WO2017099076A1 - 銀被覆黒鉛粒子、銀被覆黒鉛混合粉及びその製造方法、並びに導電性ペースト - Google Patents

銀被覆黒鉛粒子、銀被覆黒鉛混合粉及びその製造方法、並びに導電性ペースト Download PDF

Info

Publication number
WO2017099076A1
WO2017099076A1 PCT/JP2016/086228 JP2016086228W WO2017099076A1 WO 2017099076 A1 WO2017099076 A1 WO 2017099076A1 JP 2016086228 W JP2016086228 W JP 2016086228W WO 2017099076 A1 WO2017099076 A1 WO 2017099076A1
Authority
WO
WIPO (PCT)
Prior art keywords
silver
graphite
mass
coated
mixed powder
Prior art date
Application number
PCT/JP2016/086228
Other languages
English (en)
French (fr)
Inventor
海里 大谷
徳昭 野上
謙雄 茂木
卓 岡野
Original Assignee
Dowaエレクトロニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowaエレクトロニクス株式会社 filed Critical Dowaエレクトロニクス株式会社
Priority to CN201680071403.2A priority Critical patent/CN108367927B/zh
Priority to US16/060,154 priority patent/US10773961B2/en
Priority to KR1020187019078A priority patent/KR102077115B1/ko
Publication of WO2017099076A1 publication Critical patent/WO2017099076A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/21After-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/02Ingredients treated with inorganic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C5/00Alloys based on noble metals
    • C22C5/06Alloys based on silver
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/42Coating with noble metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/04Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of carbon-silicon compounds, carbon or silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • H05K1/092Dispersed materials, e.g. conductive pastes or inks
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties

Definitions

  • the present invention relates to silver-coated graphite particles, silver-coated graphite mixed powder, a method for producing the same, and a conductive paste.
  • conductive paste containing silver powder, binder, solvent and the like has been used.
  • silver is expensive, the cost may be reduced if all or part of the silver powder is changed to a cheaper material.
  • silver powder is made of copper that is cheaper than silver.
  • a conductive paste using silver-coated copper powder is used.
  • the material that can be used as the core material is not limited to copper, which is a highly conductive metal.
  • Patent Document 1 describes that a metal such as copper, nickel, silver or the like is electrodeposited on the surface of carbon black particles by electroplating.
  • the silver-coated copper powder in which the core material is copper has a problem that the reliability is lowered due to oxidation of the exposed copper. Moreover, the problem of the thickening of the paste viscosity by elution of copper ions may also occur. Further, even if a metal electrodeposited on the carbon black surface is used as a filler for the conductive paste, high conductivity cannot be obtained because the core material is carbon black in an amorphous state.
  • the present invention relates to a silver-coated graphite particle in which at least silver is coated on the surface of a relatively highly conductive graphite suitable for use as a filler of a conductive paste, a silver-coated graphite mixed powder containing the silver-coated graphite particle, and production thereof It is an object of the present invention to provide a method and a conductive paste that has high conductivity and is lightweight and inexpensive.
  • Means for solving the problems are as follows. That is, ⁇ 1> A silver-coated graphite mixed powder comprising silver-coated graphite particles comprising graphite particles and silver coated on the surface of the graphite particles,
  • the silver content in the solution after dissolving the silver-coated graphite mixed powder in nitric acid is 5 mass% or more and 90 mass% or less in the coupled induction plasma (ICP) emission analysis method, and the tin content is 0.01 mass.
  • % To 5% by mass and the zinc content is 0.002% by mass to 1% by mass.
  • ⁇ 2> The silver-coated graphite mixed powder according to ⁇ 1>, wherein the silver content is 20% by mass or more and 90% by mass or less, and the tin content is 0.01% by mass or more and 2% by mass or less. It is.
  • ⁇ 3> The silver-coated graphite mixed powder according to ⁇ 1> or ⁇ 2>, wherein a graphite coverage, which is a ratio of the silver-coated graphite particles obtained by binarizing the 100-fold reflected electron image, is 10% or more. It is.
  • ⁇ 4> The silver-coated graphite mixed powder according to any one of ⁇ 1> to ⁇ 3>, wherein a volume-based cumulative 50% particle diameter (D 50 ) is 1 ⁇ m or more and 20 ⁇ m or less.
  • the surface of the graphite powder after sensitizing includes a step of coating silver by substitution using a silver complex solution and zinc powder,
  • the silver complex solution has a pH of 6 or more and 14 or less.
  • a method for producing a silver-coated graphite mixed powder comprising silver-coated graphite particles comprising graphite particles and silver coated on the surface of the graphite particles. is there.
  • ⁇ 6> The method for producing a silver-coated graphite mixed powder according to ⁇ 5>, wherein the pH of the silver complex solution is 6 or more and 8 or less.
  • the silver content in the solution after the silver-coated graphite mixed powder is dissolved in nitric acid is 5% by mass or more and 90% by mass or less in the coupled induction plasma (ICP) emission analysis method, and the tin content is 0.
  • ⁇ 8> The silver coating according to any one of ⁇ 5> to ⁇ 7>, wherein a graphite coverage, which is a ratio of the silver-coated graphite particles obtained by binarizing the 100-fold reflected electron image, is 10% or more. It is a manufacturing method of graphite mixed powder.
  • a conductive paste comprising the silver-coated graphite mixed powder according to any one of ⁇ 1> to ⁇ 4>, a resin, and an organic solvent.
  • Silver-coated graphite particles in which the surface of graphite particles is coated with silver Silver-coated graphite particles having an average particle diameter of 1 ⁇ m or more and 20 ⁇ m or less by observation of a scanning electron microscope image and a thickness of coated silver of 10 nm or more and 5 ⁇ m or less.
  • silver-coated graphite particles in which at least silver is coated on the surface of a relatively highly conductive graphite suitable for use as a filler in a conductive paste, a silver-coated graphite mixed powder containing the silver-coated graphite particles, and It is possible to provide a manufacturing method as well as a light and inexpensive conductive paste having high conductivity.
  • FIG. 1 is a scanning electron micrograph (2,000 times) of the graphite powder used in Example 1.
  • FIG. FIG. 2 is a reflected electron image (100 times) of the silver-coated graphite mixed powder of Example 1.
  • FIG. 3 is a reflected electron image (100 times) of the silver-coated graphite mixed powder of Example 2.
  • 4 is a reflected electron image (100 times) of the silver-coated graphite mixed powder of Example 3.
  • FIG. FIG. 5 is a backscattered electron image of a powder-embedded cross section of the silver-coated graphite mixed powder of Example 3.
  • FIG. 6 is a graph showing the relationship between the silver content and the specific resistance 1.
  • FIG. 7 is a reflected electron image (100 times) of the silver-coated graphite mixed powder of Experimental Example 1.
  • FIG. 8 is a reflected electron image (5,000 times) of the silver-coated graphite mixed powder of Experimental Example 1.
  • FIG. 9 is a reflected electron image (100 times) of the silver-coated graphite mixed powder of Experimental Example 2.
  • FIG. 10 is a reflected electron image (5,000 times) of the silver-coated graphite mixed powder of Experimental Example 2.
  • FIG. 11 is a scanning electron micrograph (2,000 times) of the scaly graphite used in Experimental Example 3-1.
  • FIG. 12 is a reflected electron image (100 times) of the silver-coated graphite mixed powder of Experimental Example 3-1.
  • FIG. 13 is a reflected electron image (100 times) of the silver-coated graphite mixed powder of Experimental Example 3-2.
  • FIG. 14 is a scanning electron micrograph (2,000 magnifications) of a conductive film produced using the conductive paste of Experimental Example 5.
  • FIG. 15 is a scanning electron micrograph (2,000 times) of a conductive film produced using the conductive paste of Comparative Example 4.
  • FIG. 16 is a scanning electron micrograph (2,000 ⁇ magnification) of a conductive film produced using the conductive paste of Comparative Example 6.
  • the silver-coated graphite mixed powder of the present invention includes silver-coated graphite particles including graphite particles and silver coated on the surfaces of the graphite particles, and a surface treatment agent may be further attached as necessary.
  • the silver content in the solution after dissolving the silver-coated graphite mixed powder in nitric acid is 5 mass% or more and 90 mass% or less in the coupled induction plasma (ICP) emission analysis method, and the tin content is 0.01 mass. % To 5% by mass, and the zinc content is 0.002% to 1% by mass.
  • the silver-coated graphite particles of the present invention are silver-coated graphite particles in which the surface of the graphite particles is coated with silver, and a surface treatment agent may be further attached as necessary.
  • the silver-coated graphite particles have an average particle diameter (SEM particle diameter) of 1 ⁇ m or more and 20 ⁇ m or less as observed by a scanning electron microscope image, and the thickness of the coated silver is 10 nm or more and 5 ⁇ m or less.
  • the present inventors have decided to use a wet method with high productivity.
  • graphite particles were simply put into a silver complex solution and silver coating was attempted using various reducing agents such as formalin.
  • the adsorption of precipitated silver on the graphite particles did not occur, and the beaker was not adsorbed. Only silver precipitates and independent silver particles were formed.
  • the present inventors have studied the promotion of precipitation on graphite particles by adding tin to the surface of the graphite particles, and attempted sensitizing treatment.
  • the silver-coated graphite particles of the present invention are not based on the use of a reducing agent, but are conceived of the application of substitutional precipitation with a base metal, and graphite particles having tin on the surface by sensitizing treatment in the presence of silver ions This is based on the knowledge that the zinc particles can be deposited on the surface of the graphite particles by the substitution reaction of silver and zinc when the graphite particles and the zinc particles come close to each other by introducing zinc particles into the surface.
  • the graphite powder is an aggregate of graphite particles mainly composed of graphite (eg, graphite, graphene).
  • graphite eg, graphite, graphene
  • limiting in particular as said graphite powder Although it can select suitably according to the objective, It is preferable that it is at least 1 sort (s) selected from graphene, spherical graphite, and scaly graphite.
  • the spherical graphite and the flaky graphite are carbons bonded to each other in a hexagonal shape through covalent bonds, and the layers are bonded together by van der Waals force.
  • the graphene is a planar material having a thickness of only one carbon atom, is composed of a honeycomb-like crystal lattice formed by sp 2 bonds of carbon atoms, and graphite in all other dimensions. It is a basic building block of a system material.
  • the graphite powder may be a natural product or an artificial product, and the content of impurities in the graphite powder is not particularly limited and may be appropriately selected depending on the intended purpose, but is 10% by mass or less. Is preferred.
  • As said graphite powder what was manufactured suitably may be used and a commercial item may be used. Examples of the commercially available products include graphene (GNH-X2, manufactured by Graphene Platform Co., Ltd.), spherical graphite (WF-15C, manufactured by Chuetsu Graphite Industries Co., Ltd.), and scaled graphite (BF-15AK, Chuetsu Graphite Industries Co., Ltd.). Manufactured).
  • the graphite powder is preferably a BET specific surface area is small, a BET specific surface area is preferably 14m 2 / g or less, 7m 2 / g or less is more preferable.
  • the primary particle size of silver nuclei to be deposited has a size of several nanometers to several tens of nanometers, and it is considered that the silver nuclei are connected with growth to cover the surface.
  • the BET specific surface area is large, the mass% of silver (Ag) required when almost all the surface of the graphite powder is coated with silver (Ag) becomes excessive. Therefore, the smaller the BET specific surface area, the greater the coverage can be achieved with less silver.
  • the BET specific surface area of the graphite powder can be measured by a BET one-point method by nitrogen adsorption using Macsorb HM-model 1210 (manufactured by MOUNTECH). In the measurement of the BET specific surface area, the deaeration conditions before the measurement were 60 ° C. and 10 minutes.
  • the volume-based cumulative 50% particle diameter (D 50 ) of the graphite powder by laser diffraction method is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 1 ⁇ m or more and 20 ⁇ m or less. When the cumulative 50% particle diameter is less than 1 ⁇ m or exceeds 20 ⁇ m, the printability as a conductive paste may be adversely affected.
  • the cumulative 50% particle size of the graphite powder can be measured by wet laser diffraction type particle size distribution measurement.
  • the wet laser diffraction type particle size distribution measurement is performed by adding 0.1 g of graphite powder to 40 mL of isopropyl alcohol and dispersing it with an ultrasonic homogenizer with a tip diameter of 20 mm for 2 minutes to obtain a laser diffraction scattering type particle size distribution measuring apparatus (manufactured by Nikkiso Co., Ltd.). , MICROTORAC MT3300EXII). The measurement results are graphed, and the frequency and accumulation of the volume-based particle size distribution of the graphite powder are obtained. Then, a cumulative 50% particle size is expressed as D 50.
  • the silver coating may be part or all of the coating part of the silver-coated graphite particles. Further, when observed with a scanning electron microscope (SEM) or the like, silver-coated graphite particles in which at least a part coated with silver is observed and graphite particles in which a part coated with silver is not observed are mixed. Good. Of the used graphite powder, the proportion of graphite particles that are at least partially silver-coated is defined as the graphite coverage. For example, when the graphite coverage is observed with a 100 times backscattered electron image, the silver-coated graphite particles are observed to have a white contrast in the silver-coated portion.
  • coverage ratio coverage ratio (area ratio)
  • coverage ratio area ratio
  • the wet method for example, by using a heavy liquid (polytungstate Na aqueous solution) adjusted to a density of 3 g / mL, If the ratio of silver is at least 10% by mass or more, the silver-coated graphite particles settle in the heavy liquid, and the others (graphite particles to which almost no silver is adhered) float. Therefore, the ratio of the settled particles can be regarded as being equivalent to the ratio of the silver-coated graphite particles in the silver-coated graphite mixed powder.
  • a heavy liquid polytungstate Na aqueous solution
  • the ratio of the graphite powder that was added to the silver-coated graphite powder can also be obtained from the value of the ratio (mass ratio) of silver-coated graphite particles in the silver-coated graphite mixed powder by specific gravity separation.
  • the ratio of graphite particles to be coated with silver in the graphite powder in the silver-coated graphite mixed powder of the present invention is preferably high, but it is not necessarily 100%, and graphite particles not coated with silver are mixed. Also good.
  • the graphite coverage which is the ratio of the silver-coated graphite particles obtained by binarizing the 100-fold backscattered electron image, is preferably 10% or more, more preferably 35% or more, and most preferably all silver is uniformly distributed.
  • the graphite particles are coated, that is, the graphite coverage is 100%.
  • a coating part is a part, when it uses for an electrically conductive paste by coat
  • the silver-coated graphite mixed powder is preferably a BET specific surface area is small, for example, preferably 14m 2 / g or less, 7m 2 / g or less is more preferable.
  • the lower limit of the BET specific surface area is preferably 0.1 m 2 / g.
  • the BET specific surface area can be measured using, for example, a commercially available BET specific surface area measuring device.
  • the volume-based cumulative 50% particle diameter (D 50 ) of the silver-coated graphite mixed powder by laser diffraction method is preferably 1 ⁇ m or more and 20 ⁇ m or less. If the cumulative 50% particle diameter (D 50 ) is less than 1 ⁇ m or more than 20 ⁇ m, printability as a conductive paste may be adversely affected.
  • the cumulative 50% particle size (D 50 ) of the silver-coated graphite mixed powder can be measured by, for example, a laser diffraction / scattering particle size distribution measuring device (MICROTORAC MT3300EXII, manufactured by Nikkiso Co., Ltd.).
  • the silver content (silver content) in the silver-coated graphite mixed powder is 5% by mass or more and 90% by the coupled induction plasma (ICP) emission analysis method in the solution after the silver-coated graphite mixed powder is dissolved in nitric acid. % Or less, and more preferably 20% by mass or more and 90% by mass or less. If the content is 5% by mass or more, silver can be reliably attached to the graphite particles. However, if the silver content is less than 20% by mass, it may be difficult to obtain an effect of lowering the specific resistance when the graphite particles are coated with silver. This may reduce the cost advantage.
  • ICP coupled induction plasma
  • the volume ratio of silver in the silver-coated graphite mixed powder is preferably 1% or more, and more preferably 5% or more and 66% or less.
  • the tin content is preferably 0.01% by mass or more and 5% by mass or less, and more preferably 0.01% by mass or more and 2% by mass or less.
  • the zinc content is preferably 0.002% by mass or more and 1% by mass or less. If the content of tin or zinc is too large, the resistance value may be adversely affected.
  • the silver-coated graphite mixed powder can be coated on the surface with a surface treatment agent made of an organic material in order to maintain dispersibility and obtain compatibility with a conductive paste.
  • the surface treatment agent is not particularly limited as long as it is an organic substance, and can be appropriately selected according to the purpose. Examples thereof include fatty acids, surfactants, organometallic compounds, chelating agents, and polymer dispersants. . These may be used alone or in combination of two or more.
  • the surface treatment agent is selected by selecting one or more surface treatment agents and adding them to the slurry-like reaction system before, after, or during the precipitation of silver. Adhered silver-coated graphite particles and silver-coated graphite mixed powder are obtained.
  • the method for producing a silver-coated graphite mixed powder of the present invention is a method for producing a silver-coated graphite mixed powder comprising silver-coated graphite particles comprising graphite particles and silver coated on the surface of the graphite particles, A step of sensitizing graphite powder using an aqueous solution of a tin compound, and a step of coating silver by substitution using a silver complex solution and zinc powder on the surface of the graphite powder after sensitizing,
  • the silver complex solution has a pH of 6 or more and 14 or less, and further includes other steps as necessary.
  • the silver content is 5% by mass or more and 90% by mass or less by a coupled induction plasma (ICP) emission analysis method in a solution after the silver-coated graphite mixed powder is dissolved in nitric acid.
  • the tin content is preferably 0.01% by mass or more and 5% by mass or less, and the zinc content is preferably 0.002% by mass or more and 1% by mass or less.
  • the step of performing the sensitizing preferably includes a tin preparation step, a sensitizing step, and a filtration / washing step.
  • the surface of the graphite powder after the sensitizing is coated with silver by using a silver complex solution and zinc powder, and the silver coating process, the complexing process, the pH adjusting process, the displacement plating process, It is preferable to include a filtration / washing step and a drying step.
  • the drying step preferably further includes a crushing step and a classification step.
  • the tin preparation step is a step of preparing a tin reaction solution.
  • An acid solution containing tin ions is prepared by mixing a tin compound with an acid such as hydrochloric acid and pure water. Examples of the tin compound include tin chloride.
  • the sensitizing step is a step of adsorbing tin on the surface of the graphite powder by adding the graphite powder to the acidic solution containing tin ions and stirring.
  • the amount of tin to be adsorbed can be adjusted according to the liquid preparation composition and reaction time, and can be, for example, 0.1 mass% or more and 5 mass% or less.
  • the filtration / washing step is a step of obtaining graphite powder having tin adsorbed on its surface by filtering the slurry obtained in the sensitizing step and washing with water.
  • the graphite powder since it is necessary for the surface of the graphite powder to be active in a later step, the graphite powder may not be dried.
  • the silver preparation step is a step of preparing a silver reaction solution.
  • a silver compound can be obtained by stirring the silver compound in a reaction vessel in which pure water is being stirred.
  • the silver compound include silver nitrate, silver carbonate, and silver acetate. These may be used alone or in combination of two or more. Among these, silver nitrate is preferable from the viewpoint of cost and the like.
  • the complexing step is a step of complexing silver in the silver compound-containing aqueous solution obtained in the silver preparation step.
  • a silver complex solution can be obtained by complexing silver in the silver compound-containing aqueous solution obtained in the silver preparation step.
  • the complexing method include a method using a silver complexing agent.
  • a silver complexing agent for example, a strong alkaline chelate compound such as EDTA-4Na is preferable. This is because it is not easy to deposit silver on the graphite powder, and it is difficult to deposit silver on the graphite powder in an ammonia system often used as a silver complexing agent.
  • the graphite powder which passed through the sensitizing process is added before or just after the complexing process. In addition, even if it adds, substitution reaction is not started.
  • the pH of the silver complex solution is preferably in the range of 6 or more and 14 or less, and more preferably in the range of 6 or more and 8 or less close to neutrality.
  • a strong alkaline chelate compound such as EDTA-4Na
  • the substitution reaction of silver (Ag) and zinc (Zn) in the substitution plating step described later is fast.
  • the substitution reaction is fast, only the graphite powder that is easily adsorbed to the Zn powder monopolizes the substitution reaction, and the uniformity of the Ag coating is impaired.
  • the pH adjustment is preferably performed using an acid such as nitric acid, for example.
  • an acid such as nitric acid, for example.
  • the Ag coating film changes into irregular particles, and the lateral growth of silver tends to be inhibited.
  • substitution plating step the graphite powder added to the silver complex solution is stirred before or after the complexing step, and zinc powder is added to the silver complex solution to cause substitution reduction reaction.
  • This is a step of plating silver on the surface of the powder. It is considered that the following reaction formula 1 occurs in a place where zinc (Zn), which is a metal lower than silver (Ag), is present. Zn + 2Ag + ⁇ Zn 2+ + 2Ag ... Reaction formula 1
  • Precipitation of silver on graphite powder is not easy, and even if a reducing agent such as formalin, glucose, or KNa tartrate is used, silver coating on the graphite powder is hardly seen. Therefore, it is preferable to use substitution plating by substitution reaction using a base metal rather than silver (Ag) as described above, instead of a reduction reaction by a reducing agent.
  • the metal that is lower than silver (Ag) include magnesium, aluminum, zinc, iron, nickel, tin, lead, copper, and the like. Among these, zinc is particularly preferable because it is difficult to oxidize and the powder can be easily handled.
  • the water in the cake may be replaced with a lower alcohol or polyol for the purpose of accelerating the drying of the cake or preventing agglomeration during drying.
  • the cake is dried by a dryer such as a forced circulation air dryer, a vacuum dryer, an air flow dryer or the like, and then crushed to obtain a silver-coated graphite mixed powder.
  • a dryer such as a forced circulation air dryer, a vacuum dryer, an air flow dryer or the like
  • a surface that smoothes irregularities and angular portions of the particle surface by putting silver particles into a device that can fluidize the particles mechanically and causing the particles to mechanically collide with each other Smoothing processing may be performed.
  • you may perform a classification process after crushing and a surface smoothing process.
  • the integrated apparatus For example, the dry meister made from Hosokawa Micron Corporation, a micron dryer etc.
  • the conductive paste of the present invention contains the silver-coated graphite mixed powder of the present invention, a resin, and an organic solvent, and further contains other components as necessary.
  • other conductive powders such as silver powder and silver-coated copper powder, glass frit, etc. may be mixed separately.
  • the resin is not particularly limited and may be appropriately selected depending on the intended purpose.
  • cellulose derivatives such as methyl cellulose and ethyl cellulose, acrylic resins, alkyd resins, polypropylene resins, polyurethane resins, rosin resins, terpene resins, phenols Resin, aliphatic petroleum resin, acrylic ester resin, xylene resin, coumarone indene resin, styrene resin, dicyclopentadiene resin, polybutene resin, polyether resin, urea resin, melamine resin, vinyl acetate resin, polyisobutyl resin, olefin
  • TPO thermoplastic elastomers
  • epoxy resins examples thereof include thermoplastic elastomers (TPO) and epoxy resins.
  • an epoxy resin is preferable from the viewpoints of curability, adhesion, and versatility. There is no restriction
  • Organic solvent is not particularly limited and may be appropriately selected depending on the intended purpose.
  • These may be used individually by 1 type and may use 2 or more types together.
  • the method for producing the conductive paste is not particularly limited and may be appropriately selected depending on the intended purpose.
  • the silver-coated graphite mixed powder of the present invention, the resin, and the organic solvent may be ultrasonically dispersed.
  • the viscosity of the said electrically conductive paste is 10 Pa.s or more at 25 degreeC. It is preferable to adjust so that it may be 1,000 Pa.s or less. When the viscosity is less than 10 Pa ⁇ s, “bleeding” may occur in a low viscosity region, and when it exceeds 1,000 Pa ⁇ s, a printing defect such as “fading” occurs in a high viscosity region. There are things to do. Further, the viscosity of the conductive paste can be adjusted by other than the content of the silver-coated graphite mixed powder such as addition of a viscosity modifier and the type of solvent.
  • the silver-coated graphite particles and silver-coated graphite mixed powder of the present invention can be suitably used as a conductive paste for forming electrodes and circuits of various electronic components.
  • the conductive paste of the present invention containing the silver-coated graphite mixed powder of the present invention is highly suitable for forming electrodes and circuits of various electronic parts because it has high conductivity, is lightweight and inexpensive. Used for.
  • Measuring method of the filler (silver powder, graphite powder, silver-coated graphite mixed powder) BET specific surface area of the tap density, and particle size distribution (D 10, D 50, and D 90) are as shown below.
  • the BET specific surface area of the filler was measured using a Macsorb HM-model 1210 (manufactured by MOUNTECH) by the BET one-point method by nitrogen adsorption. In the measurement of the BET specific surface area, the deaeration condition before the measurement was 60 ° C. for 10 minutes.
  • ⁇ Size distribution (D 10, D 50, and D 90)> For the particle size distribution, a laser diffraction scattering type particle size distribution measuring apparatus (MICROTORAC MT3300EXII, manufactured by Nikkiso Co., Ltd.) is used, and 0.1 g of filler is added to 40 mL of isopropyl alcohol and dispersed for 2 minutes by an ultrasonic homogenizer with a tip diameter of 20 mm. The particle size was measured in the total reflection mode. The cumulative distribution on a volume basis obtained by measuring the cumulative 10% particle diameter (D 10), cumulative 50% particle size (D 50), and determine the value of the cumulative 90% particle diameter (D 90).
  • D 10 cumulative 10% particle diameter
  • D 50 cumulative 50% particle size
  • D 90 determine the value of the cumulative 90% particle diameter
  • Example 1 Preparation of silver-coated graphite mixed powder- ⁇ Sensitizing process> Tin compound containing 4.76 g of tin chloride dihydrate (SnCl 2 .2H 2 O, 0.105 mol / L), 8 g of hydrochloric acid (0.408 mol / L) and 199.36 g of pure water in a 300 mL beaker The solution was prepared. Thereafter, the prepared liquid was transferred to a 500 mL beaker, 10 g of graphite powder was added, and the mixture was held for 2 hours while stirring at room temperature (25 ° C.) to adsorb Sn ions on the surface of the graphite powder.
  • Tin compound containing 4.76 g of tin chloride dihydrate (SnCl 2 .2H 2 O, 0.105 mol / L), 8 g of hydrochloric acid (0.408 mol / L) and 199.36 g of pure water in a 300 mL beaker The solution was
  • FIG. 1 shows a scanning electron micrograph (2,000 times) of the graphite powder used in Example 1.
  • EDTA-4Na as a complexing agent was added to the reaction vessel in a molar ratio of 2.67 equivalents with respect to the amount of silver in the solution and reacted for 5 minutes to obtain an aqueous solution of silver EDTA complex. It was 13.4 when pH of this silver EDTA complex aqueous solution was measured. Without adjusting pH, 3 equivalents of Zn powder (2 mm to 5 mm foil) in a molar ratio with respect to the amount of silver in the solution was added all at once, and displacement plating was performed while stirring for 20 minutes.
  • the remaining Zn powder is recovered by passing through a sieve having a mesh width of 150 ⁇ m, and suction filtration is performed on a 5 C filter paper, and pure water is used until the filtrate has a conductivity of 0.5 ⁇ S / m or less. Washing was performed. Then, it was made to dry with a 70 degreeC vacuum dryer for 5 hours, and the silver covering graphite mixed powder of Example 1 was obtained.
  • Example 2 In Example 1, the amount of the graphite powder after the sensitizing process to be prepared and added to prepare a 650 mL aqueous solution containing 0.249 mol / L of silver nitrate at the time of the substitution reaction is calculated as 7.
  • a silver-coated graphite mixed powder of Example 2 was obtained in the same manner as in Example 1 except that the amount was 5 g and the mass ratio of silver in the aqueous silver nitrate solution to the raw graphite powder was 7: 3.
  • the obtained silver-coated graphite mixed powder was subjected to quantitative analysis by ICP in the same manner as in Example 1. As a result, the silver content in the silver-coated graphite mixed powder was 69% by mass, and the zinc content was 0.27. The content of tin was 0.33% by mass.
  • Example 3 In Example 1, the amount of the graphite powder after the sensitizing step to be added and adjusted to become an 800 mL aqueous solution containing 0.333 mol / L of silver nitrate at the time of the substitution reaction is calculated as 3.
  • a silver-coated graphite mixed powder of Example 3 was obtained in the same manner as in Example 1 except that the amount was 2 g and the mass ratio of silver in the aqueous silver nitrate solution to the raw graphite powder was 9: 1.
  • the obtained silver-coated graphite mixed powder was subjected to quantitative analysis by ICP in the same manner as in Example 1. As a result, the silver content in the silver-coated graphite mixed powder was 89% by mass, and the zinc content was 0.18.
  • the content of tin was 0.044% by mass.
  • the silver (Ag) content (silver content) in the silver-coated graphite mixed powder was 49% by mass, 69% by mass, and 89% by mass, respectively. It was considered that almost all silver in the aqueous silver nitrate solution was deposited on the surface of the graphite powder. Further, the contents of tin (Sn) are 0.9 mass%, 0.33 mass%, and 0.044 mass%, respectively, and the higher the silver content, the lower the tin content. The tin adhering to the surface due to ging was considered to be released into the liquid after contributing to silver precipitation.
  • the zinc content is 0.44% by mass, 0.27% by mass, and 0.18% by mass, respectively, and zinc is included as an impurity when performing a substitution reaction with Zn powder as in the present invention. I found out.
  • a 100-fold reflected electron image (hereinafter referred to as a BEC image) is obtained using a scanning electron microscope (SEM) (JSM IT3000, manufactured by JEOL Ltd.).
  • SEM scanning electron microscope
  • the particles that appear white (light gray) are silver-coated graphite particles
  • the portions that appear black (dark gray) are raw material graphite particles that are not coated with silver.
  • the ratio of silver-coated graphite particles to the total graphite powder was increased by increasing the silver content in the silver-coated graphite mixed powder in Examples 1 to 3.
  • image analysis was performed using particle analysis software (Region Advisor, manufactured by System Infrontia Co., Ltd.).
  • the contrast is set to 100 and the brightness is adjusted between 60 and 100 in the automatic contrast / brightness adjuster (ACB), and binarization is performed using the histogram method by area division.
  • Processing processing for constructing a histogram of luminance values on an image and binarizing based on the tendency of the histogram was performed.
  • the coverage ratio was 16%, 36%, and 50%.
  • Example 1 and 2 adds to the polytungstic-acid sodium heavy liquid which adjusted the density to 3 g / mL, and after carrying out the dispersion
  • the ratio (mass ratio) of the precipitated powder having a density precipitated larger than 3 g / mL in the silver-coated graphite mixed powder was 73% and 90%.
  • the density of silver (Ag) is 10.5 g / mL
  • the density of graphite is about 2.26 g / mL.
  • the ratio (mass ratio) of graphite particles It was regarded as the ratio (mass ratio) of graphite particles. Assuming that all of the silver in the silver nitrate aqueous solution was used for silver coating, the ratio of silver coating in the graphite powder calculated from the ratio (mass ratio) of the silver-coated graphite particles in the silver-coated graphite mixed powder (graphite coverage) ) was 46% in Example 1 and 66% in Example 2.
  • Comparative Examples 1 to 3 The case of mixing graphite powder and silver powder having a similar shape to graphite powder was evaluated as Comparative Examples 1 to 3, and the effectiveness of the silver-coated graphite mixed powder was evaluated.
  • Example 1 Comparative example in which Example 1 and the above-mentioned graphite powder and silver powder (made by DOWA Electronics Co., Ltd., flaky silver powder, FA-D-6) were mixed using a coffee mill with the same silver (Ag) content as in Example 1 1 was prepared.
  • the obtained conductive paste was screen-printed on an alumina substrate to form a linear pattern having a width of 500 ⁇ m ⁇ length of 37,500 ⁇ m, and cured at 200 ° C. for 40 minutes to obtain a conductive film.
  • wire width of an electrically conductive film were measured using the contact-type surface roughness meter (the Kosaka Laboratory make, SE-30D), and a digital multimeter (the ADVANTEST company make, R6551) was used to measure the line resistance ( ⁇ ), and the specific resistance 2 ( ⁇ ⁇ cm) was calculated.
  • the film thickness of the conductive film using the silver-coated graphite mixed powder of Example 1 was 17.8 ⁇ m, the line width was 500 ⁇ m, and the specific resistance 2 was 0.31 ⁇ ⁇ cm.
  • the film thickness was 17.7 ⁇ m, the line width was 500 ⁇ m, and the specific resistance 2 was 0.43 ⁇ ⁇ cm. Even when the paste was evaluated, it was found that the specific resistance 2 of the silver-coated graphite mixed powder was lower than when the graphite powder and the silver powder were mixed.
  • Example 1 In Example 1, the same procedure as in Example 1 was conducted, except that the amount of nitric acid (HNO 3 ) to EDTA-4Na in a molar ratio of 1.27 was added and the pH was adjusted before adding the Zn powder.
  • the silver-coated graphite mixed powder of Experimental Example 1 was obtained. The pH after pH adjustment was 7.2. 0.5 g from the obtained silver-coated graphite mixed powder, immersed in nitric acid, and filtered to perform quantitative analysis by ICP in the same manner as in Example 1 using a solution in which other than graphite powder was dissolved.
  • the silver content in the silver-coated graphite mixed powder was 47 mass%
  • the zinc content was 0.0035 mass%
  • the tin content was 0.39 mass%.
  • the ratio of silver-coated graphite particles was 54%.
  • the ratio of white (silver-coated graphite particles) was greatly increased from 16% of the coverage (area) of Example 1 by bringing the pH closer to neutrality. It was found that the coverage was large.
  • the coverage (mass ratio) which is the ratio of the precipitated powder after specific gravity separation was also 79 mass%, which was increased from 73 mass% in Example 1.
  • Example 2 In Example 1, before adding Zn powder, nitric acid (HNO 3 ) to EDTA-4Na in a molar ratio of 1.64 was added to adjust the pH in the same manner as in Example 1, The silver-coated graphite mixed powder of Experimental Example 2 was obtained. The pH after pH adjustment was 4.5. 0.5 g from the obtained silver-coated graphite mixed powder, immersed in nitric acid, and filtered to perform quantitative analysis by ICP in the same manner as in Example 1 using a solution in which other than graphite powder was dissolved. As a result, the silver content in the silver-coated graphite mixed powder was 51 mass%, the zinc content was 0.0052 mass%, and the tin content was 0.4 mass%.
  • Example 3-1 the silver-coated graphite mixed powder of Experimental Example 3-1 was used in the same manner as in Example 1 except that the graphite powder was replaced with scaly graphite (manufactured by Chuetsu Graphite Industries Co., Ltd., BF-15AK). Obtained.
  • the scaly graphite had a BET specific surface area of 5.44 m 2 / g, a tap density of 0.32 g / mL, and a volume-based cumulative 50% particle diameter (D 50 ) of 15.7 ⁇ m.
  • FIG. 11 shows a scanning electron micrograph (2,000 times) of the scaly graphite used in Experimental Example 3-1.
  • FIG. 12 shows a 100-fold BEC image of the obtained silver-coated graphite mixed powder of Experimental Example 3-1.
  • the proportion (coverage (area)) of the silver-coated graphite particles in Experimental Example 3-1 was 43%, which was increased from 16% in Example 1, and the graphite powder having a smaller BET specific surface area was used. It was found that it was easy to increase the coverage and was suitable for silver coating.
  • Example 3-2 In Experimental Example 3-1, during the substitution reaction, the amount of graphite powder after the sensitizing process was adjusted in terms of the graphite powder of the raw material by preparing a 320 mL aqueous solution containing 0.111 mol / L of silver nitrate.
  • the silver-coated graphite mixed powder of Experimental Example 3-2 was obtained in the same manner except that the amount was 9 g and the mass ratio of silver in the silver nitrate aqueous solution to the raw graphite powder was 3: 7.
  • FIG. 13 shows a 100 times BEC image of the obtained silver-coated graphite mixed powder of Experimental Example 3-2.
  • the ratio of silver-coated graphite particles (coverage (area)) was 16%
  • the mass ratio of silver in the aqueous silver nitrate solution to the raw graphite powder was 1: 1.
  • the mass ratio of silver in the aqueous silver nitrate solution to the raw graphite powder is the same as that of Example 1 of 1: 1, and the BET specific surface area It was found that the smaller the graphite powder, the easier it is to increase the coverage even when the proportion of silver is reduced, and it is suitable for silver coating.
  • Example 5 Provides conductive paste- In Example 4, except that the silver-coated graphite mixed powder in Example 1 was replaced with the silver-coated graphite mixed powder in Example 3, the conductive paste of Example 5 was prepared in the same manner as in Example 4. did.
  • the scanning electron micrograph (2,000 times) of the electrically conductive film produced using the obtained electrically conductive paste of Experimental example 5 was shown in FIG.
  • Viscosity of conductive paste The viscosity of the obtained conductive paste was measured using a viscometer 5XHBDV-IIIUC manufactured by BROOKFIELD at a cone spindle CP-52 and a paste temperature of 25 ° C. The value for 5 minutes was measured at 1 rpm (shear speed 2 sec ⁇ 1 ).
  • Each conductive paste was cured at 200 ° C. for 20 minutes to produce a molded body sample having a diameter of 10 mm and a thickness of 1 mm.
  • the obtained sample was measured for thermal diffusivity by laser flash method (manufactured by ULVAC, TC-7000), and the thermal conductivity was determined from the specific heat and density.
  • Each conductive paste was applied in the form of a plate and cured at 200 ° C. for 20 minutes to form a plate-like body, and then a molded body sample having a diameter of 10 mm and a thickness of 1 mm was produced by punching a mold.
  • the specific resistance 3 of the obtained sample was measured by a four-point probe method (Loresta HP MCP-T410, manufactured by Mitsubishi Chemical Corporation).
  • the conductive film coated with the conductive paste containing the silver-coated graphite mixed powder has the effect of lowering the specific resistance 3 and increasing the thermal conductivity as compared with the case where the silver-coated graphite mixed powder is not used. From the image, it was found that a dense conductive film with relatively many bonds between particles was obtained.
  • the silver-coated graphite particles and silver-coated graphite mixed powder of the present invention can be suitably used as a conductive paste for forming electrodes and circuits of various electronic components.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Paints Or Removers (AREA)
  • Powder Metallurgy (AREA)

Abstract

黒鉛粒子と該黒鉛粒子の表面に被覆された銀とを具備した銀被覆黒鉛粒子を含む銀被覆黒鉛混合粉であって、前記銀被覆黒鉛混合粉を硝酸に溶解後の溶液における結合誘導プラズマ(ICP)発光分析法による、銀の含有量が5質量%以上90質量%以下であり、錫の含有量が0.01質量%以上5質量%以下であり、亜鉛の含有量が0.002質量%以上1質量%以下である銀被覆黒鉛混合粉を提供する。

Description

銀被覆黒鉛粒子、銀被覆黒鉛混合粉及びその製造方法、並びに導電性ペースト
 本発明は、銀被覆黒鉛粒子、銀被覆黒鉛混合粉及びその製造方法、並びに導電性ペーストに関する。
 従来より、銀粉、バインダ、溶剤などを含有する導電性ペーストが使用されている。しかし、銀は高価であるため、銀粉の全て又は一部をより安価な材料に変えた方が、コストが抑制される場合があり、例えば、銀粉を、銀より安価な銅を芯材とした銀被覆銅粉を用いた導電性ペーストが使用されている。
 前記芯材として利用できる材料としては、高い導電性を有する金属である銅だけではない。例えば、特許文献1には、カーボンブラックの粒子表面に、電気メッキにより銅、ニッケル、銀等の金属を電着させることが記載されている。
特開昭63-12669号公報
 前記芯材が銅である銀被覆銅粉は、露出している部分の銅の酸化により信頼性が低下するという問題がある。また、銅イオンの溶出によるペースト粘度の増粘の問題も起こりうる。更に、前記カーボンブラック表面に金属を電着させたものを導電性ペーストのフィラーとして用いても、前記芯材が非晶質状態のカーボンブラックであるため、高い導電性は得られない。
 本発明は、導電性ペーストのフィラーとしての利用に適した導電性の比較的高い黒鉛の表面に少なくとも銀を被覆した銀被覆黒鉛粒子、前記銀被覆黒鉛粒子を含む銀被覆黒鉛混合粉及びその製造方法、並びに高い導電性を有し、軽量かつ安価な導電性ペーストを提供することを目的とする。
 前記課題を解決するための手段としては、以下の通りである。即ち、
 <1> 黒鉛粒子と該黒鉛粒子の表面に被覆された銀とを具備した銀被覆黒鉛粒子を含む銀被覆黒鉛混合粉であって、
 前記銀被覆黒鉛混合粉を硝酸に溶解後の溶液における結合誘導プラズマ(ICP)発光分析法での銀の含有量が5質量%以上90質量%以下であり、錫の含有量が0.01質量%以上5質量%以下であり、亜鉛の含有量が0.002質量%以上1質量%以下であることを特徴とする銀被覆黒鉛混合粉である。
 <2> 前記銀の含有量が20質量%以上90質量%以下であり、前記錫の含有量が0.01質量%以上2質量%以下である前記<1>に記載の銀被覆黒鉛混合粉である。
 <3> 100倍の反射電子像の2値化処理による前記銀被覆黒鉛粒子の割合である黒鉛被覆率が、10%以上である前記<1>又は<2>に記載の銀被覆黒鉛混合粉である。
 <4> 体積基準の累積50%粒子径(D50)が1μm以上20μm以下である前記<1>から<3>のいずれかに記載の銀被覆黒鉛混合粉である。
 <5> 黒鉛粉に、錫化合物の水溶液を用いてセンシタイジングを行う工程と、
 センシタイジング後の黒鉛粉の表面に、銀錯体溶液と亜鉛粉を用いて置換により銀を被覆する工程とを含み、
 前記銀錯体溶液のpHが6以上14以下であることを特徴とする
 黒鉛粒子と前記黒鉛粒子の表面に被覆された銀とを具備した銀被覆黒鉛粒子を含む銀被覆黒鉛混合粉の製造方法である。
 <6> 前記銀錯体溶液のpHが6以上8以下である前記<5>に記載の銀被覆黒鉛混合粉の製造方法である。
 <7> 前記銀被覆黒鉛混合粉を硝酸に溶解後の溶液における結合誘導プラズマ(ICP)発光分析法での銀の含有量が5質量%以上90質量%以下であり、錫の含有量が0.01質量%以上5質量%以下であり、亜鉛の含有量が0.002質量%以上1質量%以下である前記<5>から<6>のいずれかに記載の銀被覆黒鉛混合粉の製造方法である。
 <8> 100倍の反射電子像の2値化処理による前記銀被覆黒鉛粒子の割合である黒鉛被覆率が、10%以上である前記<5>から<7>のいずれかに記載の銀被覆黒鉛混合粉の製造方法である。
 <9> 前記<1>から<4>のいずれかに記載の銀被覆黒鉛混合粉と、樹脂と、有機溶媒とを含有することを特徴とする導電性ペーストである。
 <10> 黒鉛粒子の表面に銀を被覆した銀被覆黒鉛粒子であって、
 走査型電子顕微鏡像の観察による平均粒径が1μm以上20μm以下であり、被覆された銀の厚みが10nm以上5μm以下であることを特徴とする銀被覆黒鉛粒子である。
 本発明によると、導電性ペーストのフィラーとしての利用に適した導電性の比較的高い黒鉛の表面に少なくとも銀を被覆した銀被覆黒鉛粒子、前記銀被覆黒鉛粒子を含む銀被覆黒鉛混合粉及びその製造方法、並びに高い導電性を有し、軽量かつ安価な導電性ペーストを提供することができる。
図1は、実施例1で用いた黒鉛粉の走査型電子顕微鏡写真(2,000倍)である。 図2は、実施例1の銀被覆黒鉛混合粉の反射電子像(100倍)である。 図3は、実施例2の銀被覆黒鉛混合粉の反射電子像(100倍)である。 図4は、実施例3の銀被覆黒鉛混合粉の反射電子像(100倍)である。 図5は、実施例3の銀被覆黒鉛混合粉について、樹脂埋めした粉末断面の反射電子像である。 図6は、銀含有量と比抵抗1の関係を示すグラフである。 図7は、実験例1の銀被覆黒鉛混合粉の反射電子像(100倍)である。 図8は、実験例1の銀被覆黒鉛混合粉の反射電子像(5,000倍)である。 図9は、実験例2の銀被覆黒鉛混合粉の反射電子像(100倍)である。 図10は、実験例2の銀被覆黒鉛混合粉の反射電子像(5,000倍)である。 図11は、実験例3-1で用いた鱗状黒鉛の走査型電子顕微鏡写真(2,000倍)である。 図12は、実験例3-1の銀被覆黒鉛混合粉の反射電子像(100倍)である。 図13は、実験例3-2の銀被覆黒鉛混合粉の反射電子像(100倍)である。 図14は、実験例5の導電性ペーストを用いて作製した導電膜の走査型電子顕微鏡写真(2,000倍)である。 図15は、比較例4の導電性ペーストを用いて作製した導電膜の走査型電子顕微鏡写真(2,000倍)である。 図16は、比較例6の導電性ペーストを用いて作製した導電膜の走査型電子顕微鏡写真(2,000倍)である。
(銀被覆黒鉛混合粉及び銀被覆黒鉛粒子)
 本発明の銀被覆黒鉛混合粉は、黒鉛粒子と該黒鉛粒子の表面に被覆された銀とを具備した銀被覆黒鉛粒子を含み、更に必要に応じて表面処理剤が付着されていてもよい。
 前記銀被覆黒鉛混合粉を硝酸に溶解後の溶液における結合誘導プラズマ(ICP)発光分析法での銀の含有量が5質量%以上90質量%以下であり、錫の含有量が0.01質量%以上5質量%以下であり、亜鉛の含有量が0.002質量%以上1質量%以下である。
 本発明の銀被覆黒鉛粒子は、黒鉛粒子の表面に銀を被覆した銀被覆黒鉛粒子であり、更に必要に応じて表面処理剤が付着されていてもよい。
 前記銀被覆黒鉛粒子は、走査型電子顕微鏡像の観察による平均粒径(SEM粒径)が1μm以上20μm以下であり、被覆された銀の厚みが10nm以上5μm以下である。
 本発明者らは、黒鉛粒子に対して銀を被覆する方法について鋭意検討した結果、方法として生産性の高い湿式法を用いることとした。前記湿式法において、簡易的に銀錯体溶液に黒鉛粒子を投入し、ホルマリン等の種々の還元剤を用いて銀被覆を試みたが、黒鉛粒子への析出した銀の吸着は起こらず、ビーカーへの銀の析出や独立した銀粒子ができるのみであった。更に、本発明者らは、黒鉛粒子の表面に錫を付加することで黒鉛粒子への析出を促進させることについて検討し、センシタイジング処理を試みたが、還元剤を用いる方法では、黒鉛粒子表面への析出は同様に困難であり、結晶化している黒鉛粒子表面は非常に安定で、銀の被覆は容易ではなかった。
 そこで、本発明の銀被覆黒鉛粒子は、還元剤を用いるのではなく、卑な金属による置換析出の応用を着想し、銀イオンの存在下においてセンシタイジング処理により錫を表面に有した黒鉛粒子に亜鉛粒子を投入することで、前記黒鉛粒子と前記亜鉛粒子とが近接した際の銀と亜鉛の置換反応によって、黒鉛粒子の表面に銀を析出できるという知見に基づくものである。液体の還元剤に比べて亜鉛粒子では還元析出位置はランダムとなるが、それゆえ逆に、還元力が不均一に偏在することで確実に黒鉛粒子の一部に核を形成することができ、黒鉛粒子の一部を銀被覆できる方法となることを見出した。その結果としての錫や亜鉛を含む銀被覆黒鉛混合粉は、黒鉛を添加することのデメリット(粘度の上昇など)を抑制し、黒鉛を添加することのメリット(導電性や熱伝導性の向上)を更に高めることが分かった。
<黒鉛粉及び黒鉛粒子>
 前記黒鉛粉は、黒鉛(例えば、グラファイト、グラフェン)を主とする黒鉛粒子の集合体である。
 前記黒鉛粉としては、特に制限はなく、目的に応じて適宜選択することができるが、グラフェン、球状黒鉛、及び鱗片状黒鉛から選択される少なくとも1種であることが好ましい。
 前記球状黒鉛及び前記鱗片状黒鉛は、炭素同士が共有結合で六角形に結合し、層間がファンデルワースル力で結合したものである。
 前記グラフェンは、炭素原子1個分の厚みしかない平面状の物質であり、炭素原子のsp結合によって形成されたハチの巣状の結晶格子で構成されており、他の全ての次元のグラファイト系材料の基本構成ブロックである。
 前記黒鉛粉としては、天然物でも人造物でもよく、前記黒鉛粉中の不純物の含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、10質量%以下であることが好ましい。
 前記黒鉛粉としては、適宜製造したものを使用してもよいし、市販品を使用してもよい。前記市販品としては、例えば、グラフェン(GNH-X2、グラフェンプラットフォーム株式会社製)、球状黒鉛(WF-15C、株式会社中越黒鉛工業所製)、鱗状黒鉛(BF-15AK、株式会社中越黒鉛工業所製)などが挙げられる。
 前記黒鉛粉は、BET比表面積が小さいことが好ましく、BET比表面積が14m/g以下が好ましく、7m/g以下がより好ましい。銀の置換析出において、析出する銀核の1次粒径は数nm~数10nmの大きさがあり、各銀核が成長と共に連結して表面を覆うと考えられる。この際、BET比表面積が大きいと、黒鉛粉の表面のほとんどを銀(Ag)で被覆しようとした場合の必要な銀(Ag)の質量%が過大となってしまう。そのため、BET比表面積が小さいほど、少ない銀で被覆率を大きくすることができる。
 前記黒鉛粉のBET比表面積は、Macsorb HM-model 1210(MOUNTECH社製)を用いて窒素吸着によるBET1点法で測定することができる。なお、前記BET比表面積の測定において、測定前の脱気条件は60℃、10分間とした。
 前記黒鉛粉のレーザー回折法による体積基準の累積50%粒子径(D50)としては、特に制限はなく、目的に応じて適宜選択することができるが、1μm以上20μm以下が好ましい。前記累積50%粒子径が、1μm未満又は20μmを超えると、導電性ペーストとしての印刷性に悪影響が生じることがある。
 前記黒鉛粉の累積50%粒子径は、湿式レーザー回折式の粒度分布測定により行うことができる。即ち、湿式レーザー回折式の粒度分布測定は、黒鉛粉0.1gをイソプロピルアルコール40mLに加え、チップ径20mmの超音波ホモジナイザーにより2分間分散させ、レーザー回折散乱式粒度分布測定装置(日機装株式会社製、MICROTORAC MT3300EXII)を用いて測定する。測定結果をグラフ化し、黒鉛粉の体積基準の粒度分布の頻度と累積を求める。そして、累積50%粒子径をD50と表記する。
<銀被覆>
 前記銀被覆としては、銀被覆黒鉛粒子における被覆部分が一部であっても、全部であってもよい。また、走査型電子顕微鏡(SEM)等により観察したときに、一部でも銀被覆された部分が観察される銀被覆黒鉛粒子と、銀被覆された部分が観察されない黒鉛粒子とが混在していてよい。用いた黒鉛粉のうち、一部でも銀被覆された黒鉛粒子の割合を黒鉛被覆率とする。
 前記黒鉛被覆率は、例えば、100倍の反射電子像により観察した場合に、銀被覆処理をされた黒鉛粒子は銀被覆部分のコントラストが白く観察されるため、黒く観察される黒鉛粒子との2値化処理による面積比から銀被覆黒鉛粒子の割合を測ることにより、疑似的な被覆率(以後、被覆率(面積比)とする)を得ることができる。また、他の方法としては、銀(Ag)の密度が10.5g/mLに対してグラファイトの密度は2.26g/mL程度であることから、銀被覆黒鉛粒子と黒鉛粒子との密度の差により比重分離させることで、銀被覆黒鉛混合粉における銀被覆黒鉛粒子の割合(質量比)として測定することも可能である。
 前記比重分離の方法としては、湿式と乾式があるが、湿式の方法としては、例えば、密度を3g/mLに調整した重液(ポリタングステン酸Na水溶液)を用いることで、銀被覆黒鉛粒子中の銀の比率が少なくとも10質量%以上あれば、銀被覆黒鉛粒子は重液中で沈降し、それ以外(銀がほとんど付着していない黒鉛粒子)は浮くことになる。よって、沈降した粒子の割合は、銀被覆黒鉛混合粉における銀被覆黒鉛粒子の割合と同等であるとみなすことができる。なお、被覆に用いた溶液中の銀が全て黒鉛粉の銀被覆に用いられ、銀単体での析出が無かったと仮定すると、投入した黒鉛粉の中で銀被覆黒鉛粉となった割合(黒鉛被覆率)を比重分離による銀被覆黒鉛混合粉における銀被覆黒鉛粒子の割合(質量比)の値より求めることもできる。
 本発明の銀被覆黒鉛混合粉における黒鉛粉のうち銀被覆される黒鉛粒子の割合は高いことが好ましいが、必ずしも100%である必要はなく、銀で被覆されなかった黒鉛粒子が混合していてもよい。
 100倍の反射電子像の2値化処理による前記銀被覆黒鉛粒子の割合である黒鉛被覆率(面積比)は10%以上が好ましく、35%以上がより好ましく、最も好ましくは銀が均一に全ての黒鉛粒子を被覆すること、即ち、黒鉛被覆率が100%である。なお、被覆部分が一部であっても、銀を黒鉛粉に被覆することで、導電性ペーストに用いた場合に、安価であるだけでなく高い導電性を得ることができる。
 前記銀被覆黒鉛混合粉は、BET比表面積が小さいことが好ましく、例えば、14m/g以下が好ましく、7m/g以下がより好ましい。前記BET比表面積の下限は0.1m/gであることが好ましい。前記BET比表面積としては、例えば、市販のBET比表面積測定器などを用いて測定することができる。
 前記銀被覆黒鉛混合粉のレーザー回折法による体積基準の累積50%粒子径(D50)としては、1μm以上20μm以下が好ましい。前記累積50%粒子径(D50)が1μm未満又は20μmを超えると、導電性ペーストとしての印刷性に悪影響を与えることがある。
 前記銀被覆黒鉛混合粉の累積50%粒子径(D50)は、例えば、レーザー回折散乱式粒度分布測定装置(日機装株式会社製、MICROTORAC MT3300EXII)により測定することができる。
 前記銀被覆黒鉛混合粉中の銀の含有量(銀含有率)は、前記銀被覆黒鉛混合粉を硝酸に溶解後の溶液における結合誘導プラズマ(ICP)発光分析法により、5質量%以上90質量%以下であることが好ましく、20質量%以上90質量%以下であることがより好ましい。前記含有量が5質量%以上であれば、黒鉛粒子に対して確実に銀を付着させることができる。ただし、前記銀含有率が、20質量%未満であると、黒鉛粒子に銀被覆する場合の比抵抗の低下効果が得られにくいことがあり、90質量%を超えると、銀100質量%に対して費用面のメリットが薄れることがある。なお、密度から計算される体積比では、銀被覆黒鉛混合粉中の銀の体積比は1%以上が好ましく、5%以上66%以下であることがより好ましい。
 また、錫の含有量は0.01質量%以上5質量%以下であることが好ましく、0.01質量%以上2質量%以下であることがより好ましい。亜鉛の含有量は0.002質量%以上1質量%以下であることが好ましい。錫や亜鉛は含有量が多過ぎると抵抗値に悪影響を及ぼす恐れがある。
<表面処理剤>
 前記銀被覆黒鉛混合粉は、分散性を維持し、導電性ペーストとする際のなじみ易さを得るために、有機物からなる表面処理剤にて表面を被覆することができる。
 前記表面処理剤としては、有機物であれば特に制限はなく、目的に応じて適宜選択することができ、例えば、脂肪酸、界面活性剤、有機金属化合物、キレート剤、高分子分散剤などが挙げられる。これらは、1種単独で使用してもよく、2種以上を併用してもよい。
 前記表面処理剤を用いる場合は、1種以上の表面処理剤を選択して、銀の析出の前、析出の後、又は析出中のスラリー状の反応系に添加することで、表面処理剤が付着された銀被覆黒鉛粒子及び銀被覆黒鉛混合粉が得られる。
(銀被覆黒鉛混合粉の製造方法)
 本発明の銀被覆黒鉛混合粉の製造方法は、黒鉛粒子と前記黒鉛粒子の表面に被覆された銀とを具備した銀被覆黒鉛粒子を含む銀被覆黒鉛混合粉の製造方法であって、
 黒鉛粉に、錫化合物の水溶液を用いてセンシタイジングを行う工程と、センシタイジング後の黒鉛粉の表面に、銀錯体溶液と亜鉛粉を用いて置換により銀を被覆する工程とを含み、前記銀錯体溶液のpHが6以上14以下であり、更に必要に応じてその他の工程を含んでなる。
 前記銀被覆黒鉛混合粉の製造方法において、前記銀被覆黒鉛混合粉を硝酸に溶解後の溶液における結合誘導プラズマ(ICP)発光分析法による、銀の含有量が5質量%以上90質量%以下であり、錫の含有量が0.01質量%以上5質量%以下であり、亜鉛の含有量が0.002質量%以上1質量%以下であることが好ましい。
 前記センシタイジングを行う工程は、錫調液工程と、センシタイジング工程と、ろ過・洗浄工程とを含むことが好ましい。
 前記センシタイジング後の黒鉛粉の表面に、銀錯体溶液と亜鉛粉を用いて置換により銀を被覆する工程は、銀調液工程と、錯化工程と、pH調整工程と、置換メッキ工程と、ろ過・洗浄工程と、乾燥工程とを含むことが好ましい。前記乾燥工程においては、更に解砕工程や分級工程を含むことが好ましい。
<錫調液工程>
 前記錫調液工程は、錫の反応液を調製する工程である。錫化合物を塩酸等の酸及び純水を混合し、錫イオンを含む酸性溶液を調製する。
 前記錫化合物としては、例えば、塩化錫などが挙げられる。
<センシタイジング工程>
 前記センシタイジング工程は、前記錫イオンを含む酸性溶液に黒鉛粉を添加して撹拌することにより、黒鉛粉の表面に錫を吸着させる工程である。吸着させる錫の量は、調液組成や反応時間によって調整することができ、例えば0.1質量%以上5質量%以下とすることができる。
<ろ過・洗浄工程>
 前記ろ過・洗浄工程は、前記センシタイジング工程で得られるスラリーをろ過し、水洗することによって、表面に錫を吸着した黒鉛粉を得る工程である。なお、後の工程において黒鉛粉の表面が活性であることが必要であることから、黒鉛粉は乾燥させなくてもよい。
<銀調液工程>
 前記銀調液工程は、銀の反応液を調製する工程である。
 純水が攪拌されている状態の反応槽に、銀化合物を入れ撹拌し、銀化合物含有水溶液を得ることができる。
 前記銀化合物としては、例えば、硝酸銀、炭酸銀、酢酸銀などが挙げられる。これらは、1種単独で使用してもよく、2種以上を併用してもよい。これらの中でも、コスト等の面から、硝酸銀が好ましい。
<錯化工程>
 前記錯化工程は、前記銀調液工程において得られる銀化合物含有水溶液中の銀を錯体化する工程である。
 前記錯化工程としては、前記銀の調液工程で得られた銀化合物含有水溶液中の銀を錯体化することにより、銀錯体溶液を得ることができる。
 前記錯体化する方法としては、例えば、銀錯化剤を用いる方法などが挙げられる。
 前記銀錯化剤としては、例えば、EDTA-4Naのような強アルカリ性のキレート化合物が好ましい。黒鉛粉上での銀の析出は容易ではなく、銀錯化剤として良く使用されるアンモニア系では,黒鉛粉への銀の析出が困難となるためである。なお、センシタイジング工程を経た黒鉛粉は、錯化工程の前又は直後に添加する。なお、添加しても置換反応は開始されない。
<pH調整工程>
 前記pH調整工程では、銀錯体溶液のpHを6以上14以下の範囲とすることが好ましく、中性に近い6以上8以下の範囲がより好ましい。
 EDTA-4Naのような強アルカリ性のキレート化合物を用いると、後述の置換メッキ工程での銀(Ag)と亜鉛(Zn)の置換反応が速い。置換反応が速いと、運よくZn粉に吸着した黒鉛粉のみが置換反応を独占し、Ag被覆の均一性が損なわれる。そのため、中性に近くすることで、置換反応を遅くし、Zn粉と黒鉛粉の吸着頻度を上げることで、投入した黒鉛粉のうちAg被覆される黒鉛粉の割合(被覆率)を上げることができる。なお、pHが6未満では、センシタイジングの効果が失われて大幅に被覆率が低下するため好ましくない。
 前記pH調整は、例えば、硝酸などの酸を用いて調整することが好ましい。アンモニア系を用いて調整すると、Ag被膜が凹凸の粒子状に変化し、銀の横成長が阻害される傾向がみられる。
<置換メッキ工程>
 前記置換メッキ工程は、前記錯化工程の前又は後に銀錯体溶液中に添加された黒鉛粉を撹拌した状態で、銀錯体溶液中に亜鉛粉を添加し、置換還元反応を起こさせることで黒鉛粉の表面に銀をメッキする工程である。
 銀(Ag)より卑な金属である亜鉛(Zn)が存在する場所で、以下の反応式1が起こると考えられる。
 Zn + 2Ag → Zn2+ + 2Ag ・・・反応式1
 黒鉛粉上での銀の析出は容易ではなく、ホルマリンやグルコース、酒石酸KNaなどの還元剤を用いても、黒鉛粉への銀被覆はほとんど見られない。そのため、還元剤による還元反応ではなく、上記のような銀(Ag)より卑な金属を用いた置換反応による置換メッキを用いることが好ましい。前記銀(Ag)より卑な金属としては、例えば、マグネシウム、アルミニウム、亜鉛、鉄、ニッケル、錫、鉛、銅などが挙げられる。これらの中でも、酸化しにくく粉体の取扱いが容易な点から、亜鉛が特に好ましい。
<ろ過・洗浄工程、乾燥工程、解砕工程、及び分級工程>
 前記置換工程で得られるスラリーをろ過し、水洗することによって、流動性がほとんどない塊状のケーキが得られる。上記の置換メッキ工程の際に、黒鉛粉に吸着していた錫の一部は脱離し、添加したZn粉の一部はイオン化する。水中に分散した錫や亜鉛は、主にろ過及び水洗時に銀被覆黒鉛混合粉と分離除去されるが、錫や亜鉛の一部は銀被覆黒鉛混合粉と共に残存する。共にケーキの乾燥を早める、乾燥時の凝集を防ぐ、などの目的で、ケーキ中の水を低級アルコールやポリオールなどで置換してもよい。ケーキを強制循環式大気乾燥機、真空乾燥機、気流乾燥装置等の乾燥機によって乾燥した後、解砕することにより、銀被覆黒鉛混合粉が得られる。解砕の代わりに、粒子を機械的に流動化させることができる装置に銀粒子を投入して、粒子同士を機械的に衝突させることによって、粒子表面の凹凸や角張った部分を滑らかにする表面平滑化処理を行ってもよい。また、解砕や表面平滑化処理の後に分級処理を行ってもよい。なお、乾燥、粉砕、及び分級を行うことができる一体型の装置(例えば、株式会社ホソカワミクロン製のドライマイスタ、ミクロンドライヤ等)を用いて乾燥、粉砕、及び分級を行ってもよい。
(導電性ペースト)
 本発明の導電性ペーストは、本発明の前記銀被覆黒鉛混合粉と、樹脂と、有機溶媒とを含有し、更に必要に応じてその他の成分を含有してなる。なお、前記以外の銀粉や銀被覆銅粉などの導電粉や、ガラスフリットなどが別途混合されていてもよい。
<樹脂>
 前記樹脂としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、メチルセルロース、エチルセルロース等のセルロース誘導体、アクリル樹脂、アルキド樹脂、ポリプロピレン樹脂、ポリウレタン樹脂、ロジン樹脂、テルペン樹脂、フェノール樹脂、脂肪族石油樹脂、アクリル酸エステル樹脂、キシレン樹脂、クマロンインデン樹脂、スチレン樹脂、ジシクロペンタジエン樹脂、ポリブテン樹脂、ポリエーテル樹脂、ユリア樹脂、メラミン樹脂、酢酸ビニル樹脂、ポリイソブチル樹脂、オレフィン系熱可塑性エラストマー(TPO)、エポキシ樹脂などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。これらの中でも、硬化性、密着性、及び汎用性の点から、エポキシ樹脂が好ましい。
 前記樹脂の含有量は、特に制限はなく、目的に応じて適宜選択することができる。
<有機溶媒>
 前記有機溶媒としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、トルエン、メチルエチルケトン、メチルイソブチルケトン、テトラデカン、テトラリン、プロピルアルコール、イソプロピルアルコール、テルピネオール、ジヒドロターピネオール、ジヒドロターピネオールアセテート、エチルカルビトール、ブチルカルビトール、エチルカルビトールアセテート、ブチルカルビトールアセテート、2,2,4-トリメチル-1,3-ペンタンジオールモノイソブチレート、酢酸ジエチレングリコールモノ-n-エチルエーテルなどが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
 前記溶剤の含有量は、特に制限はなく、目的に応じて適宜選択することができる。
<その他の成分>
 前記その他の成分としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、界面活性剤、分散剤、分散安定剤、粘度調整剤、レベリング剤、消泡剤などが挙げられる。
 前記導電性ペーストの製造方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、本発明の前記銀被覆黒鉛混合粉、前記樹脂、及び前記有機溶媒を、超音波分散、ディスパー、三本ロールミル、ボールミル、ビーズミル、二軸ニーダー、自公転式攪拌機などを用い、混合することにより作製することができる。
 前記導電性ペーストにおける前記銀被覆黒鉛混合粉の含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、前記導電性ペーストの粘度が、25℃で、10Pa・s以上1,000Pa・s以下となるように調整することが好ましい。前記粘度が、10Pa・s未満であると、低粘度の領域では「にじみ」が発生することがあり、1,000Pa・sを超えると、高粘度の領域では「かすれ」という印刷の不具合が発生することがある。また、前記導電性ペーストの粘度は、粘度調整剤の添加や溶剤の種類等の銀被覆黒鉛混合粉の含有量以外でも調整することが可能である。
 本発明の銀被覆黒鉛粒子及び銀被覆黒鉛混合粉は、種々の電子部品の電極や回路を形成するための導電性ペーストとして、好適に利用可能である。
 本発明の銀被覆黒鉛混合粉を含有した本発明の導電性ペーストは、高い導電性を有し、軽量かつ安価であるため、種々の電子部品の電極や回路などを形成するのに、幅広く好適に用いられる。
 以下、本発明の実施例を説明するが、本発明は、これらの実施例に何ら限定されるものではない。
 フィラー(銀粉、黒鉛粉、銀被覆黒鉛混合粉)のBET比表面積、タップ密度、及び粒度分布(D10、D50、及びD90)の測定方法は、以下に示す通りである。
<BET比表面積>
 フィラーのBET比表面積は、Macsorb HM-model 1210(MOUNTECH社製)を用いて、窒素吸着によるBET1点法で測定した。なお、BET比表面積の測定において、測定前の脱気条件は60℃で10分間とした。
<タップ密度>
 フィラーのタップ密度は、タップ密度測定装置(柴山科学株式会社製、カサ比重測定装置SS-DA-2)を使用し、フィラーを計量して、容器(20mL試験管)に入れ、落差20mmで1,000回タッピングし、タップ密度=試料質量(g)/タッピング後の試料体積から算出した。なお、銀被覆黒鉛混合粉は銀の割合で体積が大きく変わる。そのため、各測定試料の体積を合わせるように、銀の含有量に対する試料質量を、実施例1の約50質量%では2.5g、実施例2の約70質量%では8.5g、実施例3の約90質量%では15g、のように変えて実施した。
<粒度分布(D10、D50、及びD90)>
 粒度分布は、レーザー回折散乱式粒度分布測定装置(日機装株式会社製、MICROTORAC MT3300EXII)を用いて、フィラー0.1gをイソプロピルアルコール40mLに加え、チップ径20mmの超音波ホモジナイザーにより2分間分散させて試料を準備し、全反射モードで粒径の測定を行った。測定により得た体積基準の累積分布により、累積10%粒子径(D10)、累積50%粒子径(D50)、及び累積90%粒子径(D90)の値を求めた。
(実施例1)
-銀被覆黒鉛混合粉の作製-
<センシタイジング工程>
 300mLビーカーに、塩化錫二水和物(SnCl・2HO、0.105mol/L)を4.76g、塩酸(0.408mol/L)を8g、純水を199.36g入れて錫化合物溶液の調液を行った。その後、500mLビーカーに調液した液体を移し、黒鉛粉を10g入れて、室温(25℃)で撹拌しながら2時間保持し、Snイオンを黒鉛粉表面に吸着させた。
 次いで、ヌッチェを用いて5Cのろ紙上でろ過し、ろ液の伝導度が0.5μS/m以下となるまで純水を用いて洗浄を行った。
 前記黒鉛粉のBET比表面積は13.3m/g、タップ密度は0.31g/mL、体積基準の累積50質量%粒子径(D50)は8.3μmであった。図1に実施例1で用いた黒鉛粉の走査型電子顕微鏡写真(2,000倍)を示す。
<置換メッキ工程>
 純水が撹拌回転数524rpmにて攪拌されている1,000mLのビーカーに硝酸銀を投入し、Zn粉添加までに加わる水量を考慮して置換反応時において、硝酸銀を0.185mol/L含む450mLの硝酸銀水溶液となるように調液した(25℃)。
 その後、前記センシタイジング工程後の黒鉛粉を乾燥させない状態で、原料の黒鉛粉換算で9gとなるように9割分取して投入した。硝酸銀水溶液中の銀と原料の黒鉛粉の質量比は1:1であった。
 引き続き、この反応槽中へ錯化剤としてのEDTA-4Naを液中の銀の量に対してモル比で2.67当量添加し、5分間反応させ、銀のEDTA錯体水溶液を得た。この銀のEDTA錯体水溶液のpHを測定すると、13.4であった。pH調整は行わずに、Zn粉(2mm~5mm箔)を液中の銀の量に対してモル比で3当量を一括添加し、20分間撹拌しながら置換メッキを行った。
 その後、目幅150μmの篩を通すことで残存するZn粉を回収し、5Cのろ紙上にて吸引ろ過を行い、ろ液の伝導度が0.5μS/m以下となるまで純水を用いて洗浄を行った。その後、70℃の真空乾燥機で5時間乾燥させ、実施例1の銀被覆黒鉛混合粉を得た。
 得られた銀被覆黒鉛混合粉より0.5g分取して硝酸で加熱溶解し、ろ過することで黒鉛粉以外を溶解した溶液を用いて結合誘導プラズマ(ICP)発光分析法(SII社製、SPS5100)により測定した結果、銀被覆黒鉛混合粉における銀の含有量は49質量%、亜鉛の含有量が0.44質量%、錫の含有量が0.9質量%であった。
(実施例2)
 実施例1において、置換反応時に、硝酸銀を0.249mol/L含む650mLの水溶液となるように調液し、投入するセンシタイジング工程後の黒鉛粉の量を、原料の黒鉛粉換算で7.5gとなる量とし、硝酸銀水溶液中の銀と原料の黒鉛粉との質量比を7:3とした以外は、実施例1と同様にして、実施例2の銀被覆黒鉛混合粉を得た。
 得られた銀被覆黒鉛混合粉について、実施例1と同様にして、ICPによる定量分析を行った結果、銀被覆黒鉛混合粉における銀の含有量は69質量%、亜鉛の含有量が0.27質量%、錫の含有量が0.33質量%であった。
(実施例3)
 実施例1において、置換反応時に、硝酸銀を0.333mol/L含む800mLの水溶液となるように調液し、投入するセンシタイジング工程後の黒鉛粉の量を、原料の黒鉛粉換算で3.2gとなる量とし、硝酸銀水溶液中の銀と原料の黒鉛粉との質量比を9:1とした以外は、実施例1と同様にして、実施例3の銀被覆黒鉛混合粉を得た。
 得られた銀被覆黒鉛混合粉について、実施例1と同様にして、ICPによる定量分析を行った結果、銀被覆黒鉛混合粉における銀の含有量は89質量%、亜鉛の含有量が0.18質量%、錫の含有量が0.044質量%であった。
 得られた実施例1~3の銀被覆黒鉛混合粉について、銀被覆黒鉛混合粉中の銀(Ag)の含有量(銀含有率)は、それぞれ49質量%、69質量%、及び89質量%であり、硝酸銀水溶液中の銀は、ほぼ全て黒鉛粉の表面に析出したと考えられた。
 また、錫(Sn)の含有量は、それぞれ0.9質量%、0.33質量%、及び0.044質量%であり、銀の含有量が多いほど錫の含有量が少ないことからセンシタイジングにより表面に付着していた錫は、銀の析出に寄与した後は、液中に放出されると考えられた。
 また、亜鉛の含有量は、それぞれ0.44質量%、0.27質量%、及び0.18質量%であり、本発明のようにZn粉による置換反応を行う場合は、亜鉛が不純物として含まれることが分かった。
 次に、実施例1~3の銀被覆黒鉛混合粉について、走査型電子顕微鏡(SEM)(JSM IT3000、日本電子株式会社製)を用いて100倍の反射電子像(以下、BEC像とする。)を観察したものを図2~図4に示す。
 図2~図4において、白(薄灰色)く見える粒子が銀被覆黒鉛粒子であり、黒(濃灰色)に見える部分が銀に被覆されていない原料の黒鉛粒子であった。これらの図が示すように、実施例1~3にかけて銀被覆黒鉛混合粉における銀の含有量を増やすことで、全黒鉛粉に対する銀被覆黒鉛粒子の割合は増加していた。
 次に、実施例1~3の銀被覆黒鉛混合粉のそれぞれについて、粒子解析ソフトウエア(株式会社システムインフロンティア製、RegionAdviser)を使用して、画像解析を行った。この画像解析では、COMPO像を平滑化処理した後、自動コントラスト・輝度調整部(ACB)において、コントラストを100とし、ブライトネスを60~100の間で調整し、領域分割によりヒストグラム方式で2値化処理(画像上の輝度値のヒストグラムを構築し、ヒストグラムの傾向に基づいて2値化する処理)を行った。
 2値化処理後の面積比を算出した結果、被覆率(面積比)は、16%、36%、及び50%であった。
 また、実施例1と2について、密度を3g/mLに調整したポリタングステン酸Na重液に添加し、超音波による分散後に10日間静止して比重分離させ、浮き粉と沈殿粉とをそれぞれろ過回収して測定した結果、銀被覆黒鉛混合粉のうち、密度が3g/mLより大きく沈殿した沈殿粉の割合(質量比)は、73%、及び90%であった。上記記載のように銀(Ag)の密度が10.5g/mLに対してグラファイトの密度は2.26g/mL程度であることから、この沈殿粉の割合を、銀被覆黒鉛混合粉における銀被覆黒鉛粒子の割合(質量比)とみなした。
 硝酸銀水溶液中の銀が全て銀被覆に使用されたと仮定して銀被覆黒鉛混合粉における銀被覆黒鉛粒子の割合(質量比)から計算した黒鉛粉の中で銀が被覆された割合(黒鉛被覆率)は、実施例1で46%、実施例2で66%となった。
 また、実施例3の銀被覆黒鉛混合粉について、樹脂埋めした粉末断面のBEC像を観察したものを図5に示す。断面のコントラストの明るい部分が銀であり、黒鉛粒子は銀によって被覆されており、銀被覆の厚みは10nm~3μm(3,000nm)の間で不均一であることが分かった。
(比較例1~3)
 黒鉛粉と、黒鉛粉と形状が類似の銀粉とを混合した場合を比較例1~3として、銀被覆黒鉛混合粉の有効性について評価した。
<ペレット測定評価>
 前記黒鉛粉、前記実施例1~3、及び、前記黒鉛粉と銀粉(DOWAエレクトロニクス株式会社製、フレーク状銀粉、FA-D-6)とを実施例1~3と同じAg含有量としてコーヒーミルを用いて混合した比較例1~3を用意した。
 次に、各フィラーを、それぞれ、直径10.6mmの円筒状のシリンダーに入れて圧力2.65tにて1分間保持し、比抵抗1が測定できるサイズのペレットを作製し、圧粉体での比抵抗1をLorestaHP(MITSUBISHI CHEMIAL社製、MCP-T410)を用いて評価した。各フィラーの銀(Ag)含有量と体積比、各ペレットのサイズや密度、充填率、及び比抵抗1の値を表1に示す。また、Ag含有量と比抵抗1の関係を、図6に示す。
Figure JPOXMLDOC01-appb-T000001
 表1のペレット測定評価の結果より、黒鉛粉と銀粉を混合した場合に比較して、銀被覆黒鉛混合粉は比抵抗1が低くなることが分かった。また、図6の結果より、銀(Ag)含有量が40質量%未満では、黒鉛粉のみの場合や黒鉛粉と銀粉とを混合した場合に比べて、銀被覆黒鉛混合粉の比抵抗1の低減効果は小さいことが示唆された。
<ペースト評価>
 実施例1と、前記黒鉛粉と銀粉(DOWAエレクトロニクス株式会社製、フレーク状銀粉、FA-D-6)とを実施例1と同じ銀(Ag)含有量としてコーヒーミルを用いて混合した比較例1と、を用意した。
 次に、実施例1及び比較例1の各フィラーをそれぞれ70質量部、エポキシ樹脂((EP4901E、株式会社ADEKA製)を45質量部、硬化剤(BFNHEtOH、和光純薬工業株式会社製)を2.25質量部、及び溶剤(BCA:ブチルカルビトールアセテート、和光純薬工業株式会社製)を7質量部として混合し、3本ロールミル(EXAKT社製、EXAKT80S)にて、前記溶剤(BCA)を2.3質量部追加しながら混練し、導電性ペーストとした。
 次に、得られた導電性ペーストをアルミナ基板上に幅500μm×長さ37,500μmの線状パターンとなるようにスクリーン印刷し、200℃で40分間硬化して導電膜とした。
-比抵抗2の測定-
 得られた導電膜について、接触式表面粗さ計(株式会社小坂研究所製、SE-30D)を用い、導電膜の膜厚と線幅を測定し、デジタルマルチメータ(ADVANTEST社製、R6551)を用いてライン抵抗(Ω)を測定し、比抵抗2(Ω・cm)を計算した。
 実施例1の銀被覆黒鉛混合粉を用いた導電膜の膜厚は17.8μm、線幅は500μmであり、比抵抗2は0.31Ω・cmであった。
 比較例1の混合粉の場合は、膜厚は17.7μm、線幅は500μmであり、比抵抗2は0.43Ω・cmであった。
 ペースト評価した場合においても、黒鉛粉と銀粉を混合した場合に比較して、銀被覆黒鉛混合粉は比抵抗2が低くなることが分かった。
 以下、実施例1に対して被覆率を向上させる手段についての実験例について説明する。
(実験例1)
 実施例1において、Zn粉添加前に、硝酸(HNO)を対EDTA-4Naモル比で1.27となる量を投入し、pH調整を行った以外は、実施例1と同様にして、実験例1の銀被覆黒鉛混合粉を得た。pH調整後のpHは7.2であった。
 得られた銀被覆黒鉛混合粉より0.5g分取して硝酸に浸漬し、ろ過することで黒鉛粉以外を溶解した溶液を用いて、実施例1と同様にして、ICPによる定量分析を行った結果、銀被覆黒鉛混合粉における銀の含有量は47質量%、亜鉛の含有量が0.0035質量%、錫の含有量が0.39質量%であった。
 得られた実験例1の銀被覆黒鉛混合粉の100倍と5,000倍のBEC像を図7及び図8に示す。銀被覆黒鉛粒子の割合(被覆率(面積))は54%であった。pH調整を行う前の実施例1と比較して、pHを中性に近づけたことにより、白色(銀被覆黒鉛粒子)の割合が実施例1の被覆率(面積)の16%から大幅に増加しており、被覆率が大きいことが分かった。また、比重分離後の沈殿粉の割合である被覆率(質量比)も79質量%であり、実施例1の73質量%に比べて増加していた。
(実験例2)
 実施例1において、Zn粉添加前に、硝酸(HNO)を対EDTA-4Naモル比で1.64となる量を投入し、pH調整を行った以外は、実施例1と同様にして、実験例2の銀被覆黒鉛混合粉を得た。pH調整後のpHは4.5であった。
 得られた銀被覆黒鉛混合粉より0.5g分取して硝酸に浸漬し、ろ過することで黒鉛粉以外を溶解した溶液を用いて、実施例1と同様にして、ICPによる定量分析を行った結果、銀被覆黒鉛混合粉における銀の含有量は51質量%、亜鉛の含有量が0.0052質量%、錫の含有量が0.4質量%であった。
 得られた実験例2の銀被覆黒鉛混合粉の100倍と5,000倍のBEC像を図9及び図10に示す。銀被覆黒鉛粒子の割合(被覆率(面積))は8%であった。pH調整を行う前の実施例1と比較して、酸性域までpHが低下したことで、白色(銀被覆黒鉛粒子)の割合が大幅に減少しており、銀により被覆されていない黒鉛粉が多いことが分かった。また、比重分離後の沈殿粉の割合である被覆率(質量比)も55質量%であり、実施例1の73質量%に比べて減少していた。
(実験例3-1)
 実施例1において、前記黒鉛粉を、鱗状黒鉛(株式会社中越黒鉛工業所製、BF-15AK)に代えた以外は、実施例1と同様として、実験例3-1の銀被覆黒鉛混合粉を得た。
 前記鱗状黒鉛のBET比表面積は5.44m/g、タップ密度は0.32g/mL、体積基準の累積50%粒子径(D50)は15.7μmであった。図11に実験例3-1で用いた鱗状黒鉛の走査型電子顕微鏡写真(2,000倍)を示す。
 得られた銀被覆黒鉛混合粉より0.5g分取して硝酸に浸漬し、ろ過することで黒鉛粉以外を溶解した溶液を用いて、実施例1と同様にして、ICPによる定量分析を行った結果、銀被覆黒鉛混合粉における銀の含有量は52質量%、亜鉛の含有量が0.23質量%、錫の含有量が0.046質量%であった。
 得られた実験例3-1の銀被覆黒鉛混合粉の100倍のBEC像を図12に示す。実験例3-1の銀被覆黒鉛粒子の割合(被覆率(面積))は43%であり、実施例1の16%に対して増加しており、BET比表面積の小さい黒鉛粉である方が被覆率を上げやすく、銀被覆に適していることが分かった。
(実験例3-2)
 実験例3-1において、置換反応時に、硝酸銀を0.111mol/L含む320mLの水溶液となるように調液し、投入するセンシタイジング工程後の黒鉛粉の量を、原料の黒鉛粉換算で9gとなる量とし、硝酸銀水溶液中の銀と原料の黒鉛粉との質量比を3:7とした以外は同様にして、実験例3-2の銀被覆黒鉛混合粉を得た。
 得られた銀被覆黒鉛混合粉より0.5g分取して硝酸に浸漬し、ろ過することで黒鉛粉以外を溶解した溶液を用いて、実施例1と同様にして、ICPによる定量分析を行った結果、銀被覆黒鉛混合粉における銀の含有量は29質量%、亜鉛の含有量が0.2質量%、錫の含有量が0.054質量%であった。
 得られた実験例3-2の銀被覆黒鉛混合粉の100倍のBEC像を図13に示す。実験例3-2の銀被覆黒鉛粒子の割合(被覆率(面積))は16%であり、硝酸銀水溶液中の銀と原料の黒鉛粉との質量比が1:1の実験例3-1に対して、銀の割合を減らした影響で減少しているものの、硝酸銀水溶液中の銀と原料の黒鉛粉との質量比が1:1の実施例1と比べて同等であり、BET比表面積の小さい黒鉛粉である方が銀の割合を減らした場合でも被覆率を上げやすく、銀被覆に適していることが分かった。
(実験例4)
-導電性ペーストの作製-
 前記実験例1の銀被覆黒鉛混合粉5.52質量部、フレーク状銀粉(DOWAエレクトロニクス株式会社製)51.888質量部、球状銀粉(DOWAエレクトロニクス株式会社製)34.592質量部、エポキシ樹脂(EP4901E、株式会社ADEKA製)8質量部、硬化剤(BFNHEtOH、和光純薬工業株式会社製)0.4質量部、オレイン酸(和光純薬工業株式会社製)0.1質量部、及び溶剤としてのブチルカルビトールアセテート(和光純薬工業株式会社製)2質量部を加え、プロペラレス自公転式攪拌脱泡装置(株式会社シンキー製、AR-250)を用い、混合した。その後、3本ロールミル(EXAKT社製、EXAKT80S)を用いて、ロールギャップを徐々に狭めながら通過させて、実験例4の導電性ペーストを得た。
 なお、用いたフレーク状銀粉及び球状銀粉の諸特性を表2に示した。また、用いた銀被覆黒鉛混合粉の諸特性を表3に示した。
(実験例5)
-導電性ペーストの作製-
 実験例4において、前記実験例1の銀被覆黒鉛混合粉を、前記実験例3の銀被覆黒鉛混合粉に代えた以外は、実験例4と同様にして、実験例5の導電性ペーストを作製した。得られた実験例5の導電性ペーストを用いて作製した導電膜の走査型電子顕微鏡写真(2,000倍)を図14に示した。
(比較例4)
-導電性ペーストの作製-
 実験例4において、前記実験例1の銀被覆黒鉛混合粉を添加せず、導電性ペースト中の銀総量を実験例4や5と合わせるために表4に示す各成分の配合量に変えた以外は、実験例4と同様にして、比較例4の導電性ペーストを作製した。得られた比較例4の導電性ペーストを用いて作製した導電膜の走査型電子顕微鏡写真(2,000倍)を図15に示した。
(比較例5)
-導電性ペーストの作製-
 実験例4において、前記実験例1の銀被覆黒鉛混合粉を、黒鉛粉に代え、表4に示す各成分の配合量に変えた以外は、実験例4と同様にして、比較例5の導電性ペーストを作製した。なお、用いた黒鉛粉の諸特性を表3に示した。
(比較例6)
-導電性ペーストの作製-
 実験例4において、前記実験例1の銀被覆黒鉛混合粉を、鱗状黒鉛粉に代え、表4に示す各成分の配合量に変えた以外は、実験例4と同様にして、比較例6の導電性ペーストを作製した。なお、用いた鱗状黒鉛粉の諸特性を表3に示した。また、得られた比較例6の導電性ペーストを用いて作製した導電膜の走査型電子顕微鏡写真(2,000倍)を図16に示した。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 得られた各導電性ペーストについて、以下のようにして、粘度、熱伝導率、及び比抵抗3を測定し、同様にして諸特性を評価した。結果を表5及び表6に示した。
<導電性ペーストの粘度>
 得られた導電性ペーストの粘度は、BROOKFIELD社製の粘度計5XHBDV-IIIUCを用い、コーンスピンドルCP-52、ペースト温度25℃で測定した。1rpm(ずり速度2sec-1)で5分間の値を測定した。
<熱伝導率>
 各導電性ペーストを200℃で20分間硬化し、直径10mm、厚み1mmの成形体サンプルを作製した。
 得られたサンプルをレーザーフラッシュ法(株式会社ULVAC製、TC-7000)により熱拡散率を測定し、比熱と密度から熱伝導率を求めた。
<比抵抗3>
 各導電性ペーストを板状に塗布し、200℃で20分間硬化して板状体とした後、型の打ち抜きにより直径10mm、厚み1mmの成形体サンプルを作製した。
 得られたサンプルを四探針法(三菱化学株式会社製、Loresta HP MCP-T410)により、比抵抗3を測定した。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 表5及び表6の結果から、比較例5及び6のように単に黒鉛粉を混合する場合には1rpmでの粘度が900Pa・sを超えて、スクリーン印刷での配線描写は困難になった。
 実験例4及び5のように銀被覆黒鉛混合粉を混合して導電性ペーストを作製すると、比較例5及び6に比べて粘度の上昇が抑制され、黒鉛粉を使用する前と同等のチクソ比のペーストを得ることができるため、黒鉛粉に比べてペーストの組成や塗布方法を大きく変更することなく使用することができた。また、銀被覆黒鉛混合粉を含む導電性ペーストを塗布した導電膜は、銀被覆黒鉛混合粉を用いない場合に比べて比抵抗3を下げて熱伝導率を上げる効果を有しており、SEM像からも比較的粒子間の結合が多く緻密な導電膜が得られていることが分かった。
 本発明の銀被覆黒鉛粒子及び銀被覆黒鉛混合粉は、種々の電子部品の電極や回路を形成するための導電性ペーストとして、好適に利用可能である。

Claims (10)

  1.  黒鉛粒子と該黒鉛粒子の表面に被覆された銀とを具備した銀被覆黒鉛粒子を含む銀被覆黒鉛混合粉であって、
     前記銀被覆黒鉛混合粉を硝酸に溶解後の溶液における結合誘導プラズマ(ICP)発光分析法での銀の含有量が5質量%以上90質量%以下であり、錫の含有量が0.01質量%以上5質量%以下であり、亜鉛の含有量が0.002質量%以上1質量%以下であることを特徴とする銀被覆黒鉛混合粉。
  2.  前記銀の含有量が20質量%以上90質量%以下であり、前記錫の含有量が0.01質量%以上2質量%以下である請求項1に記載の銀被覆黒鉛混合粉。
  3.  100倍の反射電子像の2値化処理による前記銀被覆黒鉛粒子の割合である黒鉛被覆率が、10%以上である請求項1又は2に記載の銀被覆黒鉛混合粉。
  4.  体積基準の累積50%粒子径(D50)が1μm以上20μm以下である請求項1から3のいずれかに記載の銀被覆黒鉛混合粉。
  5.  黒鉛粉に、錫化合物の水溶液を用いてセンシタイジングを行う工程と、
     センシタイジング後の黒鉛粉の表面に、銀錯体溶液と亜鉛粉を用いて置換により銀を被覆する工程とを含み、
     前記銀錯体溶液のpHが6以上14以下であることを特徴とする
     黒鉛粒子と前記黒鉛粒子の表面に被覆された銀とを具備した銀被覆黒鉛粒子を含む銀被覆黒鉛混合粉の製造方法。
  6.  前記銀錯体溶液のpHが6以上8以下である請求項5に記載の銀被覆黒鉛混合粉の製造方法。
  7.  前記銀被覆黒鉛混合粉を硝酸に溶解後の溶液における結合誘導プラズマ(ICP)発光分析法での銀の含有量が5質量%以上90質量%以下であり、錫の含有量が0.01質量%以上5質量%以下であり、亜鉛の含有量が0.002質量%以上1質量%以下である請求項5から6のいずれかに記載の銀被覆黒鉛混合粉の製造方法。
  8.  100倍の反射電子像の2値化処理による前記銀被覆黒鉛粒子の割合である黒鉛被覆率が、10%以上である請求項5から7のいずれかに記載の銀被覆黒鉛混合粉の製造方法。
  9.  請求項1から4のいずれかに記載の銀被覆黒鉛混合粉と、樹脂と、有機溶媒とを含有することを特徴とする導電性ペースト。
  10.  黒鉛粒子の表面に銀を被覆した銀被覆黒鉛粒子であって、
     走査型電子顕微鏡像の観察による平均粒径が1μm以上20μm以下であり、被覆された銀の厚みが10nm以上5μm以下であることを特徴とする銀被覆黒鉛粒子。

     
PCT/JP2016/086228 2015-12-09 2016-12-06 銀被覆黒鉛粒子、銀被覆黒鉛混合粉及びその製造方法、並びに導電性ペースト WO2017099076A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201680071403.2A CN108367927B (zh) 2015-12-09 2016-12-06 银被覆石墨粒子、银被覆石墨混合粉及其制造方法和导电浆料
US16/060,154 US10773961B2 (en) 2015-12-09 2016-12-06 Silver-coated graphite particles, silver-coated graphite mixed powder and production method therefor, and conductive paste
KR1020187019078A KR102077115B1 (ko) 2015-12-09 2016-12-06 은 피복 흑연 입자, 은 피복 흑연 혼합 분말 및 그 제조 방법, 그리고 도전성 페이스트

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015240596A JP6226944B2 (ja) 2015-12-09 2015-12-09 銀被覆黒鉛粒子、銀被覆黒鉛混合粉及びその製造方法、並びに導電性ペースト
JP2015-240596 2015-12-09

Publications (1)

Publication Number Publication Date
WO2017099076A1 true WO2017099076A1 (ja) 2017-06-15

Family

ID=59014180

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/086228 WO2017099076A1 (ja) 2015-12-09 2016-12-06 銀被覆黒鉛粒子、銀被覆黒鉛混合粉及びその製造方法、並びに導電性ペースト

Country Status (6)

Country Link
US (1) US10773961B2 (ja)
JP (1) JP6226944B2 (ja)
KR (1) KR102077115B1 (ja)
CN (1) CN108367927B (ja)
TW (1) TWI610317B (ja)
WO (1) WO2017099076A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113512645A (zh) * 2021-07-13 2021-10-19 桂林金格电工电子材料科技有限公司 银氧化锡废料和银石墨废料混合回收利用的方法
CN114890413A (zh) * 2022-04-15 2022-08-12 中南大学 一种石墨@Ti2SnC粉末颗粒及其制备方法
WO2022230970A1 (ja) * 2021-04-28 2022-11-03 パナソニックIpマネジメント株式会社 熱伝導性組成物及び熱伝導性材料

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019186206A (ja) * 2018-04-10 2019-10-24 タク・マテリアル株式会社 導電性ペーストおよびその製造方法
CN108641610A (zh) * 2018-04-25 2018-10-12 常州驰科光电科技有限公司 一种高强度自粘性导电导热膜及其制备方法
CN111487308B (zh) * 2019-11-26 2022-05-24 天津理工大学 微电极葡萄糖传感器及其制备方法和应用
CN115072703B (zh) * 2022-08-02 2024-01-30 洛阳月星新能源科技有限公司 一种复合负极材料及其制备方法、应用
EP4328933A1 (en) * 2022-08-26 2024-02-28 TE Connectivity Solutions GmbH Coating on a surface to transmit electrical current

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6312669A (ja) * 1986-07-03 1988-01-20 Asahi Carbon Kk メッキカーボンブラックおよびその製造法
JP5719483B1 (ja) * 2013-09-12 2015-05-20 積水化学工業株式会社 導電性粒子、導電材料及び接続構造体
JP2016130354A (ja) * 2015-01-13 2016-07-21 三菱マテリアル電子化成株式会社 銀被覆樹脂粒子及びその製造方法並びにそれを用いた導電性ペースト
JP2016195048A (ja) * 2015-04-01 2016-11-17 三菱マテリアル株式会社 銀被覆導電性粒子及び該粒子を含有する導電性材料

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3510710A (en) * 1968-11-27 1970-05-05 Air Reduction Connection for carbon brushes
JPS5719483B2 (ja) 1973-12-28 1982-04-22
US4240830A (en) * 1978-11-30 1980-12-23 Westinghouse Electric Corp. Method for making sintered metal-coated graphite for high-current collector brushes
JPS59152936A (ja) * 1983-02-21 1984-08-31 Kuraray Co Ltd 電磁しやへい性および剛性に優れたハイブリツト系樹脂組成物
CN1060703C (zh) * 1996-05-30 2001-01-17 北京有色金属研究总院 纳米级金属粉的制备方法
CA2324431A1 (fr) 2000-10-25 2002-04-25 Hydro-Quebec Nouveau procede d'obtention de particule du graphite naturel sous forme spherique: modelisation et application
US20020160193A1 (en) * 2001-02-21 2002-10-31 Karel Hajmrle Noble metal clad Ni/C conductive fillers and conductive polymers made therefrom
KR101170397B1 (ko) * 2005-03-29 2012-08-01 히타치 긴조쿠 가부시키가이샤 고열전도성 흑연 입자 분산형 복합체 및 그 제조 방법
EP2004873A1 (en) * 2006-04-12 2008-12-24 Ciba Holding Inc. Process for the treatment of metal coated particles
JP5166704B2 (ja) * 2006-05-12 2013-03-21 東炭化工株式会社 金属カーボン複合通電摺動材料
CN101054483B (zh) * 2007-05-23 2011-06-29 华侨大学 一种镀银石墨及其制备方法
US8299159B2 (en) * 2009-08-17 2012-10-30 Laird Technologies, Inc. Highly thermally-conductive moldable thermoplastic composites and compositions
US9147874B2 (en) 2012-06-11 2015-09-29 Nanotek Instruments, Inc. Rechargeable lithium cell having a meso-porous conductive material structure-supported phthalocyanine compound cathode
US9923206B2 (en) 2012-09-10 2018-03-20 Nanotek Instruments, Inc. Encapsulated phthalocyanine particles, high-capacity cathode containing these particles, and rechargeable lithium cell containing such a cathode
US9203084B2 (en) 2013-08-08 2015-12-01 Nanotek Instrurments, Inc. Cathode active material-coated discrete graphene sheets for lithium batteries and process for producing same
WO2015094780A1 (en) * 2013-12-19 2015-06-25 3M Innovative Properties Company Electrically conductive adhesive tapes and articles therefrom

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6312669A (ja) * 1986-07-03 1988-01-20 Asahi Carbon Kk メッキカーボンブラックおよびその製造法
JP5719483B1 (ja) * 2013-09-12 2015-05-20 積水化学工業株式会社 導電性粒子、導電材料及び接続構造体
JP2016130354A (ja) * 2015-01-13 2016-07-21 三菱マテリアル電子化成株式会社 銀被覆樹脂粒子及びその製造方法並びにそれを用いた導電性ペースト
JP2016195048A (ja) * 2015-04-01 2016-11-17 三菱マテリアル株式会社 銀被覆導電性粒子及び該粒子を含有する導電性材料

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022230970A1 (ja) * 2021-04-28 2022-11-03 パナソニックIpマネジメント株式会社 熱伝導性組成物及び熱伝導性材料
CN113512645A (zh) * 2021-07-13 2021-10-19 桂林金格电工电子材料科技有限公司 银氧化锡废料和银石墨废料混合回收利用的方法
CN113512645B (zh) * 2021-07-13 2023-02-24 桂林金格电工电子材料科技有限公司 银氧化锡废料和银石墨废料混合回收利用的方法
CN114890413A (zh) * 2022-04-15 2022-08-12 中南大学 一种石墨@Ti2SnC粉末颗粒及其制备方法
CN114890413B (zh) * 2022-04-15 2023-09-01 中南大学 一种石墨@Ti2SnC粉末颗粒及其制备方法

Also Published As

Publication number Publication date
KR20180091869A (ko) 2018-08-16
CN108367927A (zh) 2018-08-03
JP6226944B2 (ja) 2017-11-08
TW201727668A (zh) 2017-08-01
JP2017105671A (ja) 2017-06-15
US20180362348A1 (en) 2018-12-20
TWI610317B (zh) 2018-01-01
KR102077115B1 (ko) 2020-02-13
CN108367927B (zh) 2022-07-01
US10773961B2 (en) 2020-09-15

Similar Documents

Publication Publication Date Title
JP6226944B2 (ja) 銀被覆黒鉛粒子、銀被覆黒鉛混合粉及びその製造方法、並びに導電性ペースト
JP6029719B2 (ja) 銀粉及びその製造方法、並びに導電性ペースト
JP6029720B2 (ja) 銀粉及びその製造方法、並びに導電性ペースト
JP5688895B2 (ja) 微小銀粒子粉末と該粉末を使用した銀ペースト
JP6423508B2 (ja) 銀粉の製造方法
JP6246472B2 (ja) 導電用銀被覆硝子粉末及びその製造方法、並びに導電性ペースト及び導電膜
JP5901726B2 (ja) 微小銀粒子粉末および該粉末を使用した銀ペーストの製造方法
JPWO2012099161A1 (ja) 金属粒子粉末およびそれを用いたペースト組成物
JP6096143B2 (ja) 銀被覆フレーク状銅粉及びその製造方法、並びに導電性ペースト
JP2010236039A (ja) フレーク状銀粉及びその製造方法、並びに導電性ペースト
JP2016094665A (ja) 銀コート銅粉及びそれを用いた導電性ペースト、導電性塗料、導電性シート
JP2008007859A (ja) 銀粒子
CN110114175B (zh) 高温烧结型银粉末及其制造方法
WO2017033889A1 (ja) 銀粉およびその製造方法、ならびに導電性ペースト
JP4961315B2 (ja) 金属被覆ニッケル粉の製造方法
JP2017002409A (ja) 銀粉及びその製造方法
JP7416905B2 (ja) 銀粉及び銀粉の製造方法
JP7335768B2 (ja) 銀被覆金属粉末およびその製造方法並びに導電性塗料
TWI791829B (zh) 光燒結型組成物及使用其的導電膜的形成方法
JP2006147351A (ja) 導電性複合粉末及びその製造方法
JP2023084112A (ja) 銀粉及び銀粉の製造方法ならびに導電性ペースト
JP2022180322A (ja) 銅粉末及びこれを含む導電性組成物、並びに、これを用いた配線構造及び導電性部材の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16872974

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187019078

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020187019078

Country of ref document: KR

122 Ep: pct application non-entry in european phase

Ref document number: 16872974

Country of ref document: EP

Kind code of ref document: A1