WO2017094532A1 - 紫外線発光蛍光体、発光素子、及び発光装置 - Google Patents

紫外線発光蛍光体、発光素子、及び発光装置 Download PDF

Info

Publication number
WO2017094532A1
WO2017094532A1 PCT/JP2016/084279 JP2016084279W WO2017094532A1 WO 2017094532 A1 WO2017094532 A1 WO 2017094532A1 JP 2016084279 W JP2016084279 W JP 2016084279W WO 2017094532 A1 WO2017094532 A1 WO 2017094532A1
Authority
WO
WIPO (PCT)
Prior art keywords
ultraviolet light
light emitting
emitting phosphor
phosphor
ultraviolet
Prior art date
Application number
PCT/JP2016/084279
Other languages
English (en)
French (fr)
Inventor
紀一郎 江越
Original Assignee
大電株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大電株式会社 filed Critical 大電株式会社
Priority to US15/778,918 priority Critical patent/US11015119B2/en
Priority to CN201680061089.XA priority patent/CN108138046A/zh
Priority to KR1020187009612A priority patent/KR102066900B1/ko
Priority to EP16870470.8A priority patent/EP3385356A4/en
Publication of WO2017094532A1 publication Critical patent/WO2017094532A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7706Aluminates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/0005Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor for pharmaceuticals, biologicals or living parts
    • A61L2/0011Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor for pharmaceuticals, biologicals or living parts using physical methods
    • A61L2/0029Radiation
    • A61L2/0052Visible light
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/02Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using physical phenomena
    • A61L2/08Radiation
    • A61L2/10Ultraviolet radiation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7766Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
    • C09K11/7774Aluminates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2202/00Aspects relating to methods or apparatus for disinfecting or sterilising materials or objects
    • A61L2202/10Apparatus features
    • A61L2202/11Apparatus for generating biocidal substances, e.g. vaporisers, UV lamps
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N2005/065Light sources therefor
    • A61N2005/0656Chemical light sources
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N2005/0658Radiation therapy using light characterised by the wavelength of light used
    • A61N2005/0661Radiation therapy using light characterised by the wavelength of light used ultraviolet

Definitions

  • the present invention relates to an ultraviolet light-emitting phosphor that emits ultraviolet light, and particularly to an ultraviolet light-emitting phosphor having excellent deterioration resistance and light emission intensity.
  • UV rays have a strong interaction with DNA, and are effective for sterilization and detoxification of fungi such as influenza virus, norovirus, and candita.
  • fungi such as influenza virus, norovirus, and candita.
  • it is expected to be used in a wide range of fields such as decomposition of hardly decomposed substances, synthesis of chemical substances, and medical applications.
  • development and improvement of a light emitter capable of exhibiting ultraviolet light emission has been advanced.
  • mercury lamps that use mercury are mainly used as light emitters that emit ultraviolet light. This is because the mercury lamp can be manufactured at low cost, and high-energy light emission can be easily obtained.
  • Non-Patent Document 1 a light source that emits ultraviolet rays without using mercury, for example, a light source that emits ultraviolet rays by irradiating a ZnAl 2 O 4 phosphor with an electron beam as an excitation source is known (see Non-Patent Document 1). .
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide an ultraviolet light-emitting phosphor that can suppress deterioration in the manufacturing process and has excellent deterioration resistance and emission intensity.
  • the present inventors have found a new type of ultraviolet light emitting phosphor that emits ultraviolet light with extremely high light emission intensity. Furthermore, the present invention has been derived by finding an excellent characteristic that the ultraviolet light-emitting phosphor has an excellent feature that process deterioration is extremely small.
  • the ultraviolet light emitting phosphor disclosed in the present application is a phosphor composed of yttrium element, scandium element, aluminum element, and oxygen element, and emits ultraviolet light when excited by irradiation with vacuum ultraviolet rays or electron beams.
  • a light emitting phosphor is provided.
  • a light-emitting element using the ultraviolet light-emitting phosphor disclosed in the present application is also provided.
  • a light-emitting device including the light-emitting element disclosed in the present application is also provided.
  • the X-ray-diffraction result of the ultraviolet light emission fluorescent substance which concerns on Example 1 of this invention is shown.
  • the X-ray-diffraction result of the ultraviolet light emission fluorescent substance which concerns on Example 1 of this invention is shown.
  • the X-ray-diffraction result of the ultraviolet light emission fluorescent substance which concerns on Example 1 of this invention is shown.
  • the result of the light emission intensity spectrum about the ultraviolet light emission by the ultraviolet-light-emitting fluorescent substance which concerns on Example 1 of this invention is shown.
  • 2 is a graph plotting the integrated emission intensity for ultraviolet light emission by the ultraviolet light emitting phosphor according to Example 1 of the present invention for each blending ratio (1-x) of yttrium element (Y).
  • the result of the emission intensity spectrum regarding the degradation resistance evaluation of the ultraviolet light-emitting phosphor according to Example 2 of the present invention and the comparative examples (phosphors ZnAl 2 O 4 and YAlO 3 : Pr) is shown.
  • the ultraviolet light emitting phosphor disclosed in the present application is a phosphor composed of an yttrium element, a scandium element, an aluminum element, and an oxygen element, and is an ultraviolet light emitting fluorescence that emits ultraviolet light when excited by irradiation with vacuum ultraviolet rays or electron beams. If it is a body, it will not be specifically limited.
  • the excitation source is not particularly limited, but vacuum ultraviolet rays or electron beams can be used.
  • the vacuum ultraviolet rays refer to ultraviolet rays having a wavelength of 200 nm or less, and for example, ultraviolet rays having a wavelength of 147 nm and ultraviolet rays having a wavelength of 172 nm can be used.
  • the ultraviolet light-emitting phosphor disclosed in the present application can emit ultraviolet rays in various wavelength ranges by irradiation with such vacuum ultraviolet rays or electron beams. Further, since firing in a reducing atmosphere is not required, extremely high durability can be obtained as compared with conventional ultraviolet light emitting phosphors.
  • the ultraviolet light-emitting phosphor disclosed in the present application is not particularly limited as long as it is a phosphor composed of yttrium element (Y), aluminum element (Al), and scandium element (Sc).
  • Y yttrium element
  • Al aluminum element
  • Sc scandium element
  • the present inventor has found that when the blending ratio (1-x) of the yttrium element (Y) exceeds 0.60 (that is, when x is smaller than 0.40), the integrated emission intensity (a .U.) Has been confirmed to be dramatically improved (see Examples below). Furthermore, it has also been confirmed that when the blending ratio (1-x) of the yttrium element (Y) exceeds 0.60, the peak wavelength of the ultraviolet light emitting phosphor according to the present application gradually decreases from about 300 nm. That is, this ultraviolet light emitting phosphor (Y 1-x Sc x ) AlO 3 is more preferably 0.007 ⁇ x ⁇ 0.40, in which case the peak wavelength is shorter than about 300 nm. In addition to obtaining ultraviolet light, it is possible to exhibit excellent characteristics that the integrated emission intensity is dramatically improved.
  • the application of the ultraviolet light-emitting phosphor according to the present application is not particularly limited as long as it is an application using emitted ultraviolet light. From the viewpoint that such short-wave ultraviolet light can be obtained with high emission intensity, for example, It can be used for sterilization applications (sterilization lamps, etc.). From this, the ultraviolet light-emitting phosphor according to the present application can be a light source that can be substituted for a mercury lamp that has been mainly used for sterilization.
  • the ultraviolet light-emitting phosphor (Y 1-x Sc x ) AlO 3 is used specifically for the sterilization application described above, a short wavelength having a peak wavelength suitable for the sterilization application of about 300 nm or less is obtained.
  • a short wavelength having a peak wavelength suitable for the sterilization application of about 300 nm or less is obtained.
  • 0.007 ⁇ x ⁇ 0.10 is further preferable in that a short wavelength of about 260 nm to about 270 nm or less can be obtained.
  • the ultraviolet light-emitting phosphor according to the present application has an excellent characteristic that it can emit ultraviolet light having an emission peak of about 300 nm or less (particularly 260 nm to 270 nm) suitable for sterilization.
  • the ultraviolet light-emitting phosphor disclosed in the present application is not only excellent in that high emission intensity can be obtained by irradiating with vacuum ultraviolet light, and further, does not require firing under a reducing atmosphere. Compared with conventional ultraviolet light-emitting phosphors, extremely high durability can be obtained, and in fact, excellent characteristics that the process is hardly deteriorated have been confirmed (see Examples described later).
  • the ultraviolet light emitting phosphor according to the present application exhibits the above-mentioned excellent effects
  • the scandium element is suitably adapted to the physical arrangement, and a structure that significantly promotes light emission as a light emission center is obtained, and a structural factor that emits strong ultraviolet light is inherent. That is, it is presumed that the irradiation with vacuum ultraviolet rays or electron beams facilitates transition to an energy level that specifically emits light in the ultraviolet band at the atomic level.
  • a compound (for example, oxide) containing each constituent element is used as a raw material and mixed at a stoichiometric ratio so as to obtain a desired phosphor composition.
  • a compound (for example, oxide) containing each constituent element is used as a raw material and mixed at a stoichiometric ratio so as to obtain a desired phosphor composition.
  • the raw material powders of aluminum oxide (Al 2 O 3 ), yttrium oxide (Y 2 O 3 ), and scandium oxide (Sc 2 O 3 ) can be used as the raw material.
  • the ultraviolet light-emitting phosphor according to the present application can be obtained by baking a powder obtained by mixing this raw material at a high temperature in an air atmosphere. This high-temperature firing can be performed in an air atmosphere at a temperature of 1000 ° C. to 1350 ° C. for 30 minutes to 10 hours to obtain an ultraviolet light emitting phosphor.
  • the use of the ultraviolet light-emitting phosphor thus obtained is wide-ranging. For example, by performing sterilization on various sterilization objects using ultraviolet light emitted by the ultraviolet light emitting phosphor according to the present application, clean sterilization in which residues and environmental damage due to ultraviolet rays are suppressed can be performed. it can.
  • this ultraviolet light it is possible to perform a decomposition treatment of hardly decomposed substances (for example, formaldehyde and PCB) or to synthesize a novel chemical substance (for example, a photocatalytic substance). Further, by using this ultraviolet light, it can be applied to various medical fields such as treatment of intractable diseases (for example, atopic dermatitis) and prevention of nosocomial infection.
  • it can be used as various light emitting elements including such an ultraviolet light emitting phosphor. Further, it can be used as a light emitting device including the light emitting element.
  • Example 1 (1-1) Production of phosphor The composition of a desired phosphor using aluminum oxide (Al 2 O 3 ), yttrium oxide (Y 2 O 3 ), and scandium oxide (Sc 2 O 3 ) as raw materials. The stoichiometric proportions were mixed. The mixed powder was fired at 1300 ° C. for 5 hours in an air atmosphere.
  • Al 2 O 3 aluminum oxide
  • Y 2 O 3 yttrium oxide
  • Sc 2 O 3 scandium oxide
  • FIG. 4 shows a graph in which the integrated emission intensity based on the result of the emission intensity spectrum is plotted for each blending ratio (1-x) of yttrium (Y).
  • the ultraviolet light emitting phosphor (Y 1-X Sc X ) AlO 3 according to the present example was able to obtain light in the ultraviolet region by vacuum ultraviolet light excitation.
  • a stronger peak wavelength was confirmed particularly in the phosphor of 0.007 ⁇ x ⁇ 0.50.
  • a sharper peak wavelength was confirmed in the phosphor of 0.007 ⁇ x ⁇ 0.40.
  • the ultraviolet light emitting phosphor (Y 1-X Sc X ) AlO 3 according to the present example was able to emit light in the ultraviolet region by vacuum ultraviolet excitation. It was.
  • the emission integrated intensity (a. It was confirmed that u.) was dramatically improved, and at the same time, the peak wavelength was gradually shortened from about 300 nm.
  • the ultraviolet light emitting phosphor (Y 1-x Sc x ) AlO 3 in this example is not particularly limited, but a stronger peak wavelength is confirmed when 0.007 ⁇ x ⁇ 0.50, In the case of 0.007 ⁇ x ⁇ 0.40, ultraviolet light having a peak wavelength shorter than about 300 nm can be obtained, and at the same time, it exhibits excellent characteristics that its emission integrated intensity is dramatically improved. It was confirmed.
  • Example 2 (2-1) Evaluation of degradation resistance
  • the degradation resistance evaluation was performed on the ultraviolet light-emitting phosphor (Y 1-x Sc x ) AlO 3 obtained in Example 1 above.
  • durability evaluation was also performed on conventionally known phosphors ZnAl 2 O 4 and YAlO 3 : Pr.
  • the obtained emission spectrum is shown in FIG. 6, and the intensity change when the integrated intensity is calculated from the emission spectrum is shown in the following table.
  • the comparative examples ZnAl 2 O 4 and YAlO 3 : Pr showed a decrease, but this example (Y 1-x Sc x ) AlO 3 did not show a decrease, rather, It was confirmed that the strength was increased. As a cause of this difference, a difference in susceptibility to heat and an organic solvent can be considered. That is, this example (Y 1-x Sc x ) AlO 3 was shown to be much more stable against heat and organic solvents than the phosphor of the comparative example. From another point of view, it is inferred that the phosphor (Y 1-x Sc x ) AlO 3 according to the present example has a situation in which it is difficult for the valence change of Sc to occur. It is considered that the deterioration resistance against various external factors is enhanced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Public Health (AREA)
  • Biomedical Technology (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Epidemiology (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Radiology & Medical Imaging (AREA)
  • Pathology (AREA)
  • Luminescent Compositions (AREA)
  • Led Device Packages (AREA)

Abstract

優れた耐劣化性及び発光強度を有する紫外線発光蛍光体を提供する。 紫外線発光蛍光体は、イットリウム元素、スカンジウム元素、アルミニウム元素、及び酸素元素から構成される蛍光体であって、真空紫外線又は電子線の照射により励起されて紫外線を発光する。

Description

紫外線発光蛍光体、発光素子、及び発光装置
 本発明は、紫外線を発光する紫外線発光蛍光体に関し、特に優れた耐劣化性及び発光強度を有する紫外線発光蛍光体に関する。
 現在、紫外線の用途は、医療分野や光触媒分野等の様々な分野に拡大しており、紫外線発光分野は、産業的な価値が高まっている。紫外線は、DNAとの相互作用が強く、インフルエンザウイルスやノロウイルスあるいはカンジタ等の真菌類の殺菌や無害化に有効であり、遺伝子の耐性化を伴わないクリーン殺菌として水や動植物の殺菌、病院や家庭での空気殺菌や器具殺菌に有効であるばかりでなく、難分解物質の分解や化学物質の合成等への応用、医療応用など広い分野での活用が期待されている。このような産業上の高いニーズを背景として、紫外線発光を呈することのできる発光体の開発及び改良が進められている。
 紫外線発光を呈する発光体としては、現在のところ、主に水銀を使用した水銀ランプが使用されている。この理由は、水銀ランプが、低コストで製造できることや、高エネルギーの発光が簡易に得られるためである。
 しかし、水銀ランプは、発光波長を可変とする制御ができず、また寿命も短い等の問題が指摘されてきた。それに加えて、現在では、水銀は自然環境に与える負荷が大きいことが問題視されてきており、環境保護の観点から、今後は、水銀の製造が禁止される法的規制の施行も予定されている。このような背景から、水銀を使用しない(水銀フリーの)紫外線発光光源の開発が早急に求められている。
 従来の水銀を使用しない紫外線発光を呈する光源としては、例えば、ZnAl2蛍光体に電子線を励起源として照射して、紫外線を発光させるものが知られている(非特許文献1参照)。
井口ら、信学技報、5-8頁、社団法人 電子情報通信学会、2011年1月
 しかし、従来の紫外線を発光させる蛍光体(例えば、ZnAl2)では、還元雰囲気下での焼成が要求されることから、製造過程におけるランプの工程(500~700℃での大気焼成)での工程劣化が著しいという課題がある。その劣化の影響もあり、従来の紫外線発光蛍光体は、紫外線の発光量が不十分なものとなり、実用化に要求される発光強度までは到達できていないという状況である。
 本発明は前記課題を解決するためになされたものであり、製造過程における劣化を抑制でき、優れた耐劣化性及び発光強度を有する紫外線発光蛍光体の提供を目的とする。
 本発明者らは、鋭意研究を重ねた結果、極めて高い発光強度の紫外線を発光する新たなタイプの紫外線発光蛍光体を見出した。さらに、当該紫外線発光蛍光体が、工程劣化が極めて小さいという優れた特徴を備えているという優れた特性も見出し、本発明を導き出した。
 即ち、本願に開示する紫外線発光蛍光体として、イットリウム元素、スカンジウム元素、アルミニウム元素、及び酸素元素から構成される蛍光体であって、真空紫外線又は電子線の照射により励起されて紫外線を発光する紫外線発光蛍光体が提供される。また、本願に開示する紫外線発光蛍光体を用いることを特徴とする発光素子も提供される。また、本願に開示する発光素子を備える発光装置も提供される。
本発明の実施例1に係る紫外線発光蛍光体のX線回折結果を示す。 本発明の実施例1に係る紫外線発光蛍光体のX線回折結果を示す。 本発明の実施例1に係る紫外線発光蛍光体のX線回折結果を示す。 本発明の実施例1に係る紫外線発光蛍光体による紫外線発光についての発光強度スペクトルの結果を示す。 本発明の実施例1に係る紫外線発光蛍光体による紫外線発光についての発光積分強度をイットリウム元素(Y)の配合割合(1-x)ごとにプロットしたグラフを示す。 本発明の実施例2に係る紫外線発光蛍光体及び比較例(蛍光体ZnAl2O4及びYAlO3:Pr)の耐劣化性評価に関する発光強度スペクトルの結果を示す。
 本願に開示する紫外線発光蛍光体は、イットリウム元素、スカンジウム元素、アルミニウム元素、及び酸素元素から構成される蛍光体であって、真空紫外線又は電子線の照射により励起されて紫外線を発光する紫外線発光蛍光体であれば、特に限定はされない。
 励起源は、特に限定されないが、真空紫外線又は電子線を用いることができる。真空紫外線とは、波長200nm以下の紫外線を指し、例えば、波長147nmの紫外線や、波長172nmの紫外線等を用いることができる。
 本願に開示する紫外線発光蛍光体は、このような真空紫外線又は電子線の照射によって、各種の波長域の紫外線を発光することができる。また、還元雰囲気下での焼成が要求されないことから、従来の紫外線発光蛍光体に比べて極めて高い耐久性が得られる。
 本願に開示する紫外線発光蛍光体は、イットリウム元素(Y)、アルミニウム元素(Al)、スカンジウム元素(Sc)から構成される蛍光体であれば特に限定されないが、その一例として、一般式(Y1-xScx)AlO3(但し、0<x<1)として表すことができる。
 この紫外線発光蛍光体(Y1-xScx)AlO3は、スカンジウム元素(Sc)の配合割合が比較的少ないほうが、強い発光強度が得られやすく、その一方で、少な過ぎると十分な発光が得られ難くなる傾向にある。このような観点から、0.007≦x≦0.50であることがより好ましい。さらに強いピーク波長を有する発光が得られやすいという観点からは、0.007≦x≦0.40であることがより好ましい。
 実際に、本発明者は、イットリウム元素(Y)の配合割合(1-x)が0.60を超えると(即ち、xが0.40より小さい場合)、紫外線発光についての発光積分強度(a.u.)が飛躍的に向上することを確認している(後述の実施例参照)。さらに、イットリウム元素(Y)の配合割合(1-x)が0.60を超えると、本願に係る紫外線発光蛍光体のピーク波長が約300nmから徐々に短波長化することも確認している。即ち、この紫外線発光蛍光体(Y1-xScx)AlO3は、より好ましくは、0.007≦x≦0.40であり、その場合には、ピーク波長が約300nmよりも短波長の紫外光が得られると共に、その発光積分強度も飛躍的に向上するという優れた特性を発揮することができる。
 本願に係る紫外線発光蛍光体は、発光される紫外光を利用する用途であれば、その用途は特に限定されないが、このような短波長の紫外光が高い発光強度で得られるという点から、例えば、殺菌用途(殺菌ランプ等)として利用することができる。このことから、本願に係る紫外線発光蛍光体は、殺菌用途として従来から主に使われている水銀ランプに代替可能な光源になり得る。
 例えば、この紫外線発光蛍光体(Y1-xScx)AlO3は、上述の殺菌用途に特化して利用する場合には、殺菌用途に好適なピーク波長が約300nm以下という短波長が得られる点で、0.007≦x≦0.4であることが好ましく、さらに殺菌用途により好適なピーク波長が約290nm以下という短波長が得られる点で、0.007≦x≦0.25であることがより好ましく、例えば、強い殺菌能力が要求される用途では、ピーク波長が約260nm~約270nm以下という短波長が得られる点で、0.007≦x≦0.10であることがさらに好ましい。即ち、本願に係る紫外線発光蛍光体は、殺菌用途に適する約300nm以下(特に、260nm~270nm)の発光ピークを示す紫外光を発光できるという優れた特性を有する。
 このように、本願に開示する紫外線発光蛍光体は、真空紫外線を照射することによって、高い発光強度が得られるという優れた効果のみならず、さらに、還元雰囲気下での焼成が要求されないことから、従来の紫外線発光蛍光体に比べて極めて高い耐久性が得られるものであり、実際に、工程劣化し難いという優れた特性も確認されている(後述の実施例参照)。
 本願に係る紫外線発光蛍光体が、上記の優れた効果を奏するメカニズムは未だ詳細には解明されていないが、蛍光体を構成するイットリウム元素、アルミニウム元素、及び酸素元素の各元素から構成される原子の物理的配置に対して、スカンジウム元素が好適に適合して発光中心として発光を有意に促進する構成が得られ、強い紫外光を発光する構造的要因が内在しているものと推察される。即ち、真空紫外線又は電子線が照射されることによって、原子レベルで紫外線帯域の光を特異的に発光するエネルギーレベルに遷移しやすくなっているものと推察される。
 蛍光体を構成するイットリウム元素、アルミニウム元素、及び酸素元素の各元素から構成される原子の物理的配置によって、スカンジウム元素が原子レベルで価数変化し難い状況を維持していることが考えられ、それによって、外部からの熱や化学変化に対して劣化し難い状況を形成していることが推察される。
 本願に係る紫外線発光蛍光体を得る方法としては、各構成元素を含む化合物(例えば、酸化物)を原料に用いて、所望とする蛍光体の組成となるような化学量論的な割合で混合する。例えば、この原料としては、酸化アルミニウム(Al2O3)及び酸化イットリウム(Y2O3)、酸化スカンジウム(Sc2O3)の各粉末を用いることができる。
 本願に係る紫外線発光蛍光体は、この原料を混合して得られた粉体を大気雰囲気下で高温焼成することにより得られる。この高温焼成は、大気雰囲気下において温度1000℃~1350℃で、30分~10時間行うことによって、紫外線発光蛍光体を得ることができる。
 このようにして得られる紫外線発光蛍光体の用途は多岐にわたる。例えば、本願に係る紫外線発光蛍光体が発光する紫外光を用いて、各種の殺菌対象物に対して殺菌を行うことによって、紫外線による残留物や環境ダメージが抑制されたクリーンな殺菌を行うことができる。また、この紫外光を用いることによって、難分解物質(例えばホルムアルデヒド及びPCBなど)の分解処理を行うことや、新規な化学物質の合成(例えば光触媒物質など)を行うこともできる。また、この紫外光を用いることによって、難治性疾患(例えばアトピー性皮膚炎など)の治療及び院内感染の予防などの各種の医療分野への応用も可能となる。
 また、このような紫外線発光蛍光体を含む各種の発光素子として利用することができる。また当該発光素子を備える発光装置として利用することもできる。
 本発明の特徴を更に明らかにするため、以下に実施例を示すが、本発明はこの実施例によって制限されるものではない。
(実施例1)
(1-1)蛍光体の製造
 原材料に原材料に酸化アルミニウム(Al2O3)及び酸化イットリウム(Y2O3)、酸化スカンジウム(Sc2O3)を用いて所望とする蛍光体の組成となるような化学量論的な割合で混合した。混合した粉体を大気雰囲気下で1300℃で5時間焼成した。
(1-2)蛍光体の同定
 上記で得られた焼結体(Scの配合比率x:0.007、0.02、0.10、0.25、0.30、0.40、0.50、0.75)の各々に対して、線源がFeKαのX線回折装置で取得したX線回折結果を図1~図3に示す。図1~図3で得られたピーク値から、いずれの焼結体においても、確かに(Y1-xScx)AlO3(但し、0<x<1)が結晶化していることが確認された。特に、このX線回折結果から、Sc配合比率が0.02以下の場合の主生成物の結晶構造は、YAlO相(空間群Pnma)であることが確認された。また、Sc配合比率が0.1以上の場合の生成物の結晶構造については、2θが20°以下のピークが検出されており、これはYAlO相(空間群P63/mmc)であることが確認された。また、Sc配合比率が0.10以上の場合の生成物の結晶構造については、これら2種類のYAlO相(空間群Pnma及びP63/mmc)が混在していることが確認された。
(1-3)発光強度の測定
 上記で得られた蛍光体に対して、励起波長146nmの重水素ランプL1835(浜松ホトニクス社製)を光源とする真空紫外線を照射し、この照射により得られた発光についての発光強度スペクトルの結果を図4に示す。図4の発光強度スペクトルのグラフでは、横軸に波長(nm)、縦軸に発光強度(発光積分強度)(a.u.)を示している。また、この発光強度スペクトルの結果に基づく発光積分強度を、イットリウム(Y)の配合比率(1-x)ごとにプロットしたグラフを図5に示す。
 図4の結果から、本実施例に係る紫外線発光蛍光体(Y1-XSc)AlOは、いずれも、真空紫外線励起によって、紫外領域の発光が得られたことが確認された。このうち、特に、0.007≦x≦0.50の蛍光体では、より強いピーク波長が確認された。さらに、このうち、0.007≦x≦0.40の蛍光体では、さらに鋭いピーク波長が確認された。
 また、図5の結果からも、本実施例に係る紫外線発光蛍光体(Y1-XSc)AlOは、いずれも、真空紫外線励起によって、紫外領域の発光が得られたことが確認された。特に、イットリウム元素(Y)の配合割合(1-x)が0.60を超えた時点で(即ち、xが0.40より小さくなった時点で)、紫外線発光についての発光積分強度(a.u.)が飛躍的に向上していることが確認されたと同時に、ピーク波長が約300nmから徐々に短波長化したことも確認された。
 即ち、本実施例における紫外線発光蛍光体(Y1-xScx)AlO3は、特に限定されないが、0.007≦x≦0.50の場合にはより強いピーク波長が確認され、さらに、0.007≦x≦0.40の場合には、ピーク波長が約300nmよりも短波長の強い紫外光が得られると同時に、その発光積分強度も飛躍的に向上するという優れた特性を発揮することが確認された。
(実施例2)
(2-1)耐劣化性評価
 上記の実施例1で得られた紫外線発光蛍光体(Y1-xScx)AlO3に対して、耐劣化性評価(耐久性評価)を行った。なお、比較例として、従来から知られている蛍光体ZnAl2O4及びYAlO3:Prに対しても耐久性評価を行った。(サンプル:比較例(ZnAl2O4)、比較例(YAlO3:Pr)、本実施例((Y1-xScx)AlO3))
 混合比について蛍光体:溶媒=1:1として、ガラス瓶内で5分間撹拌して混合し、得られた混合液をアルミナ皿に流し拡げた。大気雰囲気下において700℃で30分焼成後、得られた粉末を薬さじで回収した。回収した粉を測定用フォルダーに詰めて、重水素ランプL1835(浜松ホトニクス社製)を光源に用いて、励起波長146nmにおける発光スペクトルを励起用真空紫外分光システム(日本分光社製)を測定装置として用いて発光スペクトル測定し評価を行った。
 得られた発光スペクトルを図6に示すと共に、この発光スペクトルから積分強度を算出した場合の強度変化を以下の表に示す。
Figure JPOXMLDOC01-appb-T000001
 得られた結果から明らかなように、比較例ZnAl2O4及びYAlO3:Prは低下が見られたが、本実施例(Y1-xScx)AlO3は低下は見られず、寧ろ、強度が高められたことが確認された。この違いの原因としては、熱及び有機溶媒に対する影響の受け易さの違いが考えられる。即ち、本実施例(Y1-xScx)AlO3は、比較例の蛍光体よりも、熱及び有機溶媒に対しても、極めて安定であることが示された。また、他の観点からは、本実施例に係る蛍光体(Y1-xScx)AlO3においては、Scの価数変化が生じ難い状況が形成されていることが推察され、それによって、様々な外的要因に対する耐劣化性が強化されていることが考えられる。

Claims (5)

  1.  イットリウム元素、スカンジウム元素、アルミニウム元素、及び酸素元素から構成される蛍光体であって、真空紫外線又は電子線の照射により励起されて紫外線を発光することを特徴とする
     紫外線発光蛍光体。
  2.  請求項1に記載の紫外線発光蛍光体において、
     一般式(Y1-XScX)AlO3(但し、0<x<1)であることを特徴とする
     紫外線発光蛍光体。
  3.  請求項2に記載の紫外線発光蛍光体において、
     0.007≦x≦0.50であることを特徴とする
     紫外線発光蛍光体。
  4.  請求項1~3のいずれかに記載の紫外線発光蛍光体を用いることを特徴とする
     発光素子。
  5.  請求項4に記載の発光素子を備えることを特徴とする
     発光装置。
     
PCT/JP2016/084279 2015-11-30 2016-11-18 紫外線発光蛍光体、発光素子、及び発光装置 WO2017094532A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/778,918 US11015119B2 (en) 2015-11-30 2016-11-18 Ultraviolet light-emitting phosphor, light-emitting element, and light-emitting device
CN201680061089.XA CN108138046A (zh) 2015-11-30 2016-11-18 紫外线发光荧光体、发光元件以及发光装置
KR1020187009612A KR102066900B1 (ko) 2015-11-30 2016-11-18 자외선 발광 형광체, 발광 소자, 및 발광 장치
EP16870470.8A EP3385356A4 (en) 2015-11-30 2016-11-18 ULTRAVOLETT LIGHT-EMITTING PHOSPHORUS, LIGHT-EMITTING ELEMENT AND LIGHT-EMITTING DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-233671 2015-11-30
JP2015233671A JP6141948B2 (ja) 2015-11-30 2015-11-30 紫外線発光蛍光体、発光素子、及び発光装置

Publications (1)

Publication Number Publication Date
WO2017094532A1 true WO2017094532A1 (ja) 2017-06-08

Family

ID=58797245

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/084279 WO2017094532A1 (ja) 2015-11-30 2016-11-18 紫外線発光蛍光体、発光素子、及び発光装置

Country Status (6)

Country Link
US (1) US11015119B2 (ja)
EP (1) EP3385356A4 (ja)
JP (1) JP6141948B2 (ja)
KR (1) KR102066900B1 (ja)
CN (1) CN108138046A (ja)
WO (1) WO2017094532A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018079661A1 (ja) * 2016-10-28 2018-05-03 大電株式会社 紫外線発光蛍光体、発光素子、及び発光装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008202045A (ja) * 2007-02-16 2008-09-04 Samsung Sdi Co Ltd プラズマ・ディスプレイパネル用蛍光体及びこれを利用したプラズマ・ディスプレイパネル
WO2014065027A1 (ja) * 2012-10-23 2014-05-01 浜松ホトニクス株式会社 紫外光発生用ターゲット、電子線励起紫外光源、及び紫外光発生用ターゲットの製造方法
WO2014065028A1 (ja) * 2012-10-23 2014-05-01 浜松ホトニクス株式会社 紫外光発生用ターゲット、電子線励起紫外光源、及び紫外光発生用ターゲットの製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19638667C2 (de) * 1996-09-20 2001-05-17 Osram Opto Semiconductors Gmbh Mischfarbiges Licht abstrahlendes Halbleiterbauelement mit Lumineszenzkonversionselement
CN100999662A (zh) * 2006-12-29 2007-07-18 中国科学院长春应用化学研究所 一种蓝光激发的白光led用荧光粉的制备方法
JP4925119B2 (ja) * 2007-06-21 2012-04-25 シャープ株式会社 酸化物蛍光体および発光装置
DE102013100821B4 (de) * 2013-01-28 2017-05-04 Schott Ag Polykristalline Keramiken, deren Herstellung und Verwendungen
JP6296323B2 (ja) * 2013-04-12 2018-03-20 日立金属株式会社 板状シンチレータの製造方法
JP6356005B2 (ja) * 2013-12-27 2018-07-11 シチズン電子株式会社 発光装置及び発光装置の設計方法
JP2016121274A (ja) * 2014-12-25 2016-07-07 大電株式会社 電子線励起蛍光体、発光素子、及び発光装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008202045A (ja) * 2007-02-16 2008-09-04 Samsung Sdi Co Ltd プラズマ・ディスプレイパネル用蛍光体及びこれを利用したプラズマ・ディスプレイパネル
WO2014065027A1 (ja) * 2012-10-23 2014-05-01 浜松ホトニクス株式会社 紫外光発生用ターゲット、電子線励起紫外光源、及び紫外光発生用ターゲットの製造方法
WO2014065028A1 (ja) * 2012-10-23 2014-05-01 浜松ホトニクス株式会社 紫外光発生用ターゲット、電子線励起紫外光源、及び紫外光発生用ターゲットの製造方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BYKOV, I.S. ET AL.: "Ultraviolet and visible luminescence properties of Sc3+ doped YAlO3:Ce single crystals", RADIATION MEASUREMENTS, vol. 35, no. 1, 2002, pages 1 - 2, XP004328236 *
IGUCHI ET AL.: "Shingaku Giho (Communication Study Technique Report", January 2011, THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS, pages: 5 - 8
See also references of EP3385356A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018079661A1 (ja) * 2016-10-28 2018-05-03 大電株式会社 紫外線発光蛍光体、発光素子、及び発光装置

Also Published As

Publication number Publication date
EP3385356A4 (en) 2019-05-22
JP6141948B2 (ja) 2017-06-07
US11015119B2 (en) 2021-05-25
CN108138046A (zh) 2018-06-08
KR102066900B1 (ko) 2020-01-16
KR20180050379A (ko) 2018-05-14
EP3385356A1 (en) 2018-10-10
JP2017101122A (ja) 2017-06-08
US20180355246A1 (en) 2018-12-13

Similar Documents

Publication Publication Date Title
JP6630445B2 (ja) 紫外線発光蛍光体、発光素子、及び発光装置
US8901808B2 (en) Ultraviolet light-emitting material and ultraviolet light source
JP2010047772A5 (ja)
WO2016136955A1 (ja) 紫外線発光蛍光体、その製造方法、発光素子、及び発光装置
WO2017094532A1 (ja) 紫外線発光蛍光体、発光素子、及び発光装置
JP2015025077A (ja) 蛍光体
JP2018145336A (ja) 蛍光体およびその製造方法
JP2016121274A (ja) 電子線励起蛍光体、発光素子、及び発光装置
JP7033540B2 (ja) 紫外線発光蛍光体、発光素子、及び発光装置
JP6618512B2 (ja) 紫外線発光蛍光体、発光素子、及び発光装置
JP4632835B2 (ja) 青色蛍光体の製造方法
JP5948528B1 (ja) 紫外線発光蛍光体、その製造方法、発光素子、及び発光装置
JP2012188630A (ja) 蛍光体、該蛍光体と発光素子とを組み合わせた発光装置、及び、該蛍光体を含有する真贋識別標識
KR101496959B1 (ko) 발광효율이 높은 적색 형광체 및 그 제조 방법
KR101531123B1 (ko) 형광체의 제조 방법
JP6858006B2 (ja) 真空紫外線励起蛍光体、発光素子、及び発光装置
JP2016523998A5 (ja)
JP2008069201A (ja) 発光材料及びその製造方法
WO2019038967A1 (ja) 発光セラミックス及び波長変換装置
KR100893074B1 (ko) 칼슘알루미네이트계 청색형광체 및 이의 제조방법
Yousif et al. La3+ eliminate the blue component from the emission of Y2O3: Bi3+
JP2018070736A (ja) 蛍光体、蛍光体の製造方法及び発光装置
WO2008139397A1 (en) Novel color filters for color displays and light sources
Wang et al. Photoluminescence properties of AlN-doped BaMgAl10O17: Eu2+ phosphors
JP5674001B2 (ja) 無機酸化物蛍光体及びその製造方法並びに発光装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16870470

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20187009612

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016870470

Country of ref document: EP