram showing the logic for determining the heading status.
  • Fig. 1 is a perspective view of a work machine 1 according to an embodiment.
  • Fig. 2 is a side view of the work machine 1.
  • the work machine 1 includes a body 2, running wheels 3A, 3B, 4A-4D, and a work implement 5.
  • the body 2 includes a front frame 11, a rear frame 12, a cab 13, and a power room 14.
  • the running wheels 3A, 3B, 4A-4D include front wheels 3A, 3B and rear wheels 4A-4D.
  • the work machine 1 turns left and right by steering the front wheels 3A, 3B left and right.
  • the rear frame 12 is connected to the front frame 11.
  • the front frame 11 can articulate left and right relative to the rear frame 12.
  • the front, rear, left and right directions refer to the front, rear, left and right directions of the vehicle body 2 when the articulation angle is 0, that is, when the front frame 11 and rear frame 12 are straight.
  • the cab 13 and the power compartment 14 are disposed on the rear frame 12.
  • a driver's seat (not shown) is disposed in the cab 13.
  • the power compartment 14 is disposed behind the cab 13.
  • the front frame 11 extends forward from the rear frame 12.
  • the front wheels 3A, 3B are attached to the front frame 11.
  • the rear wheels 4A-4D are attached to the rear frame 12.
  • the work implement 5 is movably connected to the vehicle body 2.
  • the work implement 5 includes a support member 15 and a blade 16.
  • the support member 15 is movably connected to the vehicle body 2.
  • the support member 15 supports the blade 16.
  • the support member 15 includes a drawbar 17 and a circle 18.
  • the drawbar 17 is disposed below the front frame 11.
  • the drawbar 17 is connected to the front portion 19 of the front frame 11.
  • the drawbar 17 extends rearward from the front portion 19 of the front frame 11.
  • the drawbar 17 is supported relative to the front frame 11 so as to be swingable at least in the up-down and left-right directions of the vehicle body 2.
  • the front portion 19 includes a ball joint.
  • the drawbar 17 is rotatably connected to the front frame 11 via the ball joint.
  • the circle 18 is connected to the rear of the drawbar 17.
  • the circle 18 is supported rotatably relative to the drawbar 17.
  • the blade 16 is connected to the circle 18.
  • the blade 16 is supported by the drawbar 17 via the circle 18.
  • the blade 16 is supported by the circle 18 rotatably around a tilt shaft 21.
  • the tilt shaft 21 extends in the left-right direction.
  • the work machine 1 is equipped with multiple actuators 22-26 for changing the posture of the work implement 5.
  • the multiple actuators 22-26 include multiple hydraulic cylinders 22-25.
  • the multiple hydraulic cylinders 22-25 are connected to the work implement 5.
  • the multiple hydraulic cylinders 22-25 extend and retract by hydraulic pressure. By extending and retracting, the multiple hydraulic cylinders 22-25 change the posture of the work implement 5 relative to the vehicle body 2.
  • the extension and retraction of the hydraulic cylinders is referred to as the "stroke operation.”
  • the multiple hydraulic cylinders 22-25 include a left lift cylinder 22, a right lift cylinder 23, a drawbar shift cylinder 24, and a blade tilt cylinder 25.
  • the left lift cylinder 22 and the right lift cylinder 23 are arranged apart from each other in the left-right direction.
  • the left lift cylinder 22 and the right lift cylinder 23 are connected to the drawbar 17.
  • the left lift cylinder 22 and the right lift cylinder 23 are connected to the front frame 11 via a lifter bracket 29.
  • the stroke operation of the left lift cylinder 22 and the right lift cylinder 23 causes the drawbar 17 to swing up and down. This causes the blade 16 to move up and down.
  • the drawbar shift cylinder 24 is connected to the drawbar 17 and the front frame 11.
  • the drawbar shift cylinder 24 is connected to the front frame 11 via a lifter bracket 29.
  • the drawbar shift cylinder 24 extends diagonally downward from the front frame 11 toward the drawbar 17.
  • the stroke movement of the drawbar shift cylinder 24 causes the drawbar 17 to swing left and right.
  • the blade tilt cylinder 25 is connected to the circle 18 and the blade 16. The stroke movement of the blade tilt cylinder 25 causes the blade 16 to rotate around the tilt axis 21.
  • the actuators 22-26 include a rotary actuator 26.
  • the rotary actuator 26 is connected to the drawbar 17 and the circle 18.
  • the rotary actuator 26 rotates the circle 18 relative to the drawbar 17. This causes the blade 16 to rotate around a rotation axis that extends in the vertical direction.
  • FIG. 3 is a schematic diagram showing the configuration of the work machine 1.
  • the work machine 1 includes a drive source 31, a hydraulic pump 32, a power transmission device 33, and a work machine valve 34.
  • the drive source 31 is, for example, an internal combustion engine.
  • the drive source 31 may be an electric motor, or a hybrid of an internal combustion engine and an electric motor.
  • the hydraulic pump 32 is driven by the drive source 31 to discharge hydraulic oil.
  • the work machine valve 34 is connected to the hydraulic pump 32 and the multiple hydraulic cylinders 22-25 via a hydraulic circuit.
  • the work machine valve 34 includes multiple valves that are respectively connected to the multiple hydraulic cylinders 22-25.
  • the work machine valve 34 controls the flow rate of hydraulic oil supplied from the hydraulic pump 32 to the multiple hydraulic cylinders 22-25.
  • the work machine valve 34 is, for example, an electromagnetic proportional control valve.
  • the work machine valve 34 may be a hydraulic pilot type proportional control valve.
  • the rotary actuator 26 is a hydraulic motor.
  • the work machine valve 34 is connected to the hydraulic pump 32 and the rotary actuator 26 via a hydraulic circuit.
  • the work machine valve 34 controls the flow rate of hydraulic oil supplied from the hydraulic pump 32 to the rotary actuator 26.
  • the rotary actuator 26 may be an electric motor.
  • the power transmission device 33 transmits the driving force from the drive source 31 to the rear wheels 4A-4D.
  • the power transmission device 33 may include a torque converter and/or multiple speed change gears.
  • the power transmission device 33 may be a transmission such as an HST (Hydraulic Static Transmission) or an HMT (Hydraulic Mechanical Transmission).
  • the work machine 1 includes a work machine operation member 35, a shift operation member 53, an accelerator operation member 36, a brake operation member 47, and a controller 37.
  • the work machine operation member 35 can be operated by an operator to change the attitude of the work machine 5.
  • the work machine operation member 35 includes, for example, a plurality of operation levers. Alternatively, the work machine operation member 35 may be another member such as a switch or a touch panel.
  • the work machine operation member 35 outputs a signal indicating an operation of the work machine operation member 35 by the operator.
  • the shift operating member 53 can be operated by an operator to indicate the forward or backward travel direction of the work machine 1.
  • the shift operating member 53 includes, for example, a shift lever.
  • the shift operating member 53 may be another member such as a switch or a touch panel.
  • the shift operating member 53 can be operated to a forward position (F), a reverse position (R), and a neutral position (N1).
  • the shift operating member 53 outputs a signal indicating the operating position of the shift operating member 53.
  • the accelerator operating member 36 can be operated by the operator to drive the work machine 1.
  • the accelerator operating member 36 includes, for example, an accelerator pedal.
  • the accelerator operating member 36 may be another member such as a switch or a touch panel.
  • the accelerator operating member 36 outputs a signal indicating an operation of the accelerator operating member 36 by the operator.
  • the brake operating member 47 can be operated by the operator to brake the work machine 1.
  • the brake operating member 47 includes, for example, a brake pedal.
  • the controller 37 controls the power transmission device 33 in response to the operation of the shift operating member 53 to switch the work machine 1 between forward and reverse.
  • the shift operating member 53 may be mechanically connected to the power transmission device 33.
  • the operation of the shift operating member 53 may be mechanically transmitted to the power transmission device 33 to switch between forward and reverse gears in the power transmission device 33.
  • the controller 37 controls the drive source 31 and the power transmission device 33 in response to the operation of the accelerator operating member 36, thereby causing the work machine 1 to travel.
  • the controller 37 also controls the hydraulic pump 32 and the work machine valve 34 in response to the operation of the work machine operating member 35, thereby causing the work machine 5 to operate.
  • the controller 37 includes a storage device 38 and a processor 39.
  • the processor 39 is, for example, a CPU, and executes a program for controlling the work machine 1.
  • the storage device 38 includes memories such as RAM and ROM, and auxiliary storage devices such as SSDs or HDDs.
  • the storage device 38 stores programs and data for controlling the work machine 1.
  • the work machine 1 is equipped with a vehicle speed sensor 51.
  • the vehicle speed sensor 51 detects the vehicle speed of the work machine 1.
  • the vehicle speed sensor 51 outputs a signal indicating the vehicle speed of the work machine 1.
  • the vehicle speed sensor 51 detects, for example, the output rotational speed of the power transmission device 33.
  • the output rotational speed of the power transmission device 33 corresponds to the vehicle speed of the work machine 1.
  • the vehicle speed sensor 51 may be a GNSS (Global Navigation Satellite System) receiver such as a GPS (Global Positioning System).
  • GNSS Global Navigation Satellite System
  • GPS Global Positioning System
  • the work machine 1 is equipped with a direction sensor 52.
  • the direction sensor 52 detects the traveling direction of the vehicle body 2.
  • the direction sensor 52 outputs a direction signal indicating the traveling direction of the vehicle body 2.
  • the controller 37 obtains the traveling direction of the vehicle body 2 from the direction signal from the direction sensor 52.
  • the traveling direction of the vehicle body 2 is indicated, for example, by the yaw angle of the vehicle body 2.
  • the direction sensor 52 is, for example, an IMU (inertial measurement unit).
  • the controller 37 calculates the traveling direction of the vehicle body 2 based on the acceleration and angular velocity of the vehicle body 2.
  • the direction sensor 52 may be a GNSS receiver such as a GPS receiver.
  • the controller 37 may obtain the traveling direction of the vehicle body 2 from the change in the position of the work machine 1 detected by the direction sensor 52.
  • the work machine 1 is equipped with a steering angle sensor 40, a steering actuator 41, and a steering valve 42.
  • the steering actuator 41 is a hydraulic cylinder.
  • the steering actuator 41 expands and contracts using hydraulic oil from the hydraulic pump 32.
  • the steering actuator 41 steers the front wheels 3A, 3B by expanding and contracting.
  • FIG. 4 is a top view showing the front of the work machine 1.
  • the front wheels 3A, 3B include a first front wheel 3A and a second front wheel 3B.
  • the first front wheel 3A and the second front wheel 3B are arranged apart in the left-right direction.
  • the first front wheel 3A is supported by the front frame 11 so as to be rotatable about a first steering shaft 43.
  • the second front wheel 3B is supported by the front frame 11 so as to be rotatable about a second steering shaft 44.
  • the first steering shaft 43 and the second steering shaft 44 extend in the vertical direction.
  • the steering actuator 41 is connected to the front wheels 3A, 3B and the front frame 11.
  • the steering actuator 41 changes the steering angle ⁇ 1 of the front wheels 3A, 3B to the left or right from a predetermined neutral angle.
  • the steering angle ⁇ 1 is the angle of the orientation of the front wheels 3A, 3B relative to the fore-and-aft direction of the work machine 1.
  • the fore-and-aft direction of the work machine 1 refers to the fore-and-aft direction of the front frame 11. However, the fore-and-aft direction of the work machine 1 may also refer to the fore-and-aft direction of the rear frame 12.
  • the neutral angle is a steering angle ⁇ 1 of 0 degrees. Therefore, when the steering angle ⁇ 1 is the neutral angle, it means that the front wheels 3A, 3B are facing directly ahead of the work machine 1.
  • 3A' indicates the first front wheel 3A steered to the left from the neutral angle by the steering angle ⁇ 1.
  • 3B' indicates the second front wheel 3B steered to the left from the neutral angle by the steering angle ⁇ 1.
  • the steering valve 42 is connected to the hydraulic pump 32 and the steering actuator 41 via a hydraulic circuit.
  • the steering valve 42 controls the flow rate of hydraulic oil supplied from the hydraulic pump 32 to the steering actuator 41.
  • the steering angle sensor 40 detects the steering angle ⁇ 1.
  • the steering angle sensor 40 outputs an angle signal indicating the steering angle ⁇ 1.
  • the controller 37 obtains the current steering angle ⁇ 1 from the angle signal from the steering angle sensor 40.
  • the steering angle sensor 40 detects, for example, the stroke amount of the steering actuator 41.
  • the steering angle ⁇ 1 is calculated from the stroke amount of the steering actuator 41.
  • the steering angle sensor 40 may directly detect the steering angle ⁇ 1.
  • the work machine 1 includes a steering operation member 45.
  • the steering operation member 45 can be operated by the operator to change the steering angle ⁇ 1 of the front wheels 3A, 3B to the left or right.
  • the steering operation member 45 can be operated from a neutral position (N2) to a left steering range (L) and a right steering range (R).
  • the steering operation member 45 is, for example, a lever.
  • the steering operation member 45 may be a steering wheel or another member such as a switch.
  • the steering operation member 45 outputs a signal indicating the operation of the steering operation member 45 by the operator.
  • the controller 37 operates the steering actuator 41 by controlling the steering valve 42 in response to the operation of the steering operation member 45. This causes the steering angle ⁇ 1 of the front wheels 3A, 3B to change left and right, causing the work machine 1 to turn left and right.
  • automatic steering control which automatically controls the steering angle ⁇ 1.
  • the controller 37 controls the steering actuator 41 so that the steering angle ⁇ 1 becomes a predetermined target angle.
  • the automatic control includes a center return mode and a straight-line maintenance mode.
  • the controller 37 controls the steering actuator 41 so that the steering angle ⁇ 1 is automatically returned to the neutral angle when the steering operation member 45 is returned from the left steering range (L) to the neutral position (N2) or from the right steering range (R) to the neutral position (N2).
  • the controller 37 controls the steering actuator 41 so that the steering angle ⁇ 1 returns from the predetermined angle to the left to the neutral angle.
  • the controller 37 controls the steering actuator 41 so that the steering angle ⁇ 1 returns from the predetermined angle to the right to the neutral angle.
  • FIG. 5 is a diagram showing an example of the travel of the work machine 1 by operating the steering operation member 45.
  • the steering operation member 45 when the work machine 1 is at point P1, the steering operation member 45 is in the neutral position (N2).
  • the steering angle ⁇ 1 is the neutral angle, and the work machine 1 is moving straight.
  • the steering angle ⁇ 1 of the front wheels 3A, 3B begins to change from the neutral angle to the left. This causes the work machine 1 to turn to the left.
  • the steering angle ⁇ 1 of the front wheels 3A, 3B continues to increase to the maximum steering angle ⁇ max to the left. As a result, the work machine 1 continues to turn to the left.
  • the controller 37 controls the steering angle ⁇ 1 so that the work machine 1 travels along a linear target course.
  • the controller 37 controls the steering angle ⁇ 1 so that the traveling direction of the vehicle body 2 is maintained in the target direction.
  • the controller 37 determines the traveling direction (H1) of the vehicle body 2 when the steering angle ⁇ 1 returns to the neutral angle at point P5 as the target direction.
  • the controller 37 controls the steering actuator 41 so that the traveling direction of the vehicle body 2 is maintained in the target direction H1.
  • the work machine 1 moves along a linear target course R1 extending in the target direction H1.
  • the controller 37 determines the target angle of the steering angle ⁇ 1 based on the difference between the current traveling direction of the vehicle body 2 and the target direction H1.
  • the controller 37 controls the steering actuator 41 so that the steering angle ⁇ 1 becomes the target angle.
  • the controller 37 determines the target angle of the steering angle ⁇ 1 by multiplying the difference between the current traveling direction of the vehicle body 2 and the target direction H1 by a predetermined gain.
  • the controller 37 controls the steering actuator 41 by feedback control so that the steering angle ⁇ 1 is maintained at the target angle.
  • the controller 37 reverses the target angle of the steering angle ⁇ 1 from left to right compared to when the vehicle body 2 is moving forwards. For example, as shown in FIG. 6, when the direction of the work machine 1 deviates to the right from the target course R1 and the work machine 1 moves forward as indicated by the arrow A1, the controller 37 determines the target angle to be an angle to the left of the neutral angle. When the direction of the work machine 1 deviates to the right from the target course R1 and the work machine 1 moves backwards as indicated by the arrow A2, the controller 37 determines the target angle to be an angle to the right of the neutral angle.
  • the controller 37 determines the target angle to be an angle to the right of the neutral angle.
  • the controller 37 determines the target angle to be an angle to the left of the neutral angle.
  • the controller 37 judges the traveling direction status of the vehicle body 2 and determines the target angle in accordance with the traveling direction status.
  • the traveling direction status indicates the forward/backward traveling direction of the work machine 1.
  • FIG. 7 is a flowchart showing the process for determining the target angle depending on the travel direction status.
  • the controller 37 acquires the vehicle speed.
  • the controller 37 acquires the vehicle speed from a signal from the vehicle speed sensor 51.
  • the controller 37 acquires the shift operation position.
  • the shift operation position is the operation position of the shift operation member 53.
  • the controller 37 acquires the shift operation position from a signal from the shift operation member 53.
  • the controller 37 acquires one of the forward position (F), reverse position (R), or neutral position (N2) as the shift operation position.
  • step S103 the controller 37 determines the travel direction status.
  • the controller 37 determines the travel direction status based on the vehicle speed and the shift operation position.
  • FIG. 8 is a block diagram showing the determination logic for the travel direction status. As shown in FIG. 8, the travel direction status includes "stop,” “forward,” “reverse,” and "unknown.”
  • the travel direction status is "stopped.”
  • the controller 37 determines that the travel direction status is "forward.”
  • the forward movement condition includes the shift operation position being in the forward position (F).
  • the controller 37 determines that the driving direction status is "reverse.”
  • the reverse condition includes the shift operation position being in the reverse position (R).
  • the controller 37 determines that the travel direction status is "unknown."
  • the first unknown condition includes the shift operation position being a position other than the forward position (F) and the vehicle speed being less than a first threshold value.
  • the first unknown condition includes the shift operation position being the reverse position (R) or the neutral position (N2) and the vehicle speed being less than a first threshold value.
  • the first threshold value indicates, for example, a speed so slow that it is impossible to accurately determine the forward or backward travel direction of the work machine 1.
  • the controller 37 determines that the travel direction status is "unknown."
  • the second unknown condition includes the shift operation position being a position other than the reverse position (R) and the vehicle speed being less than the second threshold.
  • the second unknown condition includes the shift operation position being a forward position (F) or neutral position (N2) and the vehicle speed being less than the second threshold.
  • the second threshold may be the same as the first threshold.
  • the second threshold may be different from the first threshold.
  • the second threshold indicates, for example, a speed so slow that it is impossible to accurately determine the forward or backward travel direction of the work machine 1.
  • the controller 37 determines that the travel direction status is "forward”.
  • the controller 37 determines that the travel direction status is "reverse”.
  • the controller 37 determines that the travel direction status is "stopped”.
  • the stop condition includes a state in which the vehicle speed is less than the third threshold value continuing for a predetermined period of time or more.
  • the third threshold value indicates, for example, a speed that is slow enough that the work machine 1 can be considered to be stopped. As described above, the controller 37 determines whether the travel direction status is "stopped", “forward”, “reverse”, or "unknown”.
  • step S104 the controller 37 determines the target angle of the steering angle ⁇ 1 to be the forward target angle.
  • the forward target angle is the target angle of the steering angle ⁇ 1 when traveling forward as described above.
  • step S105 the controller 37 determines the target angle of the steering angle ⁇ 1 to be the reverse target angle.
  • the reverse target angle is the target angle of the steering angle ⁇ 1 when traveling backward.
  • the reverse target angle is an angle opposite to the forward target angle on the left and right.
  • step S106 the controller 37 determines the target angle of the steering angle ⁇ 1 to be the neutral angle. While the straight-line maintenance mode is being executed, the controller 37 repeatedly executes the above process. Therefore, when the controller 37 determines that the traveling direction status is unknown, it sets the steering angle to the neutral angle, and thereafter maintains the steering angle at the neutral angle until it determines that the traveling direction status is forward or reverse.
  • the controller 37 changes the steering angle from the neutral angle to the forward target angle.
  • the controller 37 changes the steering angle from the neutral angle to the reverse target angle.
  • the steering angle is set to a neutral angle. This prevents the work machine 1 from being steered in a direction opposite to the appropriate direction. This prevents the work machine 1 from wobbling when the work machine 1 is switched between forward and reverse during automatic steering control.
  • the work machine 1 is not limited to a motor grader, but may be other work machines such as a wheel loader, a dump truck, or a forklift.
  • the number of steering actuators 41 is not limited to one, but may be two or more.
  • the steering actuator 41 is not limited to a hydraulic cylinder, but may be a hydraulic motor or an electric motor.
  • the work machine 1 turns left and right by steering the front wheels left and right. However, the work machine 1 may also turn left and right by steering the rear wheels left and right.
  • the automatic steering control process is not limited to that of the above embodiment and may be modified.
  • the controller 37 may maintain the steering angle at a neutral angle until a predetermined time has elapsed.
  • the controller 37 may set the steering angle to a neutral angle when the travel direction of the work machine 1 is switched between the forward and backward directions.
  • the controller 37 may maintain the steering angle at a neutral angle until a predetermined time has elapsed when the travel direction of the work machine 1 is switched between the forward and backward directions.
  • the target direction H1 is not limited to the traveling direction of the vehicle body 2 when the steering angle ⁇ 1 returns to the neutral angle, and may be determined by other methods.
  • the target direction H1 may be the traveling direction of the vehicle body 2 when the steering operation member returns to the neutral position (N2).
  • the target direction H1 may be input by an operator.
  • the target direction H1 may be input from an external computer.
  • the command signal indicating the forward and backward travel direction of the work machine 1 is a signal indicating the shift operation position from the shift operation member 53.
  • the command signal indicating the forward and backward travel direction of the work machine 1 may be another signal.
  • the controller 37 automatically controls the travel of the work machine 1
  • the command signal indicating the forward and backward travel direction of the work machine 1 may be generated by the controller 37.
  • the target route R1 is defined by the target direction H1 in the straight line maintenance mode, but the target route R1 may be set by other methods.
  • the target route R1 may be any route input by an operator.
  • the target route R1 may be any route input from an external computer.

Landscapes

  • Guiding Agricultural Machines (AREA)

Abstract

作業機械は、走行輪と、ステアリングアクチュエータと、コントローラとを備える。ステアリングアクチュエータは、走行輪の操舵角を中立角から左右に変化させる。コントローラは、ステアリングアクチュエータを制御する。コントローラは、作業機械が所定の目標進路に沿って走行するように、ステアリングアクチュエータによって操舵角を制御する自動ステアリング制御を実行する。コントローラは、作業機械の前後の進行方向を示す進行方向ステータスを判定する。コントローラは、自動ステアリング制御中に、進行方向ステータスが不明であると判定した場合には、操舵角を中立角とする。

Description

作業機械及び作業機械を制御するための方法
 本開示は、作業機械及び作業機械を制御するための方法に関する。
 作業機械には、作業機械が所定の目標進路に沿って移動するように、自動ステアリング制御を行うものがある。例えば、特許文献1では、モータグレーダの位置及び方位と、モータグレーダの進行方向とに基づいて、走行経路が生成される。そして、モータグレーダが走行経路に沿って走行するように、操向機構が制御される。
特開2021-54269号公報
 上述した自動ステアリング制御では、作業機械が、走行経路から右方にずれている場合には、コントローラが、前進時には前輪を左方に操舵し、後進時には前輪を右方に操舵することで、作業機械の向きを修正する。作業機械が走行経路から左方にずれている場合には、コントローラは、前進時には前輪を右方に操舵し、後進時には前輪を左方に操舵することで、作業機械の向きを修正する。それにより、作業機械が、走行経路に沿って走行するように自動的に制御される。
 作業機械の前後の進行方向は、例えば作業機械の前後の進行方向を指示する指令信号によって判定される。例えば、作業機械は、作業機械の前進と後進とを切り替えるために操作されるシフトレバーを備えている。コントローラは、シフトレバーの位置を検出し、シフトレバーの位置に応じて、作業機械の前後の進行方向を判定する。
 しかし、作業機械では、シフトレバーが前進位置から後進位置に切り替えられても、慣性により前進し続ける場合がある。この場合、コントローラが、シフトレバーの位置によって作業機械の進行方向が後進と判断しても、実際には作業機械は前進している。そのため、自動ステアリング制御において、走行輪が適切な方向と逆方向に操舵されてしまうことで、作業機械がふらついてしまう。本開示の目的は、自動ステアリング制御中に、作業機械の前進と後進とが切り替えられた場合に、作業機械がふらつくことを抑えることにある。
 本開示の一態様に係る作業機械は、走行輪と、ステアリングアクチュエータと、コントローラとを備える。ステアリングアクチュエータは、走行輪の操舵角を中立角から左右に変化させる。コントローラは、ステアリングアクチュエータを制御する。コントローラは、作業機械が所定の目標進路に沿って走行するように、ステアリングアクチュエータによって操舵角を制御する自動ステアリング制御を実行する。コントローラは、作業機械の前後の進行方向を示す進行方向ステータスを判定する。コントローラは、自動ステアリング制御中に、進行方向ステータスが不明であると判定した場合には、操舵角を中立角とする。
 本開示の他の態様に係る作業機械を制御するための方法は、作業機械が所定の目標進路に沿って走行するように作業機械の操舵角を制御する自動ステアリング制御を実行することと、作業機械の前後の進行方向を示す進行方向ステータスを判定することと、自動ステアリング制御中に、進行方向ステータスが不明であると判定した場合には、操舵角を中立角とすること、を備える。
 本開示のさらに他の態様に係る作業機械を制御するための方法は、作業機械を制御するための方法であって、作業機械が所定の目標進路に沿って走行するように作業機械の操舵角を制御する自動ステリング制御を実行することと、作業機械の前後の進行方向を示す進行方向ステータスを判定することと、自動ステリング制御中に、作業機械の前後の進行方向が切り替えられた際に、操舵角を中立角とすること、を備える。
 本開示によれば、自動ステアリング制御中に、作業機械の前後の進行方向を示す進行方向ステータスが不明であると判定された場合には、操舵角が中立角とされる。それにより、作業機械が、適切な方向と逆方向に操舵されることが防止される。そのため、自動ステアリング制御中に、作業機械の前進と後進とが切り替えられた場合に、作業機械がふらつくことが抑えられる。
実施形態に係る作業機械の斜視図である。 作業機械の側面図である。 作業機械の構成を示す模式図である。 作業機械の前部を示す上面図である。 ステアリング操作部材の操作による作業機械の走行の一例を示す図である。 直進維持モードにおける操舵角の自動制御を示す図である。 進行方向ステータスに応じて目標角度を決定するための処理を示すフローチャートである。 進行方向ステータスの判定ロジックを示すブロック図である。
 以下図面を参照して、本発明の実施形態について説明する。図1は、実施形態に係る作業機械1の斜視図である。図2は、作業機械1の側面図である。図1に示すように、作業機械1は、車体2と、走行輪3A,3B,4A-4Dと、作業機5とを備える。車体2は、フロントフレーム11と、リアフレーム12と、キャブ13と、動力室14とを含む。走行輪3A,3B,4A-4Dは、前輪3A,3Bと、後輪4A-4Dとを含む。前輪3A,3Bが左右に操舵されることで、作業機械1が左右に旋回する。
 リアフレーム12は、フロントフレーム11に接続されている。フロントフレーム11は、リアフレーム12に対して、左右にアーティキュレート可能である。なお、以下の説明において、前後左右の各方向は、アーティキュレート角が0、すなわち、フロントフレーム11とリアフレーム12とが真っすぐな状態での車体2の前後左右の各方向を意味するものとする。
 キャブ13と動力室14とは、リアフレーム12上に配置されている。キャブ13には、図示しない運転席が配置されている。動力室14は、キャブ13の後方に配置されている。フロントフレーム11は、リアフレーム12から前方へ延びている。前輪3A,3Bは、フロントフレーム11に取り付けられている。後輪4A-4Dは、リアフレーム12に取り付けられている。
 作業機5は、車体2に対して可動的に接続されている。作業機5は、支持部材15とブレード16とを含む。支持部材15は、車体2に可動的に接続されている。支持部材15は、ブレード16を支持している。支持部材15は、ドローバ17とサークル18とを含む。ドローバ17は、フロントフレーム11の下方に配置される。
 ドローバ17は、フロントフレーム11の前部19に接続されている。ドローバ17は、フロントフレーム11の前部19から後方へ延びている。ドローバ17は、フロントフレーム11に対して、少なくとも車体2の上下方向と左右方向とに揺動可能に支持されている。例えば、前部19は、ボールジョイントを含む。ドローバ17は、ボールジョイントを介して、フロントフレーム11に対して回転可能に接続されている。
 サークル18は、ドローバ17の後部に接続されている。サークル18は、ドローバ17に対して回転可能に支持される。ブレード16は、サークル18に接続される。ブレード16は、サークル18を介して、ドローバ17に支持されている。図2に示すように、ブレード16は、チルト軸21回りに回転可能にサークル18に支持されている。チルト軸21は、左右方向に延びている。
 作業機械1は、作業機5の姿勢を変更するための複数のアクチュエータ22-26を備えている。複数のアクチュエータ22-26は、複数の油圧シリンダ22-25を含む。複数の油圧シリンダ22-25は、作業機5に接続されている。複数の油圧シリンダ22-25は、油圧によって伸縮する。複数の油圧シリンダ22-25は、伸縮することで、車体2に対する作業機5の姿勢を変更する。以下の説明では、油圧シリンダの伸縮を「ストローク動作」と呼ぶ。
 詳細には、複数の油圧シリンダ22-25は、左リフトシリンダ22と、右リフトシリンダ23と、ドローバシフトシリンダ24と、ブレードチルトシリンダ25とを含む。左リフトシリンダ22と右リフトシリンダ23とは、左右方向に互いに離れて配置されている。左リフトシリンダ22と右リフトシリンダ23とは、ドローバ17に接続されている。左リフトシリンダ22と右リフトシリンダ23とは、リフタブラケット29を介して、フロントフレーム11に接続されている。左リフトシリンダ22と右リフトシリンダ23とのストローク動作により、ドローバ17は、上下に揺動する。それにより、ブレード16が上下に移動する。
 ドローバシフトシリンダ24は、ドローバ17とフロントフレーム11とに接続されている。ドローバシフトシリンダ24は、リフタブラケット29を介してフロントフレーム11に接続されている。ドローバシフトシリンダ24は、フロントフレーム11からドローバ17に向かって、斜め下方に延びている。ドローバシフトシリンダ24のストローク動作により、ドローバ17は、左右に揺動する。ブレードチルトシリンダ25は、サークル18とブレード16とに接続されている。ブレードチルトシリンダ25のストローク動作により、ブレード16がチルト軸21回りに回転する。
 複数のアクチュエータ22-26は、回転アクチュエータ26を含む。回転アクチュエータ26は、ドローバ17とサークル18とに接続されている。回転アクチュエータ26は、ドローバ17に対してサークル18を回転させる。それにより、ブレード16が、上下方向に延びる回転軸回りに回転する。
 図3は、作業機械1の構成を示す模式図である。図3に示すように、作業機械1は、駆動源31と、油圧ポンプ32と、動力伝達装置33と、作業機バルブ34とを含む。駆動源31は、例えば内燃機関である。或いは、駆動源31は、電動モータ、或いは内燃機関と電動モータとのハイブリッドであってもよい。油圧ポンプ32は、駆動源31によって駆動されることで、作動油を吐出する。
 作業機バルブ34は、油圧回路を介して、油圧ポンプ32と複数の油圧シリンダ22-25とに接続されている。作業機バルブ34は、複数の油圧シリンダ22-25にそれぞれ接続される複数の弁を含む。作業機バルブ34は、油圧ポンプ32から複数の油圧シリンダ22-25に供給される作動油の流量を制御する。作業機バルブ34は、例えば電磁比例制御弁である。或いは、作業機バルブ34は、油圧パイロット式の比例制御弁であってもよい。
 本実施形態では、回転アクチュエータ26は、油圧モータである。作業機バルブ34は、油圧回路を介して油圧ポンプ32と回転アクチュエータ26とに接続されている。作業機バルブ34は、油圧ポンプ32から回転アクチュエータ26に供給される作動油の流量を制御する。なお、回転アクチュエータ26は、電動モータであってもよい。
 動力伝達装置33は、駆動源31からの駆動力を後輪4A-4Dに伝達する。動力伝達装置33は、トルクコンバータ、及び/又は、複数の変速ギアを含んでもよい。或いは、動力伝達装置33は、HST(Hydraulic Static Transmission)、或いは、HMT(Hydraulic Mechanical Transmission)などのトランスミッションであってもよい。
 作業機械1は、作業機操作部材35と、シフト操作部材53と、アクセル操作部材36と、ブレーキ操作部材47と、コントローラ37とを含む。作業機操作部材35は、作業機5の姿勢を変更するためにオペレータによって操作可能である。作業機操作部材35は、例えば複数の操作レバーを含む。或いは、作業機操作部材35は、スイッチ、或いはタッチパネルなどの他の部材であってもよい。作業機操作部材35は、オペレータによる作業機操作部材35への操作を示す信号を出力する。
 シフト操作部材53は、作業機械1の前後の進行方向を指示するためにオペレータによって操作可能である。シフト操作部材53は、例えばシフトレバーを含む。或いは、シフト操作部材53は、スイッチ、或いはタッチパネルなどの他の部材であってもよい。シフト操作部材53は、前進位置(F)と、後進位置(R)と、中立位置(N1)とに操作可能である。シフト操作部材53は、シフト操作部材53の操作位置を示す信号を出力する。
 アクセル操作部材36は、作業機械1を走行させるためにオペレータによって操作可能である。アクセル操作部材36は、例えばアクセルペダルを含む。或いは、アクセル操作部材36は、スイッチ、或いはタッチパネルなどの他の部材であってもよい。アクセル操作部材36は、オペレータによるアクセル操作部材36への操作を示す信号を出力する。ブレーキ操作部材47は、作業機械1を制動するためにオペレータによって操作可能である。ブレーキ操作部材47は、例えばブレーキペダルを含む。
 コントローラ37は、シフト操作部材53の操作に応じて、動力伝達装置33を制御することで、作業機械1の前進と後進とを切り換える。或いは、シフト操作部材53は、機械的に動力伝達装置33に接続されてもよい。シフト操作部材53の動作が機械的に動力伝達装置33に伝達されることで、動力伝達装置33の前進と後進のギアが切り替えられてもよい。
 コントローラ37は、アクセル操作部材36の操作に応じて、駆動源31及び動力伝達装置33を制御することで、作業機械1を走行させる。また、コントローラ37は、作業機操作部材35の操作に応じて、油圧ポンプ32と作業機バルブ34とを制御することで、作業機5を動作させる。
 コントローラ37は、記憶装置38とプロセッサ39とを含む。プロセッサ39は、例えばCPUであり、作業機械1を制御するためのプログラムを実行する。記憶装置38は、RAM及びROMなどのメモリと、SSD或いはHDDなどの補助記憶装置を含む。記憶装置38は、作業機械1を制御するためのプログラムとデータとを記憶している。
 作業機械1は、車速センサ51を備えている。車速センサ51は、作業機械1の車速を検出する。車速センサ51は、作業機械1の車速を示す信号を出力する。車速センサ51は、例えば、動力伝達装置33の出力回転速度を検出する。動力伝達装置33の出力回転速度は、作業機械1の車速に相当する。或いは、車速センサ51は、GPS(Global Positioning System)などのGNSS(Global Navigation Satellite System)レシーバであってもよい。
 作業機械1は、方向センサ52を備えている。方向センサ52は、車体2の進行方向を検出する。方向センサ52は、車体2の進行方向を示す方向信号を出力する。コントローラ37は、方向センサ52からの方向信号により、車体2の進行方向を取得する。車体2の進行方向は、例えば車体2のヨー角で示される。方向センサ52は、例えばIMU(慣性計測装置)である。コントローラ37は、車体2の加速度および角速度に基づいて、車体2の進行方向を算出する。或いは、方向センサ52は、などのGNSSレシーバであってもよい。コントローラ37は、方向センサ52が検出した作業機械1の位置の変化から、車体2の進行方向を取得してもよい。
 図3に示すように、作業機械1は、操舵角センサ40と、ステアリングアクチュエータ41と、ステアリングバルブ42とを備えている。ステアリングアクチュエータ41は、油圧シリンダである。ステアリングアクチュエータ41は、油圧ポンプ32からの作動油によって伸縮する。ステアリングアクチュエータ41は、伸縮することで、前輪3A,3Bを操舵する。
 図4は、作業機械1の前部を示す上面図である。図4に示すように、前輪3A,3Bは、第1前輪3Aと第2前輪3Bとを含む。第1前輪3Aと第2前輪3Bとは、左右方向に離れて配置されている。第1前輪3Aは、第1ステアリング軸43回りに回動可能にフロントフレーム11に支持されている。第2前輪3Bは、第2ステアリング軸44回りに回動可能にフロントフレーム11に支持されている。第1ステアリング軸43と第2ステアリング軸44とは、上下方向に延びている。
 ステアリングアクチュエータ41は、前輪3A,3Bとフロントフレーム11とに接続されている。ステアリングアクチュエータ41は、前輪3A,3Bの操舵角θ1を所定の中立角から左右に変化させる。図4に示すように、操舵角θ1は、作業機械1の前後方向に対する前輪3A,3Bの向きの角度である。作業機械1の前後方向は、フロントフレーム11の前後方向を意味するものとする。ただし、作業機械1の前後方向は、リアフレーム12の前後方向を意味してもよい。
 中立角は、0度の操舵角θ1である。従って、操舵角θ1が中立角であることは、前輪3A,3Bが作業機械1の真正面を向いていることを意味する。なお、図4において、3A’は、中立角から左方に操舵角θ1だけ操舵された第1前輪3Aを示している。3B’は、中立角から左方に操舵角θ1だけ操舵された第2前輪3Bを示している。
 ステアリングバルブ42は、油圧回路を介して、油圧ポンプ32とステアリングアクチュエータ41とに接続されている。ステアリングバルブ42は、油圧ポンプ32からステアリングアクチュエータ41に供給される作動油の流量を制御する。
 操舵角センサ40は、操舵角θ1を検出する。操舵角センサ40は、操舵角θ1を示す角度信号を出力する。コントローラ37は、操舵角センサ40からの角度信号により現在の操舵角θ1を取得する。操舵角センサ40は、例えば、ステアリングアクチュエータ41のストローク量を検出する。操舵角θ1は、ステアリングアクチュエータ41のストローク量から算出される。或いは、操舵角センサ40は、操舵角θ1を直接的に検出してもよい。
 図3に示すように、作業機械1は、ステアリング操作部材45を含む。ステアリング操作部材45は、前輪3A,3Bの操舵角θ1を左右に変化させるために、オペレータによって操作可能である。ステアリング操作部材45は、中立位置(N2)から左操舵範囲(L)と右操舵範囲(R)に操作可能である。ステアリング操作部材45は、例えばレバーである。或いは、ステアリング操作部材45は、ステアリングホイール、或いはスイッチなどの他の部材であってもよい。ステアリング操作部材45は、オペレータによるステアリング操作部材45への操作を示す信号を出力する。
 コントローラ37は、ステアリング操作部材45の操作に応じて、ステアリングバルブ42を制御することで、ステアリングアクチュエータ41を動作させる。それにより、前輪3A,3Bの操舵角θ1が左右に変化することで、作業機械1が左右に旋回する。
 次に、操舵角θ1を自動的に制御する自動ステアリング制御について説明する。自動ステアリング制御では、コントローラ37は、操舵角θ1を所定の目標角度とするように、ステアリングアクチュエータ41を制御する。自動制御は、センターリターンモードと直進維持モードとを含む。
 センターリターンモードでは、コントローラ37は、ステアリング操作部材45が左操舵範囲(L)から中立位置(N2)に戻されたとき、又は、右操舵範囲(R)から中立位置(N2)に戻されたときに、操舵角θ1を自動的に中立角に戻すように、ステアリングアクチュエータ41を制御する。
 例えば、操舵角θ1が、左方への所定角度であるときに、ステアリング操作部材45が、中立位置(N2)に戻されると、コントローラ37は、操舵角θ1が、左方への所定角度から中立角に戻るように、ステアリングアクチュエータ41を制御する。操舵角θ1が、右方への所定角度であるときに、ステアリング操作部材45が、中立位置(N2)に戻されると、コントローラ37は、操舵角θ1が、右方への所定角度から中立角に戻るように、ステアリングアクチュエータ41を制御する。
 図5は、ステアリング操作部材45の操作による作業機械1の走行の一例を示す図である。図5に示すように、作業機械1が地点P1では、ステアリング操作部材45は中立位置(N2)に位置している。操舵角θ1は中立角であり、作業機械1は直進している。地点P2において、オペレータがステアリング操作部材45を左操作範囲内の操作量L1に操作すると、前輪3A,3Bの操舵角θ1が中立角から左方へ変化し始める。それにより、作業機械1は左方へ旋回する。
 地点P2から地点P3までの間、オペレータがステアリング操作部材45を操作量L1に保持すると、前輪3A,3Bの操舵角θ1は、左方への最大操舵角θmaxまで増大し続ける。それにより、作業機械1は、左方へ旋回し続ける。
 そして、地点P3において、オペレータがステアリング操作部材45を中立位置(N2)に戻すと、センターリターンモードにより、前輪3A,3Bの操舵角θ1は、最大操舵角θmaxから中立角へ向かって減少する。そして、地点P5において、前輪3A,3Bの操舵角θ1が中立角に戻る。
 直進維持モードでは、コントローラ37は、作業機械1が直線状の目標進路に沿って走行するように、操舵角θ1を制御する。詳細には、コントローラ37は、車体2の進行方向を目標方向に保持するように、操舵角θ1を制御する。例えば、コントローラ37は、図5に示すように、地点P5において、操舵角θ1が中立角に戻ったときの車体2の進行方向(H1)を、目標方向として決定する。そして、コントローラ37は、車体2の進行方向を目標方向H1に保持するように、ステアリングアクチュエータ41を制御する。それにより、作業機械1は、目標方向H1に延びる直線状の目標進路R1に沿って移動する。
 詳細には、コントローラ37は、車体2の現在の進行方向と目標方向H1との差に基づいて、操舵角θ1の目標角度を決定する。コントローラ37は、操舵角θ1が目標角度となるように、ステアリングアクチュエータ41を制御する。例えば、コントローラ37は、車体2の現在の進行方向と目標方向H1との差に、所定のゲインを乗じることで、操舵角θ1の目標角度を決定する。コントローラ37は、操舵角θ1が目標角度に保持されるように、フィードバック制御により、ステアリングアクチュエータ41を制御する。
 直進維持モードにおいて、コントローラ37は、車体2が後進しているときには、車体2が前進しているときに対して操舵角θ1の目標角度を左右逆にする。例えば、図6に示すように、作業機械1の向きが目標進路R1から右方にずれている状態で、矢印A1で示すように、作業機械1が前進する場合には、コントローラ37は、目標角度を中立角よりも左方の角度に決定する。作業機械1の向きが目標進路R1から右方にずれている状態で、矢印A2で示すように、作業機械1が後進する場合には、コントローラ37は、目標角度を中立角よりも右方の角度に決定する。
 逆に、作業機械1の向きが目標進路R1から左方にずれている状態で、作業機械1が前進する場合には、コントローラ37は、目標角度を中立角よりも右方の角度に決定する。作業機械1の向きが目標進路R1から左方にずれている状態で、作業機械1が後進する場合には、コントローラ37は、目標角度を中立角よりも左方の角度に決定する。すなわち、コントローラ37は、車体2の進行方向ステータスを判定し、進行方向ステータスに応じて目標角度を決定する。進行方向ステータスは、作業機械1の前後の進行方向を示す。
 図7は、進行方向ステータスに応じて目標角度を決定するための処理を示すフローチャートである。図7に示すように、ステップS101で、コントローラ37は、車速を取得する。コントローラ37は、車速センサ51からの信号により、車速を取得する。ステップS102で、コントローラ37は、シフト操作位置を取得する。シフト操作位置は、シフト操作部材53の操作位置である。コントローラ37は、シフト操作部材53から信号により、シフト操作位置を取得する。コントローラ37は、前進位置(F)と、後進位置(R)と、中立位置(N2)とのいずれかを、シフト操作位置として取得する。
 ステップS103で、コントローラ37は、進行方向ステータスを判定する。コントローラ37は、車速とシフト操作位置とに基づいて、進行方向ステータスを判定する。図8は、進行方向ステータスの判定ロジックを示すブロック図である。図8に示すように、進行方向ステータスは、「停止」と、「前進」と、「後進」と、「不明」とを含む。
 図8に示すように、初期状態では、進行方向ステータスは「停止」である。コントローラ37は、進行方向ステータスが「停止」である状態で、前進条件が成立した場合に、進行方向ステータスが「前進」であると判定する。前進条件は、シフト操作位置が前進位置(F)であることを含む。
 コントローラ37は、進行方向ステータスが「停止」である状態で、後進条件が成立した場合に、進行方向ステータスが「後進」であると判定する。後進条件は、シフト操作位置が後進位置(R)であることを含む。
 コントローラ37は、進行方向ステータスが「前進」である状態で、第1不明条件が成立した場合に、進行方向ステータスが「不明」であると判定する。第1不明条件は、シフト操作位置が前進位置(F)以外の位置であり、且つ、車速が第1閾値未満であることを含む。すなわち、第1不明条件は、シフト操作位置が後進位置(R)又は中立位置(N2)であり、且つ、車速が第1閾値未満であることを含む。第1閾値は、例えば、作業機械1の前後の進行方向を正確に判定することが不可能な程度の遅い速度を示す。
 コントローラ37は、進行方向ステータスが「後進」である状態で、第2不明条件が成立した場合に、進行方向ステータスが「不明」であると判定する。第2不明条件は、シフト操作位置が後進位置(R)以外の位置であり、且つ、車速が第2閾値未満であることを含む。すなわち、第2不明条件は、シフト操作位置が前進位置(F)又は中立位置(N2)であり、且つ、車速が第2閾値未満であることを含む。第2閾値は、第1閾値と同じであってもよい。第2閾値は、第1閾値と異なってもよい。第2閾値は、例えば、作業機械1の前後の進行方向を正確に判定することが不可能な程度の遅い速度を示す。
 コントローラ37は、進行方向ステータスが「不明」である状態で、前進条件が成立した場合に、進行方向ステータスが「前進」であると判定する。コントローラ37は、進行方向ステータスが「不明」である状態で、後進条件が成立した場合に、進行方向ステータスが「後進」であると判定する。コントローラ37は、進行方向ステータスが「不明」である状態で、停止条件が成立した場合に、進行方向ステータスが「停止」であると判定する。停止条件は、車速が第3閾値未満である状態が所定時間以上、継続することを含む。第3閾値は、例えば、作業機械1が停止していると見なせる程度の遅い速度を示す。以上のように、コントローラ37は、進行方向ステータスが、「停止」と、「前進」と、「後進」と、「不明」とのいずれであるかを判定する。
 図7に示すように、直進維持モードにおいて、進行方向ステータスが前進である場合には、ステップS104で、コントローラ37は、操舵角θ1の目標角度を、前進目標角度に決定する。前進目標角度は、上述した前進時の操舵角θ1の目標角度である。直進維持モードにおいて、進行方向ステータスが後進である場合には、ステップS105で、コントローラ37は、操舵角θ1の目標角度を、後進目標角度に決定する。後進目標角度は、後進時の操舵角θ1の目標角度である。後進目標角度は、前進目標角度と左右逆の角度である。
 直進維持モードにおいて、進行方向ステータスが不明である場合には、ステップS106で、コントローラ37は、操舵角θ1の目標角度を、中立角に決定する。直進維持モードの実行中には、コントローラ37は、上記の処理を繰り返し実行する。従って、コントローラ37は、進行方向ステータスが不明と判定した場合には、操舵角を中立角に設定し、その後、進行方向ステータスが前進又は後進と判定するまで、操舵角を中立角に維持する。
 コントローラ37は、進行方向ステータスが不明から前進に変わった場合には、操舵角を、中立角から前進目標角度に変更する。コントローラ37は、進行方向ステータスが不明から後進に変わった場合には、操舵角を、中立角から後進目標角度に変更する。
 以上説明した本実施形態に係る作業機械1では、自動ステアリング制御中に、進行方向ステータスが不明であると判定された場合には、操舵角が中立角とされる。それにより、作業機械1が、適切な方向と逆方向に操舵されることが防止される。それにより、自動ステアリング制御中に、作業機械1の前進と後進とが切り替えられた場合に、作業機械1がふらつくことが抑えられる。
 以上、本発明の一実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、発明の要旨を逸脱しない範囲で種々の変更が可能である。
 作業機械1は、モータグレーダに限らず、ホイールローダ、ダンプトラック、フォークリフトなどの他の作業機械であってもよい。ステアリングアクチュエータ41の数は1つに限らず、2つ以上であってもよい。ステアリングアクチュエータ41は、油圧シリンダに限らず、油圧モータ、或いは電動モータであってもよい。上記の実施形態では、前輪が左右に操舵されることで、作業機械1が左右に旋回する。しかし、後輪が左右に操舵されることで、作業機械1が左右に旋回してもよい。
 自動ステアリング制御の処理は、上記の実施形態のものに限らず、変更されてもよい。例えば、コントローラ37は、進行方向ステータスが不明であると判定した場合には、所定時間が経過するまで、操舵角を中立角に維持してもよい。コントローラ37は、進行方向ステータスが不明であるかに関わらず、作業機械1の前後の進行方向が切り替えられた際に、操舵角を中立角としてもよい。コントローラ37は、作業機械1の前後の進行方向が切り替えられた際に、所定時間が経過するまで、操舵角を中立角に維持してもよい。
 目標方向H1は、操舵角θ1が中立角に戻ったときの車体2の進行方向に限らず、他の方法によって決定されてもよい。例えば、目標方向H1は、ステアリング操作部材が中立位置(N2)に戻ったときの車体2の進行方向であってもよい。或いは、目標方向H1は、オペレータによって入力されてもよい。目標方向H1は、外部のコンピュータから入力されてもよい。
 上記の実施形態では、作業機械1の前後の進行方向を指示する指令信号は、シフト操作部材53からのシフト操作位置を示す信号である。しかし、作業機械1の前後の進行方向を指示する指令信号は、他の信号であってもよい。例えば、コントローラ37が作業機械1の走行を自動制御する場合には、作業機械1の前後の進行方向を指示する指令信号は、コントローラ37によって生成されてもよい。
 上記の実施形態では、目標進路R1は、直進維持モードにおける目標方向H1によって規定されているが、他の方法によって目標進路R1が設定されてもよい。例えば、目標進路R1は、オペレータによって入力される任意の経路であってもよい。目標進路R1は、外部のコンピュータから入力される任意の経路であってもよい。
 本開示によれば、自動ステアリング制御中に、作業機械の前進と後進とが切り替えられた場合に、作業機械がふらつくことが抑えられる。
1:作業機械
3A,3B:走行輪
37:コントローラ
41:ステアリングアクチュエータ

Claims (13)

  1.  作業機械であって、
     走行輪と、
     前記走行輪の操舵角を中立角から左右に変化させるステアリングアクチュエータと、
     前記ステアリングアクチュエータを制御するコントローラと、
    を備え、
     前記コントローラは、
      前記作業機械が所定の目標進路に沿って走行するように、前記ステアリングアクチュエータによって前記操舵角を制御する自動ステリング制御を実行し、
      前記作業機械の前後の進行方向を示す進行方向ステータスを判定し、
      前記自動ステリング制御中に、前記進行方向ステータスが不明であると判定した場合には、前記操舵角を前記中立角とする、
    作業機械。
  2.  前記コントローラは、
      前記作業機械の前後の進行方向を指示する指令信号を取得し、
      前記作業機械の車速を取得し、
      前記指令信号と前記車速とに基づいて、前記進行方向ステータスを判定する、
    請求項1に記載の作業機械。
  3.  前記コントローラは、前記進行方向ステータスが前進である場合に、前記指令信号が前進以外の指示を示し、且つ、前記車速が所定の閾値未満である場合に、前記進行方向ステータスが不明であると判定する、
    請求項2に記載の作業機械。
  4.  前記コントローラは、前記進行方向ステータスが後進である場合に、前記指令信号が後進以外の指示を示し、且つ、前記車速が所定の閾値未満である場合に、前記進行方向ステータスが不明であると判定する、
    請求項2に記載の作業機械。
  5.  前記コントローラは、前記進行方向ステータスが前進又は後進と判定するまで、前記操舵角を前記中立角に維持する、
    請求項1に記載の作業機械。
  6.  前記コントローラは、
      前記作業機械の前後の進行方向を指示する指令信号を取得し、
      前記指令信号によって前記進行方向の切り替えが指示されたときに、前記進行方向ステータスが不明であると判定した場合には、所定時間が経過するまで、前記操舵角を前記中立角に維持する、
    請求項1に記載の作業機械。
  7.  作業機械を制御するための方法であって、
     前記作業機械が所定の目標進路に沿って走行するように前記作業機械の操舵角を制御する自動ステリング制御を実行することと、
     前記作業機械の前後の進行方向を示す進行方向ステータスを判定することと、
     自動ステリング制御中に、前記進行方向ステータスが不明であると判定した場合には、前記操舵角を中立角とすること、
    を備える方法。
  8.  前記作業機械の前後の進行方向を指示する指令信号を取得することと、
     前記作業機械の車速を取得することと、
     前記指令信号と前記車速とに基づいて、前記進行方向ステータスを判定すること、
    を備える請求項7に記載の方法。
  9.  前記進行方向ステータスが前進である場合に、前記指令信号が前進以外の指示を示し、且つ、前記車速が所定の閾値未満である場合に、前記進行方向ステータスが不明であると判定すること、
    を備える請求項8に記載の方法。
  10.  前記進行方向ステータスが後進である場合に、前記指令信号が後進以外の指示を示し、且つ、前記車速が所定の閾値未満である場合に、前記進行方向ステータスが不明であると判定すること、
    を備える請求項8に記載の方法。
  11.  前記進行方向ステータスが前進又は後進と判定するまで、前記操舵角を前記中立角に維持すること、
    を備える請求項7に記載の方法。
  12.  前記作業機械の前後の進行方向を指示する指令信号を取得することと、
     前記指令信号によって前記進行方向の切り替えが指示されたときに、前記進行方向ステータスが不明であると判定した場合には、所定時間が経過するまで、前記操舵角を前記中立角に維持すること、
    を備える請求項7に記載の方法。
  13.  作業機械を制御するための方法であって、
     前記作業機械が所定の目標進路に沿って走行するように前記作業機械の操舵角を制御する自動ステリング制御を実行することと、
     前記作業機械の前後の進行方向を示す進行方向ステータスを判定することと、
     自動ステリング制御中に、前記作業機械の前後の進行方向が切り替えられた際に、前記操舵角を中立角とすること、
    を備える方法。
PCT/JP2023/030024 2022-10-25 2023-08-21 作業機械及び作業機械を制御するための方法 WO2024089987A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022170735A JP2024062709A (ja) 2022-10-25 作業機械及び作業機械を制御するための方法
JP2022-170735 2022-10-25

Publications (1)

Publication Number Publication Date
WO2024089987A1 true WO2024089987A1 (ja) 2024-05-02

Family

ID=90830406

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/030024 WO2024089987A1 (ja) 2022-10-25 2023-08-21 作業機械及び作業機械を制御するための方法

Country Status (1)

Country Link
WO (1) WO2024089987A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2482252A1 (en) * 2004-09-21 2006-03-21 Accutrak Systems Limited Automatic steering system
US20090118904A1 (en) * 2006-02-27 2009-05-07 Denis Allan Birnie Method and system for planning the path of an agricultural vehicle
CN101833334A (zh) * 2010-02-09 2010-09-15 北京农业信息技术研究中心 拖拉机自动导航控制系统及其方法
WO2017110116A1 (ja) * 2015-12-25 2017-06-29 株式会社クボタ 作業車
WO2019124298A1 (ja) * 2017-12-18 2019-06-27 株式会社クボタ 作業車及びトラクタ
WO2020039794A1 (ja) * 2018-08-23 2020-02-27 酒井重工業株式会社 建設車両の自律走行制御装置
WO2021065136A1 (ja) * 2019-09-30 2021-04-08 株式会社小松製作所 制御システム、作業車両の制御方法、および、作業車両
JP2022141257A (ja) * 2021-03-15 2022-09-29 株式会社クボタ 作業車両、および作業車両の制御システム
WO2022209177A1 (ja) * 2021-03-29 2022-10-06 株式会社小松製作所 作業機械の操向制御システムおよび作業機械の操向制御方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2482252A1 (en) * 2004-09-21 2006-03-21 Accutrak Systems Limited Automatic steering system
US20090118904A1 (en) * 2006-02-27 2009-05-07 Denis Allan Birnie Method and system for planning the path of an agricultural vehicle
CN101833334A (zh) * 2010-02-09 2010-09-15 北京农业信息技术研究中心 拖拉机自动导航控制系统及其方法
WO2017110116A1 (ja) * 2015-12-25 2017-06-29 株式会社クボタ 作業車
WO2019124298A1 (ja) * 2017-12-18 2019-06-27 株式会社クボタ 作業車及びトラクタ
WO2020039794A1 (ja) * 2018-08-23 2020-02-27 酒井重工業株式会社 建設車両の自律走行制御装置
WO2021065136A1 (ja) * 2019-09-30 2021-04-08 株式会社小松製作所 制御システム、作業車両の制御方法、および、作業車両
JP2022141257A (ja) * 2021-03-15 2022-09-29 株式会社クボタ 作業車両、および作業車両の制御システム
WO2022209177A1 (ja) * 2021-03-29 2022-10-06 株式会社小松製作所 作業機械の操向制御システムおよび作業機械の操向制御方法

Similar Documents

Publication Publication Date Title
JP5388461B2 (ja) ステアリング操作装置
JP6581931B2 (ja) モータグレーダにおける制御方法およびモータグレーダ
WO2024089987A1 (ja) 作業機械及び作業機械を制御するための方法
WO2023067898A1 (ja) 作業機械、及び、作業機械を制御するための方法
WO2022264713A1 (ja) 作業機械および作業機械を制御するための方法
JP7406414B2 (ja) モータグレーダおよびモータグレーダの制御方法
JP2024062709A (ja) 作業機械及び作業機械を制御するための方法
WO2023286443A1 (ja) 作業機械、及び、作業機械を制御するための方法
WO2023286442A1 (ja) 作業機械、及び、作業機械を制御するための方法
WO2023112563A1 (ja) 作業機械、作業機械を制御するための方法、及びシステム
WO2023112560A1 (ja) 作業機械、作業機械を制御するための方法、及びシステム
WO2023286444A1 (ja) 作業機械、及び作業機械を制御するための方法
WO2023021825A1 (ja) 作業機械、及び、作業機械を制御するための方法
WO2020036034A1 (ja) ステアリング装置、ステアリングシステム、および作業車両
WO2024053259A1 (ja) 作業機械、及び、作業機械を制御するための方法
JP7406415B2 (ja) モータグレーダおよびモータグレーダの制御方法
WO2021193319A1 (ja) ステアリング装置、および作業機械
WO2023021826A1 (ja) 作業機械、及び、作業機械を制御するための方法
WO2023135916A1 (ja) 作業機械、作業機械を制御するための方法、及びシステム
WO2024084791A1 (ja) 作業機械、及び、作業機械を制御するための方法
WO2023053700A1 (ja) 作業機械を制御するためのシステムおよび方法