WO2017094495A1 - 検査装置及び検査方法 - Google Patents

検査装置及び検査方法 Download PDF

Info

Publication number
WO2017094495A1
WO2017094495A1 PCT/JP2016/083855 JP2016083855W WO2017094495A1 WO 2017094495 A1 WO2017094495 A1 WO 2017094495A1 JP 2016083855 W JP2016083855 W JP 2016083855W WO 2017094495 A1 WO2017094495 A1 WO 2017094495A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
optical
optical path
optical system
wavelength
Prior art date
Application number
PCT/JP2016/083855
Other languages
English (en)
French (fr)
Inventor
共則 中村
Original Assignee
浜松ホトニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浜松ホトニクス株式会社 filed Critical 浜松ホトニクス株式会社
Priority to CN201680070354.0A priority Critical patent/CN108369211B/zh
Priority to US15/780,293 priority patent/US10564126B2/en
Priority to JP2017553754A priority patent/JP6940413B2/ja
Priority to KR1020187010009A priority patent/KR102523172B1/ko
Publication of WO2017094495A1 publication Critical patent/WO2017094495A1/ja
Priority to US16/731,273 priority patent/US10976284B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/302Contactless testing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/302Contactless testing
    • G01R31/308Contactless testing using non-ionising electromagnetic radiation, e.g. optical radiation
    • G01R31/311Contactless testing using non-ionising electromagnetic radiation, e.g. optical radiation of integrated circuits
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/032Measuring direction or magnitude of magnetic fields or magnetic flux using magneto-optic devices, e.g. Faraday or Cotton-Mouton effect
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/032Measuring direction or magnitude of magnetic fields or magnetic flux using magneto-optic devices, e.g. Faraday or Cotton-Mouton effect
    • G01R33/0322Measuring direction or magnitude of magnetic fields or magnetic flux using magneto-optic devices, e.g. Faraday or Cotton-Mouton effect using the Faraday or Voigt effect
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B17/00Systems with reflecting surfaces, with or without refracting elements
    • G02B17/02Catoptric systems, e.g. image erecting and reversing system
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0004Microscopes specially adapted for specific applications
    • G02B21/0016Technical microscopes, e.g. for inspection or measuring in industrial production processes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0004Microscopes specially adapted for specific applications
    • G02B21/0092Polarisation microscopes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/36Microscopes arranged for photographic purposes or projection purposes or digital imaging or video purposes including associated control and data processing arrangements
    • G02B21/361Optical details, e.g. image relay to the camera or image sensor
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • G02B27/286Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising for controlling or changing the state of polarisation, e.g. transforming one polarisation state into another
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/0816Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements

Definitions

  • the present invention relates to an inspection apparatus and an inspection method using an optical probing technique.
  • Optical probing technology for inspecting measurement objects such as semiconductor devices irradiates the measurement object with light emitted from the light source, and detects the measurement light (reflected light) from the measurement object with an optical sensor to obtain a detection signal.
  • MOFM Magnetic-Optical Frequency Mapping
  • a magneto-optic crystal is placed facing the object to be measured, and reflected light whose polarization state changes according to the magneto-optic effect of the magneto-optic crystal.
  • Detect with optical sensor In this method, the presence / absence of abnormality of the measurement object is detected based on the distribution of the magnetic field generated in the measurement object.
  • Patent Document 1 there is a method in which a magneto-optical film is arranged on a sample, a reflected light image of linearly polarized light irradiated on the magneto-optical film is acquired by a camera, and the magnetic field and current flow of the sample are mapped. It is disclosed.
  • the measurement object may be irradiated with the light emitted from the light source to obtain a pattern (circuit pattern or the like) of the measurement object.
  • a pattern circuit pattern or the like
  • the measurement object may be irradiated with the light emitted from the light source to obtain a pattern (circuit pattern or the like) of the measurement object.
  • the rotation angle of the polarized light with respect to the magnetic field in the magneto-optical crystal generally has wavelength dependency.
  • the wavelength range of light suitable for the desired measurement object may be different from the wavelength range having high sensitivity in the magneto-optical crystal.
  • the wavelength range of light having sufficient transparency with respect to silicon is an infrared range longer than 1 ⁇ m. If the difference between these wavelengths increases, the measurement accuracy may be reduced due to the wavelength dependence of the characteristics of the optical element and the detection sensitivity of the light detection unit.
  • separate optical paths are provided for light having different wavelengths, a large number of optical elements are required, and there is a problem that the apparatus configuration becomes complicated.
  • the present invention has been made to solve the above-described problems, and an inspection apparatus and an inspection method capable of accurately detecting both the presence / absence of an abnormality of a measurement object and the acquisition of a pattern while avoiding the complexity of the configuration.
  • the purpose is to provide.
  • An inspection apparatus is an inspection apparatus that inspects a measurement object, and includes a first light having a first wavelength and a second wavelength different from the first wavelength.
  • a magneto-optical crystal having a light output unit that outputs the light of 2 and a reflective surface that reflects the first light, the reflective surface being arranged to face the measurement object, the first light, and the first light
  • the light detection unit configured to detect the light 2 and a plurality of optical elements guide the first light and the second light toward the magneto-optical crystal and the measurement object, and reflect the light with the magneto-optical crystal.
  • a light guide optical system that guides the first light and the second light reflected by the measurement object toward the light detection unit, and the light guide optical system includes the first light and the second light.
  • An optical path switching element that switches an optical path by a plurality of optical elements is provided so that light selectively enters the light detection unit.
  • the light guide optical system that guides the first light and the second light includes an optical path switching element that selectively causes the first light and the second light to enter the light detection unit.
  • an optical path switching element an optical element having a wavelength dependency suitable for the first wavelength and the second wavelength is used in the light guide optical system, while an optical element that forms the optical path of the first light,
  • the optical element that forms the optical path of the light can be shared in part. Therefore, it is possible to accurately detect both the presence / absence of abnormality of the measurement object and the acquisition of the pattern while avoiding the complicated configuration.
  • the light output unit may include a first light source that emits the first light and a second light source that emits the second light.
  • the first light and the second light having different wavelengths can be output with sufficient intensity, and the SN ratio of the light source can be improved.
  • the light detection unit may include a first light sensor that detects the first light and a second light sensor that detects the second light.
  • the light detection unit can have sufficient sensitivity with respect to the first light and the second light, and both the detection of the presence / absence of abnormality of the measurement object and the acquisition of the pattern can be achieved with high accuracy.
  • the light guide optical system may include a polarization control element that guides one polarization component of the first light to the light detection unit. Thereby, the change in the polarization of the first light in the magneto-optical crystal can be suitably detected.
  • the light guiding optical system may further include a polarization control element that guides another polarization component of the first light to the light detection unit.
  • the light detection unit can detect a differential between one polarization component of the first light and another polarization component of the first light.
  • the light guide optical system may have a polarization control element that guides one polarization component of the second light to the light detection unit.
  • the optical element that forms the optical path of the first light and the optical element that forms the optical path of the second light can be made more common in part.
  • the optical path switching element may be constituted by a Faraday rotator and a wave plate.
  • the optical path switching element can be configured with a simple configuration.
  • the optical path switching element may be constituted by a dichroic mirror.
  • the optical path switching element can be configured with a simple configuration.
  • the optical path switching element may be constituted by a galvanometer mirror.
  • the optical path switching element can be configured with a simple configuration.
  • the optical path switching element may be constituted by an optical mirror.
  • the optical path switching element can be configured with a simple configuration.
  • the light guide optical system may be configured to include a dichroic mirror, and the dichroic mirror may be disposed on the upstream side of the polarization control element.
  • the polarization direction of the light can be aligned by the polarization control element at the subsequent stage of the dichroic mirror. Therefore, the optical path of the first light and the optical path of the second light may be formed on either the reflection side or the transmission side of the dichroic mirror, and the degree of freedom in designing the light guide optical system can be ensured.
  • the measurement object may be a semiconductor device. According to this inspection apparatus, it is possible to accurately detect both the presence / absence of an abnormality of a semiconductor device and the acquisition of a pattern.
  • the first wavelength may be a wavelength shorter than the second wavelength.
  • An inspection method is an inspection method for inspecting a measurement object using a magneto-optical crystal arranged so as to face the measurement object, the first method having a first wavelength. And the second light having a second wavelength different from the first wavelength are guided to the magneto-optical crystal and the measurement object by the light guide optical system and reflected by the magneto-optical crystal or the measurement object. Detecting the first light and the second light, and outputting the first light from the light output unit and detecting the first light by the light detection unit via the light guide optical system. And selectively switching the optical path of the light guide optical system so that the second light is incident on the light detection unit, and outputting the second light from the light output unit and detecting the light through the light guide optical system. Detecting the second light at the unit.
  • the presence or absence of abnormality of the measurement object is detected based on the detection result of the first light reflected by the magneto-optical crystal, and the measurement is performed based on the detection result of the second light reflected by the measurement object.
  • the pattern of the object can be acquired.
  • the optical path for selectively making the first light and the second light incident on the light detection unit is switched, thereby allowing the abnormality of the measurement object. Presence / absence detection and pattern acquisition can be achieved with high accuracy.
  • This inspection apparatus and inspection method can accurately detect both the presence / absence of an abnormality of a measurement object and the acquisition of a pattern while avoiding a complicated configuration.
  • FIG. 1 is a schematic view showing an inspection apparatus according to the first embodiment.
  • the inspection apparatus 1 according to the first embodiment is an apparatus that inspects the measurement object D.
  • the inspection apparatus 1 includes a tester unit 2, a light output unit 3, a light guide optical system 4A, an objective lens 5, a magneto-optical crystal 6, and a light detection unit 7.
  • the light output unit 3, the light guide optical system 4A, the objective lens 5, the magneto-optical crystal 6, and the light detection unit 7 are optically coupled.
  • the measurement object D is, for example, a semiconductor device in the present embodiment. Examples of the semiconductor device include an integrated circuit having a PN junction such as a transistor, a high current / high voltage MOS transistor, and a bipolar transistor.
  • the integrated circuit examples include a small scale integrated circuit (SSI), a medium scale integrated circuit (MSI), a large scale integrated circuit (LSI), a very large scale integrated circuit (VLSI), a very large scale integrated circuit (ULSI), and a giga scale.
  • An integrated circuit (GSI) or the like is included.
  • the measurement object D is not limited to a semiconductor device, and may be a thin film transistor (TFT) such as an amorphous transistor, a polysilicon transistor, or an organic transistor formed on a glass surface.
  • TFT thin film transistor
  • the tester unit 2 is electrically connected to the measurement object D.
  • the tester unit 2 is electrically connected to the frequency analysis unit 8.
  • the tester unit 2 operates by receiving power supply from a power source (not shown), and repeatedly applies a modulation current signal to the measurement object D.
  • a modulation magnetic field is generated along with the modulation current signal.
  • An optical signal corresponding to the modulation magnetic field is detected by a light detection unit 7 described later, whereby measurement light is detected at a specific frequency.
  • the tester unit 2 does not necessarily apply a modulation current signal, and may apply a CW current signal that generates pulsed light according to the detection frequency.
  • the light output unit 3 is a part that outputs first light having a first wavelength and second light having a second wavelength different from the first wavelength.
  • the first light and the second light may be CW light or pulsed light. Further, the first light and the second light may be either incoherent light or coherent light. Examples of a light source that outputs incoherent light include an SLD, an ASE light source, and an LED. Examples of the light source that outputs coherent light include a solid-state laser light source and a semiconductor laser light source.
  • the light output from the light output unit 3 enters the light guide optical system 4A.
  • the wavelength of the first light is a wavelength of 1 ⁇ m or less with sufficiently high sensitivity in the magneto-optical crystal 6.
  • the wavelength of the first light is preferably, for example, a wavelength of 530 nm or less.
  • the wavelength of the second light is a wavelength suitable for the measurement object D.
  • the wavelength of the second light is preferably a wavelength of 1 ⁇ m or more that is sufficiently transmissive to silicon and reflected by the internal structure in the semiconductor device. It is.
  • the light output unit 3 may include a first light source that outputs the first light and a second light source that outputs the second light, and is configured by a single light source. It may be.
  • the first light is output from the light output unit 3 and the pattern of the measurement target D is acquired when detecting whether or not the measurement target D is abnormal.
  • the light output unit 3 outputs the second light.
  • the light output unit 3 is constituted by a single light source, for example, a YAG laser is used as a light source, and a second harmonic (wavelength 532 nm) is generated from a fundamental wave (wavelength 1064 nm) by a nonlinear optical crystal. Among these, the fundamental wave is used as the second light, and the second harmonic is selectively used as the first light.
  • the light guide optical system 4A is a part that guides the first light and the second light.
  • the light guide optical system 4A includes a plurality of optical elements.
  • the light guide optical system 4A guides the first light and the second light toward the magneto-optical crystal 6 and the measurement object D.
  • the light guide optical system 4A includes the first light reflected by the reflective film 13 (see FIG. 2) of the magneto-optical crystal 6 and the back surface (the magneto-optical crystal) of the measurement object D through the measurement object D.
  • the second light reflected by the surface opposite to 6) is guided toward the light detection unit 7.
  • the detailed configuration of the light guide optical system 4A will be described later.
  • the objective lens 5 is a part for condensing the first light guided by the light guide optical system 4 ⁇ / b> A onto the magneto-optical crystal 6.
  • the objective lens 5 can be switched, for example, between a low-magnification objective lens having a magnification of 5 times and a high-magnification objective lens having a magnification of 50 times, for example, by a turret.
  • a holder for holding the magneto-optic crystal 6 is attached to the objective lens 5.
  • the objective lens 5 is moved in the optical axis direction of the first light and the second light by the objective lens driving unit 9 and the focal position with respect to the magneto-optical crystal 6 is adjusted.
  • the magneto-optic crystal 6 is a portion that changes the polarization state of the input light according to the magnetic field generated by the measurement object D due to the magneto-optic effect.
  • the magneto-optical crystal 6 includes a crystal growth substrate 11, a magneto-optical effect layer 12, and a reflective film (reflective surface) 13.
  • the one surface 11a side of the crystal growth substrate 11 is an incident surface for the first light and the second light.
  • the magneto-optic effect layer 12 is a thin film made of magnetic garnet or the like. Examples of the magnetic garnet include gadolinium / gallium / garnet (GGG), yttrium / iron / garnet (YIG), and rare earth / iron / garnet (RIG).
  • the magneto-optical effect layer 12 is formed with a thickness of about 1 ⁇ m on the other surface 11 b side of the crystal growth substrate 11.
  • the reflective film 13 is a dielectric multilayer film, for example.
  • the reflective film 13 is provided on the surface of the magneto-optical effect layer 12 opposite to the crystal growth substrate 11.
  • the reflective film 13 has an optical characteristic of reflecting the first light and transmitting the second light.
  • the magneto-optic crystal 6 is disposed to face the measurement object D so that the reflective film 13 side faces the measurement object D side.
  • the first light enters the magneto-optical crystal 6 from the one surface 11a side of the crystal growth substrate 11, is reflected by the reflective film 13, and enters the light guide optical system 4A again.
  • the second light passes through the magneto-optical crystal 6, passes through the inside of the measurement object D, is reflected by the back surface of the measurement object D, passes through the magneto-optical crystal 6 again, and enters the light guide optical system 4A. .
  • the light detector 7 is a part that detects the first light and the second light.
  • the optical sensor that constitutes the light detection unit 7 include a photodiode, an avalanche photodiode, a photomultiplier tube, and an area image sensor.
  • the light detection unit 7 may separately include a first photosensor having sensitivity to the first light and a second photosensor having sensitivity to the second light.
  • the light detection part 7 may be comprised with the single photosensor which has a sensitivity with respect to both 1st light and 2nd light.
  • the detection signal output from the light detection unit 7 is amplified by the amplifier 21 and input to the frequency analysis unit 8 as an amplified signal.
  • the frequency analysis unit 8 is a part that extracts a measurement frequency component from the amplified signal and outputs the extracted signal as an analysis signal.
  • a lock-in amplifier, a spectrum analyzer, a digitizer, a cross domain analyzer (registered trademark), a network analyzer, or the like is used.
  • the measurement frequency is set based on, for example, the modulation frequency of the modulation current signal applied to the measurement object D by the tester unit 2.
  • the frequency analysis unit 8 may output a phase signal indicating a phase difference between the modulation current signal output from the tester unit 2 and the detection signal or the analysis signal.
  • the analysis signal output by the frequency analysis unit 8 is input to the computer 22.
  • the computer 22 includes a processor, a memory, and the like.
  • a display device 23 such as a monitor and an input device 24 such as a keyboard and a mouse are connected to the computer 22.
  • the computer 22 is input from the frequency analysis unit 8 and a function for controlling the tester unit 2, the light output unit 3, the light guide optical system 4 ⁇ / b> A, the objective lens driving unit 9, the light detection unit 7, the frequency analysis unit 8, and the like.
  • Magnetic distribution image (magnetic intensity image, magnetic phase image) based on analysis signal or phase signal, magnetic frequency mapping, creation of current image indicating current path / current direction based on magnetic distribution, circuit in measurement object D
  • Each function such as creation of a pattern image such as a pattern is executed.
  • the computer 22 executes each of these functions by a processor.
  • a magnetic intensity image and a pattern image showing a two-dimensional magnetic field intensity distribution on the measurement object D are obtained. It is done.
  • the magnetic frequency mapping may be executed by switching the measurement frequency.
  • the magnetic phase image or current image created by the computer 22 may be displayed on the display device 23 for the same identification.
  • the diameter and the scanning range of the first light and the second light may be reduced to execute the processing.
  • the display device 23 may superimpose and display a magnetic distribution image, a current image, and a pattern image.
  • the light guide optical system 4A includes collimators 31A to 31C, a dichroic mirror 32, a polarization beam splitter 33, a Faraday rotator 34, a ⁇ / 4 wavelength plate 35, and a plurality of optical elements. And the galvanometer mirror 36. The plurality of optical elements are optically coupled.
  • the polarization beam splitter 33 and the Faraday rotator 34 constitute a polarization control element K that guides one polarization component of the first light to the light detection unit 7.
  • the polarization beam splitter 33 and the ⁇ / 4 wavelength plate 35 constitute a polarization control element L that guides one polarization component of the second light to the light detection unit 7.
  • the Faraday rotator 34 and the ⁇ / 4 wavelength plate 35 constitute an optical path switching element M that switches the optical path by the optical element so that the first light and the second light are selectively incident on the light detection unit 7. ing.
  • One of the Faraday rotator 34 and the ⁇ / 4 wave plate 35 is advanced into the optical path by the driving means such as a cylinder, and the other is retracted from the optical path.
  • the dichroic mirror 32 is disposed on the upstream side of the polarization control element K in the optical path of the light guide optical system 4A.
  • the dichroic mirror 32 transmits the first light and reflects the second light at a substantially right angle.
  • the polarization beam splitter 33 transmits light having a polarization component having a polarization plane of 0 ° and reflects light having a polarization component having a polarization plane of 90 °.
  • the Faraday rotator 34 rotates the polarization plane of the input light by 22.5 °.
  • the method for inspecting the measurement object D using the inspection apparatus 1 guides the first light having the first wavelength and the second light having the second wavelength different from the first wavelength to the light guide optical system 4A.
  • this step outputs the first light from the light output unit 3, detects the first light by the light detection unit 7 via the light guide optical system 4A, and the second light
  • the step of selectively switching the optical path of the light guide optical system 4A so as to enter the light detection unit 7, the second light is output from the light output unit 3, and the light detection unit 7 via the light guide optical system 4A Detecting a second light.
  • the Faraday rotator 34 advances into the optical path of the light guide optical system 4A in the optical path switching element M as shown in FIG.
  • the first light is linearly polarized light of 0 ° in the initial state.
  • the first light is collimated by the collimator 31A, passes through the dichroic mirror 32, and enters the polarization beam splitter 33.
  • the first light is transmitted through the polarization beam splitter 33 and guided to the objective lens 5 with the polarization plane rotated by 22.5 ° by the Faraday rotator 34.
  • the incident position of the first light on the objective lens 5, that is, the incident position of the first light on the magneto-optical crystal 6 is scanned by the galvanometer mirror 36.
  • the first light reflected by the reflective film 13 of the magneto-optical crystal 6 has a polarization plane ⁇ according to a magneto-optical effect (Kerr effect, Faraday effect, etc.) corresponding to a magnetic field (magnetic field strength) generated by the measurement object D.
  • a magneto-optical effect Kerr effect, Faraday effect, etc.
  • the plane of polarization of the first light is further rotated by 22.5 ° by the Faraday rotator 34.
  • By reciprocating the Faraday rotator 34 only the 90 ° polarization component of the first light whose polarization plane has rotated by 45 + ⁇ ° in total is reflected by the polarization beam splitter 33 and collected by the collimator 31C. It is output to the light detection unit 7.
  • the light detection unit 7 detects intensity modulation caused by the polarization plane rotating by ⁇ ° according to the magneto-optical effect.
  • the ⁇ / 4 wavelength plate 35 advances into the optical path of the light guide optical system 4A.
  • the second light is 0 ° linearly polarized light in the initial state.
  • the second light is collimated by the collimator 31B, reflected by the dichroic mirror 32, and incident on the polarization beam splitter 33.
  • the second light passes through the polarization beam splitter 33 and is guided to the objective lens 5 in a state of being circularly polarized by the ⁇ / 4 wavelength plate 35.
  • the incident position of the second light on the objective lens 5, that is, the incident position of the second light on the measurement object D is scanned by the galvanometer mirror 36.
  • the second light reflected through the inside of the measurement object D passes through the objective lens 5 again and enters the light guide optical system 4A.
  • the second light is linearly polarized light whose polarization plane is rotated by 90 ° by reciprocating the ⁇ / 4 wavelength plate 35, is reflected by the polarization beam splitter 33, and is collected by the collimator 31C to the light detection unit 7. Is output.
  • the presence or absence of abnormality of the measurement object D is detected based on the detection result of the first light reflected by the reflection film 13 of the magneto-optical crystal 6, and the inside of the measurement object D is detected.
  • a circuit pattern or the like of the measurement object D can be acquired based on the detection result of the second light reflected through the light.
  • the light guide optical system 4A that guides the first light and the second light includes an optical path switching element M that selectively causes the first light and the second light to enter the light detection unit 7.
  • optical path switching element M an optical element having a wavelength dependency suitable for the first wavelength and the second wavelength is used in the light guide optical system 4A, while an optical element that forms the optical path of the first light;
  • the optical element that forms the optical path of the second light can be partially shared. Therefore, it is possible to accurately detect both the presence / absence of abnormality of the measurement object D and the acquisition of the pattern while avoiding complication of the configuration.
  • the dichroic mirror 32, the polarization beam splitter 33, the galvano mirror 36, and the collimator 31C are separated by the optical path of the first light and the optical path of the second light. Can be shared.
  • the light output unit 3 includes a first light source that emits first light and a second light source that emits second light. In this case, the first light and the second light having different wavelengths can be output with sufficient intensity, and the SN ratio of the measurement result can be improved.
  • the sensitivity to the first light and the sensitivity to the second light may differ due to wavelength dependency. In this case, it is preferable to prioritize the sensitivity to the first light and use an optical sensor having a characteristic that the sensitivity to the first light is higher than the sensitivity to the second light.
  • the optical path switching element M is configured by the Faraday rotator 34 and the ⁇ / 4 wavelength plate 35. In this case, the optical path switching element M can be configured with a simple configuration.
  • the inspection apparatus separately includes a first optical sensor 7A that detects first light and a second optical sensor 7B that detects second light in the light detection unit 7. Accordingly, the configuration of the light guide optical system 4B is different from that of the first embodiment. More specifically, in the light guide optical system 4B, as shown in FIG. 5, in addition to the configuration of the light guide optical system 4A, a dichroic mirror 41 and a collimator 31D are further arranged on the rear side of the optical path.
  • the optical path of the first light is the same as that of the first embodiment until it is reflected by the reflective film 13 of the magneto-optical crystal 6 and reflected by the polarization beam splitter 33, as shown in FIG.
  • the first light reflected by the polarization beam splitter 33 passes through the dichroic mirror 41 and is output to the first optical sensor 7A of the light detection unit 7 in a state of being collected by the collimator 31C.
  • the optical path of the second light is the same as that of the first embodiment until it is reflected by the measurement object D and reflected by the polarization beam splitter 33, as shown in FIG.
  • the second light reflected by the polarization beam splitter 33 is reflected by the dichroic mirror 41 and output to the second optical sensor 7B of the light detection unit 7 in a state of being collected by the collimator 31D.
  • the optical path switching element M uses the optical element having the wavelength dependency suitable for the first wavelength and the second wavelength in the light guide optical system 4B.
  • the optical element that forms the optical path of the first light and the optical element that forms the optical path of the second light can be partially shared. Therefore, it is possible to accurately detect both the presence / absence of abnormality of the measurement object D and the acquisition of the pattern while avoiding complication of the configuration.
  • the light detection unit 7 includes a first light sensor 7A that detects the first light and a second light sensor 7B that detects the second light. In this case, whether or not there is an abnormality in the measurement object is provided by arranging the first photosensor 7A having high sensitivity to the first light and the second photosensor 7B having high sensitivity to the second light, respectively. Detection and pattern acquisition can be performed accurately.
  • the dichroic mirror 41 is disposed on the upstream side of the polarization control elements K and L.
  • the polarization direction of light can be made uniform by the polarization control elements K and L at the subsequent stage of the dichroic mirror 41. Therefore, the optical path of the first light and the optical path of the second light may be formed on either the reflection side or the transmission side of the dichroic mirror 41, and the degree of freedom in designing the light guide optical system 4B can be ensured.
  • a single collimator and an optical coupler may be arranged instead of the dichroic mirror 41 and the collimators 31C and 31D.
  • an optical fiber that divides the output for each wavelength By using an optical fiber that divides the output for each wavelength, a configuration equivalent to the above embodiment can be realized. It is preferable to use a polarization-maintaining single mode optical coupler as the optical coupler, and it is preferable to use a polarization preserving single mode optical fiber as the optical fiber.
  • the optical path switching element M is configured by the galvano mirror 56, and the first optical sensor 7A of the light detection unit 7 is an independent optical sensor. (I) It differs from the said embodiment by the point which has 7a and optical sensor (ii) 7b.
  • the inspection apparatus according to the third embodiment includes a polarization control element K1 that guides one polarization component of the first light to the optical sensor (i) 7a of the light detection unit 7 in the light guide optical system 4C.
  • the second embodiment is different from the first embodiment in that a polarization control element K2 that guides another polarization component of the first light to the optical sensor (ii) 7b of the light detection unit 7 is disposed.
  • the light guide optical system 4C includes, as a plurality of optical elements, collimators 51A to 51E, visible range polarization beam splitters 52A and 52B, Faraday rotators 53A and 53B, and a near infrared range.
  • a polarizing beam splitter 54, a ⁇ / 4 wave plate 55, and a galvanometer mirror 56 are included.
  • the polarization beam splitter 52B and the Faraday rotator 53B constitute a polarization control element K1 that guides one polarization component of the first light to the light detection unit 7.
  • the polarization beam splitter 52 ⁇ / b> A and the Faraday rotator 53 ⁇ / b> A constitute a polarization control element K ⁇ b> 2 that guides the other polarization component of the first light to the light detection unit 7.
  • the polarization beam splitter 54 and the ⁇ / 4 wavelength plate 55 constitute a polarization control element L that guides one polarization component of the second light to the light detection unit 7.
  • the galvanometer mirror 56 functions as the optical path switching element M by adding the first offset or the second offset to the center angle of the scanning range.
  • the scanning range of the galvanometer mirror 56 is ⁇ 3 °
  • the first offset is + 10 °
  • the second offset is ⁇ 10 °.
  • the galvanometer mirror 56 rotates within a range of + 10 ° ⁇ 3 ° when the first light is output from the light output unit 3, and ⁇ when the second light is output from the light output unit 3. Operates in the range of 10 ° ⁇ 3 °.
  • the Faraday rotator 53A rotates the polarization plane of the input light by 45 °.
  • the Faraday rotator 53B rotates the polarization plane of the input light by 22.5 °.
  • the polarization beam splitter 52A transmits light having a polarization component whose polarization plane is 0 °, and reflects light having a polarization component whose polarization plane is 90 °.
  • the polarization beam splitter 52B transmits light having a polarization component with a polarization plane of 45 ° and reflects light having a polarization component with a polarization surface of 135 °.
  • the first offset is given to the galvanometer mirror 56 in the optical path switching element M.
  • the first light is linearly polarized light of 0 ° in the initial state.
  • the first light is collimated by the collimator 51A, passes through the polarization beam splitter 52A, and the polarization plane is rotated 45 ° by the Faraday rotator 53A.
  • the first light passes through the polarization beam splitter 52B, and is further guided by the Faraday rotator 53B to the objective lens 5 after the plane of polarization is further rotated by 22.5 °.
  • the incident position of the first light on the objective lens 5, that is, the incident position of the first light on the magneto-optical crystal 6 is scanned by the galvanometer mirror 56.
  • the first light reflected by the reflective film 13 of the magneto-optical crystal 6 has a polarization plane ⁇ according to a magneto-optical effect (Kerr effect, Faraday effect, etc.) corresponding to a magnetic field (magnetic field strength) generated by the measurement object D.
  • a magneto-optical effect Kerr effect, Faraday effect, etc.
  • the plane of polarization of the first light is further rotated by 22.5 ° by the Faraday rotator 53B.
  • the Faraday rotator 53B reciprocates, only the polarization component of 135 ° is reflected by the polarization beam splitter 52B out of the first light whose polarization plane is rotated by 90 + ⁇ ° in total, and is collected by the collimator 51C.
  • the light is output to the light sensor (i) 7a of the first light sensor 7A of the light detection unit 7.
  • the polarized light component transmitted through the polarization beam splitter 52B in the first light is further condensed by the collimator 51D after being reflected by the polarization beam splitter 52A after the polarization plane is further rotated by 45 ° by the Faraday rotator 53A.
  • the light is output to the light sensor (ii) 7b of the first light sensor 7A of the light detection unit 7.
  • the light detection unit 7 detects the differential of the light input to the first optical sensor 7A.
  • the first optical sensor 7A detects intensity modulation caused by the polarization plane rotating by ⁇ ° according to the magneto-optical effect.
  • the optical sensor 7A may be configured to have a plurality of light receiving surfaces instead of having independent optical sensors.
  • the second offset is given to the galvanometer mirror 56 in the optical path switching element M.
  • the second light is 0 ° linearly polarized light in the initial state.
  • the second light is collimated by the collimator 51E, transmitted through the polarization beam splitter 54, and guided to the objective lens 5 in the state of being circularly polarized by the ⁇ / 4 wavelength plate 55. Is done.
  • the incident position of the second light on the objective lens 5, that is, the incident position of the second light on the measurement object D is scanned by the galvanometer mirror 56.
  • the second light reflected through the inside of the measurement object D passes through the objective lens 5 again and enters the light guide optical system 4C.
  • the second light is linearly polarized light whose polarization plane is rotated by 90 ° by reciprocating the ⁇ / 4 wavelength plate 55, reflected by the polarization beam splitter 54, and collected by the collimator 51E. It is output to the second photosensor 7B.
  • the optical path switching element M while using the optical element having the wavelength dependency suitable for the first wavelength and the second wavelength by the optical path switching element M in the light guide optical system 4C as in the above-described embodiment.
  • the optical element that forms the optical path of the first light and the optical element that forms the optical path of the second light can be partially shared. Therefore, it is possible to accurately detect both the presence / absence of abnormality of the measurement object D and the acquisition of the pattern while avoiding complication of the configuration.
  • the optical path switching element M is configured only by the galvanometer mirror 56, the optical path switching element M can be easily configured.
  • the galvano mirror 56 can be shared by the optical path of the first light and the optical path of the second light. Further, the light detection unit 7 can perform differential detection between one polarization component of the first light and another polarization component of the first light. Therefore, even when the SN ratio of the light source is relatively low, the presence / absence of abnormality of the measurement object D can be detected with high accuracy.
  • a single collimator and an optical fiber having an optical coupler that divides light into orthogonal polarization components may be arranged.
  • an optical fiber that branches the output of each polarization component a configuration equivalent to that of the above embodiment can be realized.
  • the optical fiber it is preferable to use a polarization-preserving single mode optical fiber.
  • the inspection apparatus is a modification of the third embodiment.
  • the arrangement of the polarization control element K2 guided to 7 and the collimator 51D is omitted.
  • the polarization beam splitter 52B of the light guide optical system 4D is different from the third embodiment in that it transmits light having a polarization component whose polarization plane is 0 ° and reflects light having a polarization component whose polarization plane is 90 °. Yes.
  • Other points are the same as in the third embodiment.
  • the first optical sensor 7A of the light detection unit 7 includes only the 90 ° polarization component reflected by the polarization beam splitter 52B out of the first light whose polarization plane is rotated by 90 ° in total. Is output.
  • the second light sensor 7B of the light detection unit 7 has the second light that has become a linearly polarized light whose plane of polarization is rotated by 90 ° by reciprocating the ⁇ / 4 wavelength plate 55. Is output.
  • the optical path switching element M uses an optical element having wavelength dependency suitable for the first wavelength and the second wavelength in the light guide optical system 4D.
  • the optical element that forms the optical path of the first light and the optical element that forms the optical path of the second light can be partially shared. Therefore, it is possible to accurately detect both the presence / absence of abnormality of the measurement object D and the acquisition of the pattern while avoiding complication of the configuration.
  • Such a form is useful when the SN ratio of the light source can be sufficiently secured, and the number of optical elements used in the light guide optical system 4D can be reduced and the configuration can be simplified.
  • the inspection apparatus according to the fifth embodiment is different from the above embodiment in that an optical path switching element M is configured by a dichroic mirror 61 in the light guide optical system 4E.
  • the light guide optical system 4E has a configuration similar to that of the light guide optical system 4C in the third embodiment, and is the third embodiment in that a dichroic mirror 61 is disposed between the Faraday rotator 53B and the galvanometer mirror 56. It is different from the form.
  • the dichroic mirror 61 transmits the first light.
  • the optical path of the first light is substantially the same as that of the third embodiment as shown in FIG.
  • polarization components orthogonal to each other in the first light are caused by the polarization control element K1 and the polarization control element K2.
  • Each is output and a differential is detected.
  • the dichroic mirror 61 reflects the second light.
  • the optical path of the second light is substantially the same as that of the third embodiment except that the polarization beam splitter 54 and the ⁇ / 4 wavelength plate 55 are optically coupled to the dichroic mirror 61 as shown in FIG. Are the same.
  • the second light sensor 7B of the light detection unit 7 outputs the second light that is linearly polarized light whose polarization plane is rotated by 90 ° by reciprocating the ⁇ / 4 wavelength plate 55.
  • the optical path switching element M uses the optical element having the wavelength dependency suitable for the first wavelength and the second wavelength in the light guide optical system 4E.
  • the optical element that forms the optical path of the first light and the optical element that forms the optical path of the second light can be partially shared. Therefore, it is possible to accurately detect both the presence / absence of abnormality of the measurement object D and the acquisition of the pattern while avoiding complication of the configuration.
  • the optical path switching element M is configured only by the dichroic mirror 61 and no physical operation is required, the optical path switching element M can be easily configured.
  • the dichroic mirror 61 and the galvano mirror 56 can be shared by the optical path of the first light and the optical path of the second light. Further, the light detection unit 7 can detect a differential between one polarization component of the first light and another polarization component of the first light. Therefore, even when the SN ratio of the light source is relatively low, the presence / absence of abnormality of the measurement object D can be detected with high accuracy. In addition, although the light quantity which can be detected falls, in this embodiment, you may use a half mirror instead of the dichroic mirror 61. FIG. [Sixth Embodiment]
  • the inspection apparatus is a modification of the fifth embodiment.
  • the other polarization component of the first light is detected by the light detection unit. 7 is different from the fifth embodiment in that the arrangement of the polarization control element K2 that guides light to 7 is omitted.
  • the polarization beam splitter 52B of the light guide optical system 4F transmits light having a polarization component having a polarization plane of 0 ° and reflects light having a polarization component having a polarization plane of 90 °. Yes.
  • Other points are the same as in the fifth embodiment.
  • the optical path switching element M uses the optical element having the wavelength dependency suitable for the first wavelength and the second wavelength in the light guide optical system 4F.
  • the optical element that forms the optical path of the first light and the optical element that forms the optical path of the second light can be partially shared. Therefore, it is possible to accurately detect both the presence / absence of abnormality of the measurement object D and the acquisition of the pattern while avoiding complication of the configuration.
  • Such a form is useful when the SN ratio of the light source can be sufficiently secured, and the number of optical elements used in the light guide optical system 4F can be reduced and the configuration can be simplified.
  • the inspection apparatus according to the seventh embodiment is different from the above-described embodiment in that an optical path switching element M is configured by an optical mirror 71 in the light guide optical system 4G.
  • the light guide optical system 4G has a configuration similar to that of the light guide optical system 4E in the fifth embodiment, and differs from the fifth embodiment in that an optical mirror 71 is disposed instead of the dichroic mirror 61. .
  • the optical mirror 71 can be switched between advance and retreat to the optical path by a driving means such as a cylinder.
  • a driving means such as a cylinder.
  • the optical mirror 71 is retracted from the optical path as shown in FIG.
  • the optical path of the first light is substantially the same as in the fifth embodiment.
  • polarization components orthogonal to each other in the first light are caused by the polarization control element K1 and the polarization control element K2. Each is output and a differential is detected.
  • the optical mirror 71 advances into the optical path.
  • the optical mirror 71 reflects the second light.
  • the optical path of the second light is substantially the same as that of the fifth embodiment except that the polarization beam splitter 54 and the ⁇ / 4 wavelength plate 55 are optically coupled to the optical mirror 71 as shown in FIG. Are the same.
  • the second light sensor 7B of the light detection unit 7 outputs the second light that is linearly polarized light whose polarization plane is rotated by 90 ° by reciprocating the ⁇ / 4 wavelength plate 55.
  • the optical path switching element M uses the optical element having the wavelength dependency suitable for the first wavelength and the second wavelength in the light guide optical system 4G.
  • the optical element that forms the optical path of the first light and the optical element that forms the optical path of the second light can be partially shared. Therefore, it is possible to accurately detect both the presence / absence of abnormality of the measurement object D and the acquisition of the pattern while avoiding complication of the configuration. Further, since the optical path switching element M is configured only by the advance / retreat of the optical mirror 71, the optical path switching element M can be easily configured.
  • the optical mirror 71 and the galvano mirror 56 can be shared by the optical path of the first light and the optical path of the second light. Further, the light detection unit 7 can perform differential detection between one polarization component of the first light and another polarization component of the first light. Therefore, even when the SN ratio of the light source is relatively low, the presence / absence of abnormality of the measurement object D can be detected with high accuracy. [Eighth Embodiment]
  • the inspection apparatus is a modification of the seventh embodiment.
  • the other polarization component of the first light is detected by the light detection unit. 7 is different from the seventh embodiment in that the arrangement of the polarization control element K2 that guides light to the light guide 7 is omitted.
  • the polarizing beam splitter 52B of the light guide optical system 4H transmits light having a polarization component having a polarization plane of 0 ° and reflecting light having a polarization component having a polarization plane of 90 °. Yes.
  • Other points are the same as in the seventh embodiment.
  • the optical path switching element M uses the optical element having the wavelength dependency suitable for the first wavelength and the second wavelength in the light guide optical system 4H.
  • the optical element that forms the optical path of the first light and the optical element that forms the optical path of the second light can be partially shared. Therefore, it is possible to accurately detect both the presence / absence of abnormality of the measurement object D and the acquisition of the pattern while avoiding complication of the configuration.
  • Such a configuration is useful when the SN ratio of the light source can be sufficiently ensured, and the number of optical elements used in the light guide optical system 4H can be reduced and the configuration can be simplified.
  • the inspection apparatus is different from the above embodiment in the configuration of the light guide optical system 4I.
  • the optical path switching element M is configured by a Faraday rotator and a ⁇ / 4 wavelength plate.
  • the configuration of the light guide optical system 4I is similar to that of the fifth embodiment, and the Faraday rotator 53B and the ⁇ / 4 wavelength plate 55 are arranged on the front side of the galvanometer mirror 56 as the optical path switching element M.
  • One of the Faraday rotator 53B and the ⁇ / 4 wavelength plate 55 is advanced into the optical path by the driving means such as a cylinder, and the other is retracted from the optical path.
  • the dichroic mirror 61 is disposed between the polarization beam splitter 52B and the optical path switching element M.
  • the Faraday rotator 53B constitutes an optical path switching element M and also a polarization control element K1 that cooperates with the polarization beam splitter 52B to guide one polarization component of the first light to the light detection unit 7.
  • the ⁇ / 4 wavelength plate 55 forms a polarization control element L that cooperates with the polarization beam splitter 54 to guide one polarization component of the second light to the light detection unit 7. To do.
  • the Faraday rotator 53B advances into the optical path of the light guide optical system 4I.
  • the dichroic mirror 61 transmits the first light.
  • the optical path of the first light is substantially the same as that of the fifth embodiment except that the positional relationship between the dichroic mirror 61 and the Faraday rotator 53B is opposite.
  • polarization components orthogonal to each other in the first light are caused by the polarization control element K1 and the polarization control element K2. Each is output and a differential is detected.
  • the ⁇ / 4 wavelength plate 55 advances into the optical path of the light guide optical system 4I in the optical path switching element M as shown in FIG.
  • the optical path of the second light is substantially the same as that of the fifth embodiment except that the positional relationship between the dichroic mirror 61 and the ⁇ / 4 wavelength plate 55 is opposite.
  • the second light sensor 7B of the light detection unit 7 outputs the second light that is linearly polarized light of 90 ° by reciprocating the ⁇ / 4 wavelength plate 55.
  • the optical path switching element M uses the optical element having the wavelength dependency suitable for the first wavelength and the second wavelength in the light guide optical system 4I.
  • the optical element that forms the optical path of the first light and the optical element that forms the optical path of the second light can be partially shared. Therefore, it is possible to accurately detect both the presence / absence of abnormality of the measurement object D and the acquisition of the pattern while avoiding complication of the configuration.
  • the dichroic mirror 61 and the galvano mirror 56 can be shared by the optical path of the first light and the optical path of the second light. Further, the light detection unit 7 can perform differential detection between one polarization component of the first light and another polarization component of the first light. Therefore, even when the SN ratio of the light source is relatively low, the presence / absence of abnormality of the measurement object D can be detected with high accuracy.
  • the inspection apparatus is a modification of the ninth embodiment.
  • the other polarization component of the first light is detected by the light detection unit. 7 is different from the ninth embodiment in that the arrangement of the polarization control element K2 that guides light to 7 is omitted.
  • the polarizing beam splitter 52B of the light guide optical system 4J transmits light having a polarization component whose polarization plane is 0 ° and reflects light having a polarization component whose polarization plane is 90 °. Yes.
  • Other points are the same as in the ninth embodiment.
  • the optical path switching element M uses an optical element having wavelength dependency suitable for the first wavelength and the second wavelength in the light guide optical system 4J.
  • the optical element that forms the optical path of the first light and the optical element that forms the optical path of the second light can be partially shared. Therefore, it is possible to accurately detect both the presence / absence of abnormality of the measurement object D and the acquisition of the pattern while avoiding complication of the configuration.
  • Such a configuration is useful when the SN ratio of the light source can be sufficiently secured, and the number of optical elements used in the light guide optical system 4J can be reduced and the configuration can be simplified.
  • the inspection apparatus is a modification of the first embodiment.
  • one polarization component of the first light is detected by a light detection unit. 7 is different from the first embodiment in that a polarization control element K1 that guides light to 7 and a polarization control element K2 that guides another polarization component of the first light to the light detection unit 7 are arranged.
  • a polarization control element L1 that guides one polarization component of the second light to the light detection unit 7 and a polarization control element L2 that guides another polarization component of the second light to the light detection unit 7 It is different from the first embodiment in that it is arranged.
  • the light guide optical system 4K includes, as a plurality of optical elements, collimators 81A to 81D, a dichroic mirror 82, polarization beam splitters 83A and 83B, Faraday rotators 84A and 84B, and a ⁇ / 4 wavelength.
  • a plate 85 and a galvanometer mirror 86 are included.
  • the light detection part 7 has optical sensor (i) 7a and optical sensor (ii) 7b.
  • the Faraday rotator 84 ⁇ / b> B and the ⁇ / 4 wavelength plate 85 are disposed on the front side of the galvano mirror 86 as the optical path switching element M.
  • one of the Faraday rotator 84B and the ⁇ / 4 wavelength plate 85 is advanced into the optical path by the driving means such as a cylinder, and the other is retracted from the optical path.
  • the polarization beam splitter 83B and the Faraday rotator 84B constitute a polarization control element K1 that guides one polarization component of the first light to the photosensor (i) 7a of the light detection unit 7.
  • the polarization beam splitter 83A and the Faraday rotator 84A are arranged on the front side of the polarization control element K1, and guide the other polarization components of the first light to the optical sensor (ii) 7b of the light detection unit 7.
  • K2 is configured.
  • the polarization beam splitter 83B and the ⁇ / 4 wavelength plate 85 constitute a polarization control element L1 that guides one polarization component of the second light to the photosensor (i) 7a of the light detection unit 7.
  • the polarization beam splitter 83A and the Faraday rotator 84A constitute a polarization control element L2 that guides the other polarization component of the second light to the photosensor (ii) 7b of the light detection unit 7.
  • the dichroic mirror 82 is disposed on the upstream side of the polarization control elements K2 and L2.
  • the Faraday rotator 84B advances into the optical path of the light guide optical system 4K in the optical path switching element M as shown in FIG.
  • the first light is linearly polarized light of 0 ° in the initial state.
  • the first light is collimated by the collimator 81A, passes through the dichroic mirror 82 and the polarization beam splitter 83A, and the polarization plane is rotated 45 ° by the Faraday rotator 84A.
  • the first light passes through the polarization beam splitter 83B, and is guided to the objective lens 5 after the polarization plane is rotated by 22.5 ° by the Faraday rotator 84B.
  • the incident position of the first light on the objective lens 5, that is, the incident position of the first light on the magneto-optical crystal 6 is scanned by the galvanometer mirror 86.
  • the first light reflected by the reflective film 13 of the magneto-optical crystal 6 has a polarization plane ⁇ according to a magneto-optical effect (Kerr effect, Faraday effect, etc.) corresponding to a magnetic field (magnetic field strength) generated by the measurement object D.
  • a magneto-optical effect Kerr effect, Faraday effect, etc.
  • the plane of polarization of the first light is further rotated by 22.5 ° by the Faraday rotator 84B.
  • the polarization component transmitted through the polarization beam splitter 83B is condensed by the collimator 81D after the polarization plane is further rotated by 45 ° by the Faraday rotator 84A and reflected by the polarization beam splitter 83A.
  • the light is output to the light sensor (ii) 7b of the light detection unit 7.
  • the light detector 7 detects the differential of the input light.
  • the light detection unit 7 detects intensity modulation caused by the polarization plane rotating by ⁇ ° according to the magneto-optical effect.
  • the ⁇ / 4 wavelength plate 85 advances into the optical path of the light guide optical system 4K.
  • the second light is 0 ° linearly polarized light in the initial state.
  • the second light is collimated by the collimator 81B and reflected by the dichroic mirror 82.
  • the second light reflected by the dichroic mirror 82 passes through the polarization beam splitter 83A, and the plane of polarization is rotated by the Faraday rotator 84A.
  • the second light passes through the polarization beam splitter 83B and is guided to the objective lens 5 in a state of being circularly polarized by the ⁇ / 4 wavelength plate 85.
  • the incident position of the second light on the objective lens 5, that is, the incident position of the second light on the measurement object D is scanned by the galvanometer mirror 86.
  • the second light reflected through the inside of the measurement object D passes through the objective lens 5 again and enters the light guide optical system 4K.
  • the second light becomes linearly polarized light whose polarization plane is rotated by 90 ° by reciprocating the ⁇ / 4 wavelength plate 85.
  • the polarization component of 135 ° is reflected by the polarization beam splitter 83B and output to the photosensor (i) 7a of the photodetecting section 7 in a state of being collected by the collimator 31C.
  • the polarization plane of the polarization component transmitted through the polarization beam splitter 83B is further rotated by the Faraday rotator 84A.
  • the 90 ° polarization component is reflected by the polarization beam splitter 83A and then output to the photosensor (ii) 7b of the photodetecting section 7 in a state of being condensed by the collimator 81D.
  • the optical path switching element M uses the optical element having the wavelength dependency suitable for the first wavelength and the second wavelength in the light guide optical system 4K.
  • the optical element that forms the optical path of the first light and the optical element that forms the optical path of the second light can be partially shared. Therefore, it is possible to accurately detect both the presence / absence of abnormality of the measurement object D and the acquisition of the pattern while avoiding complication of the configuration.
  • the dichroic mirror 82, the polarization beam splitters 83A and 83B, the Faraday rotator 84A, and the galvanometer mirror 86 are connected to the optical path of the first light and the second light. Can be shared with other optical paths. Such a form is useful when the wavelength characteristics of these optical elements and the detection sensitivity of the light detection unit can be applied to both the wavelength of the first light and the wavelength of the second light.
  • the light detection unit 7 can perform differential detection between one polarization component of the first light and another polarization component of the first light. Therefore, even when the SN ratio of the light source is relatively low, the presence / absence of abnormality of the measurement object D can be detected with high accuracy.
  • the Faraday rotator 84B remains advanced in the optical path of the light guide optical system 4K, and both the optical sensor (i) 7a and the optical sensor (ii) 7b Two lights may be detected simultaneously.
  • the ⁇ / 4 wavelength plate 85 advances into the optical path of the light guide optical system 4K, and the same amount of light is detected as when the second light is detected only by the optical sensor (i) 7a. It can be detected by the unit 7.
  • the inspection apparatus is a modification of the eleventh embodiment.
  • the light guide optical system 4L outputs the second light to the light detection unit 7. Is different from the eleventh embodiment. More specifically, in the light guide optical system 4L, a dichroic mirror 91 and a collimator 81E are further arranged on the output side of the polarization beam splitter 83B.
  • the polarization beam splitter 83B and the ⁇ / 4 wavelength plate 85 constitute a polarization control element L that guides one polarization component of the second light to the light detection unit 7.
  • the optical path of the first light is that the polarization component reflected by the polarization beam splitter 83B passes through the dichroic mirror 91 and is output to the first optical sensor 7A of the light detection unit 7.
  • the polarization component reflected by the polarization beam splitter 83B is further reflected by the dichroic mirror 91 and output to the second optical sensor 7B of the light detection unit 7.
  • the second light sensor 7B of the light detection unit 7 outputs the second light, which is linearly polarized light whose polarization plane is rotated by 90 ° by reciprocating the ⁇ / 4 wavelength plate 85, via the collimator 81E. .
  • the optical path switching element M partially includes an optical element that forms the optical path of the first light and an optical element that forms the optical path of the second light. Can be shared. Therefore, it is possible to accurately detect both the presence / absence of abnormality of the measurement object D and the acquisition of the pattern while avoiding complication of the configuration.
  • the dichroic mirror 82, the polarization beam splitters 83A and 83B, the Faraday rotator 84A, and the galvanometer mirror 86 are connected to the optical path of the first light and the second light. Can be shared with other optical paths. Such a form is useful when the wavelength characteristics of these optical elements can be applied to both the wavelength of the first light and the wavelength of the second light.
  • the light detection part 7 which has the optical sensor (i) 7a and the optical sensor (ii) 7b, one polarization component of the first light and another polarization component of the first light Differential detection is possible. Therefore, even when the SN ratio of the light source is relatively low, the presence / absence of abnormality of the measurement object D can be detected with high accuracy.
  • the dichroic mirror 91 is disposed on the upstream side of the polarization control elements K1, K2, and L.
  • the polarization direction of light can be made uniform by the polarization control elements K1, K2, and L at the subsequent stage of the dichroic mirror 91. Therefore, the optical path of the first light and the optical path of the second light may be formed on either the reflection side or the transmission side of the dichroic mirror 91, and the degree of design freedom of the light guide optical system 4L can be ensured.
  • the inspection apparatus is a modification of the seventh embodiment, and as shown in FIGS. 27 and 28, in the light guide optical system 4M, the front stage of the optical mirror 71 configured as the optical path switching element M. Is different from the seventh embodiment in that a plurality of galvanometer mirrors (galvanometer mirrors 56A and 56B) are provided.
  • the optical mirror 71 retreats from the optical path to pass the first light.
  • the optical path of the first light is substantially the same as that of the seventh embodiment as shown in FIG.
  • polarization components orthogonal to each other in the first light are caused by the polarization control element K1 and the polarization control element K2. Each is output and a differential is detected.
  • the optical mirror 71 advances into the optical path to reflect the second light.
  • the optical path of the second light is substantially the same as that of the seventh embodiment as shown in FIG.
  • the second light sensor 7B of the light detection unit 7 outputs the second light that is linearly polarized light whose polarization plane is rotated by 90 ° by reciprocating the ⁇ / 4 wavelength plate 55.
  • the optical path switching element M is configured only by the advance / retreat of the optical mirror 71, detection of the presence / absence of an abnormality of the measurement object D and acquisition of the pattern are avoided while avoiding complication of the configuration. Can be compatible with high accuracy.
  • the light detection unit 7 can detect a differential between one polarization component in the first light and another polarization component in the first light. Therefore, even when the SN ratio of the light source is relatively low, the presence / absence of abnormality of the measurement object D can be detected with high accuracy.
  • the optical path switching element M may be composed of a dichroic mirror or a half mirror. In this case, since no physical operation is required, the optical path switching element M can be configured more easily.
  • the inspection apparatus according to the fourteenth embodiment is a modification of the eighth embodiment, and as shown in FIGS. 29 and 30, in the light guide optical system 4N, the front stage of the optical mirror 71 configured as the optical path switching element M. Is different from the eighth embodiment in that a plurality of galvanometer mirrors (galvanometer mirrors 56A and 56B) are provided.
  • the optical path switching element M can accurately detect both the presence / absence of abnormality of the measurement object D and the acquisition of the pattern while avoiding the complicated configuration.
  • Such a configuration is useful when the SN ratio of the light source can be sufficiently secured, and the number of optical elements used in the light guide optical system 4N can be reduced and the configuration can be simplified.
  • variable polarization rotator variable rotator

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Immunology (AREA)
  • Electrochemistry (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Multimedia (AREA)
  • Toxicology (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Computer Hardware Design (AREA)
  • Electromagnetism (AREA)
  • Measuring Magnetic Variables (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

検査装置1は、第1の波長を有する第1の光及び第2の波長を有する第2の光を出力する光出力部3と、反射膜13が計測対象物Dに対向するように配置される磁気光学結晶6と、第1の光及び前記第2の光を検出する光検出部7と、第1の光及び第2の光を磁気光学結晶6及び計測対象物Dに向けて導光すると共に、磁気光学結晶6で反射した第1の光と、計測対象物Dで反射した第2の光とを光検出部7に向けて導光する導光光学系4Aと、を備え、導光光学系4Aは、第1の光及び第2の光が選択的に光検出部7に入射するように、複数の光学素子による光路を切り替える光路切替素子Mを有している。

Description

検査装置及び検査方法
 本発明は、光プロービング技術を用いた検査装置及び検査方法に関する。
 半導体デバイス等の計測対象物を検査する光プロービング技術では、光源から出射した光を計測対象物に照射し、計測対象物からの計測光(反射光)を光センサで検出して検出信号を取得する。光プロービング技術の一種であるMOFM(Magneto-Optical Frequency Mapping)法では、磁気光学結晶を計測対象物に対向して配置し、磁気光学結晶の磁気光学効果に応じて偏光状態が変化した反射光を光センサで検出する。この方法では、計測対象物に生じている磁界の分布に基づいて、計測対象物の異常の有無の検出がなされる。例えば特許文献1では、サンプルに対して磁気光学フィルムを配置し、磁気光学フィルムに照射した直線偏光の光の反射光の画像をカメラで取得してサンプルの磁場及び電流の流れをマッピングする方法が開示されている。
特表2013-544352号公報
 計測対象物の検査においては、光源から出射した光を計測対象物にも照射し、計測対象物のパターン(回路パターン等)を取得する場合がある。この場合、例えば計測対象物に生じている磁界の分布と、計測対象物のパターンとを重畳することで、異常が生じている位置の把握が容易となる。
 ところで、磁気光学結晶における磁場に対する偏光の回転角は、一般に波長依存性を有している。例えば入射する光の波長が1μmより短い場合、波長が短くなるに従って偏光の回転角が大きくなる。一方で、所望の計測対象物に対して好適な光の波長域は、磁気光学結晶において高い感度を有する波長域と異なる場合が考えられる。例えば半導体デバイスを計測対象物とする場合、シリコンに対して十分な透過性を有する光の波長域は、1μmよりも長い赤外域である。これらの波長の差が大きくなると、光学素子の特性や光検出部の検出感度の波長依存性に起因して計測の精度が低下するおそれがある。しかしながら、波長の異なる光に対して別々の光路を設けると、多数の光学素子が必要となり、装置構成が複雑化してしまう問題がある。
 本発明は、上記課題の解決のためになされたものであり、構成の複雑化を回避しつつ、計測対象物の異常の有無の検出とパターンの取得とを精度良く両立できる検査装置及び検査方法を提供することを目的とする。
 本発明の一側面に係る検査装置は、計測対象物の検査を行う検査装置であって、第1の波長を有する第1の光、及び第1の波長とは異なる第2の波長を有する第2の光を出力する光出力部と、第1の光を反射する反射面を有し、当該反射面が計測対象物に対向するように配置される磁気光学結晶と、第1の光及び第2の光を検出する光検出部と、複数の光学素子によって構成され、第1の光及び第2の光を磁気光学結晶及び計測対象物に向けて導光すると共に、磁気光学結晶で反射した第1の光と、計測対象物で反射した第2の光とを光検出部に向けて導光する導光光学系と、を備え、導光光学系は、第1の光及び第2の光が選択的に光検出部に入射するように、複数の光学素子による光路を切り替える光路切替素子を有している。
 この検査装置では、磁気光学結晶で反射した第1の光の検出結果に基づいて計測対象物の異常の有無が検出され、計測対象物で反射した第2の光の検出結果に基づいて計測対象物のパターンを取得できる。第1の光及び第2の光を導光する導光光学系は、第1の光及び第2の光を選択的に光検出部に入射させる光路切替素子を有している。この光路切替素子により、第1の波長及び第2の波長に適した波長依存性を有する光学素子を導光光学系で用いる一方で、第1の光の光路を形成する光学素子と、第2の光の光路を形成する光学素子とを一部で共通化できる。したがって、構成の複雑化を回避しつつ、計測対象物の異常の有無の検出とパターンの取得とを精度良く両立できる。
 また、光出力部は、第1の光を出射する第1の光源と、第2の光を出射する第2の光源とを有していてもよい。この場合、波長の異なる第1の光及び第2の光を十分な強度で出力でき、光源のSN比を向上できる。
 また、光検出部は、第1の光を検出する第1の光センサと、第2の光を検出する第2の光センサとを有していてもよい。この場合、第1の光及び第2の光に対して光検出部に十分な感度を持たせることができ、計測対象物の異常の有無の検出とパターンの取得とを精度良く両立できる。
 また、導光光学系は、第1の光の一の偏光成分を光検出部に導光する偏光制御素子を有していてもよい。これにより、磁気光学結晶での第1の光の偏光の変化を好適に検出できる。
 また、導光光学系は、第1の光の他の偏光成分を光検出部に導光する偏光制御素子を更に有していてもよい。この場合、光検出部において、第1の光の一の偏光成分と、第1の光の他の偏光成分との差動の検出が可能となる。
 また、導光光学系は、第2の光の一の偏光成分を光検出部に導光する偏光制御素子を有していていてもよい。これにより、導光光学系において、第1の光の光路を形成する光学素子と、第2の光の光路を形成する光学素子とを一部で一層共通化することができる。
 また、光路切替素子は、ファラデー回転子及び波長板によって構成されていてもよい。この場合、簡単な構成で光路切替素子を構成できる。
 また、光路切替素子は、ダイクロイックミラーによって構成されていてもよい。この場合、簡単な構成で光路切替素子を構成できる。
 また、光路切替素子は、ガルバノミラーによって構成されていてもよい。この場合、簡単な構成で光路切替素子を構成できる。
 また、光路切替素子は、光学ミラーによって構成されていてもよい。この場合、簡単な構成で光路切替素子を構成できる。
 また、導光光学系は、ダイクロイックミラーを含んで構成され、ダイクロイックミラーは、偏光制御素子の前段側に配置されていてもよい。この場合、ダイクロイックミラーの後段の偏光制御素子によって光の偏光方向を揃えることができる。したがって、ダイクロイックミラーの反射側及び透過側のいずれに第1の光の光路及び第2の光の光路を形成してもよく、導光光学系の設計の自由度を担保できる。
 また、計測対象物は、半導体デバイスであってもよい。この検査装置によれば、半導体デバイスの異常の有無の検出とパターンの取得とを精度良く両立できる。
 また、第1の波長は、第2の波長よりも短い波長であってもよい。磁気光学結晶や計測対象物に対してより好適な波長を用いることで、計測対象物の異常の有無の検出とパターンの取得とを精度良く両立できる。
 また、本発明の一側面に係る検査方法は、計測対象物に対向するように配置した磁気光学結晶を用いて計測対象物の検査を行う検査方法であって、第1の波長を有する第1の光、及び第1の波長とは異なる第2の波長を有する第2の光を導光光学系によって磁気光学結晶及び計測対象物に導光し、磁気光学結晶或いは計測対象物で反射した第1の光及び第2の光を検出するステップを備え、当該ステップは、光出力部から第1の光を出力し、導光光学系を介して光検出部で第1の光を検出するステップと、第2の光が光検出部に入射するように導光光学系の光路を選択的に切り替えるステップと、光出力部から第2の光を出力し、導光光学系を介して光検出部で第2の光を検出するステップと、を含む。
 この検査方法では、例えば磁気光学結晶で反射した第1の光の検出結果に基づいて計測対象物の異常の有無を検出し、計測対象物で反射した第2の光の検出結果に基づいて計測対象物のパターンを取得できる。第1の光及び第2の光を導光する導光光学系において、第1の光及び第2の光を選択的に光検出部に入射させる光路を切り替えることで、計測対象物の異常の有無の検出とパターンの取得とを精度良く両立できる。
 この検査装置及び検査方法では、構成の複雑化を回避しつつ、計測対象物の異常の有無の検出とパターンの取得とを精度良く両立できる。
第1実施形態に係る検査装置を示す概略図である。 磁気光学結晶の一例を示す概略図である。 図1に示した検査装置における導光光学系での第1の光の光路を示す図である。 図1に示した検査装置における導光光学系での第2の光の光路を示す図である。 第2実施形態に係る検査装置における導光光学系での第1の光の光路を示す図である。 第2実施形態に係る検査装置における導光光学系での第2の光の光路を示す図である。 第3実施形態に係る検査装置における導光光学系での第1の光の光路を示す図である。 第3実施形態に係る検査装置における導光光学系での第2の光の光路を示す図である。 第4実施形態に係る検査装置における導光光学系での第1の光の光路を示す図である。 第4実施形態に係る検査装置における導光光学系での第2の光の光路を示す図である。 第5実施形態に係る検査装置における導光光学系での第1の光の光路を示す図である。 第5実施形態に係る検査装置における導光光学系での第2の光の光路を示す図である。 第6実施形態に係る検査装置における導光光学系での第1の光の光路を示す図である。 第6実施形態に係る検査装置における導光光学系での第2の光の光路を示す図である。 第7実施形態に係る検査装置における導光光学系での第1の光の光路を示す図である。 第7実施形態に係る検査装置における導光光学系での第2の光の光路を示す図である。 第8実施形態に係る検査装置における導光光学系での第1の光の光路を示す図である。 第8実施形態に係る検査装置における導光光学系での第2の光の光路を示す図である。 第9実施形態に係る検査装置における導光光学系での第1の光の光路を示す図である。 第9実施形態に係る検査装置における導光光学系での第2の光の光路を示す図である。 第10実施形態に係る検査装置における導光光学系での第1の光の光路を示す図である。 第10実施形態に係る検査装置における導光光学系での第2の光の光路を示す図である。 第11実施形態に係る検査装置における導光光学系での第1の光の光路を示す図である。 第11実施形態に係る検査装置における導光光学系での第2の光の光路を示す図である。 第12実施形態に係る検査装置における導光光学系での第1の光の光路を示す図である。 第12実施形態に係る検査装置における導光光学系での第2の光の光路を示す図である。 第13実施形態に係る検査装置における導光光学系での第1の光の光路を示す図である。 第13実施形態に係る検査装置における導光光学系での第2の光の光路を示す図である。 第14実施形態に係る検査装置における導光光学系での第1の光の光路を示す図である。 第14実施形態に係る検査装置における導光光学系での第2の光の光路を示す図である。
 以下、図面を参照しながら、本発明の一側面に係る検査装置及び検査方法の好適な実施形態について詳細に説明する。
[第1実施形態]
 図1は、第1実施形態に係る検査装置を示す概略図である。第1実施形態に係る検査装置1は、計測対象物Dの検査を行う装置である。検査装置1は、テスタユニット2と、光出力部3と、導光光学系4Aと、対物レンズ5と、磁気光学結晶6と、光検出部7とを含んで構成されている。光出力部3、導光光学系4A、対物レンズ5、磁気光学結晶6、及び光検出部7は、光学的にカップリングされている。計測対象物Dは、本実施形態では例えば半導体デバイスである。半導体デバイスとしては、例えばトランジスタ等のPNジャンクションを有する集積回路、大電流用/高圧用MOSトランジスタ及びバイポーラトランジスタなどが挙げられる。
 集積回路には、例えば小規模集積回路(SSI)、中規模集積回路(MSI)、大規模集積回路(LSI)、超大規模集積回路(VLSI)、超々大規模集積回路(ULSI)、ギガ・スケール集積回路(GSI)などが含まれる。計測対象物Dは、半導体デバイスに限られず、ガラス面上に形成されたアモルファストランジスタ、ポリシリコントランジスタ、有機トランジスタといった薄膜トランジスタ(TFT)などであってもよい。
 計測対象物Dには、テスタユニット2が電気的に接続される。テスタユニット2は、周波数解析部8に電気的に接続されている。テスタユニット2は、電源(図示せず)からの電力供給を受けて動作し、計測対象物Dに変調電流信号を繰り返し印加する。計測対象物Dでは、変調電流信号に伴って変調磁場が発生する。変調磁場に応じた光信号が後述の光検出部7によって検出されることにより、特定の周波数での計測光の検出がなされる。なお、テスタユニット2は、必ずしも変調電流信号を印加するものでなくてもよく、検出周波数に応じたパルス光を発生させるCW電流信号を印加するものであってもよい。
 光出力部3は、第1の波長を有する第1の光、及び第1の波長とは異なる第2の波長を有する第2の光を出力する部分である。第1の光及び第2の光は、CW光であってもよく、パルス光であってもよい。また、第1の光及び第2の光は、インコヒーレント光及びコヒーレント光のいずれであってもよい。インコヒーレントな光を出力する光源としては、SLD、ASE光源、LEDなどが挙げられる。また、コヒーレントな光を出力する光源としては、固体レーザ光源や半導体レーザ光源などが挙げられる。光出力部3から出力された光は、導光光学系4Aに入射する。
 本実施形態では、第1の光の波長は、磁気光学結晶6における感度が十分に高い1μm以下の波長である。第1の光の波長は、例えば530nm以下の波長であることが好適である。また、第2の光の波長は、計測対象物Dに対して好適な波長である。計測対象物Dが半導体デバイスである場合、第2の光の波長は、シリコンに対して十分な透過性を有し、半導体デバイス内の内部構造で反射される1μm以上の波長であることが好適である。
 光出力部3は、第1の光を出力する第1の光源と、第2の光を出力する第2の光源とを別々に備えたものであってもよく、単一の光源によって構成されたものであってもよい。光出力部3が別々の光源を備える場合、計測対象物Dの異常の有無の検出を行う際には、光出力部3から第1の光が出力され、計測対象物Dのパターンの取得を行う際には、光出力部3から第2の光が出力される。光出力部3を単一の光源によって構成する場合、例えばYAGレーザを光源とし、非線形光学結晶によって基本波(波長1064nm)から第2高調波(波長532nm)を発生させる。これらのうち、基本波を第2の光として用い、第2高調波を第1の光として選択的に用いる。
 導光光学系4Aは、第1の光及び第2の光を導光する部分である。導光光学系4Aは、複数の光学素子によって構成されている。導光光学系4Aは、第1の光及び第2の光を磁気光学結晶6及び計測対象物Dに向けて導光する。また、導光光学系4Aは、磁気光学結晶6の反射膜13(図2参照)で反射した第1の光と、計測対象物Dの内部を通って計測対象物Dの裏面(磁気光学結晶6と反対側の面)で反射した第2の光とを光検出部7に向けて導光する。導光光学系4Aの詳細な構成は後述する。
 対物レンズ5は、導光光学系4Aによって導光された第1の光を磁気光学結晶6に集光する部分である。対物レンズ5は、ターレットなどにより、例えば倍率5倍の低倍率対物レンズと、例えば倍率50倍の高倍率対物レンズとを切り替え可能となっている。対物レンズ5には、例えば磁気光学結晶6を保持するホルダが取り付けられている。対物レンズ5は、対物レンズ駆動部9によって第1の光及び第2の光の光軸方向に移動し、磁気光学結晶6に対する焦点位置が調整される。
 磁気光学結晶6は、磁気光学効果により、計測対象物Dで発生した磁界に応じて、入力された光の偏光状態を変化させる部分である。磁気光学結晶6は、図2に示すように、結晶成長基板11と、磁気光学効果層12と、反射膜(反射面)13とを備えている。結晶成長基板11の一面11a側は、第1の光及び第2の光の入射面となっている。磁気光学効果層12は、磁性ガーネットなどからなる薄膜である。磁性ガーネットとしては、例えばガドリニウム・ガリウム・ガーネット(GGG)、イットリウム・鉄・ガーネット(YIG)、希土類・鉄・ガーネット(RIG)などが挙げられる。磁気光学効果層12は、結晶成長基板11の他面11b側に1μm程度の厚さで成膜されている。
 反射膜13は、例えば誘電体多層膜である。反射膜13は、磁気光学効果層12における結晶成長基板11と反対側の面に設けられている。反射膜13は、第1の光を反射し、かつ第2の光を透過させる光学特性を有している。磁気光学結晶6は、図1に示すように、反射膜13側が計測対象物D側を向くように計測対象物Dに対向して配置されている。第1の光は、結晶成長基板11の一面11a側から磁気光学結晶6に入射し、反射膜13で反射して再び導光光学系4Aに入射する。第2の光は、磁気光学結晶6を透過し、計測対象物Dの内部を通って計測対象物Dの裏面で反射し、再び磁気光学結晶6を透過して導光光学系4Aに入射する。
 光検出部7は、第1の光及び第2の光を検出する部分である。光検出部7を構成する光センサとしては、例えばフォトダイオード、アバランシェフォトダイオード、光電子増倍管、エリアイメージセンサなどが挙げられる。光検出部7は、第1の光に対して感度を有する第1の光センサと、第2の光に対して感度を有する第2の光センサとを別々に備えていてもよい。また、光検出部7は、第1の光と第2の光の双方に対して感度を有する単体の光センサによって構成されたものであってもよい。
 光検出部7から出力された検出信号は、アンプ21によって増幅され、増幅信号として周波数解析部8に入力される。周波数解析部8は、増幅信号における計測周波数成分を抽出し、当該抽出信号を解析信号として出力する部分である。周波数解析部8としては、例えばロックインアンプ、スペクトラムアナライザ、デジタイザ、クロス・ドメイン・アナライザ(登録商標)、ネットワーク・アナライザなどが用いられる。計測周波数は、例えばテスタユニット2によって計測対象物Dに印加される変調電流信号の変調周波数に基づいて設定される。周波数解析部8は、テスタユニット2から出力された変調電流信号と検出信号又は解析信号との位相差を示す位相信号を出力してもよい。
 周波数解析部8により出力された解析信号は、コンピュータ22に入力される。コンピュータ22は、プロセッサ、メモリなどを含んで構成される。コンピュータ22には、モニタなどの表示装置23と、キーボード、マウスといった入力装置24とが接続されている。コンピュータ22は、テスタユニット2、光出力部3、導光光学系4A、対物レンズ駆動部9、光検出部7、及び周波数解析部8等を制御する機能と、周波数解析部8から入力される解析信号或いは位相信号に基づいて、磁気分布画像(磁気強度画像、磁気位相画像)の作成、磁気周波数マッピング、磁気分布に基づく電流経路・電流方向を示す電流画像の作成、計測対象物Dにおける回路パターン等のパターン画像の作成といった各機能とを実行する。コンピュータ22は、これらの各機能をプロセッサによって実行する。
 磁気光学結晶6及び計測対象物Dに対する第1の光及び第2の光の照射位置を走査することにより、計測対象物Dにおける2次元的な磁場強度分布を示す磁気強度画像及びパターン画像が得られる。これらの画像を表示装置23に表示することにより、計測対象物Dに異常の有無の検出及び異常箇所の特定を行うことができる。所定位置での磁場の周波数特性を検出する場合には、計測周波数を切り替えて磁気周波数マッピングを実行すればよい。また、コンピュータ22で作成された磁気位相像や電流画像等を表示装置23に表示して同様の特定を行ってもよい。また、高解像度の磁気強度画像及びパターン画像を得る場合には、第1の光及び第2の光の径や走査範囲を小さくして処理を実行すればよい。
 なお、ロックイン検出を行わない場合には、特定の周波数成分の信号を出力する必要はなく、アンプ21による増幅信号をそのまま解析信号として周波数解析部8から出力させればよい。表示装置23には、磁気分布画像、電流画像、及びパターン画像を重畳して表示させるようにしてもよい。
 続いて、上述した導光光学系4Aの構成について、図3及び図4を参照しながら更に詳細に説明する。
 図3に示すように、導光光学系4Aは、複数の光学素子として、コリメータ31A~31Cと、ダイクロイックミラー32と、偏光ビームスプリッタ33と、ファラデー回転子34と、λ/4波長板35と、ガルバノミラー36とによって構成されている。これらの複数の光学素子は、光学的にカップリングされている。偏光ビームスプリッタ33及びファラデー回転子34は、第1の光の一の偏光成分を光検出部7に導光する偏光制御素子Kを構成している。偏光ビームスプリッタ33及びλ/4波長板35は、第2の光の一の偏光成分を光検出部7に導光する偏光制御素子Lを構成している。
 ファラデー回転子34及びλ/4波長板35は、第1の光及び第2の光が選択的に光検出部7に入射するように、上記光学素子による光路を切り替える光路切替素子Mを構成している。ファラデー回転子34及びλ/4波長板35は、例えばシリンダ等の駆動手段によって一方が光路に進出し、他方が光路から退避するようになっている。また、ダイクロイックミラー32は、導光光学系4Aの光路において、偏光制御素子Kの前段側に配置されている。
 本実施形態では、ダイクロイックミラー32は、第1の光を透過させ、第2の光を略直角に反射する。偏光ビームスプリッタ33は、偏光面が0°の偏光成分の光を透過させ、偏光面が90°の偏光成分の光を反射する。ファラデー回転子34は、入力される光の偏光面を22.5°回転させる。
 検査装置1を用いた計測対象物Dの検査方法は、第1の波長を有する第1の光、及び第1の波長とは異なる第2の波長を有する第2の光を導光光学系4Aによって磁気光学結晶6及び計測対象物Dに導光し、磁気光学結晶6或いは計測対象物Dで反射した第1の光及び第2の光を検出するステップを備えている。このステップは、より詳細には、光出力部3から第1の光を出力し、導光光学系4Aを介して光検出部7で第1の光を検出するステップと、第2の光が光検出部7に入射するように導光光学系4Aの光路を選択的に切り替えるステップと、光出力部3から第2の光を出力し、導光光学系4Aを介して光検出部7で第2の光を検出するステップと、を含む。
 光出力部3から第1の光が出力される場合、図3に示すように、光路切替素子Mにおいて、ファラデー回転子34が導光光学系4Aの光路に進出する。第1の光は、初期状態において0°の直線偏光である。第1の光は、コリメータ31Aによって平行光化され、ダイクロイックミラー32を透過して偏光ビームスプリッタ33に入射する。第1の光は、偏光ビームスプリッタ33を透過し、ファラデー回転子34によって偏光面が22.5°回転した状態で、対物レンズ5に導光される。対物レンズ5への第1の光の入射位置、すなわち、磁気光学結晶6への第1の光の入射位置は、ガルバノミラー36によって走査される。
 磁気光学結晶6の反射膜13で反射した第1の光は、計測対象物Dで発生した磁界(磁場強度)に応じた磁気光学効果(カー効果及びファラデー効果など)に応じて偏光面がα°回転し、再び対物レンズ5を通って導光光学系4Aに入射する。第1の光は、ファラデー回転子34によって偏光面が更に22.5°回転する。ファラデー回転子34を往復することで、偏光面が合計で45+α°回転した第1の光のうち、90°の偏光成分のみが偏光ビームスプリッタ33によって反射し、コリメータ31Cによって集光された状態で光検出部7に出力される。光検出部7は、磁気光学効果に応じて偏光面がα°回転することによって生じる強度変調を検出する。
 光出力部3から第2の光が出力される場合、図4に示すように、光路切替素子Mにおいて、λ/4波長板35が導光光学系4Aの光路に進出する。第2の光は、初期状態において0°の直線偏光である。第2の光は、コリメータ31Bによって平行光化され、ダイクロイックミラー32で反射して偏光ビームスプリッタ33に入射する。第2の光は、偏光ビームスプリッタ33を透過し、λ/4波長板35によって円偏光となった状態で、対物レンズ5に導光される。対物レンズ5への第2の光の入射位置、すなわち、計測対象物Dへの第2の光の入射位置は、ガルバノミラー36によって走査される。
 計測対象物Dの内部を通って反射した第2の光は、再び対物レンズ5を通って導光光学系4Aに入射する。第2の光は、λ/4波長板35を往復することで偏光面が90°回転した直線偏光となり、偏光ビームスプリッタ33によって反射し、コリメータ31Cによって集光された状態で光検出部7に出力される。
 以上のように、この検査装置1では、磁気光学結晶6の反射膜13で反射した第1の光の検出結果に基づいて計測対象物Dの異常の有無が検出され、計測対象物Dの内部を通って反射した第2の光の検出結果に基づいて計測対象物Dの回路パターン等を取得できる。第1の光及び第2の光を導光する導光光学系4Aは、第1の光及び第2の光を選択的に光検出部7に入射させる光路切替素子Mを有している。この光路切替素子Mにより、第1の波長及び第2の波長に適した波長依存性を有する光学素子を導光光学系4Aで用いる一方で、第1の光の光路を形成する光学素子と、第2の光の光路を形成する光学素子とを一部で共通化できる。したがって、構成の複雑化を回避しつつ、計測対象物Dの異常の有無の検出とパターンの取得とを精度良く両立できる。
 本実施形態では、導光光学系4Aを構成する光学素子のうち、ダイクロイックミラー32、偏光ビームスプリッタ33、ガルバノミラー36、及びコリメータ31Cを第1の光の光路と第2の光の光路とで共通化できる。また、本実施形態では、光出力部3が、第1の光を出射する第1の光源と、第2の光を出射する第2の光源とを有していることが好適である。この場合、波長の異なる第1の光及び第2の光を十分な強度で出力でき、計測結果のSN比を向上できる。
 なお、単体の光センサを用いる場合においては、波長依存性により、第1の光に対する感度と第2の光に対する感度とが異なることがある。この場合は、第1の光に対する感度を優先し、第1の光に対する感度が第2の光に対する感度よりも高い特性を有する光センサを用いることが好ましい。また、検査装置1では、ファラデー回転子34及びλ/4波長板35によって光路切替素子Mが構成されている。この場合、簡単な構成で光路切替素子Mを構成できる。
[第2実施形態]
 第2実施形態に係る検査装置は、光検出部7において第1の光を検出する第1の光センサ7Aと第2の光を検出する第2の光センサ7Bとを別々に備えている。また、これに伴って、導光光学系4Bの構成が第1実施形態と異なっている。より具体的には、導光光学系4Bでは、図5に示すように、導光光学系4Aの構成に加え、ダイクロイックミラー41と、コリメータ31Dとが光路の後段側に更に配置されている。
 第1の光の光路は、図5に示すように、磁気光学結晶6の反射膜13で反射して偏光ビームスプリッタ33で反射するまでは、第1実施形態と同様である。偏光ビームスプリッタ33で反射した第1の光は、ダイクロイックミラー41を透過し、コリメータ31Cによって集光された状態で光検出部7の第1の光センサ7Aに出力される。
 第2の光の光路は、図6に示すように、計測対象物Dで反射して偏光ビームスプリッタ33で反射するまでは、第1実施形態と同様である。偏光ビームスプリッタ33で反射した第2の光は、ダイクロイックミラー41で反射し、コリメータ31Dによって集光された状態で光検出部7の第2の光センサ7Bに出力される。
 このような形態においても、上述した実施形態と同様に、光路切替素子Mにより、第1の波長及び第2の波長に適した波長依存性を有する光学素子を導光光学系4Bで用いる一方で、第1の光の光路を形成する光学素子と、第2の光の光路を形成する光学素子とを一部で共通化できる。したがって、構成の複雑化を回避しつつ、計測対象物Dの異常の有無の検出とパターンの取得とを精度良く両立できる。
 また、本実施形態では、光検出部7が第1の光を検出する第1の光センサ7Aと、第2の光を検出する第2の光センサ7Bとを有している。この場合、第1の光に高い感度を有する第1の光センサ7Aと、第2の光に高い感度を有する第2の光センサ7Bとをそれぞれ配置することで、計測対象物の異常の有無の検出とパターンの取得とを精度実施できる。
 さらに、本実施形態では、ダイクロイックミラー41が偏光制御素子K,Lの前段側に配置されている。これにより、ダイクロイックミラー41の後段の偏光制御素子K,Lによって光の偏光方向を揃えることができる。したがって、ダイクロイックミラー41の反射側及び透過側のいずれに第1の光の光路及び第2の光の光路を形成してもよく、導光光学系4Bの設計の自由度を担保できる。
 なお、本実施形態において、ダイクロイックミラー41及びコリメータ31C,31Dに代えて、単体のコリメータと光カプラとを配置してもよい。波長毎に出力を分岐する光ファイバを用いることで、上記実施形態と同等の構成を実現できる。光カプラとしては、偏光保存シングルモード光カプラを用いることが好ましく、光ファイバとしては、偏光保存シングルモード光ファイバを用いることが好ましい。
[第3実施形態]
 第3実施形態に係る検査装置は、導光光学系4Cにおいて、ガルバノミラー56によって光路切替素子Mが構成されている点、及び光検出部7の第1の光センサ7Aがそれぞれ独立した光センサ(i)7a及び光センサ(ii)7bを有する点で上記実施形態と異なっている。また、第3実施形態に係る検査装置は、導光光学系4Cにおいて、第1の光の一の偏光成分を光検出部7の光センサ(i)7aに導光する偏光制御素子K1と、第1の光の他の偏光成分を光検出部7の光センサ(ii)7bに導光する偏光制御素子K2とが配置されている点で第1実施形態と異なっている。
 より具体的には、導光光学系4Cは、複数の光学素子として、コリメータ51A~51Eと、可視域用の偏光ビームスプリッタ52A,52Bと、ファラデー回転子53A,53Bと、近赤外域用の偏光ビームスプリッタ54と、λ/4波長板55と、ガルバノミラー56とによって構成されている。
 偏光ビームスプリッタ52B及びファラデー回転子53Bは、第1の光の一の偏光成分を光検出部7に導光する偏光制御素子K1を構成している。偏光ビームスプリッタ52A及びファラデー回転子53Aは、第1の光の他の偏光成分を光検出部7に導光する偏光制御素子K2を構成している。偏光ビームスプリッタ54及びλ/4波長板55は、第2の光の一の偏光成分を光検出部7に導光する偏光制御素子Lを構成している。
 ガルバノミラー56は、走査範囲の中心角度に第1のオフセット又は第2のオフセットを加えることにより、光路切替素子Mとして機能する。本実施形態では、例えばガルバノミラー56の走査範囲が±3°、第1のオフセットが+10°、第2のオフセットが-10°となっている。ガルバノミラー56は、光出力部3から第1の光が出力する場合には、+10°±3°の範囲で回動し、光出力部3から第2の光が出力する場合には、-10°±3°の範囲で稼働する。
 ファラデー回転子53Aは、入力される光の偏光面を45°回転させる。また、ファラデー回転子53Bは、入力される光の偏光面を22.5°回転させる。偏光ビームスプリッタ52Aは、偏光面が0°の偏光成分の光を透過させ、偏光面が90°の偏光成分の光を反射する。偏光ビームスプリッタ52Bは偏光面が45°の偏光成分の光を透過させ、偏光面が135°の偏光成分の光を反射する。
 光出力部3から第1の光が出力される場合、光路切替素子Mにおいて、ガルバノミラー56に第1のオフセットが与えられる。第1の光は、初期状態において0°の直線偏光である。第1の光は、図7に示すように、コリメータ51Aによって平行光化され、偏光ビームスプリッタ52Aを透過し、ファラデー回転子53Aによって偏光面が45°回転する。また、第1の光は、偏光ビームスプリッタ52Bを透過し、ファラデー回転子53Bによって偏光面が更に22.5°回転した後、対物レンズ5に導光される。対物レンズ5への第1の光の入射位置、すなわち、磁気光学結晶6への第1の光の入射位置は、ガルバノミラー56によって走査される。
 磁気光学結晶6の反射膜13で反射した第1の光は、計測対象物Dで発生した磁界(磁場強度)に応じた磁気光学効果(カー効果及びファラデー効果など)に応じて偏光面がα°回転し、再び対物レンズ5を通って導光光学系4Cに入射する。第1の光は、ファラデー回転子53Bによって偏光面が更に22.5°回転する。ファラデー回転子53Bを往復した時点で、偏光面が合計で90+α°回転した第1の光のうち、135°の偏光成分のみが偏光ビームスプリッタ52Bによって反射し、コリメータ51Cによって集光された状態で光検出部7の第1の光センサ7Aの光センサ(i)7aに出力される。
 また、第1の光のうち、偏光ビームスプリッタ52Bを透過した偏光成分は、ファラデー回転子53Aによって偏光面が更に45°回転し、偏光ビームスプリッタ52Aで反射した後、コリメータ51Dによって集光された状態で光検出部7の第1の光センサ7Aの光センサ(ii)7bに出力される。光検出部7では、第1の光センサ7Aに入力された光の差動が検出される。第1の光センサ7Aは、磁気光学効果に応じて偏光面がα°回転することによって生じる強度変調を検出する。なお、光センサ7Aは、独立した光センサを有する代わりに、複数の受光面を持つように構成されたものを用いてもよい。
 光出力部3から第2の光が出力される場合、光路切替素子Mにおいて、ガルバノミラー56に第2のオフセットが与えられる。第2の光は、初期状態において0°の直線偏光である。第2の光は、図8に示すように、コリメータ51Eによって平行光化され、偏光ビームスプリッタ54を透過し、λ/4波長板55によって円偏光となった状態で、対物レンズ5に導光される。対物レンズ5への第2の光の入射位置、すなわち、計測対象物Dへの第2の光の入射位置は、ガルバノミラー56によって走査される。
 計測対象物Dの内部を通って反射した第2の光は、再び対物レンズ5を通って導光光学系4Cに入射する。第2の光は、λ/4波長板55を往復することで偏光面が90°回転した直線偏光となり、偏光ビームスプリッタ54によって反射し、コリメータ51Eによって集光された状態で光検出部7の第2の光センサ7Bに出力される。
 このような形態においても、上述した実施形態と同様に、光路切替素子Mにより、第1の波長及び第2の波長に適した波長依存性を有する光学素子を導光光学系4Cで用いる一方で、第1の光の光路を形成する光学素子と、第2の光の光路を形成する光学素子とを一部で共通化できる。したがって、構成の複雑化を回避しつつ、計測対象物Dの異常の有無の検出とパターンの取得とを精度良く両立できる。また、ガルバノミラー56のみで光路切替素子Mを構成しているので、光路切替素子Mを簡単に構成できる。
 本実施形態では、導光光学系4Cを構成する光学素子のうち、ガルバノミラー56を第1の光の光路と第2の光の光路とで共通化できる。また、光検出部7において、第1の光の一の偏光成分と、第1の光の他の偏光成分との差動検出を行うことが可能となる。したがって、光源のSN比が比較的低い場合でも、計測対象物Dの異常の有無の検出を精度良く実施できる。
 なお、本実施形態において、偏光ビームスプリッタ54及びコリメータ51B,51Eに代えて、単体のコリメータと、光を直交する偏光成分に分ける光カプラを有する光ファイバとを配置してもよい。各偏光成分の出力を分岐する光ファイバを用いることで、上記実施形態と同等の構成を実現できる。光ファイバとしては、偏光保存シングルモード光ファイバを用いることが好ましい。
[第4実施形態]
 第4実施形態に係る検査装置は、第3実施形態の変形例であり、図9及び図10に示すように、導光光学系4Dにおいて、第1の光の他の偏光成分を光検出部7に導光する偏光制御素子K2、及びコリメータ51Dの配置が省略されている点で第3実施形態と異なっている。また、導光光学系4Dの偏光ビームスプリッタ52Bが、偏光面が0°の偏光成分の光を透過させ、偏光面が90°の偏光成分の光を反射する点で第3実施形態と異なっている。その他の点は、第3実施形態と同様である。
 図9に示すように、光検出部7の第1の光センサ7Aには、偏光面が合計で90°回転した第1の光のうち、偏光ビームスプリッタ52Bによって反射した90°の偏光成分のみが出力される。また、図10に示すように、光検出部7の第2の光センサ7Bには、λ/4波長板55を往復することで偏光面が90°回転した直線偏光となった第2の光が出力される。
 このような形態においても、上述した実施形態と同様に、光路切替素子Mにより、第1の波長及び第2の波長に適した波長依存性を有する光学素子を導光光学系4Dで用いる一方で、第1の光の光路を形成する光学素子と、第2の光の光路を形成する光学素子とを一部で共通化できる。したがって、構成の複雑化を回避しつつ、計測対象物Dの異常の有無の検出とパターンの取得とを精度良く両立できる。このような形態は、光源のSN比が十分に確保できる場合に有用であり、導光光学系4Dに用いられる光学素子の点数を削減し、構成を簡単化できる。
[第5実施形態]
 第5実施形態に係る検査装置は、図11及び図12に示すように、導光光学系4Eにおいて、ダイクロイックミラー61によって光路切替素子Mが構成されている点で上記実施形態と異なっている。導光光学系4Eは、第3実施形態における導光光学系4Cに類似した構成を有し、ファラデー回転子53Bとガルバノミラー56との間にダイクロイックミラー61が配置されている点で第3実施形態と相違している。
 ダイクロイックミラー61は、第1の光を透過させる。第1の光の光路は、図11に示すように、第3実施形態と実質的に同じである。光検出部7の第1の光センサ7Aの光センサ(i)7a及び光センサ(ii)7bには、偏光制御素子K1及び偏光制御素子K2により、第1の光における互いに直交する偏光成分がそれぞれ出力され、差動が検出される。また、ダイクロイックミラー61は、第2の光を反射する。第2の光の光路は、図12に示すように、偏光ビームスプリッタ54及びλ/4波長板55がダイクロイックミラー61に対して光学的に結合している点を除いて第3実施形態と実質的に同じである。光検出部7の第2の光センサ7Bには、λ/4波長板55を往復することで偏光面が90°回転した直線偏光となった第2の光が出力される。
 このような形態においても、上述した実施形態と同様に、光路切替素子Mにより、第1の波長及び第2の波長に適した波長依存性を有する光学素子を導光光学系4Eで用いる一方で、第1の光の光路を形成する光学素子と、第2の光の光路を形成する光学素子とを一部で共通化できる。したがって、構成の複雑化を回避しつつ、計測対象物Dの異常の有無の検出とパターンの取得とを精度良く両立できる。また、ダイクロイックミラー61のみで光路切替素子Mを構成しており、物理的な動作が不要となるため、光路切替素子Mを簡単に構成できる。
 本実施形態では、導光光学系4Eを構成する光学素子のうち、ダイクロイックミラー61及びガルバノミラー56を第1の光の光路と第2の光の光路とで共通化できる。また、光検出部7において、第1の光の一の偏光成分と、第1の光の他の偏光成分との差動の検出が可能となる。したがって、光源のSN比が比較的低い場合でも、計測対象物Dの異常の有無の検出を精度良く実施できる。なお、検出可能な光量は低下するが、本実施形態において、ダイクロイックミラー61の代わりにハーフミラーを用いてもよい。
[第6実施形態]
 第6実施形態に係る検査装置は、第5実施形態の変形例であり、図13及び図14に示すように、導光光学系4Fにおいて、第1の光の他の偏光成分を光検出部7に導光する偏光制御素子K2の配置が省略されている点で第5実施形態と異なっている。また、導光光学系4Fの偏光ビームスプリッタ52Bが、偏光面が0°の偏光成分の光を透過させ、偏光面が90°の偏光成分の光を反射する点で第5実施形態と異なっている。その他の点は、第5実施形態と同様である。
 このような形態においても、上述した実施形態と同様に、光路切替素子Mにより、第1の波長及び第2の波長に適した波長依存性を有する光学素子を導光光学系4Fで用いる一方で、第1の光の光路を形成する光学素子と、第2の光の光路を形成する光学素子とを一部で共通化できる。したがって、構成の複雑化を回避しつつ、計測対象物Dの異常の有無の検出とパターンの取得とを精度良く両立できる。このような形態は、光源のSN比が十分に確保できる場合に有用であり、導光光学系4Fに用いられる光学素子の点数を削減し、構成を簡単化できる。
[第7実施形態]
 第7実施形態に係る検査装置は、図15及び図16に示すように、導光光学系4Gにおいて、光学ミラー71によって光路切替素子Mが構成されている点で上記実施形態と異なっている。導光光学系4Gは、第5実施形態における導光光学系4Eに類似した構成を有し、ダイクロイックミラー61に代えて光学ミラー71が配置されている点で第5実施形態と相違している。
 光学ミラー71は、例えばシリンダ等の駆動手段によって光路への進出・退避が切り替えられるようになっている。光出力部3から第1の光が出力される場合、図15に示すように、光学ミラー71が光路から退避する。第1の光の光路は、第5実施形態と実質的に同じである。光検出部7の第1の光センサ7Aの光センサ(i)7a及び光センサ(ii)7bには、偏光制御素子K1及び偏光制御素子K2により、第1の光における互いに直交する偏光成分がそれぞれ出力され、差動が検出される。
 光出力部3から第2の光が出力される場合、光学ミラー71が光路に進出する。光学ミラー71は、第2の光を反射する。第2の光の光路は、図16に示すように、偏光ビームスプリッタ54及びλ/4波長板55が光学ミラー71に対して光学的に結合している点を除いて第5実施形態と実質的に同じである。光検出部7の第2の光センサ7Bには、λ/4波長板55を往復することで偏光面が90°回転した直線偏光となった第2の光が出力される。
 このような形態においても、上述した実施形態と同様に、光路切替素子Mにより、第1の波長及び第2の波長に適した波長依存性を有する光学素子を導光光学系4Gで用いる一方で、第1の光の光路を形成する光学素子と、第2の光の光路を形成する光学素子とを一部で共通化できる。したがって、構成の複雑化を回避しつつ、計測対象物Dの異常の有無の検出とパターンの取得とを精度良く両立できる。また、光学ミラー71の進退のみで光路切替素子Mを構成しているので、光路切替素子Mを簡単に構成できる。
 本実施形態では、導光光学系4Gを構成する光学素子のうち、光学ミラー71及びガルバノミラー56を第1の光の光路と第2の光の光路とで共通化できる。また、光検出部7において、第1の光の一の偏光成分と、第1の光の他の偏光成分との差動検出を行うことが可能となる。したがって、光源のSN比が比較的低い場合でも、計測対象物Dの異常の有無の検出を精度良く実施できる。
[第8実施形態]
 第8実施形態に係る検査装置は、第7実施形態の変形例であり、図17及び図18に示すように、導光光学系4Hにおいて、第1の光の他の偏光成分を光検出部7に導光する偏光制御素子K2の配置が省略されている点で第7実施形態と異なっている。また、導光光学系4Hの偏光ビームスプリッタ52Bが、偏光面が0°の偏光成分の光を透過させ、偏光面が90°の偏光成分の光を反射する点で第7実施形態と異なっている。その他の点は、第7実施形態と同様である。
 このような形態においても、上述した実施形態と同様に、光路切替素子Mにより、第1の波長及び第2の波長に適した波長依存性を有する光学素子を導光光学系4Hで用いる一方で、第1の光の光路を形成する光学素子と、第2の光の光路を形成する光学素子とを一部で共通化できる。したがって、構成の複雑化を回避しつつ、計測対象物Dの異常の有無の検出とパターンの取得とを精度良く両立できる。このような形態は、光源のSN比が十分に確保できる場合に有用であり、導光光学系4Hに用いられる光学素子の点数を削減し、構成を簡単化できる。
[第9実施形態]
 第9実施形態に係る検査装置は、導光光学系4Iの構成が上記実施形態と異なっている。導光光学系4Iでは、第1実施形態と同様に、ファラデー回転子及びλ/4波長板によって光路切替素子Mが構成されている。導光光学系4Iの構成は、第5実施形態と類似しており、ファラデー回転子53B及びλ/4波長板55が光路切替素子Mとしてガルバノミラー56の前段側に配置されている。ファラデー回転子53B及びλ/4波長板55は、例えばシリンダ等の駆動手段によって一方が光路に進出し、他方が光路から退避する。
 ダイクロイックミラー61は、偏光ビームスプリッタ52Bと光路切替素子Mとの間に配置されている。ファラデー回転子53Bは、光路切替素子Mを構成するほか、偏光ビームスプリッタ52Bと協働し、第1の光の一の偏光成分を光検出部7に導光する偏光制御素子K1を構成する。λ/4波長板55は、光路切替素子Mを構成するほか、偏光ビームスプリッタ54と協働し、第2の光の一の偏光成分を光検出部7に導光する偏光制御素子Lを構成する。
 光出力部3から第1の光が出力される場合、図19に示すように、光路切替素子Mにおいて、ファラデー回転子53Bが導光光学系4Iの光路に進出する。ダイクロイックミラー61は、第1の光を透過させる。第1の光の光路は、ダイクロイックミラー61とファラデー回転子53Bとの位置関係が反対となっている点を除いて第5実施形態と実質的に同じである。光検出部7の第1の光センサ7Aの光センサ(i)7a及び光センサ(ii)7bには、偏光制御素子K1及び偏光制御素子K2により、第1の光における互いに直交する偏光成分がそれぞれ出力され、差動が検出される。
 光出力部3から第2の光が出力される場合、図20に示すように、光路切替素子Mにおいて、λ/4波長板55が導光光学系4Iの光路に進出する。第2の光の光路は、ダイクロイックミラー61とλ/4波長板55との位置関係が反対となっている点を除いて第5実施形態と実質的に同じである。光検出部7の第2の光センサ7Bには、λ/4波長板55を往復することで90°の直線偏光となった第2の光が出力される。
 このような形態においても、上述した実施形態と同様に、光路切替素子Mにより、第1の波長及び第2の波長に適した波長依存性を有する光学素子を導光光学系4Iで用いる一方で、第1の光の光路を形成する光学素子と、第2の光の光路を形成する光学素子とを一部で共通化できる。したがって、構成の複雑化を回避しつつ、計測対象物Dの異常の有無の検出とパターンの取得とを精度良く両立できる。
 本実施形態では、導光光学系4Iを構成する光学素子のうち、ダイクロイックミラー61及びガルバノミラー56を第1の光の光路と第2の光の光路とで共通化できる。また、光検出部7において、第1の光の一の偏光成分と、第1の光の他の偏光成分との差動検出を行うことが可能となる。したがって、光源のSN比が比較的低い場合でも、計測対象物Dの異常の有無の検出を精度良く実施できる。
[第10実施形態]
 第10実施形態に係る検査装置は、第9実施形態の変形例であり、図21及び図22に示すように、導光光学系4Jにおいて、第1の光の他の偏光成分を光検出部7に導光する偏光制御素子K2の配置が省略されている点で第9実施形態と異なっている。また、導光光学系4Jの偏光ビームスプリッタ52Bが、偏光面が0°の偏光成分の光を透過させ、偏光面が90°の偏光成分の光を反射する点で第9実施形態と異なっている。その他の点は、第9実施形態と同様である。
 このような形態においても、上述した実施形態と同様に、光路切替素子Mにより、第1の波長及び第2の波長に適した波長依存性を有する光学素子を導光光学系4Jで用いる一方で、第1の光の光路を形成する光学素子と、第2の光の光路を形成する光学素子とを一部で共通化できる。したがって、構成の複雑化を回避しつつ、計測対象物Dの異常の有無の検出とパターンの取得とを精度良く両立できる。このような形態は、光源のSN比が十分に確保できる場合に有用であり、導光光学系4Jに用いられる光学素子の点数を削減し、構成を簡単化できる。
[第11実施形態]
 第11実施形態に係る検査装置は、第1実施形態の変形例であり、図23及び図24に示すように、導光光学系4Kにおいて、第1の光の一の偏光成分を光検出部7に導光する偏光制御素子K1と、第1の光の他の偏光成分を光検出部7に導光する偏光制御素子K2とが配置されている点で第1実施形態と異なっている。また、第2の光の一の偏光成分を光検出部7に導光する偏光制御素子L1と、第2の光の他の偏光成分を光検出部7に導光する偏光制御素子L2とが配置されている点で第1実施形態と異なっている。
 より具体的には、導光光学系4Kは、複数の光学素子として、コリメータ81A~81Dと、ダイクロイックミラー82と、偏光ビームスプリッタ83A,83Bと、ファラデー回転子84A,84Bと、λ/4波長板85と、ガルバノミラー86とによって構成されている。また、光検出部7は、光センサ(i)7a及び光センサ(ii)7bを有している。
 ファラデー回転子84B及びλ/4波長板85は、光路切替素子Mとしてガルバノミラー86の前段側に配置されている。ファラデー回転子84B及びλ/4波長板85は、第1実施形態と同様に、シリンダ等の駆動手段によって一方が光路に進出し、他方が光路から退避する。
 偏光ビームスプリッタ83B及びファラデー回転子84Bは、第1の光の一の偏光成分を光検出部7の光センサ(i)7aに導光する偏光制御素子K1を構成している。偏光ビームスプリッタ83A及びファラデー回転子84Aは、偏光制御素子K1の前段側に配置され、第1の光の他の偏光成分を光検出部7の光センサ(ii)7bに導光する偏光制御素子K2を構成している。
 偏光ビームスプリッタ83B及びλ/4波長板85は、第2の光の一の偏光成分を光検出部7の光センサ(i)7aに導光する偏光制御素子L1を構成している。偏光ビームスプリッタ83A及びファラデー回転子84Aは、第2の光の他の偏光成分を光検出部7の光センサ(ii)7bに導光する偏光制御素子L2を構成している。ダイクロイックミラー82は、偏光制御素子K2,L2の前段側に配置されている。
 光出力部3から第1の光が出力される場合、図23に示すように、光路切替素子Mにおいて、ファラデー回転子84Bが導光光学系4Kの光路に進出する。第1の光は、初期状態において0°の直線偏光である。第1の光は、コリメータ81Aによって平行光化され、ダイクロイックミラー82及び偏光ビームスプリッタ83Aを透過し、ファラデー回転子84Aによって偏光面が45°回転する。また、第1の光は、偏光ビームスプリッタ83Bを透過し、ファラデー回転子84Bによって偏光面が22.5°回転した後、対物レンズ5に導光される。対物レンズ5への第1の光の入射位置、すなわち、磁気光学結晶6への第1の光の入射位置は、ガルバノミラー86によって走査される。
 磁気光学結晶6の反射膜13で反射した第1の光は、計測対象物Dで発生した磁界(磁場強度)に応じた磁気光学効果(カー効果及びファラデー効果など)に応じて偏光面がα°回転し、再び対物レンズ5を通って導光光学系4Kに入射する。第1の光は、ファラデー回転子84Bによって偏光面が更に22.5°回転する。ファラデー回転子84Bを往復することで、偏光面が90+α°回転した第1の光のうち、135°の偏光成分のみが偏光ビームスプリッタ83Bによって反射し、コリメータ81Cによって集光された状態で光検出部7の光センサ(i)7aに出力される。
 また、第1の光のうち、偏光ビームスプリッタ83Bを透過した偏光成分は、ファラデー回転子84Aによって偏光面が更に45°回転し、偏光ビームスプリッタ83Aで反射した後、コリメータ81Dによって集光された状態で光検出部7の光センサ(ii)7bに出力される。光検出部7では、入力された光の差動が検出される。光検出部7は、磁気光学効果に応じて偏光面がα°回転することによって生じる強度変調を検出する。
 光出力部3から第2の光が出力される場合、図24に示すように、光路切替素子Mにおいて、λ/4波長板85が導光光学系4Kの光路に進出する。第2の光は、初期状態において0°の直線偏光である。第2の光は、コリメータ81Bによって平行光化され、ダイクロイックミラー82で反射する。ダイクロイックミラー82で反射した第2の光は、偏光ビームスプリッタ83Aを透過し、ファラデー回転子84Aによって偏光面が回転する。また、第2の光は、偏光ビームスプリッタ83Bを透過し、λ/4波長板85によって円偏光となった状態で、対物レンズ5に導光される。対物レンズ5への第2の光の入射位置、すなわち、計測対象物Dへの第2の光の入射位置は、ガルバノミラー86によって走査される。
 計測対象物Dの内部を通って反射した第2の光は、再び対物レンズ5を通って導光光学系4Kに入射する。第2の光は、λ/4波長板85を往復することで偏光面が90°回転した直線偏光となる。第2の光のうち、135°の偏光成分のみが偏光ビームスプリッタ83Bによって反射し、コリメータ31Cによって集光された状態で光検出部7の光センサ(i)7aに出力される。
 また、第2の光のうち、偏光ビームスプリッタ83Bを透過した偏光成分は、ファラデー回転子84Aによって偏光面が更に回転する。第2の光のうち、90°の偏光成分のみが偏光ビームスプリッタ83Aで反射した後、コリメータ81Dによって集光された状態で光検出部7の光センサ(ii)7bに出力される。
 このような形態においても、上述した実施形態と同様に、光路切替素子Mにより、第1の波長及び第2の波長に適した波長依存性を有する光学素子を導光光学系4Kで用いる一方で、第1の光の光路を形成する光学素子と、第2の光の光路を形成する光学素子とを一部で共通化できる。したがって、構成の複雑化を回避しつつ、計測対象物Dの異常の有無の検出とパターンの取得とを精度良く両立できる。
 本実施形態では、導光光学系4Kを構成する光学素子のうち、ダイクロイックミラー82、偏光ビームスプリッタ83A,83B、ファラデー回転子84A、及びガルバノミラー86を第1の光の光路と第2の光の光路とで共通化できる。このような形態は、これらの光学素子の波長特性及び光検出部の検出感度が第1の光の波長及び第2の光の波長の双方に適用できる場合に有用である。また、本実施形態では、光検出部7において、第1の光の一の偏光成分と、第1の光の他の偏光成分との差動検出を行うことが可能となる。したがって、光源のSN比が比較的低い場合でも、計測対象物Dの異常の有無の検出を精度良く実施できる。
 また、本実施形態では、光路切替素子Mにおいて、ファラデー回転子84Bが導光光学系4Kの光路に進出したままの状態で、光センサ(i)7a及び光センサ(ii)7bの双方で第2の光を同時に検出してもよい。この場合、光路切替素子Mにおいて、λ/4波長板85が導光光学系4Kの光路に進出し、第2の光を光センサ(i)7aのみで検出した場合と同等の光量を光検出部7で検出することができる。
[第12実施形態]
 第12実施形態に係る検査装置は、第11実施形態の変形例であり、図25及び図26に示すように、導光光学系4Lにおいて、第2の光を光検出部7に出力させる構成が第11実施形態と異なっている。より具体的には、導光光学系4Lでは、偏光ビームスプリッタ83Bの出力側にダイクロイックミラー91及びコリメータ81Eが更に配置されている。また、導光光学系4Lでは、偏光ビームスプリッタ83B及びλ/4波長板85が、第2の光の一の偏光成分を光検出部7に導光する偏光制御素子Lを構成している。
 第1の光の光路は、図25に示すように、偏光ビームスプリッタ83Bで反射した偏光成分がダイクロイックミラー91を透過して光検出部7の第1の光センサ7Aに出力される点を除いて第11実施形態と同じである。第2の光の光路は、図26に示すように、偏光ビームスプリッタ83Bで反射した偏光成分がダイクロイックミラー91で更に反射して光検出部7の第2の光センサ7Bに出力される。光検出部7の第2の光センサ7Bには、λ/4波長板85を往復することで偏光面が90°回転した直線偏光となった第2の光がコリメータ81Eを介して出力される。
 このような形態においても、上述した実施形態と同様に、光路切替素子Mにより、第1の光の光路を形成する光学素子と、第2の光の光路を形成する光学素子とを一部で共通化できる。したがって、構成の複雑化を回避しつつ、計測対象物Dの異常の有無の検出とパターンの取得とを精度良く両立できる。
 本実施形態では、導光光学系4Lを構成する光学素子のうち、ダイクロイックミラー82、偏光ビームスプリッタ83A,83B、ファラデー回転子84A、及びガルバノミラー86を第1の光の光路と第2の光の光路とで共通化できる。このような形態は、これらの光学素子の波長特性が第1の光の波長及び第2の光の波長の双方に適用できる場合に有用である。また、本実施形態では、光センサ(i)7a及び光センサ(ii)7bを有する光検出部7において、第1の光の一の偏光成分と、第1の光の他の偏光成分との差動の検出が可能となる。したがって、光源のSN比が比較的低い場合でも、計測対象物Dの異常の有無の検出を精度良く実施できる。
 さらに、本実施形態では、ダイクロイックミラー91が偏光制御素子K1,K2,Lの前段側に配置されている。これにより、ダイクロイックミラー91の後段の偏光制御素子K1,K2,Lによって光の偏光方向を揃えることができる。したがって、ダイクロイックミラー91の反射側及び透過側のいずれに第1の光の光路及び第2の光の光路を形成してもよく、導光光学系4Lの設計の自由度を担保できる。
[第13実施形態]
 第13実施形態に係る検査装置は、第7実施形態の変形例であり、図27及び図28に示すように、導光光学系4Mにおいて、光路切替素子Mとして構成された光学ミラー71の前段に複数のガルバノミラー(ガルバノミラー56A、56B)を有している点で第7実施形態と異なっている。
 より具体的には、導光光学系4Mでは、光学ミラー71が光路から退避することで第1の光を通過させる。第1の光の光路は、図27に示すように、第7実施形態と実質的に同じである。光検出部7の第1の光センサ7Aの光センサ(i)7a及び光センサ(ii)7bには、偏光制御素子K1及び偏光制御素子K2により、第1の光における互いに直交する偏光成分がそれぞれ出力され、差動が検出される。また、導光光学系4Mでは、光学ミラー71が光路に進出することで第2の光を反射する。第2の光の光路は、図28に示すように、第7実施形態と実質的に同じである。光検出部7の第2の光センサ7Bには、λ/4波長板55を往復することで偏光面が90°回転した直線偏光となった第2の光が出力される。
 このような形態においても、光学ミラー71の進退のみで光路切替素子Mを構成しているので、構成の複雑化を回避しつつ、計測対象物Dの異常の有無の検出とパターンの取得とを精度良く両立できる。
 本実施形態では、光検出部7において、第1の光における一の偏光成分と、第1の光における他の偏光成分との差動の検出が可能となる。したがって、光源のSN比が比較的低い場合でも、計測対象物Dの異常の有無の検出を精度良く実施できる。なお、光路切替素子Mは、ダイクロイックミラーやハーフミラーで構成されていてもよい。この場合、物理的な動作が不要となるため、光路切替素子Mを一層簡単に構成できる。
[第14実施形態]
 第14実施形態に係る検査装置は、第8実施形態の変形例であり、図29及び図30に示すように、導光光学系4Nにおいて、光路切替素子Mとして構成された光学ミラー71の前段に複数のガルバノミラー(ガルバノミラー56A、56B)を有している点で第8実施形態と異なっている。
 このような形態においても、光路切替素子Mにより、構成の複雑化を回避しつつ、計測対象物Dの異常の有無の検出とパターンの取得とを精度良く両立できる。このような形態は、光源のSN比が十分に確保できる場合に有用であり、導光光学系4Nに用いられる光学素子の点数を削減し、構成を簡単化できる。
 以上、本発明の各実施形態について説明したが、本発明は上記実施形態に限定されるものではない。例えば、上記実施形態で用いたファラデー回転子に代えて、可変偏光回転子(バリアブルローテータ)等を用いてもよい。
 1…検査装置、3…光出力部、4A~4N…導光光学系、6…磁気光学結晶、7…光検出部、7A…第1の光センサ、7B…第2の光センサ、32,82…ダイクロイックミラー、34…ファラデー回転子(光路切替素子)、35…λ/4波長板(光路切替素子)、56…ガルバノミラー(光路切替素子)、61…ダイクロイックミラー(光路切替素子)、71…光学ミラー(光路切替素子)、D…計測対象物、K(K1,K2)…偏光制御素子、L(L1,L2)…偏光制御素子、M…光路切替素子。

Claims (14)

  1.  計測対象物の検査を行う検査装置であって、
     第1の波長を有する第1の光、及び前記第1の波長とは異なる第2の波長を有する第2の光を出力する光出力部と、
     前記第1の光を反射する反射面を有し、当該反射面が前記計測対象物に対向するように配置される磁気光学結晶と、
     前記第1の光及び前記第2の光を検出する光検出部と、
     複数の光学素子によって構成され、前記第1の光及び前記第2の光を前記磁気光学結晶及び前記計測対象物に向けて導光すると共に、前記磁気光学結晶で反射した前記第1の光と、前記計測対象物で反射した前記第2の光とを前記光検出部に向けて導光する導光光学系と、を備え、
     前記導光光学系は、前記第1の光及び前記第2の光が選択的に前記光検出部に入射するように、前記複数の光学素子による光路を切り替える光路切替素子を有している検査装置。
  2.  前記光出力部は、前記第1の光を出射する第1の光源と、前記第2の光を出射する第2の光源とを有している請求項1記載の検査装置。
  3.  前記光検出部は、前記第1の光を検出する第1の光センサと、前記第2の光を検出する第2の光センサとを有している請求項1又は2記載の検査装置。
  4.  前記導光光学系は、前記第1の光の一の偏光成分を前記光検出部に導光する偏光制御素子を有している請求項1~3のいずれか一項記載の検査装置。
  5.  前記導光光学系は、前記第1の光の他の偏光成分を前記光検出部に導光する偏光制御素子を更に有している請求項4記載の検査装置。
  6.  前記導光光学系は、前記第2の光の一の偏光成分を前記光検出部に導光する偏光制御素子を有している請求項1~5のいずれか一項記載の検査装置。
  7.  前記光路切替素子は、ファラデー回転子及び波長板によって構成されている請求項4~6のいずれか一項記載の検査装置。
  8.  前記光路切替素子は、ダイクロイックミラーによって構成されている請求項4~6のいずれか一項記載の検査装置。
  9.  前記光路切替素子は、ガルバノミラーによって構成されている請求項4~6のいずれか一項記載の検査装置。
  10.  前記光路切替素子は、光学ミラーによって構成されている請求項4~6のいずれか一項記載の検査装置。
  11.  前記導光光学系は、ダイクロイックミラーを含んで構成され、
     前記ダイクロイックミラーは、前記偏光制御素子の前段側に配置されている請求項7記載の検査装置。
  12.  前記計測対象物は、半導体デバイスである請求項1~11のいずれか一項記載の検査装置。
  13.  前記第1の波長は、前記第2の波長よりも短い波長である請求項1~12のいずれか一項記載の検査装置。
  14.  計測対象物に対向するように配置した磁気光学結晶を用いて前記計測対象物の検査を行う検査方法であって、
     第1の波長を有する第1の光、及び前記第1の波長とは異なる第2の波長を有する第2の光を導光光学系によって前記磁気光学結晶及び前記計測対象物に導光し、前記磁気光学結晶或いは前記計測対象物で反射した前記第1の光及び前記第2の光を検出するステップを備え、
     前記ステップは、
     光出力部から前記第1の光を出力し、前記導光光学系を介して光検出部で前記第1の光を検出するステップと、
     前記第2の光が前記光検出部に入射するように前記導光光学系の光路を選択的に切り替えるステップと、
     前記光出力部から前記第2の光を出力し、前記導光光学系を介して前記光検出部で前記第2の光を検出するステップと、を含む検査方法。
PCT/JP2016/083855 2015-12-03 2016-11-15 検査装置及び検査方法 WO2017094495A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201680070354.0A CN108369211B (zh) 2015-12-03 2016-11-15 检查装置及检查方法
US15/780,293 US10564126B2 (en) 2015-12-03 2016-11-15 Optical polarization inspection device and method
JP2017553754A JP6940413B2 (ja) 2015-12-03 2016-11-15 検査装置及び検査方法
KR1020187010009A KR102523172B1 (ko) 2015-12-03 2016-11-15 검사 장치 및 검사 방법
US16/731,273 US10976284B2 (en) 2015-12-03 2019-12-31 Inspection device and inspection method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-236664 2015-12-03
JP2015236664 2015-12-03

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/780,293 A-371-Of-International US10564126B2 (en) 2015-12-03 2016-11-15 Optical polarization inspection device and method
US16/731,273 Continuation US10976284B2 (en) 2015-12-03 2019-12-31 Inspection device and inspection method

Publications (1)

Publication Number Publication Date
WO2017094495A1 true WO2017094495A1 (ja) 2017-06-08

Family

ID=58797208

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/083855 WO2017094495A1 (ja) 2015-12-03 2016-11-15 検査装置及び検査方法

Country Status (6)

Country Link
US (2) US10564126B2 (ja)
JP (1) JP6940413B2 (ja)
KR (1) KR102523172B1 (ja)
CN (1) CN108369211B (ja)
TW (1) TWI726007B (ja)
WO (1) WO2017094495A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019230147A1 (ja) * 2018-05-29 2019-12-05 浜松ホトニクス株式会社 光差分検出器及び検査装置
TWI857631B (zh) 2018-05-29 2024-10-01 日商濱松赫德尼古斯股份有限公司 光差檢測器及檢查裝置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI770809B (zh) * 2021-02-05 2022-07-11 佰驟智能股份有限公司 快速發光效率檢測方法
TWI758088B (zh) * 2021-02-05 2022-03-11 佰驟智能有限公司 陣列式發光效率檢測方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61260211A (ja) * 1985-05-15 1986-11-18 Hitachi Ltd 自動異物検出方法及びその装置
JPH04279856A (ja) * 1991-03-07 1992-10-05 Sumitomo Metal Ind Ltd 探傷装置
JPH0627034A (ja) * 1992-07-13 1994-02-04 Hitachi Ltd パターン検出方法とその装置
JPH07287059A (ja) * 1994-04-15 1995-10-31 Nippon Steel Corp 磁性材料の磁区検出装置
JPH11304715A (ja) * 1998-04-16 1999-11-05 Lasertec Corp パターン欠陥検査装置及びレーザ顕微鏡
JP2012068261A (ja) * 2011-11-28 2012-04-05 Hitachi High-Technologies Corp 欠陥検査方法および欠陥検査装置
JP2014153318A (ja) * 2013-02-13 2014-08-25 Hitachi Ltd 検査装置および検査方法
JP2015200645A (ja) * 2014-04-04 2015-11-12 株式会社ニューフレアテクノロジー 撮像装置、検査装置および検査方法

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993011427A1 (en) * 1991-11-29 1993-06-10 Maloe Nauchno-Proizvodstvennoe Predpriyatie 'lkt' Magneto-optical method for testing articles
DE69940335D1 (de) * 1998-09-28 2009-03-12 Nec Electronics Corp Vorrichtung und Verfahren zum zerstörungsfreien Prüfen einer Halbleiteranordnung
CN1165044C (zh) * 2000-06-06 2004-09-01 松下电器产业株式会社 光读取装置
CN101099186B (zh) * 2004-11-12 2012-01-18 Vfs技术有限公司 微粒探测器,系统与方法
GB0617945D0 (en) * 2006-09-12 2006-10-18 Ucl Business Plc Imaging apparatus and methods
KR20120039659A (ko) * 2009-06-22 2012-04-25 에이에스엠엘 홀딩 엔.브이. 물체 검사 시스템 및 물체 검사 방법
CN101782693B (zh) * 2010-01-28 2012-02-01 天津奇谱光电技术有限公司 一种多功能集成光学设备
US20130148113A1 (en) * 2010-03-31 2013-06-13 Hitachi High-Technologies Corporation Inspection apparatus and inspection method
JP5762715B2 (ja) * 2010-10-06 2015-08-12 信越化学工業株式会社 磁気光学材料、ファラデー回転子、及び光アイソレータ
JP5701392B2 (ja) 2010-10-12 2015-04-15 インディアン インスティテュート オブ テクノロジー カーンプル サンプルの特性を画像化し、サンプル内の損傷の領域を識別するシステムおよび方法
JP5806837B2 (ja) * 2011-04-11 2015-11-10 株式会社モリテックス 光学異方性パラメータ測定装置、測定方法及び測定用プログラム
JP5802110B2 (ja) * 2011-10-26 2015-10-28 浜松ホトニクス株式会社 光変調制御方法、制御プログラム、制御装置、及びレーザ光照射装置
JP5882713B2 (ja) * 2011-12-13 2016-03-09 キヤノン株式会社 画像処理装置、画像処理方法、コンピュータプログラム
EP2806262A4 (en) * 2012-01-18 2015-09-23 Nikon Corp STRUCTURED LIGHTING DEVICE, LIGHTED MICROSCOPE STRUCTURED DEVICE, AND STRUCTURED LIGHTING METHOD
JP5773939B2 (ja) * 2012-04-27 2015-09-02 株式会社日立ハイテクノロジーズ 欠陥検査装置および欠陥検査方法
JP5987610B2 (ja) * 2012-09-28 2016-09-07 Jfeスチール株式会社 鋼板検査装置、鋼板検査方法、および鋼板製造方法
US9551888B2 (en) * 2014-01-03 2017-01-24 Lightel Technologies, Inc. Magneto-optical crystal assembly for broadband temperature stable polarization rotation
JP6364193B2 (ja) * 2014-01-23 2018-07-25 株式会社ニューフレアテクノロジー 焦点位置調整方法および検査方法
US9640449B2 (en) * 2014-04-21 2017-05-02 Kla-Tencor Corporation Automated inline inspection of wafer edge strain profiles using rapid photoreflectance spectroscopy

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61260211A (ja) * 1985-05-15 1986-11-18 Hitachi Ltd 自動異物検出方法及びその装置
JPH04279856A (ja) * 1991-03-07 1992-10-05 Sumitomo Metal Ind Ltd 探傷装置
JPH0627034A (ja) * 1992-07-13 1994-02-04 Hitachi Ltd パターン検出方法とその装置
JPH07287059A (ja) * 1994-04-15 1995-10-31 Nippon Steel Corp 磁性材料の磁区検出装置
JPH11304715A (ja) * 1998-04-16 1999-11-05 Lasertec Corp パターン欠陥検査装置及びレーザ顕微鏡
JP2012068261A (ja) * 2011-11-28 2012-04-05 Hitachi High-Technologies Corp 欠陥検査方法および欠陥検査装置
JP2014153318A (ja) * 2013-02-13 2014-08-25 Hitachi Ltd 検査装置および検査方法
JP2015200645A (ja) * 2014-04-04 2015-11-12 株式会社ニューフレアテクノロジー 撮像装置、検査装置および検査方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019230147A1 (ja) * 2018-05-29 2019-12-05 浜松ホトニクス株式会社 光差分検出器及び検査装置
JP2019207946A (ja) * 2018-05-29 2019-12-05 浜松ホトニクス株式会社 光差分検出器及び検査装置
US11243113B2 (en) 2018-05-29 2022-02-08 Hamamatsu Photonics K.K. Optical difference detector and inspection device
TWI801557B (zh) * 2018-05-29 2023-05-11 日商濱松赫德尼古斯股份有限公司 光差檢測器及檢查裝置
JP7327908B2 (ja) 2018-05-29 2023-08-16 浜松ホトニクス株式会社 光差分検出器及び検査装置
US11733091B2 (en) 2018-05-29 2023-08-22 Hamamatsu Photonics K.K. Optical difference detector and inspection device
TWI857631B (zh) 2018-05-29 2024-10-01 日商濱松赫德尼古斯股份有限公司 光差檢測器及檢查裝置
KR102715548B1 (ko) 2018-05-29 2024-10-11 하마마츠 포토닉스 가부시키가이샤 광 차분 검출기 및 검사 장치

Also Published As

Publication number Publication date
TW201725372A (zh) 2017-07-16
JPWO2017094495A1 (ja) 2018-09-20
US20200132629A1 (en) 2020-04-30
US10976284B2 (en) 2021-04-13
KR20180088790A (ko) 2018-08-07
TWI726007B (zh) 2021-05-01
US20180348165A1 (en) 2018-12-06
CN108369211A (zh) 2018-08-03
CN108369211B (zh) 2021-12-07
KR102523172B1 (ko) 2023-04-19
US10564126B2 (en) 2020-02-18
JP6940413B2 (ja) 2021-09-29

Similar Documents

Publication Publication Date Title
JP4223769B2 (ja) 測定装置
US10976284B2 (en) Inspection device and inspection method
KR101788450B1 (ko) 테라헤르츠파를 이용한 투명 박막의 두께를 측정하는 장치 및 그 측정 방법
US9983260B2 (en) Dual-phase interferometry for charge modulation mapping in ICS
KR20160040737A (ko) 근적외선 스펙트럼 범위를 이용한 오버레이 메트롤러지
US20160153904A1 (en) Optical tomographic observation device
WO2017154895A1 (ja) 測定装置、観察装置および測定方法
JP6581081B2 (ja) 検査装置及び磁気光学結晶の配置方法
JP3507319B2 (ja) 光学的特性測定装置
TWI769229B (zh) 半導體檢查裝置
JP3288671B2 (ja) 試料の物理的性質の測定装置
JP3288670B2 (ja) 試料の物理的性質の測定装置
JP2002303574A (ja) テラヘルツ光装置及びこれの調整方法
JPH0580083A (ja) 集積回路の試験方法および装置
KR101692869B1 (ko) 인디케이터를 이용한 광학 현미경
TWI482958B (zh) 偵測裝置及偵測方法
Halahovets et al. Scanning magneto-optical Kerr microscope with auto-balanced detection scheme
JP6909195B2 (ja) 半導体検査装置
US9417281B1 (en) Adjustable split-beam optical probing (ASOP)
JP2015064271A (ja) 光軸調整方法および検査装置
JPS63259446A (ja) 光プローブ
CN114441454A (zh) 一种偏振分辨二次谐波测试装置及方法
Protopopov et al. Magneto-Optics
Zhan CHAPTER 6: OPTICAL MEASUREMENT TECHNIQUES UTILIZING VECTORIAL OPTICAL FIELDS

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16870434

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017553754

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20187010009

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16870434

Country of ref document: EP

Kind code of ref document: A1