WO2017094293A1 - 樹脂成形装置、樹脂成形方法、吐出機構、及び吐出装置 - Google Patents

樹脂成形装置、樹脂成形方法、吐出機構、及び吐出装置 Download PDF

Info

Publication number
WO2017094293A1
WO2017094293A1 PCT/JP2016/074208 JP2016074208W WO2017094293A1 WO 2017094293 A1 WO2017094293 A1 WO 2017094293A1 JP 2016074208 W JP2016074208 W JP 2016074208W WO 2017094293 A1 WO2017094293 A1 WO 2017094293A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
torque value
moving member
liquid resin
discharge
Prior art date
Application number
PCT/JP2016/074208
Other languages
English (en)
French (fr)
Inventor
周邦 花坂
山田 哲也
岩田 康弘
智行 後藤
Original Assignee
Towa株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Towa株式会社 filed Critical Towa株式会社
Priority to MYPI2018701915A priority Critical patent/MY187148A/en
Priority to CN201680070185.0A priority patent/CN108290324B/zh
Priority to KR1020187016488A priority patent/KR102158030B1/ko
Publication of WO2017094293A1 publication Critical patent/WO2017094293A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C31/00Handling, e.g. feeding of the material to be shaped, storage of plastics material before moulding; Automation, i.e. automated handling lines in plastics processing plants, e.g. using manipulators or robots
    • B29C31/04Feeding of the material to be moulded, e.g. into a mould cavity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • B29C43/18Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles incorporating preformed parts or layers, e.g. compression moulding around inserts or for coating articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/34Feeding the material to the mould or the compression means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/58Measuring, controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/02Transfer moulding, i.e. transferring the required volume of moulding material by a plunger from a "shot" cavity into a mould cavity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/76Measuring, controlling or regulating
    • B29C45/77Measuring, controlling or regulating of velocity or pressure of moulding material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/6715Apparatus for applying a liquid, a resin, an ink or the like

Definitions

  • a chip-like electronic component such as a transistor, an integrated circuit (IC), and a light emitting diode (LED) is used as a resin material having fluidity (hereinafter referred to as “chip”).
  • chip a resin material having fluidity
  • the present invention relates to a resin molding apparatus and a resin molding method that are used when resin sealing is performed using “flowable resin”.
  • the present invention relates to a discharge mechanism and a discharge device for discharging a fluid material (hereinafter referred to as “fluid material”).
  • fluidity means having fluidity regardless of whether it is at room temperature or at a temperature other than room temperature.
  • liquid means liquid at room temperature and fluidity.
  • fluidity and liquid do not matter whether the fluidity is high or low, in other words, the degree of viscosity.
  • a chip of an optical element such as an LED mounted on a substrate has been sealed with a sealing resin made of a cured resin using a thermosetting liquid-transmitting resin such as a silicone resin or an epoxy resin.
  • a resin sealing technique a resin molding technique such as compression molding or transfer molding is used. In resin molding, resin molding is performed by mixing a liquid resin serving as a main agent with a liquid resin serving as an auxiliary agent such as a curing agent and heating the mixed liquid resin.
  • a liquid resin is discharged into a cavity provided in a lower mold of a resin molding apparatus using a dispenser which is a liquid resin discharge mechanism.
  • a dispenser which is a liquid resin discharge mechanism.
  • the liquid resin stored in the syringe is pressed using a plunger (a moving member for pressing).
  • the liquid resin is discharged into the cavity from the nozzle attached to the tip of the dispenser.
  • the liquid resin called “suck back” may be drawn after the supply of the liquid resin is stopped. “Suckback” means to retract (pull back) the plunger. If pulling back by suck back is too strong, the pressure of the liquid resin in the syringe becomes negative, and air in the atmosphere may be mixed into the syringe. If air is mixed in the syringe, there is a problem that a predetermined amount of liquid resin is not discharged when the next discharge is performed. Therefore, it is important to stably discharge a predetermined amount of the liquid resin into the cavity over the range from low viscosity to high viscosity without being affected by the viscosity of the liquid resin.
  • a liquid dispensing apparatus has been proposed that can improve the liquid drainage after stopping the discharge of the nozzle and can suppress the dripping and the ingress of air after the discharge is stopped.
  • This liquid dispensing apparatus is disposed between a syringe and an air pressure source device, an air pressure source device that applies an applied pressure for liquid ejection to the syringe, a negative pressure generator that applies a negative pressure for liquid retention to the syringe, and the air pressure source device.
  • a pressurizing on-off valve for opening and closing the installed pipe line, a negative-pressure on-off valve for opening and closing a pipe line disposed between the syringe and the negative pressure generating device, and between the negative pressure generating device and the negative pressure on-off valve And a check valve that maintains the negative pressure of the negative pressure on-off valve side see Japanese Patent Application Laid-Open No. 2006-192371 (Patent Document 1), paragraphs [0006], [0007], (See FIG. 1).
  • the conventional liquid dispensing apparatus disclosed in Patent Document 1 has the following problems.
  • the liquid dispensing apparatus 1 includes a pneumatic circuit 2 that adjusts the pressure in the syringe 3 of the dispenser 14, and connects various devices through a plurality of pipelines 21 to 26. Configured. By constructing such a pneumatic circuit 2, the pressure in the syringe 3 is adjusted. Therefore, the configuration of the liquid dispensing apparatus is very complicated, and the apparatus itself becomes large.
  • a resin molding apparatus in at least one of an upper mold, a lower mold provided opposite to the upper mold, and an upper mold and a lower mold.
  • the resin molding apparatus includes a delivery mechanism that is provided in the supply mechanism and delivers the fluid resin, a storage unit that is connected to the delivery mechanism and stores the fluid resin, a discharge unit that is connected to the storage unit and discharges the fluid resin, A rotation mechanism provided in the delivery mechanism, a moving member that advances and retreats along the inner wall of the storage portion based on rotation of the rotation mechanism and presses the fluid resin stored in the storage portion, and a resin of the fluid resin in the storage portion A detection unit that detects a torque value applied to the rotating mechanism via the moving member due to pressure, and a control unit that controls the moving speed of the moving member or the rotating speed of the rotating mechanism based on the detected torque value; Is provided.
  • the control unit controls the supply amount of the fluid resin supplied to the storage unit by controlling the moving member to advance and stop and then retract.
  • control unit compares the detected torque value with a preset torque value indicating an abnormal state to determine whether or not the supply mechanism is supplying the fluid resin in a normal state. May be determined.
  • control unit causes the detected torque value to approach zero when the torque value detected after the moving member is retracted indicates a positive torque when a predetermined time has elapsed.
  • the moving member may be controlled to move backward.
  • control unit causes the detected torque value to approach 0 when the torque value detected after retracting the moving member indicates a negative torque when a predetermined time has elapsed.
  • the moving member may be controlled to advance.
  • the cured resin may be a sealing resin that covers the substrate.
  • the above-described resin molding apparatus may further include at least one molding module having a molding die and a clamping mechanism so that one molding module and another molding module can be attached and detached. Also good.
  • a resin molding method includes an upper mold, a lower mold provided opposite to the upper mold, and at least one of an upper mold and a lower mold.
  • a resin molding apparatus provided with a cavity provided in the above, a supply mechanism for supplying a fluid resin to the accommodating portion, and a mold clamping mechanism for clamping a mold having at least an upper mold and a lower mold, A molded product including a cured resin formed by curing the fluid resin in the cavity is formed.
  • the resin molding method includes a step of preparing a supply mechanism having a delivery mechanism for delivering a fluid resin, a storage portion for storing the fluid resin, and a discharge portion for ejecting the fluid resin, and a rotation mechanism provided in the delivery mechanism.
  • a step of rotating the rotating shaft, a step of moving the moving member back and forth along the inner wall of the storage unit based on the rotation of the rotating shaft, and the moving member due to the resin pressure of the fluid resin in the storage unit A step of detecting a torque value applied to the rotating mechanism, a step of controlling the moving speed of the moving member or the rotating speed of the rotating mechanism based on the detected torque value, and the moving speed of the moving member or the rotating speed of the rotating mechanism.
  • the flowable resin is supplied in a normal state by comparing the torque value detected in the step of detecting the torque value with a preset torque value indicating an abnormal state. You may make it further provide the process of determining whether it is.
  • the above-described resin molding method moves for the purpose of approaching the detected torque value to 0 when the torque value detected after the moving member is retracted indicates a positive torque when a predetermined time has elapsed. You may make it further provide the process controlled to retract a member.
  • the above-described resin molding method moves for the purpose of approaching the detected torque value to 0 when the torque value detected after the moving member is retracted indicates a negative torque when a predetermined time has elapsed. You may make it further provide the process controlled to advance a member.
  • the cured resin may be a sealing resin that covers the substrate.
  • the above resin molding method may further include a step of preparing at least one molding module having a molding die and a clamping mechanism, and one molding module and another molding module can be attached and detached. You may do it.
  • a discharge mechanism includes a delivery mechanism that delivers a fluid material, a reservoir that is connected to the delivery mechanism and stores the fluid material, and a reservoir.
  • a discharge mechanism that is connected to a discharge unit that discharges a fluid material, and includes a rotation mechanism provided in the delivery mechanism, a rotation shaft that is rotated by the rotation mechanism, and a rotational motion of the rotation shaft that is converted into a linear motion.
  • the moving member that is connected to the linear motion member and advances and retreats along the inner wall of the reservoir and presses the fluid material stored in the reservoir, and the resin pressure of the fluid material in the reservoir
  • a detecting unit that detects a torque value applied to the rotating mechanism via the moving member, and the rotational speed of the rotating mechanism or the moving speed of the moving member is controlled based on the detected torque value.
  • the detected torque value is compared with a preset torque value indicating an abnormal state to determine whether or not the discharge mechanism is supplying the fluid material in a normal state. You may do it.
  • a discharge device includes a delivery mechanism that delivers a flowable material, a storage unit that is connected to the delivery mechanism and stores the flowable material, and a discharge that is connected to the storage unit and discharges the flowable material.
  • a rotation mechanism provided in the delivery mechanism, a rotation shaft that is rotated by the rotation mechanism, a linear motion member that converts the rotational motion of the rotation shaft into linear motion, and a linear motion member Connected to the inner wall of the reservoir and moving to push the fluid material stored in the reservoir, and to the rotating mechanism via the movable member due to the resin pressure of the fluid material in the reservoir
  • a detection unit that detects the applied torque value, and a control unit that controls the moving speed of the moving member or the rotation speed of the rotating mechanism based on the detected torque value. The control unit controls the rotation speed of the rotation mechanism or the movement speed of the moving member based on the detected torque value.
  • control unit compares the detected torque value with a preset torque value indicating an abnormal state to determine whether or not the flowable material is supplied in a normal state of the discharge device. You may make it judge.
  • the resin pressure of the fluid resin received via the moving member is detected as a load torque value (torque value) applied to the rotation mechanism using a detection unit included in the rotation mechanism.
  • torque value a load torque value
  • the moving speed of the moving member or the rotating speed of the rotating mechanism is controlled to advance the moving member, stop the moving member, and then move the moving member backward.
  • the supply amount of the fluid resin supplied to the cavity is controlled. Therefore, a resin molding apparatus having a simple configuration and reduced in size is provided.
  • a resin molding apparatus and a resin molding method are provided that can control the supply amount of the fluid resin even when the viscosity of the fluid resin changes.
  • a discharge mechanism and a discharge device that have a simple configuration and are miniaturized are provided.
  • a discharge mechanism and a discharge device that can control the supply amount of the fluid resin even when the viscosity of the fluid resin changes are provided.
  • FIG. 1 It is a top view which shows the outline
  • the resin molding apparatus shown in FIG. 1 it is the schematic which shows the resin supply mechanism which supplies the liquid resin which is one aspect
  • (1) is a schematic view showing a state in which a resin supply mechanism supplies a liquid resin to a cavity provided in a lower mold
  • (2) is a schematic plan view showing the resin supply mechanism.
  • FIG. 4 is a schematic diagram showing a change in torque value of a servo motor in the dispenser shown in FIG. 3.
  • FIG. 4 is a schematic diagram showing a change in torque value of a servo motor in the dispenser shown in FIG. 3.
  • FIG. 4 is a schematic diagram showing various changes in the torque value of a servo motor in the dispenser shown in FIG. 3.
  • FIG. 4 is a schematic view showing a process of returning the resin pressure in the syringe after suck back from negative pressure to atmospheric pressure in the dispenser shown in FIG. 3.
  • FIG. 4 is a schematic view showing a process of returning the resin pressure in the syringe after suck back from the positive pressure to the atmospheric pressure in the dispenser shown in FIG. 3.
  • the dispenser 19 includes a delivery mechanism 27, a syringe 28, and a nozzle 29.
  • the delivery mechanism 27, the syringe 28, and the nozzle 29 are integrally configured.
  • a servo motor 31 provided in the delivery mechanism 27, the plunger 35 is advanced and retracted in the syringe 28 through the ball screw 32, the slider 33, and the rod 34, respectively.
  • the resin pressure of the liquid resin 30 in the syringe 28 is detected as a load torque value (torque value) applied to the servo motor 31.
  • the rotational torque of the servo motor 31 is controlled so that the moving speed V of the plunger 35 or the rotational speed r of the servo motor 31 is constant.
  • a predetermined amount of the liquid resin 30 can be delivered within a predetermined time.
  • a predetermined amount of the liquid resin 30 can be supplied to the cavity by improving the liquid resin 30 by sucking back.
  • Embodiment 1 of a resin molding apparatus according to the present invention will be described with reference to FIGS. Any figure in the present application document is schematically omitted or exaggerated as appropriate for easy understanding. About the same component, the same code
  • a resin molding apparatus 1 shown in FIG. 1 includes a substrate supply / storage module 2, four molding modules 3A, 3B, 3C, and 3D and a supply module 4 as components.
  • the substrate supply / storage module 2, the forming modules 3A to 3D, and the supply module 4, which are constituent elements, can be attached to and detached from other constituent elements, and can be exchanged.
  • the substrate supply / storage module 2 is provided with a pre-sealing substrate supply unit 6 for supplying the pre-sealing substrate 5 and a sealed substrate storage unit 8 for storing the sealed substrate 7.
  • a pre-sealing substrate supply unit 6 for supplying the pre-sealing substrate 5
  • a sealed substrate storage unit 8 for storing the sealed substrate 7.
  • an LED chip or the like is mounted on the pre-sealing substrate 5 as an optical element.
  • the substrate supply / storage module 2 includes a loader 9 and an unloader 10, and a rail 11 that supports the loader 9 and the unloader 10 is provided along the X direction. The loader 9 and the unloader 10 move in the X direction along the rail 11.
  • the loader 9 and unloader 10 supported by the rail 11 move in the X direction between the substrate supply / storage module 2, the molding modules 3 ⁇ / b> A, 3 ⁇ / b> B, 3 ⁇ / b> C, 3 ⁇ / b> D and the supply module 4.
  • the loader 9 is provided with a moving mechanism 12 for supplying the pre-sealing substrate 5 to the upper mold in each of the molding modules 3A, 3B, 3C, and 3D. In each molding module, the moving mechanism 12 moves in the Y direction.
  • the unloader 10 is provided with a moving mechanism 13 that receives the sealed substrate 7 from the upper mold in each of the molding modules 3A, 3B, 3C, and 3D. In each molding module, the moving mechanism 13 moves in the Y direction.
  • Each molding module 3A, 3B, 3C, 3D is provided with a lower mold 14 that can be moved up and down, and an upper mold (not shown, see (1) in FIG. 2) arranged opposite to the lower mold 14. .
  • the upper mold and the lower mold 14 constitute a mold.
  • Each molding module 3A, 3B, 3C, 3D has a clamping mechanism 15 that clamps and opens the upper mold and the lower mold 14.
  • the lower mold 14 is provided with a cavity 16 which is a space in which the liquid resin is accommodated and cured.
  • the cavity 16 is a housing portion that houses the liquid resin.
  • the mold surface in the cavity 16 is covered with a release film 17.
  • the supply module 4 is provided with a resin supply mechanism 18 that supplies liquid resin to the cavity 16.
  • the resin supply mechanism 18 is supported by the rail 11 and moves in the X direction along the rail 11.
  • the resin supply mechanism 18 is provided with a dispenser 19 which is a liquid resin discharge mechanism.
  • the dispenser 19 is moved in the Y direction by the moving mechanism 20 and discharges the liquid resin into the cavity 16.
  • the dispenser 19 shown in FIG. 1 is a one-component dispenser that uses a liquid resin in which a main agent and a curing agent are mixed in advance.
  • a silicone resin or an epoxy resin having thermosetting property and translucency is used.
  • the vacuum module 21 is provided in the supply module 4.
  • the vacuuming mechanism 21 forcibly sucks and discharges air from the cavity 16 immediately before the upper mold and the lower mold 14 are clamped in the molding modules 3A, 3B, 3C, and 3D.
  • the supply module 4 is provided with a control unit 22 that controls the operation of the entire resin molding apparatus 1.
  • FIG. 1 the case where the vacuuming mechanism 21 and the control unit 22 are provided in the supply module 4 is shown. Not only this but the vacuuming mechanism 21 and the control part 22 may be provided in another module.
  • each molding module 3A, 3B, 3C, 3D (see FIG. 1) is provided with an upper mold 23, a lower mold 14, and a film pressing member 24. At least the upper mold 23 and the lower mold 14 constitute a mold.
  • Each of the molding modules 3A, 3B, 3C, and 3D has a mold clamping mechanism 15 (see FIG. 1) for clamping the mold and opening the mold.
  • the release film 17 covers the mold surface of the cavity 16 and the surrounding mold surface.
  • the film pressing member 24 is a member for pressing and fixing the release film 17 to the mold surface of the lower mold 14 around the cavity 16.
  • the film pressing member 24 has an opening at the center, and the mold is located inside the opening.
  • the pre-sealing substrate 5 on which the LED chip 25 or the like is mounted is fixed to the upper mold 23 by suction or clamping.
  • An individual cavity 26 corresponding to each LED chip 25 is provided inside the cavity 16.
  • the release film 17 is supplied so as to cover the entire surface of the cavity 16.
  • the release film 17 is heated by a heater (not shown) provided in the lower mold 14.
  • the heated release film 17 is softened and stretched.
  • the softened release film 17 is pressed against and fixed to the mold surface of the lower mold 14 by the film pressing member 24.
  • the softened release film 17 is adsorbed along the mold surface in each individual cavity 26.
  • FIG. 2 (1) the case where the film pressing member 24 is used is shown. Not limited to this, the release film 17 and the film pressing member 24 may not be used.
  • the dispenser 19 includes a delivery mechanism 27 that delivers a predetermined amount of the liquid resin 30, a syringe 28 that stores the liquid resin 30, and a nozzle 29 that discharges the liquid resin 30.
  • the delivery mechanism 27, the syringe 28, and the nozzle 29 are connected and configured integrally. Accordingly, the respective constituent elements (the delivery mechanism 27, the syringe 28, and the nozzle 29) can be attached to and detached from each other, and the respective constituent element units can be exchanged with the same kind of different constituent units.
  • liquid resins 30 having different materials, different viscosities, and the like can be stored and stored in a plurality of syringes 28 in advance, and the necessary syringes 28 can be attached to the dispenser 19 according to the product.
  • syringes 28 having different capacities can be selected and used.
  • the direction in which the liquid resin 30 is discharged can be set to an arbitrary direction such as right below, right next, or diagonally below.
  • the diameter of the discharge port of the nozzle 29 can be changed according to the viscosity of the liquid resin 30.
  • a static mixer can be provided between the syringe 28 and the nozzle 29. For example, even when a phosphor or the like is added as an additive to the liquid resin 30, the liquid resin 30 is agitated by a static mixer so that the liquid resin 30 can be uniformly formed without precipitation of the phosphor. Can be discharged.
  • the dispenser 19 can also be moved in the vertical direction (Z direction).
  • the dispenser 19 shown in (1) of FIG. 2 has a certain point in the vertical plane (in the plane including the Y axis and the Z axis) or in the horizontal plane (in the plane including the X axis and the Y axis). It can be reciprocated so as to partially rotate around the center. In this case, the dispenser 19 reciprocates so as to draw a part of the arc.
  • the pre-sealing substrate 5 on which the LED chip 25 is mounted is transferred from the pre-sealing substrate supply unit 6 to the loader 9 with the surface on which the LED chip 25 is mounted facing down.
  • the loader 9 is moved in the + X direction from the substrate supply / storage module 2 along the rail 11 to the molding module 3C.
  • the loader 9 is moved in the ⁇ Y direction to a predetermined position between the lower mold 14 and the upper mold 23 (see (1) in FIG. 2).
  • the substrate 5 before sealing with the surface on which the LED chip 25 is mounted on the lower side is fixed to the lower surface of the upper mold 23 by suction or clamping.
  • the loader 9 is moved to the original position in the substrate supply / storage module 2.
  • the dispenser 19 is moved from the standby position in the supply module 4 to the molding module 3C along the rail 11 in the -X direction. As a result, the resin supply mechanism 18 is moved to a predetermined position near the lower mold 14 in the module 3C. Using the moving mechanism 20, the dispenser 19 is moved to a predetermined position above the lower mold 14.
  • the liquid resin 30 is discharged from the nozzle 29 of the dispenser 19. Specifically, the liquid resin 30 is discharged from the nozzle 29 of the dispenser 19 toward the cavity 16 provided in the lower mold 14. As a result, the liquid resin 30 is supplied to the cavity 16.
  • the dispenser 19 is moved back to the resin supply mechanism 18 using the moving mechanism 20.
  • the resin supply mechanism 18 is moved to the original standby position in the supply module 4.
  • the upper mold 23 and the lower mold 14 are clamped by raising the lower mold 14 using the mold clamping mechanism 15.
  • the LED chip 25 mounted on the pre-sealing substrate 5 is immersed in the liquid resin 30 supplied to the cavity 16.
  • a predetermined resin pressure can be applied to the liquid resin 30 in the cavity 16 by using a cavity bottom surface member (not shown) provided in the lower mold 14.
  • the inside of the cavity 16 may be sucked using the vacuuming mechanism 21. As a result, air remaining in the cavity 16 or bubbles contained in the liquid resin 30 are discharged to the outside of the mold. In addition, the inside of the cavity 16 is set to a predetermined degree of vacuum.
  • the liquid resin 30 is heated for a time necessary to cure the liquid resin 30. As a result, the liquid resin 30 is cured to form a cured resin.
  • the LED chip 25 mounted on the pre-sealing substrate 5 is resin-sealed with a cured resin formed corresponding to the shape of the cavity 16.
  • the upper mold 23 and the lower mold 14 are opened using the mold clamping mechanism 15.
  • the loader 9 is retracted to an appropriate position that does not prevent the unloader 10 from moving to the molding module 3C.
  • the loader 9 is retracted from the substrate supply / storage module 2 to an appropriate position in the molding module 3 ⁇ / b> D or the supply module 4.
  • the unloader 10 is moved in the + X direction along the rail 11 from the substrate supply / storage module 2 to the forming module 3C.
  • the moving mechanism 13 removes the sealed substrate 7 from the upper mold 23. receive.
  • the moving mechanism 13 is returned to the unloader 10.
  • the unloader 10 is returned to the substrate supply / storage module 2 and the sealed substrate 7 is stored in the sealed substrate storage portion 8. At this point, resin sealing of the first pre-sealing substrate 5 is completed, and the first sealed substrate 7 is completed.
  • the loader 9 evacuated to an appropriate position in the molding module 3D or the supply module 4 is moved to the substrate supply / storage module 2.
  • the next pre-sealing substrate 5 is delivered from the pre-sealing substrate supply unit 6 to the loader 9. Resin sealing is repeated as described above.
  • the control unit 22 supplies the substrate 5 before sealing, moves the resin supply mechanism 18 and the dispenser 19, discharges the liquid resin 30, clamps and opens the upper mold 23 and the lower mold 14, and closes the sealed substrate 7. Control operations such as storage.
  • the dispenser 19 used in the resin molding apparatus 1 according to the present invention will be described with reference to FIG. As shown in FIG. 3, the dispenser 19 is integrally configured by connecting a delivery mechanism 27, a syringe 28, and a nozzle 29. Therefore, the syringe 28 or the nozzle 29 can be replaced with another syringe 28 or the nozzle 29 depending on the application.
  • the delivery mechanism 27 includes a servo motor 31, a ball screw 32 that is rotated by the servo motor 31, a slider 33 that is attached to a ball screw nut (not shown) and converts rotational motion into linear motion, and a tip of the slider 33.
  • a rod 34 that is fixed and has an insertion hole therein, and a plunger 35 attached to the tip of the rod 34 are provided.
  • the ball screw 32 is supported by a ball screw bearing 36 and a steady member 37 attached to the tip of the ball screw 32.
  • the slider 33 advances and retreats in the Y direction along a guide rail 38 provided on the base of the delivery mechanism 27.
  • the plunger 35 advances and retreats in the Y direction via the ball screw 32, slider 33, and rod 34, respectively.
  • Servo motor 31 is a motor that can control the rotation of the motor.
  • the servo motor 31 has a rotation detector (encoder) 39 that monitors the rotation of the motor.
  • the encoder 39 detects the rotation angle and rotation speed of the servo motor 31 and feeds back to the control unit 22.
  • the control unit 22 includes a PLC (Programmable Logic Controller), a controller, a driver, and the like. Based on the PLC command signal and the feedback signal from the encoder 39, the control unit 22 controls the rotation of the servo motor 31.
  • PLC Programmable Logic Controller
  • the syringe 28 in which the liquid resin 30 is stored is connected to the tip of the delivery mechanism 27 by a syringe mounting screw 40.
  • the plunger 35 is inserted into the syringe 28 so that the outer diameter of the plunger 35 matches the inner diameter of the syringe 28.
  • An O-ring (not shown), which is a sealing material, is attached around the plunger 35.
  • the resin amount of the liquid resin 30 discharged from the dispenser 19 is calculated by the product of the inner sectional area of the syringe 28 and the movement amount of the plunger 35.
  • a discharge port 41 for discharging the liquid resin 30 is provided at the tip of the nozzle 29.
  • the direction of the discharge port 41 is set to an arbitrary direction such as directly below, directly beside, or obliquely below. Further, the diameter and shape of the discharge port 41 can be optimized by the viscosity of the liquid resin 30 so that the liquid resin 30 does not drip.
  • the dispenser 19 to discharge the liquid resin 30 will be described with reference to FIG.
  • the ball screw 32 rotates.
  • the slider 33 attached to the ball screw nut advances along the guide rail 38 in the ⁇ Y direction.
  • the rod 34 fixed to the slider 33 together with the slider 33 moves forward in the ⁇ Y direction.
  • the rod 34 advances in the ⁇ Y direction, whereby the plunger 35 attached to the tip of the rod 34 advances in the ⁇ Y direction.
  • the plunger 35 moves forward in the ⁇ Y direction, the liquid resin 30 stored in the syringe 28 is pressed and pushed out in the ⁇ Y direction.
  • the liquid resin 30 pushed out by the plunger 35 is discharged from the discharge port 41 provided at the tip of the nozzle 29 into the cavity 16 (see FIG. 2).
  • the servomotor 31 is rotated (forward rotation) to advance the plunger 35, whereby pressure is applied to the liquid resin 30 in the syringe 28.
  • the resin pressure of the liquid resin 30 in the syringe 28 increases, and a reaction force that pushes back the plunger 35 works.
  • An encoder 39 provided in the servo motor 31 detects a reaction force applied to the plunger 35 as a value of a load torque (torque value) applied to the servo motor 31.
  • the load torque applied to the servo motor 31 is obtained from the measured current value that actually flows through the driven servo motor 31.
  • the terms of the resin amount of the liquid resin 30 and the movement amount of the plunger 35 mean the resin amount per unit time and the movement amount per unit time.
  • the plunger 35 is moved forward at a constant movement speed V.
  • a predetermined amount of the liquid resin 30 can be stably delivered within a predetermined time.
  • the rotation torque of the servo motor 31 is controlled by moving the plunger 35 forward at a constant moving speed V.
  • the rotational torque of the servo motor 31 is controlled (increased), so that the moving speed V of the plunger 35 is made constant and the moving amount is controlled (constant). ).
  • the resin amount of the liquid resin 30 to be pushed out in the syringe 28 can be controlled to a constant amount.
  • the rotational torque of the servo motor 31 is controlled so that the rotational speed r of the servo motor 31 is always constant.
  • the moving speed V of the plunger 35 can be made constant.
  • the rotation of the servo motor 31 is controlled so that the movement amount of the plunger 35 is constant.
  • the moving speed V can be made constant. Therefore, by controlling the rotational torque of the servo motor 31, even when the viscosity of the liquid resin 30 changes, a predetermined amount of the liquid resin 30 can be stably discharged from the nozzle 29 within a predetermined time.
  • the liquid resin 30 may remain as a residual resin below the discharge port 41 of the nozzle 29 due to the surface tension of the liquid resin 30.
  • the amount of the liquid resin 30 delivered from the syringe 28 is controlled to be constant.
  • a part of the liquid resin 30 remains as a residual resin. Therefore, a situation occurs in which it is not realized that all the liquid resin 30 that should be discharged from the nozzle 29 is discharged into the cavity 16 (see FIG. 2). In order to prevent this situation, it is necessary to discharge all the liquid resin 30 that should be discharged from the nozzle 29 without leaving a residual resin.
  • monitoring is performed by measuring a load torque value (torque value) of servo motor 31 during a period from the start of discharge of liquid resin 30 in dispenser 19 to the end of discharge (monitoring). (Monitoring)
  • a load torque value torque value
  • the torque value of the servo motor 31 is obtained from the measured current value that drives the servo motor 31.
  • the horizontal axis indicates the time after the dispenser 19 starts to discharge the liquid resin 30, and the vertical axis indicates the torque value of the servo motor 31.
  • the torque value is shown as a value when the rated torque of the servo motor 31 is 100%.
  • the torque value of the servo motor 31 when the viscosity of the liquid resin 30 in the syringe 28 is the initial viscosity is indicated by a solid line.
  • symbols such as A, B,... Indicating specific time points should be originally attached along the horizontal axis indicating the elapsed time from “0 seconds”.
  • a black circle indicating a specific time point is attached to the solid line indicating the torque value, and symbols such as A, B,... Are described in the vicinity of the solid line.
  • the time A shown in FIG. 4 is the time when the discharge of the liquid resin 30 is started (the time when the servo motor 31 starts to rotate forward), and the time B is the time when the delivery mechanism 27 tries to deliver a predetermined amount of the liquid resin 30.
  • the time points when the operation is completed are respectively shown.
  • Time point C is a time point when the suck back is started (a time point when the servo motor 31 starts to reversely rotate)
  • time point D is a time point when the suck back is stopped (a time point when the plunger 35 is stopped after being retracted by a predetermined distance).
  • Time point E indicates a time point when the discharge of the liquid resin 30 is completed (a time point when a predetermined amount of the liquid resin 30 is discharged into the cavity 16).
  • the plunger 35 presses the liquid resin 30, the resin pressure of the liquid resin 30 increases, and the reaction force of the liquid resin 30 pushing the plunger 35 back increases. Therefore, when the reaction force of the liquid resin 30 increases, the torque value of the servo motor 31 increases in order to move the plunger 35 forward at a constant moving speed V (rotate the servo motor 31 at a constant rotational speed). .
  • the plunger 35 stops pressing the liquid resin 30, so the resin pressure of the liquid resin 30 decreases and the reaction force of the liquid resin 30 pushing the plunger 35 back decreases. . Accordingly, the torque value of the servo motor 31 is reduced.
  • the plunger 35 is pulled back by sucking back.
  • the servo motor 31 is reversely rotated, and the rotational torque of the servo motor 31 is rapidly changed from a positive torque to a negative torque. Therefore, by performing the suck back, the resin pressure of the liquid resin 30 in the syringe 28 is rapidly changed from the positive pressure to the negative pressure.
  • the liquid resin 30 protrudes from the discharge port 41 of the nozzle 29, the protruding liquid resin 30 is stored inside the tip of the nozzle 29 (on the lower end in FIG. 2 (1)).
  • the liquid resin 30 can be separated. Therefore, running out of sackback can improve the drainage.
  • the generation of residual resin can be suppressed, so that a predetermined amount of the liquid resin 30 can be discharged into the cavity 16.
  • the resin pressure of the liquid resin 30 in the syringe 28 returns from negative pressure to atmospheric pressure.
  • the torque value of the servo motor 31 increases from the negative torque to zero.
  • the discharge of the liquid resin 30 is completed.
  • the torque change of the servo motor 31 when the viscosity of the liquid resin 30 in the syringe 28 increases with time is indicated by a broken line.
  • the plunger 35 presses the liquid resin 30 so that the liquid resin 30 pushes back the plunger 35 with a reaction force. Since the viscosity of the liquid resin 30 increases, the value of the load torque (torque value) applied to the servomotor 31 becomes larger than the initial value. Therefore, in order to make the moving speed V of the plunger 35 constant, a larger rotational torque is required. As a result, the torque value changes as shown by the broken line in FIG.
  • the liquid resin 30 is normally discharged. You can determine whether it was done. In other words, whether or not there is an abnormality in the discharge state of the liquid resin 30 of the dispenser 19 can be determined by monitoring the torque value of the servo motor 31. Therefore, it is possible to diagnose whether or not the discharge state of the dispenser 19 is normal by a simple method of monitoring the change in the torque value of the servo motor 31.
  • control unit 22 may issue an alarm indicating that the operation of the molding module is not normal. Good. As a result, the operator can take appropriate measures such as temporarily stopping the molding module.
  • the control unit 22 may stop the operation of the molding module.
  • the delivery mechanism 27, the syringe 28, and the nozzle 29 are integrally connected.
  • a servo motor 31 provided in the delivery mechanism 27 is used to advance the plunger 35 in the syringe 28.
  • the plunger 35 presses the liquid resin 30, the plunger 35 receives a reaction force from the liquid resin 30.
  • This reaction force is detected as a load torque value (torque value) applied to the servomotor 31 using the encoder 39 of the servomotor 31.
  • the rotational torque of the servo motor 31 is controlled so that the rotational speed of the servo motor 31 becomes constant.
  • the moving amount or moving speed of the plunger 35 can be controlled to a constant value.
  • the rotation speed of the servo motor 31 is controlled to a constant speed.
  • the moving speed of the plunger 35 is controlled to a constant speed.
  • the moving amount of the plunger 35 is kept constant within a predetermined time. That is, by controlling the rotational torque of the servo motor 31, the amount of movement of the plunger 35 within a predetermined time is kept constant. Therefore, by controlling the movement amount of the plunger 35, the resin amount of the liquid resin 30 discharged from the nozzle 29 can be kept constant.
  • the encoder 39 provided in the servo motor 31 detects the reaction force of the liquid resin 30 as a value of the load torque (torque value) applied to the servo motor 31. Even when the load torque due to the reaction force of the liquid resin 30 increases, the rotational speed of the servo motor 31 can be controlled to be constant by controlling the torque of the servo motor 31. Even if the viscosity of the liquid resin 30 stored in the syringe 28 increases with time, the movement amount of the plunger 35 can be kept constant by controlling the rotation speed of the servo motor 31.
  • the rotational torque of the servo motor 31 is controlled within a predetermined time.
  • a predetermined amount of the liquid resin 30 can be stably discharged from the nozzle 29.
  • the resin pressure of the liquid resin 30 applied to the plunger 35 is detected as the value of the load torque (torque value) applied to the servomotor 31 using the encoder 39 of the servomotor 31. Based on the detected torque value, the control unit 22 (see FIG. 1) controls the rotational torque of the servo motor 31.
  • the resin molding apparatus which has a simple structure and was reduced in size is implement
  • the syringe 28 or the nozzle 29 can be replaced with a different syringe 28 or nozzle 29.
  • different materials and liquid resins 30 having different viscosities can be used properly depending on the product.
  • the movement amount of the plunger 35 within a predetermined time can be kept constant by controlling the rotational torque of the servo motor 31. Thereby, even when the material and viscosity of the liquid resin 30 are different, the production efficiency of the resin molding apparatus 1 can be stabilized. Further, the diameter of the discharge port 41 of the nozzle 29 can be optimized corresponding to the viscosity of the liquid resin 30. Therefore, the dispenser 19 can have a very simple configuration, and the optimal liquid resin 30 can be used according to the product.
  • the load torque value (torque value) of the servo motor 31 is monitored in the period from the start of the discharge of the liquid resin 30 in the dispenser 19 to the completion of the discharge.
  • the time when the discharge of the liquid resin 30 is started, the time when the delivery mechanism 27 delivers a predetermined amount of the liquid resin 30, the time when the suck back is started, the time when the suck back is stopped, and the time when the discharge of the liquid resin 30 is completed are as follows: Each is clearly indicated by a change in the torque value of the servo motor 31. Therefore, it can be easily determined whether or not the discharge state of the liquid resin 30 in the dispenser 19 is normal.
  • the resin molding apparatus 1 according to the present invention functions as a discharge device for the liquid resin 30.
  • the resin molding apparatus 1 according to the present invention corresponds to a fluid material discharging apparatus.
  • the dispenser 19 functions as a discharge mechanism for the liquid resin 30.
  • the dispenser 19 is a discharge mechanism that discharges a flowable material, and corresponds to the discharge mechanism according to the present invention.
  • FIG. 5 shows changes in the torque of the servo motor 31 in various states of the dispenser 19.
  • the solid line (a) shows the torque change of the servo motor 31 in the normal liquid resin 30 discharge state shown in FIG.
  • the broken line (b) indicates that while the plunger 35 is pressing the liquid resin 30 (the period from time A to time B2), the moving speed V of the plunger 35 is kept constant, so that a predetermined amount is reached within a predetermined time.
  • the liquid resin 30 is discharged.
  • the broken line (b) (from time B2 to time C2). During the period, the torque does not decrease so much.
  • the resin pressure of the liquid resin 30 in the syringe 28 does not decrease normally. This may be because, for example, the resin pressure of the liquid resin 30 does not decrease normally due to an increase in the viscosity of the liquid resin 30 or the narrowing of the nozzle 29 (ie, it does not readily approach atmospheric pressure).
  • the alternate long and short dash line (c) indicates that the torque hardly increases while the liquid resin 30 is discharged. In other words, even if the plunger 35 presses the liquid resin 30, the resin pressure of the liquid resin 30 hardly increases. As this cause, for example, the syringe 28 is cracked or cracked, the nozzle 29 is broken or dropped, and the liquid resin 30 in the syringe 28 is exposed to the atmosphere. Is considered to increase little.
  • the torque value of the servo motor 31 is monitored in the period from when the dispenser 19 starts discharging the liquid resin 30 to when the discharging is completed. Accordingly, various items relating to the discharge of the liquid resin 30 such as whether the discharge of the liquid resin 30 has been normally performed or whether there is an abnormality in the discharge of the liquid resin 30 can be grasped.
  • the upper limit or the lower limit of the torque value of the servo motor 31 is set as the threshold value after a predetermined time has elapsed since the dispenser 19 started discharging the liquid resin 30. If the torque value of the servo motor 31 exceeds the upper limit or falls below the lower limit within a certain time after the dispenser 19 starts to discharge the liquid resin 30, an abnormality has occurred in the discharge of the liquid resin 30. Can be judged. Therefore, by monitoring the torque change of the servo motor 31, it can be easily determined whether or not the dispenser 19 is operating normally.
  • FIG. 6 shows a method for suppressing air suction after suckback
  • FIG. 7 shows a method for suppressing dripping after suckback.
  • FIG. 6 shows a state in which the resin pressure of the liquid resin 30 in the syringe 28 is negative due to suck back at the time when suck back is stopped (time point D).
  • the resin pressure of the liquid resin 30 in the syringe 28 is still in a negative pressure state even when a certain time has elapsed (time point F) from when the suck back is stopped (time point D).
  • This state is a state where the resin pressure of the liquid resin 30 is excessively negative due to the fact that the suck back is too strong for the viscosity of the liquid resin 30 in the syringe 28. Therefore, the resin pressure of the liquid resin 30 is unlikely to return to atmospheric pressure.
  • FIG. 7 shows a state where the resin pressure of the liquid resin 30 in the syringe 28 is not negative but remains positive even when the suck back is stopped (time point D).
  • the resin pressure of the liquid resin 30 in the syringe 28 still remains at a positive pressure even when a certain time has elapsed (time point F) from when the suck back is stopped (time point D).
  • This state is a state in which the resin pressure of the liquid resin 30 has not returned to atmospheric pressure because the suck back is too weak with respect to the viscosity of the liquid resin 30 in the syringe 28. If the state in which the resin pressure of the liquid resin 30 in the syringe 28 is a positive pressure continues, there is a risk of dripping from the discharge port 41 of the nozzle 29.
  • the torque of the servo motor 31 is positive torque. Indicates. Therefore, a negative torque is applied to the plunger 35 by rotating the servo motor 31 in the reverse direction. By applying a negative torque, the resin pressure of the liquid resin 30 in the syringe 28 is returned from the positive pressure to the atmospheric pressure. Since the torque value becomes 0 by setting the resin pressure of the liquid resin 30 in the syringe 28 to atmospheric pressure, it is possible to prevent dripping from the discharge port 41 of the nozzle 29.
  • the resin pressure of the liquid resin 30 in the syringe 28 is monitored at a time (time F) when a certain time has passed since the time when the suck back is stopped (time D). If the resin pressure of the liquid resin 30 is negative at this time, a positive torque is applied to the plunger 35 by rotating the servo motor 31 forward. By applying a positive torque, the resin pressure of the liquid resin 30 in the syringe 28 is changed from a negative pressure to an atmospheric pressure. As a result, the torque value becomes 0, so that air suction can be prevented.
  • the resin pressure of the liquid resin 30 in the syringe 28 is monitored at a time (time F) when a certain time has passed since the time when the suck back is stopped (time D). If the resin pressure of the liquid resin 30 is positive at this time, a negative torque is applied to the plunger 35 by rotating the servo motor 31 in the reverse direction. By applying a negative torque, the resin pressure of the liquid resin 30 in the syringe 28 is changed from a positive pressure to an atmospheric pressure. As a result, the torque value becomes 0, so that dripping of the liquid resin 30 can be prevented.
  • the target for resin sealing may be a semiconductor chip such as an IC or a transistor, or a passive element.
  • the present invention can be applied when resin-sealing one or a plurality of electronic components mounted on a substrate such as a printed circuit board or a ceramic substrate.
  • the present invention is not limited to the case where an electronic component is sealed with a resin, but when the optical component such as a lens, an optical module, or a light guide plate is manufactured by resin molding, or when a general resin molded product is manufactured. Can be applied.
  • the liquid resin 30 that is liquid at room temperature has been described as an example of the fluid resin in each embodiment.
  • a molten resin produced by melting a solid resin material at room temperature may be used as the flowable resin. Both the liquid resin 30 and the molten resin are one embodiment of a fluid resin.
  • the flowable resin is an embodiment of the flowable material.
  • the present invention is also applied to a resin molding apparatus that uses a two-component resin material.
  • a resin molding apparatus and a resin molding method by compression molding have been described.
  • the present invention can be applied to a resin molding apparatus and a resin molding method by transfer molding.
  • a resin storage portion formed of a cylindrical space provided in the mold (a lifting member called a plunger is arranged below and is a portion in which a resin material normally made of a solid resin is stored, The liquid resin is discharged.
  • the above-described pot corresponds to the storage unit.
  • the container for the liquid resin 30 may be any of the following. 1stly, an accommodating part is the pot (above-mentioned) provided in the lower mold
  • the accommodating portion is a space including the upper surface of the substrate and including a chip (an electronic component chip such as a semiconductor chip or a passive component chip) mounted on the upper surface of the substrate.
  • the liquid resin is discharged so as to cover the chip mounted on the upper surface of the substrate.
  • the accommodating portion is a space including the upper surface of a semiconductor substrate such as a silicon wafer.
  • the liquid resin is discharged so as to cover a functional part such as a semiconductor circuit formed on the semiconductor substrate.
  • the accommodating portion is a space including the upper surface of the film that should be finally accommodated in the cavity of the mold.
  • the accommodating part in this case is a recessed part formed, for example, when a film is dented.
  • the liquid resin is discharged into a recess formed by the film being recessed.
  • Examples of the purpose of the film include improvement of releasability, transfer of a shape composed of irregularities on the surface of the film, and transfer of a pattern formed in advance on the film.
  • the liquid resin accommodated in the concave portion of the film is conveyed together with the film using an appropriate conveyance mechanism, and finally accommodated in the cavity of the mold.
  • the liquid resin accommodated in the accommodating portion is finally accommodated in the cavity of the mold, and is cured in the cavity with the mold clamped. .
  • the liquid resin can be discharged to the housing part outside the pair of molds facing each other, and the components including at least the housing part can be conveyed between the molds.
  • molding modules 3A, 3B, 3C, and 3D are mounted side by side in the X direction between the substrate supply / storage module 2 and the supply module 4.
  • the substrate supply / storage module 2 and the supply module 4 may be combined into one module, and one molding module 3A may be mounted side by side in the X direction. Further, the molding module 3A may be mounted in one module side by side in the X direction, and another molding module 3B may be mounted on the molding module 3A.
  • the material discharged from the discharge mechanism and the discharge device according to the present invention is not limited to the fluid resin.
  • the material discharged from the discharge mechanism and the discharge device according to the present invention may be any fluid material.
  • the flowable material include industrial materials such as emulsion, adhesive, printing ink, heat radiation grease, solder paste, and silver paste.
  • examples of the flowable material include food and drink materials such as honey, butter, fresh cream, melted chocolate, sauce, liquid egg, and soup.
  • 1 resin molding device discharge device
  • 2 substrate supply / storage module 3A, 3B, 3C, 3D molding module
  • 4 supply module 5 pre-sealing substrate, 6 pre-sealing substrate supply section, 7 sealed substrate ( Molded product), 8 sealed substrate storage unit, 9 loader, 10 unloader, 11 rail, 12, 13, 20 moving mechanism, 14 lower mold (molding die), 15 mold clamping mechanism, 16 cavity (accommodating unit), 17 Release film, 18 resin supply mechanism, 19 dispenser (supply mechanism, discharge mechanism), 21 vacuuming mechanism, 22 control unit, 23 upper mold (molding die), 24 film pressing member, 25 LED chip, 26 individual cavity (accommodating) Part), 27 delivery mechanism, 28 syringe (storage part), 29 nozzle (discharge part), 30 liquid resin (fluid resin, fluid material) , 31 Servo motor (rotating mechanism), 32 Ball screw (rotating shaft), 33 Slider (linear motion member), 34 Rod, 35 Plunger (moving member), 36 Ball screw bearing, 37 Stabil

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Robotics (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

簡単な構成を有するとともに小型化され、かつ、流動性樹脂を安定して吐出する構成が提供される。樹脂成形装置(1)は、供給機構(19)に設けられ流動性樹脂(30)を送出する送出機構(27)と、送出機構に接続され流動性樹脂を貯留する貯留部(28)と、貯留部に接続され流動性樹脂を吐出する吐出部(29)と、送出機構に設けられた回転機構(31)と、回転機構の回転に基づいて貯留部の内壁に沿って進退し貯留部に貯留された流動性樹脂を押圧する移動部材(35)と、貯留部内における流動性樹脂の樹脂圧力に起因して移動部材を経由して回転機構に加えられるトルク値を検出する検出部(39)と、検出されたトルク値に基づいて移動部材の移動速度又は回転機構の回転速度を制御する制御部(22)とを備える。制御部は、移動部材を前進させて停止させた後に後退させるように制御することによって、収容部に供給される流動性樹脂の供給量を制御する。

Description

樹脂成形装置、樹脂成形方法、吐出機構、及び吐出装置
 本発明は、トランジスタ、集積回路(Integrated Circuit:IC)、発光ダイオード(Light Emitting Diode:LED)などのチップ状の電子部品(以下適宜「チップ」という。)を、流動性を有する樹脂材料(以下「流動性樹脂」という。)を用いて樹脂封止する場合などに使用される、樹脂成形装置及び樹脂成形方法に関するものである。加えて、本発明は、流動性を有する材料(以下「流動性材料」という。)を吐出する吐出機構及び吐出装置に関するものである。
 本出願書類においては、「流動性」という用語は、常温における場合又は常温以外の温度における場合を問わず流動性を有することを意味する。「液状」という用語は常温において液状であって流動性を有することを意味する。「流動性」及び「液状」のいずれの用語も、流動性の高低、言い換えれば粘度の程度を問わない。
 従来から、基板に装着されたLEDなどの光素子のチップは、熱硬化性で光を透過する液状樹脂、例えば、シリコーン樹脂やエポキシ樹脂などを用いて、硬化樹脂からなる封止樹脂によって樹脂封止される。樹脂封止する技術としては、圧縮成形、トランスファ成形などの樹脂成形技術が使用される。樹脂成形においては、主剤となる液状樹脂に、硬化剤などの補助剤となる液状樹脂を混合させ、混合された液状樹脂を加熱することによって樹脂成形が行われる。
 液状樹脂を用いる樹脂封止では、液状樹脂の吐出機構であるディスペンサを使用して、樹脂成形装置の下型に設けられたキャビティに液状樹脂を吐出する。例えば、シリンジ機構を用いた1液タイプのディスペンサを使用する場合には、シリンジ内に貯留されている液状樹脂を、プランジャ(押圧用の移動部材)を使用して押圧する。このことによって、ディスペンサの先端に取り付けられたノズルから液状樹脂がキャビティに吐出される。
 製品に応じて使用される液状樹脂の種類や粘度などは多種多様である。ディスペンサによる液状樹脂の吐出を停止した状態において、液状樹脂の粘度によっては、特に高粘度の液状樹脂を使用する場合において、ノズルの先端から液状樹脂の液だれが発生するおそれがある。液だれが発生すると所定量の液状樹脂がキャビティに供給されないという問題、又は、所定量の液状樹脂を供給するのに非常に時間を要するという問題が発生する。
 液状樹脂の液だれを防止するために、液状樹脂の供給を停止した後に、サックバックと呼ばれる液状樹脂の引き込みを行うことがある。サックバックとは、プランジャを後退させる(引き戻す)ことである。サックバックによる引き戻しが強すぎるとシリンジ内の液状樹脂の圧力が負圧となり、大気中の空気がシリンジ内に混入するおそれがある。空気がシリンジ内に混入すると、次の吐出をする際に所定量の液状樹脂が吐出されないという問題が発生する。したがって、低粘度から高粘度に至るまでの範囲にわたって、液状樹脂の粘度に影響されることなく、所定量の液状樹脂を安定してキャビティに吐出することが重要になる。
 ノズルの吐出停止後の液切れ性を高めるとともに、吐出停止後の液だれや空気の進入を抑制できる液体定量吐出装置が提案されている。この液体定量吐出装置は、シリンジに液体吐出用の加圧力を付与する空気圧源装置と、シリンジに液体保持用の負圧を付与する負圧発生装置と、シリンジと空気圧源装置との間に配設された管路を開閉する加圧用開閉弁と、シリンジと負圧発生装置との間に配設された管路を開閉する負圧用開閉弁と、負圧発生装置と負圧用開閉弁の間の管路に配置され、負圧用開閉弁側の管路の負圧を維持する逆止弁とを備える(特開2006-192371号公報(特許文献1)の段落〔0006〕、〔0007〕、図1参照)。
特開2006-192371号公報
 しかし、特許文献1に開示された従来の液体定量吐出装置は次の課題を有する。特許文献1の図1に示されるように、液体定量吐出装置1は、ディスペンサ14のシリンジ3内の圧力を調整する空気圧回路2を備え、複数の管路21~26により種々の機器を接続して構成される。このような空気圧回路2を構成することによって、シリンジ3内の圧力を調整する。したがって、液体定量吐出装置の構成が非常に複雑で、装置自体が大型化する。
 本発明のある局面は、上記の課題を解決するもので、簡単な構成を有するとともに小型化され、かつ、流動性樹脂を安定して吐出する、樹脂成形装置及び樹脂成形方法を提供することを目的とする。本発明の別の局面は、簡単な構成を有するとともに小型化され、かつ、流動性材料を安定して吐出する、吐出機構及び吐出装置を提供することを目的とする。
 上記の課題を解決するために、本発明のある局面に係る樹脂成形装置は、上型と、上型に相対向して設けられた下型と、上型と下型との少なくとも一方に設けられたキャビティと、流動性樹脂が収容される収容部と、収容部に流動性樹脂を供給する供給機構と、上型と下型とを少なくとも有する成形型を型締めする型締め機構とを備え、キャビティにおいて流動性樹脂が硬化することによって成形された硬化樹脂を含む成形品を成形する。樹脂成形装置は、供給機構に設けられ流動性樹脂を送出する送出機構と、送出機構に接続され流動性樹脂を貯留する貯留部と、貯留部に接続され流動性樹脂を吐出する吐出部と、送出機構に設けられた回転機構と、回転機構の回転に基づいて貯留部の内壁に沿って進退し貯留部に貯留された流動性樹脂を押圧する移動部材と、貯留部内における流動性樹脂の樹脂圧力に起因して移動部材を経由して回転機構に加えられるトルク値を検出する検出部と、検出されたトルク値に基づいて移動部材の移動速度又は回転機構の回転速度を制御する制御部とを備える。制御部は、移動部材を前進させて停止させた後に後退させるように制御することによって、収容部に供給される流動性樹脂の供給量を制御する。
 上述の樹脂成形装置において、制御部は、検出されたトルク値と異常状態を示す予め設定されたトルク値とを比較することによって、供給機構が正常な状態で流動性樹脂を供給しているかどうかを判断するようにしてもよい。
 上述の樹脂成形装置において、制御部は、移動部材を後退させた後に検出されたトルク値が所定の時間が経過した時点において正トルクを示す場合には、検出されるトルク値が0に近づくことを目的として移動部材を後退させるように制御するようにしてもよい。
 上述の樹脂成形装置において、制御部は、移動部材を後退させた後に検出されたトルク値が所定の時間が経過した時点において負トルクを示す場合には、検出されるトルク値が0に近づくことを目的として移動部材を前進させるように制御するようにしてもよい。
 上述の樹脂成形装置において、硬化樹脂は、基板を覆う封止樹脂であってもよい。
 上述の樹脂成形装置は、成形型と型締め機構とを有する少なくとも1個の成形モジュールをさらに備えてもよく、1個の成形モジュールと他の成形モジュールとが着脱されることができるようにしてもよい。
 上記の課題を解決するために、本発明のさらに別の局面に係る樹脂成形方法は、上型と、上型に相対向して設けられた下型と、上型と下型との少なくとも一方に設けられたキャビティと、収容部に流動性樹脂を供給する供給機構と、上型と下型とを少なくとも有する成形型を型締めする型締め機構とを備えた樹脂成形装置を使用して、キャビティにおいて流動性樹脂を硬化させることによって成形された硬化樹脂を含む成形品を成形する。樹脂成形方法は、流動性樹脂を送出する送出機構と流動性樹脂を貯留する貯留部と流動性樹脂を吐出する吐出部とを有する供給機構を準備する工程と、送出機構に設けられた回転機構の回転軸を回転させる工程と、回転軸の回転に基づいて貯留部の内壁に沿って移動部材を進退させる工程と、貯留部内における流動性樹脂の樹脂圧力に起因して移動部材を経由して回転機構に加えられるトルク値を検出する工程と、検出されたトルク値に基づいて移動部材の移動速度又は回転機構の回転速度を制御する工程と、移動部材の移動速度又は回転機構の回転速度を制御した状態で移動部材を前進させる工程と、移動部材を停止させる工程と、移動部材を停止させた後に移動部材を後退させることによって、収容部に供給する流動性樹脂の供給量を制御する工程とを備える。
 上述の樹脂成形方法は、トルク値を検出する工程において検出されたトルク値と異常状態を示す予め設定されたトルク値とを比較することによって、供給機構が正常な状態で流動性樹脂を供給しているかどうかを判断する工程をさらに備えるようにしてもよい。
 上述の樹脂成形方法は、移動部材を後退させた後に検出されたトルク値が所定の時間が経過した時点において正トルクを示す場合には、検出されるトルク値が0に近づくことを目的として移動部材を後退させるように制御する工程をさらに備えるようにしてもよい。
 上述の樹脂成形方法は、移動部材を後退させた後に検出されたトルク値が所定の時間が経過した時点において負トルクを示す場合には、検出されるトルク値が0に近づくことを目的として移動部材を前進させるように制御する工程をさらに備えるようにしてもよい。
 上述の樹脂成形方法において、硬化樹脂は、基板を覆う封止樹脂であってもよい。
 上述の樹脂成形方法は、成形型と型締め機構とを有する少なくとも1個の成形モジュールを準備する工程をさらに備えてもよく、1個の成形モジュールと他の成形モジュールとを着脱することができるようにしてもよい。
 上記の課題を解決するために、本発明のさらに別の局面に係る吐出機構は、流動性材料を送出する送出機構と、送出機構に接続され流動性材料を貯留する貯留部と、貯留部に接続され流動性材料を吐出する吐出部とを備えた吐出機構であって、送出機構に設けられた回転機構と、回転機構によって回転する回転軸と、回転軸の回転運動を直動運動に変換する直動部材と、直動部材に接続され貯留部の内壁に沿って進退し貯留部に貯留された流動性材料を押圧する移動部材と、貯留部内における流動性材料の樹脂圧力に起因して移動部材を経由して回転機構に加えられるトルク値を検出する検出部とを備え、検出されたトルク値に基づいて回転機構の回転速度又は前記移動部材の移動速度が制御される。
 上述の吐出機構において、検出されたトルク値と異常状態を示す予め設定されたトルク値とが比較されることによって、吐出機構が正常な状態で流動性材料を供給しているかどうかが判断されるようにしてもよい。
 本発明のさらに別の局面に係る吐出装置は、流動性材料を送出する送出機構と、送出機構に接続され流動性材料を貯留する貯留部と、貯留部に接続され流動性材料を吐出する吐出部とを備えた吐出装置であって、送出機構に設けられた回転機構と、回転機構によって回転する回転軸と、回転軸の回転運動を直動運動に変換する直動部材と、直動部材に接続され貯留部の内壁に沿って進退し貯留部に貯留された流動性材料を押圧する移動部材と、貯留部内における流動性材料の樹脂圧力に起因して移動部材を経由して回転機構に加えられるトルク値を検出する検出部と、検出されたトルク値に基づいて移動部材の移動速度又は回転機構の回転速度を制御する制御部とを備える。制御部は、検出されたトルク値に基づいて回転機構の回転速度又は移動部材の移動速度を制御する。
 上述の吐出装置において、制御部は、検出されたトルク値と異常状態を示す予め設定されたトルク値とを比較することによって、吐出装置が正常な状態で流動性材料が供給されているかどうかを判断するようにしてもよい。
 本発明のある局面によれば、移動部材を経由して受け取る流動性樹脂の樹脂圧力を、回転機構に加えられる負荷トルクの値(トルク値)として、回転機構が有する検出部を使用して検出する。検出されたトルク値に基づき、移動部材の移動速度又は回転機構の回転速度を制御することにより、移動部材を前進させ、移動部材を停止させた後に移動部材を後退させる。このことにより、キャビティに供給される流動性樹脂の供給量を制御する。したがって、簡単な構成を有するとともに小型化された樹脂成形装置が提供される。加えて、流動性樹脂の粘度が変化しても流動性樹脂の供給量を制御できる、樹脂成形装置及び樹脂成形方法が提供される。
 本発明の別の局面によれば、簡単な構成を有するとともに小型化された吐出機構及び吐出装置が提供される。加えて、流動性樹脂の粘度が変化しても流動性樹脂の供給量を制御できる、吐出機構及び吐出装置が提供される。
本発明に係る樹脂成形装置の概要を示す平面図である。 図1に示された樹脂成形装置において、流動性樹脂の一態様である液状樹脂を供給する樹脂供給機構を示す概略図である。(1)は下型に設けられたキャビティに樹脂供給機構が液状樹脂を供給する状態を示す概略図、(2)は樹脂供給機構を示す概略平面図である。 図1に示された樹脂成形装置において使用される、樹脂供給機構が有するディスペンサの概略断面図である。 図3に示されたディスペンサにおいて、サーボモータのトルク値の変化を示す概略図である。 図3に示されたディスペンサにおいて、サーボモータのトルク値の様々な変化を示す概略図である。 図3に示されたディスペンサにおいて、サックバック後のシリンジ内の樹脂圧力を負圧から大気圧に戻す過程を示す概略図である。 図3に示されたディスペンサにおいて、サックバック後のシリンジ内の樹脂圧力を正圧から大気圧に戻す過程を示す概略図である。
 図3に示されるように、ディスペンサ19は送出機構27とシリンジ28とノズル29とを含む。送出機構27とシリンジ28とノズル29とが一体的に構成される。送出機構27に設けられたサーボモータ31を回転させることによって、ボールねじ32、スライダ33、ロッド34をそれぞれ介してプランジャ35をシリンジ28内において進退させる。シリンジ28内の液状樹脂30の樹脂圧力をサーボモータ31に加わる負荷トルクの値(トルク値)として検出する。液状樹脂30による負荷トルクがプランジャ35に加わった状態においても、プランジャ35の移動速度V、又は、サーボモータ31の回転速度rが一定になるようにサーボモータ31の回転トルクを制御する。このことによって、液状樹脂30の粘度変化があった場合においても、所定時間内に所定量の液状樹脂30を送出できる。加えて、サックバックすることにより液状樹脂30の液切れを改善することによって、所定量の液状樹脂30をキャビティに供給できる。
 [実施形態1]
 本発明に係る樹脂成形装置の実施形態1について、図1~図4を参照して説明する。本出願書類におけるいずれの図についても、わかりやすくするために、適宜省略し又は誇張して模式的に描かれている。同一の構成要素については、同一の符号を付して説明を適宜省略する。
 図1に示される樹脂成形装置1は、基板供給・収納モジュール2と、4つの成形モジュール3A、3B、3C、3Dと、供給モジュール4とを、それぞれ構成要素として備える。構成要素である基板供給・収納モジュール2と、成形モジュール3A~3Dと、供給モジュール4とは、それぞれ他の構成要素に対して互いに着脱されることができ、かつ、交換されることができる。
 基板供給・収納モジュール2には、封止前基板5を供給する封止前基板供給部6と封止済基板7を収納する封止済基板収納部8とが設けられる。封止前基板5には、例えば、光素子としてLEDチップなどが装着される。基板供給・収納モジュール2には、ローダ9とアンローダ10とが設けられ、ローダ9とアンローダ10とを支えるレール11がX方向に沿って設けられる。ローダ9とアンローダ10とは、レール11に沿ってX方向に移動する。
 レール11に支えられたローダ9及びアンローダ10は、基板供給・収納モジュール2と各成形モジュール3A、3B、3C、3Dと供給モジュール4との間を、X方向に移動する。ローダ9には、各成形モジュール3A、3B、3C、3Dにおいて、封止前基板5を上型に供給するための移動機構12が設けられる。各成形モジュールにおいて、移動機構12はY方向に移動する。アンローダ10には、各成形モジュール3A、3B、3C、3Dにおいて、封止済基板7を上型から受け取る移動機構13が設けられる。各成形モジュールにおいて、移動機構13はY方向に移動する。
 各成形モジュール3A、3B、3C、3Dには、昇降可能な下型14と、下型14に相対向して配置された上型(図示なし、図2の(1)参照)とが設けられる。上型と下型14とは成形型を構成する。各成形モジュール3A、3B、3C、3Dは、上型と下型14とを型締め及び型開きする型締め機構15を有する。液状樹脂が収容され硬化する空間であるキャビティ16が下型14に設けられる。言い換えれば、キャビティ16は液状樹脂が収容される収容部である。キャビティ16における型面は離型フィルム17によって被覆される。
 供給モジュール4には、キャビティ16に液状樹脂を供給する樹脂供給機構18が設けられる。樹脂供給機構18は、レール11によって支えられ、レール11に沿ってX方向に移動する。樹脂供給機構18には、液状樹脂の吐出機構であるディスペンサ19が設けられる。各成形モジュール3A、3B、3C、3Dにおいて、ディスペンサ19は移動機構20によってY方向に移動し、キャビティ16に液状樹脂を吐出する。図1に示されるディスペンサ19は、予め主剤と硬化剤とが混合された液状樹脂を使用する1液タイプのディスペンサである。主剤としては、熱硬化性と透光性とを有するシリコーン樹脂やエポキシ樹脂などが使用される。
 供給モジュール4には真空引き機構21が設けられる。真空引き機構21は、各成形モジュール3A、3B、3C、3Dにおいて上型と下型14とを型締めする直前にキャビティ16から、空気を強制的に吸引して排出する。供給モジュール4には、樹脂成形装置1全体の動作を制御する制御部22が設けられる。図1においては、真空引き機構21と制御部22とを供給モジュール4に設けた場合を示した。これに限らず、真空引き機構21と制御部22とを他のモジュールに設けてもよい。
 図1と図2とを用いて、樹脂供給機構18が下型14に設けられたキャビティ16に液状樹脂30(図2参照)を供給する機構について、説明する。図2の(1)に示されるように、各成形モジュール3A、3B、3C、3D(図1参照)には、上型23と下型14とフィルム押え部材24とが設けられる。少なくとも上型23と下型14とは成形型を構成する。各成形モジュール3A、3B、3C、3Dは、成形型を型締めし型開きする型締め機構15(図1参照)を有する。
 離型フィルム17は、キャビティ16の型面及びその周囲の型面を被覆する。フィルム押え部材24は、キャビティ16の周囲において、離型フィルム17を下型14の型面に押さえ付けて固定するための部材である。フィルム押え部材24は中央部に開口を有し、その開口の内部に成形型が位置する。上型23には、例えば、LEDチップ25などが装着された封止前基板5が、吸着又はクランプなどによって固定されて配置される。キャビティ16の内部には、それぞれのLEDチップ25に対応する個別キャビティ26が設けられる。
 キャビティ16の全面を覆うようにして、離型フィルム17が供給される。下型14に設けられたヒータ(図示なし)によって離型フィルム17が加熱される。加熱された離型フィルム17は軟化して伸長する。キャビティ16の周囲において、フィルム押え部材24により、軟化した離型フィルム17が下型14の型面に押さえ付けられて固定される。各個別キャビティ26における型面に沿うようにして、軟化した離型フィルム17が吸着される。なお、図2の(1)においては、フィルム押え部材24を用いる場合を示した。これに限らず、離型フィルム17とフィルム押え部材24とを使用しなくてもよい。
 図2に示されるように、ディスペンサ19は、所定量の液状樹脂30を送出する送出機構27と、液状樹脂30を貯留するシリンジ28と、液状樹脂30を吐出するノズル29とを有する。ディスペンサ19において、送出機構27とシリンジ28とノズル29とが接続されて一体的に構成される。したがって、各構成要素(送出機構27、シリンジ28、ノズル29)を互いに着脱でき、各構成要素単位を同種で異なる構成単位に交換できる。例えば、異なる材料や異なる粘度などを有する液状樹脂30を予め複数のシリンジ28に貯留して保管しておき、製品に応じて必要なシリンジ28をディスペンサ19に取り付けて使用できる。加えて、容量が異なるシリンジ28を選択して使用できる。
 ノズル29を交換することによって、液状樹脂30が吐出される方向を真下、真横、斜め下など、任意の方向に設定できる。加えて、液状樹脂30の粘度に対応してノズル29の吐出口の口径を変更できる。さらに、シリンジ28とノズル29との間にスタティックミキサを設けることができる。例えば、液状樹脂30に添加剤として蛍光体などが添加された場合であっても、スタティックミキサによって液状樹脂30が攪拌されることにより、蛍光体が沈殿することなく均一な状態で液状樹脂30を吐出できる。
 ディスペンサ19は、上下方向(Z方向)にも移動させることができる。図2の(1)に示されたディスペンサ19を、鉛直面内(Y軸とZ軸とを含む面内)又は水平面内(X軸とY軸とを含む面内)において、ある1点を中心にして部分的に回転するように往復動させることができる。この場合には、ディスペンサ19の先端部が円弧の一部分を描くようにして往復動する。
 図1と図2とを参照して、樹脂成形装置1の動作として成形モジュール3Cを使用する場合について説明する。まず、例えば、LEDチップ25が装着された封止前基板5を、LEDチップ25が装着された面を下側にして、封止前基板供給部6からローダ9に受け渡す。次に、ローダ9を、基板供給・収納モジュール2からレール11に沿って成形モジュール3Cまで+X方向に移動させる。
 次に、成形モジュール3Cにおいて、移動機構12を使用して、ローダ9を下型14と上型23(図2の(1)参照)との間の所定の位置まで-Y方向に移動させる。LEDチップ25が装着された面を下側にした封止前基板5を、上型23の下面に吸着又はクランプによって固定する。封止前基板5を上型の下面に配置した後に、基板供給・収納モジュール2における元の位置まで、ローダ9を移動させる。
 次に、樹脂供給機構18を使用して、ディスペンサ19を、供給モジュール4における待機位置から、レール11に沿って成形モジュール3Cまで-X方向に移動させる。このことによって、樹脂供給機構18を、モジュール3Cにおける下型14の近傍の所定の位置まで移動させる。移動機構20を使用して、ディスペンサ19を下型14の上方における所定の位置まで移動させる。
 次に、図2の(1)に示すように、ディスペンサ19のノズル29から液状樹脂30を吐出する。具体的には、ディスペンサ19のノズル29から下型14に設けられたキャビティ16に向かって液状樹脂30を吐出する。このことによって、キャビティ16に液状樹脂30を供給する。
 次に、液状樹脂30をキャビティ16に供給した後に、移動機構20を使用してディスペンサ19を樹脂供給機構18まで後退させる。樹脂供給機構18を供給モジュール4における元の待機位置まで移動させる。
 次に、成形モジュール3Cにおいて、型締め機構15を使用して下型14を上昇させることによって、上型23と下型14とを型締めする。型締めすることによって、封止前基板5に装着されたLEDチップ25を、キャビティ16に供給された液状樹脂30に浸漬させる。このとき、下型14に設けられたキャビティ底面部材(図示なし)を使用して、キャビティ16内の液状樹脂30に所定の樹脂圧力を加えることができる。
 なお、型締めする過程において、真空引き機構21を使用してキャビティ16内を吸引してもよい。このことによって、キャビティ16内に残留する空気や液状樹脂30中に含まれる気泡などが成形型の外部に排出される。加えて、キャビティ16内が所定の真空度に設定される。
 次に、下型14に設けられたヒータ(図示なし)を使用して、液状樹脂30を硬化させるために必要な時間だけ、液状樹脂30を加熱する。このことによって、液状樹脂30を硬化させて硬化樹脂を形成する。このことにより、封止前基板5に装着されたLEDチップ25を、キャビティ16の形状に対応して形成された硬化樹脂によって樹脂封止する。液状樹脂30を硬化させた後に、型締め機構15を使用して上型23と下型14とを型開きする。
 次に、ローダ9を、アンローダ10が成形モジュール3Cまで移動することを妨げない適当な位置まで退避させる。例えば、基板供給・収納モジュール2から、成形モジュール3D又は供給モジュール4における適当な位置まで、ローダ9を退避させる。その後に、アンローダ10を、基板供給・収納モジュール2からレール11に沿って成形モジュール3Cまで+X方向に移動させる。
 次に、成形モジュール3Cにおいて、移動機構13を下型14と上型23との間の所定の位置まで-Y方向に移動させた後に、移動機構13が上型23から封止済基板7を受け取る。封止済基板7を受け取った後、移動機構13をアンローダ10まで戻す。アンローダ10を基板供給・収納モジュール2に戻して、封止済基板7を封止済基板収納部8に収納する。この時点で、最初の封止前基板5の樹脂封止が完了して、最初の封止済基板7が完成する。
 次に、成形モジュール3D又は供給モジュール4における適当な位置まで退避させていたローダ9を、基板供給・収納モジュール2に移動させる。封止前基板供給部6からローダ9に次の封止前基板5を受け渡す。以上のようにして樹脂封止を繰り返す。
 制御部22が、封止前基板5の供給、樹脂供給機構18及びディスペンサ19の移動、液状樹脂30の吐出、上型23と下型14との型締め及び型開き、封止済基板7の収納などの動作を制御する。
 図3を参照して、本発明に係る樹脂成形装置1において使用されるディスペンサ19について説明する。図3に示されるように、ディスペンサ19において、送出機構27とシリンジ28とノズル29とが接続されることによって一体的に構成される。したがって、シリンジ28又はノズル29を、それぞれ用途に応じて別のシリンジ28又はノズル29に交換できる。
 送出機構27は、サーボモータ31と、サーボモータ31によって回転するボールねじ32と、ボールねじナット(図示なし)に取り付けられ回転運動を直動運動に変換するスライダ33と、スライダ33の先端部に固定され内部に挿入孔を有するロッド34と、ロッド34の先端に取り付けられたプランジャ35とを備える。ボールねじ32はボールねじ軸受36とボールねじ32の先端に取り付けられた振れ止め部材37とによって支持される。スライダ33は、例えば、送出機構27の基台に設けられたガイドレール38に沿ってY方向に進退する。サーボモータ31が回転することによって、ボールねじ32、スライダ33、ロッド34をそれぞれ介してプランジャ35がY方向に進退する。
 サーボモータ31はモータの回転を制御できるモータである。サーボモータ31は、モータの回転を監視する回転検出器(エンコーダ)39を有する。エンコーダ39は、サーボモータ31の回転角、回転速度を検出して制御部22にフィードバックする。制御部22には、例えば、PLC(Programmable Logic Controller)、コントローラ、ドライバなどが設けられる。PLCの指令信号とエンコーダ39からのフィードバック信号とに基づき、制御部22がサーボモータ31の回転を制御する。サーボモータ31の回転を制御することによって、プランジャ35の位置制御、速度制御、トルク制御などを、精度よく行うことができる。
 液状樹脂30が貯留されたシリンジ28が、シリンジ取り付け用のねじ40によって送出機構27の先端に接続される。プランジャ35の外径とシリンジ28の内径とが一致するように、プランジャ35がシリンジ28内に挿入される。プランジャ35の周囲にはシール材であるOリング(図示なし)が取り付けられる。サーボモータ31の回転を制御することによって、プランジャ35の移動量(ストローク)が制御される。シリンジ28の内断面積とプランジャ35の移動量との積によって、ディスペンサ19から吐出される液状樹脂30の樹脂量が算出される。
 ノズル29の先端には液状樹脂30を吐出する吐出口41が設けられる。吐出口41の方向は、真下、真横、斜め下など、任意の方向に設定される。さらに、液状樹脂30の液だれが発生しないように、吐出口41の口径や形状を液状樹脂30の粘度によって最適にすることができる。
 図3を参照して、ディスペンサ19が液状樹脂30を吐出する動作を説明する。サーボモータ31を回転させることによってボールねじ32が回転する。ボールねじ32が回転することによって、ボールねじナットに取り付けられたスライダ33がガイドレール38に沿って-Y方向に前進する。スライダ33が前進することにより、スライダ33と共にスライダ33に固定されたロッド34が-Y方向に前進する。シリンジ28内において、ロッド34が-Y方向に前進することによって、ロッド34の先端に取り付けられたプランジャ35が-Y方向に前進する。プランジャ35が-Y方向に前進することによって、シリンジ28内に貯留されている液状樹脂30を押圧して-Y方向に押し出す。プランジャ35によって押し出された液状樹脂30がノズル29の先端に設けられた吐出口41からキャビティ16(図2参照)に吐出される。
 ディスペンサ19において、サーボモータ31を回転(正回転)させプランジャ35を前進させることによって、シリンジ28内の液状樹脂30に圧力が加わる。プランジャ35が液状樹脂30を押圧することによって、シリンジ28内の液状樹脂30の樹脂圧力が高くなり、プランジャ35を押し返そうとする反力が働く。サーボモータ31に設けられたエンコーダ39が、プランジャ35に加わる反力を、サーボモータ31に加わる負荷トルクの値(トルク値)として検出する。サーボモータ31に加わる負荷トルクは、駆動されるサーボモータ31に実際に流れる実測電流値から求められる。
 以下の説明において、特記する場合を除き、液状樹脂30の樹脂量及びプランジャ35の移動量という文言は、単位時間当りの樹脂量及び単位時間当りの移動量を意味する。送出機構27によって送出される液状樹脂30の樹脂量を所定時間内において一定に維持するためには、プランジャ35の移動量を所定時間内において一定に維持する必要がある。プランジャ35の移動量を所定時間内において一定に維持するためには、プランジャ35を一定の移動速度Vで前進させる。このことによって、所定時間内において所定量の液状樹脂30を安定して送出できる。このことを目的として、液状樹脂30の反力が加わった状態においてもプランジャ35を一定の移動速度Vで前進させるようにして、サーボモータ31の回転トルクを制御する。
 液状樹脂30の反力による負荷トルクが大きくなった場合には、サーボモータ31の回転トルクを制御する(大きくする)ことによって、プランジャ35の移動速度Vを一定にして移動量を制御する(一定にする)。プランジャ35の移動量を制御することにより、シリンジ28内において押し出す液状樹脂30の樹脂量を一定量に制御できる。具体的には、サーボモータ31の回転速度rが常に一定になるようにサーボモータ31の回転トルクを制御する。サーボモータ31の回転速度rを一定にすることにより、プランジャ35の移動速度Vを一定にすることができる。このことによって、シリンジ28内の液状樹脂30の樹脂圧力が大きくなった場合においても、所定時間内に所定量の液状樹脂30をノズル29から安定して吐出できる。
 さらに、シリンジ28内に貯留されている液状樹脂30の粘度が時間とともに増大した場合には、サーボモータ31の回転トルクを制御することによって、プランジャ35の移動量が一定になるようにプランジャ35の移動速度Vを一定にすることができる。したがって、サーボモータ31の回転トルクを制御することによって、液状樹脂30の粘度変化があった場合においても、所定時間内に所定量の液状樹脂30をノズル29から安定して吐出できる。
 サーボモータ31の回転速度r、又は、プランジャ35の移動速度Vを一定にするようにサーボモータ31の回転トルクを制御することによって、所定時間内に所定量の液状樹脂30をノズル29から安定して吐出できる。
 液状樹脂30の粘度によっては、液状樹脂30の表面張力に起因してノズル29の吐出口41の下方に液状樹脂30が残留樹脂として残る場合がある。この場合には、シリンジ28内から送出される液状樹脂30の樹脂量が一定になるように制御したとしても、ノズル29から吐出されるはずの液状樹脂30がすべて吐出される、ということが実現されない。言い換えれば、液状樹脂30の一部分が残留樹脂として残る。したがって、ノズル29から吐出されるはずの液状樹脂30がすべてキャビティ16(図2参照)に吐出されることが実現されない、という事態が発生する。この事態を防止するためには、残留樹脂を残すことなく、ノズル29から吐出されるはずの液状樹脂30をすべて吐出する必要がある。
 図4を参照して、ディスペンサ19において液状樹脂30の吐出を開始してから吐出を終了するまでの期間において、サーボモータ31の負荷トルクの値(トルク値)を測定することによって監視する(モニタリング(monitoring)する)方法について説明する。言い換えれば、液状樹脂30の吐出を開始してから吐出を終了するまでの期間において、トルク値の変化をモニタリングする。サーボモータ31のトルク値は、サーボモータ31を駆動する実測電流値から求められる。図4において、横軸にはディスペンサ19が液状樹脂30の吐出を開始してからの時間が、縦軸にはサーボモータ31のトルク値が、それぞれ示される。トルク値はサーボモータ31の定格トルクを100%とした時の値として示される。
 図4においては、シリンジ28内の液状樹脂30の粘度が当初の粘度の場合におけるサーボモータ31のトルク値が、実線によって示される。図4においては、特定の時点を示すA、B、・・・などの符号は、本来、「0秒」からの経過時間を示す横軸に沿って付されるべきである。しかし、便宜上、トルク値を示す実線上に特定の時点を示す黒丸を付すとともに、A、B、・・・などの符号をその実線付近に記載することにする。
 図4に示された時点Aは液状樹脂30の吐出を開始した時点(サーボモータ31を正回転させ始めた時点)を、時点Bは送出機構27が所定量の液状樹脂30を送出しようとした動作を完了した時点(プランジャ35を所定の距離だけ前進させた後に停止させた時点)を、それぞれ示す。時点Cはサックバックを開始した時点(サーボモータ31を逆回転させ始めた時点)を、時点Dはサックバックを停止した時点(プランジャ35を所定の距離だけ後退させた後に停止させた時点)を、それぞれ示す。時点Eは液状樹脂30の吐出が完了した時点(所定量の液状樹脂30がキャビティ16に吐出された時点)を示す。適度なサックバックを行うことによって、液状樹脂30の液だれを防止でき、併せて液切れを改善できる。
 時点Aから時点Bに至る期間は、プランジャ35が液状樹脂30を押圧することによって、液状樹脂30の樹脂圧力が増大し、液状樹脂30がプランジャ35を押し返す反力が大きくなる。したがって、液状樹脂30の反力が大きくなった場合においてプランジャ35を一定の移動速度Vで前進させる(サーボモータ31を一定の回転速度で回転させる)ために、サーボモータ31のトルク値が大きくなる。時点Bから時点Cに至る期間は、プランジャ35が液状樹脂30を押圧することを停止しているので、液状樹脂30の樹脂圧力が下降し、液状樹脂30がプランジャ35を押し返す反力が小さくなる。したがって、サーボモータ31のトルク値が小さくなる。
 時点Cから時点Dに至る期間は、サックバックを行うことによってプランジャ35を引き戻す。サーボモータ31を逆回転させ、サーボモータ31の回転トルクを正トルクから負トルクに急激に変化させる。したがって、サックバックを行うことによって、シリンジ28内の液状樹脂30の樹脂圧力は正圧から負圧に急激に変化する。このことによって、ノズル29の吐出口41から液状樹脂30が突き出している場合において、その突き出している液状樹脂30を、ノズル29の先端の内側(図2(1)においては下端の上側)に貯留される液状樹脂30から切り離すことができる。したがって、サックバックを行うことによって、液切れを改善できる。このことによって、残留樹脂の発生を抑制できるので、所定量の液状樹脂30をキャビティ16に吐出できる。時点Dから時点Eに至る期間は、シリンジ28内の液状樹脂30の樹脂圧力が負圧から大気圧に戻る。このことによって、サーボモータ31のトルク値は負トルクから増大して0になる。サーボモータ31のトルク値が0になった時点において、液状樹脂30の吐出が完了する。
 図4において、シリンジ28内の液状樹脂30の粘度が時間の経過とともに増大した場合のサーボモータ31のトルク変化が、破線で示される。時点Aから時点B1に至る期間においては、プランジャ35が液状樹脂30を押圧することによって、液状樹脂30がプランジャ35を反力で押し返す。液状樹脂30の粘度が増大しているので、サーボモータ31に加わる負荷トルクの値(トルク値)が当初の値よりも大きくなる。したがって、プランジャ35の移動速度Vを一定にするには、より大きな回転トルクが必要になる。このことにより、トルク値の変化は、図4において破線によって示される変化になる。液状樹脂30の粘度が変化しても、プランジャ35の移動速度Vが一定(サーボモータ31の回転速度rが一定)になるようにサーボモータ31の回転トルクを制御する。したがって、所定時間内に所定量の液状樹脂30を安定して吐出できる。
 図4に示されるように、ディスペンサ19が液状樹脂30の吐出を開始してから吐出が完了するまでの期間において、サーボモータ31のトルク値をモニタリングすることによって、液状樹脂30の吐出が正常に行われたかどうかを判断できる。言い換えれば、ディスペンサ19の液状樹脂30の吐出状態に異常があるかどうかを、サーボモータ31のトルク値をモニタリングすることによって判断できる。したがって、サーボモータ31のトルク値の変化を監視するという簡便な方法によって、ディスペンサ19の吐出状態が正常であるかどうかを診断できる。
 加えて、特定の成形モジュールにおいてディスペンサ19の吐出状態が正常でないと判断された場合には、制御部22(図1を参照)がその成形モジュールの動作が正常でないことを示す警報を発してもよい。これにより、作業者はその成形モジュールを一時停止するなどの適切な対応を行うことができる。制御部22がその成形モジュールの動作を停止させてもよい。
 本実施形態によれば、ディスペンサ19において、送出機構27とシリンジ28とノズル29とが一体的に接続される。送出機構27に設けられたサーボモータ31を使用してシリンジ28内のプランジャ35を前進させる。プランジャ35が液状樹脂30を押圧することによって、プランジャ35が液状樹脂30から反力を受ける。この反力を、サーボモータ31に加わる負荷トルクの値(トルク値)として、サーボモータ31が有するエンコーダ39を使用して検出する。検出されたトルク値をフィードバックすることによって、サーボモータ31の回転速度が一定になるようにサーボモータ31の回転トルクを制御する。このことにより、プランジャ35の移動量又は移動速度を一定値に制御できる。
 サーボモータ31のトルクを制御することにより、サーボモータ31の回転速度を一定の速度に制御する。サーボモータ31の回転速度を一定の速度に制御することによって、プランジャ35の移動速度を一定の速度に制御する。プランジャ35の移動速度を一定の速度に制御することによって、所定時間内においてプランジャ35の移動量を一定に維持する。すなわち、サーボモータ31の回転トルクを制御することによって、所定時間内におけるプランジャ35の移動量を一定に維持する。したがって、プランジャ35の移動量を制御することによって、ノズル29から吐出される液状樹脂30の樹脂量を一定に維持できる。
 本実施形態によれば、サーボモータ31に設けられたエンコーダ39が、液状樹脂30の反力をサーボモータ31に加わる負荷トルクの値(トルク値)として検出する。液状樹脂30の反力による負荷トルクが大きくなった場合においても、サーボモータ31のトルクを制御することによって、サーボモータ31の回転速度を一定に制御できる。シリンジ28内に貯留されている液状樹脂30の粘度が時間の経過と共に増大した場合であっても、サーボモータ31の回転速度を制御することによって、プランジャ35の移動量を一定に維持できる。したがって、異なる粘度を有する液状樹脂30を使用した場合、又は、時間の経過に従って液状樹脂30の粘度が増大した場合であっても、サーボモータ31の回転トルクを制御することによって、所定時間内に所定量の液状樹脂30をノズル29から安定して吐出できる。
 本実施形態によれば、プランジャ35に加わる液状樹脂30の樹脂圧力を、サーボモータ31に加えられる負荷トルクの値(トルク値)として、サーボモータ31が有するエンコーダ39を使用して検出する。検出されたトルク値に基づいて、サーボモータ31の回転トルクを制御部22(図1参照)が制御する。これにより、空気圧源装置、管路などを設ける必要がないので、簡単な構成を有し小型化された樹脂成形装置が実現される。
 本実施形態によれば、ディスペンサ19において、シリンジ28又はノズル29を異なるシリンジ28又はノズル29に交換できる。シリンジ28又はノズル29を交換することによって、異なる材料や異なる粘度を有する液状樹脂30を製品に応じて使い分けることができる。
 異なる材料や異なる粘度を有する液状樹脂30を使用する場合においても、サーボモータ31の回転トルクを制御することによって、所定時間内におけるプランジャ35の移動量を一定に維持できる。このことにより、液状樹脂30の材料や粘度が異なった場合においても、樹脂成形装置1の生産効率を安定させることができる。さらに、液状樹脂30の粘度に対応して、ノズル29の吐出口41の口径を最適化できる。したがって、ディスペンサ19を非常に簡単な構成にすることができるとともに、製品に応じて最適な液状樹脂30を使用することができる。
 本実施形態によれば、ディスペンサ19において液状樹脂30の吐出を開始してから吐出が完了するまでの期間において、サーボモータ31の負荷トルクの値(トルク値)をモニタリングする。液状樹脂30の吐出を開始した時点、送出機構27が所定量の液状樹脂30を送出した時点、サックバックを開始した時点、サックバックを停止した時点、液状樹脂30の吐出が完了した時点が、それぞれサーボモータ31のトルク値の変化によって明確に示される。したがって、ディスペンサ19における液状樹脂30の吐出状態が正常であるかどうかを容易に判断できる。
 ここまでの説明によって理解されるように、本発明に係る樹脂成形装置1は、液状樹脂30の吐出装置として機能する。言い換えれば、本発明に係る樹脂成形装置1は、流動性材料の吐出装置に相当する。加えて、ディスペンサ19は、液状樹脂30の吐出機構として機能する。言い換えれば、ディスペンサ19は、流動性材料を吐出する吐出機構であって、本発明に係る吐出機構に相当する。
 [実施形態2]
 図5を参照して、本発明に係る樹脂成形装置1を使用して、サーボモータ31のトルク変化をモニタリングすることによって液状樹脂30の吐出が正常に行われたかどうかを判断する方法について説明する。
 図5には、ディスペンサ19の様々な状態におけるサーボモータ31のトルク変化が示される。実線(a)は、図4に示された正常な液状樹脂30の吐出状態におけるサーボモータ31のトルク変化を示す。破線(b)は、プランジャ35が液状樹脂30を押圧している間(時点Aから時点B2に至る期間)においては、プランジャ35の移動速度Vを一定にすることにより、所定時間内に所定量の液状樹脂30を吐出することを示す。しかし、プランジャ35を停止してからサックバックを開始するまでの間に、実線(a)によって示される正常な液状樹脂30のトルク変化に比べると、破線(b)(時点B2から時点C2に至る期間)においてはトルクがそれほど減少していない。このことは、シリンジ28内における液状樹脂30の樹脂圧力が正常に減少していないことを示す。この原因としては、例えば、液状樹脂30の粘度上昇、ノズル29のつまり、狭窄などによって、液状樹脂30の樹脂圧力が正常に減少していない(大気圧になかなか近づかない)ことが考えられる。
 なお、本出願書類において記載された原因はすべて推定されたものである。これらの原因に関する記載は、本出願書類に記載された内容の解釈には影響を与えない。
 図5において、一点鎖線(c)は、液状樹脂30を吐出する間にトルクがほとんど増大しないことを示す。言い換えれば、プランジャ35が液状樹脂30を押圧しても、液状樹脂30の樹脂圧力がほとんど増大しない。この原因としては、例えば、シリンジ28にひびや割れ、ノズル29に破損や脱落などが発生し、シリンジ28内の液状樹脂30が大気に露出する状態になっているので、液状樹脂30の樹脂圧力がほとんど増大しないことが考えられる。
 図5において、二点鎖線(d)は、プランジャ35が液状樹脂30を押圧している間にトルクが異常に増大することを示す。サーボモータ31に加わる負荷トルクが大きすぎるため、サーボモータ31自体の回転トルクを大きくしても、プランジャ35がほとんど前進しない状態になっている。この原因としては、例えば、シリンジ28内において、液状樹脂30がほとんど固まっているような状態、言い換えれば、液状樹脂30の流動性がほとんどなくなっている状態が生じていることが考えられる。
 本実施形態によれば、ディスペンサ19が液状樹脂30の吐出を開始してから吐出が完了するまでの期間において、サーボモータ31のトルク値をモニタリングする。このことにより、液状樹脂30の吐出が正常に行われたかどうか、液状樹脂30の吐出に異常があるかどうかなど、液状樹脂30の吐出に関する様々な項目を把握できる。
 本実施形態によれば、ディスペンサ19が液状樹脂30の吐出を開始してから、一定の時間を経過した後に、しきい値としてサーボモータ31のトルク値の上限又は下限を設定する。ディスペンサ19が液状樹脂30の吐出を開始してから、一定の時間内にサーボモータ31のトルク値が上限を上回る場合、又は、下限下回る場合には、液状樹脂30の吐出に異常が発生していると判断できる。したがって、サーボモータ31のトルク変化を監視することによって、ディスペンサ19が正常な動作をしているかどうかを容易に判断できる。
 [実施形態3]
 図6及び図7を参照して、本発明に係る樹脂成形装置1使用して、サックバックをした後の液状樹脂30のトルク変化を監視することによって、サックバック後の空気の吸い込みや液だれを抑制する方法について説明する。図6にはサックバック後の空気の吸い込みを抑制する方法、図7にはサックバック後の液だれを抑制する方法がそれぞれ示される。
 図6は、サックバックを停止した時点(時点D)において、シリンジ28内の液状樹脂30の樹脂圧力がサックバックによって負圧になっている状態を示す。サックバックを停止した時点(時点D)から一定の時間が経過した時点(時点F)においても、シリンジ28内の液状樹脂30の樹脂圧力はまだ負圧の状態である。この状態は、シリンジ28内の液状樹脂30の粘度に対してサックバックが強すぎることによって、液状樹脂30の樹脂圧力が過剰に負圧になっている状態である。したがって、液状樹脂30の樹脂圧力が大気圧に戻りにくい。液状樹脂30の樹脂圧力が負圧である状態が続けば、シリンジ28内に大気中の空気を吸い込むおそれがある。空気を吸い込んだ場合には、空気の混入によってシリンジ28内における液状樹脂30の容量を正確に把握することができない。したがって、次に液状樹脂30を吐出する際に正常な樹脂量を吐出できないおそれがある。
 サックバックを停止した時点(時点D)から一定の時間が経過した時点(時点F)においてもシリンジ28内の液状樹脂30の樹脂圧力が負圧である場合には、サーボモータ31のトルクは負トルクを示す。したがって、サーボモータ31を正回転させることによってプランジャ35に正トルクを加える。正トルクを加えることによって、シリンジ28内の液状樹脂30の樹脂圧力を負圧から大気圧に戻す。シリンジ28内の液状樹脂30の樹脂圧力を大気圧にすることによってトルク値が0になるので、空気の吸い込みを防止できる。
 図7は、サックバックを停止した時点(時点D)においてサックバックを行っても、シリンジ28内の液状樹脂30の樹脂圧力は負圧にならず正圧のままの状態を示す。サックバックを停止した時点(時点D)から一定の時間が経過した時点(時点F)においても、シリンジ28内の液状樹脂30の樹脂圧力はまだ正圧の状態のままである。この状態は、シリンジ28内の液状樹脂30の粘度に対してサックバックが弱すぎることによって、液状樹脂30の樹脂圧力が大気圧にまで戻らなかった状態である。シリンジ28内の液状樹脂30の樹脂圧力が正圧である状態が続けば、ノズル29の吐出口41から液だれが生じるおそれがある。
 サックバックを停止した時点(時点D)から一定の時間が経過した時点(時点F)においてシリンジ28内の液状樹脂30の樹脂圧力が正圧である場合には、サーボモータ31のトルクは正トルクを示す。したがって、サーボモータ31を逆回転させることによって、プランジャ35に負トルクを加える。負トルクを加えることによって、シリンジ28内の液状樹脂30の樹脂圧力を正圧から大気圧に戻す。シリンジ28内の液状樹脂30の樹脂圧力を大気圧にすることによってトルク値が0になるので、ノズル29の吐出口41から液だれが発生することを防止できる。
 本実施形態によれば、サックバックを停止した時点(時点D)から一定の時間が経過した時点(時点F)においてシリンジ28内の液状樹脂30の樹脂圧力を監視する。この時点において液状樹脂30の樹脂圧力が負圧であれば、サーボモータ31を正回転させることによって、プランジャ35に正トルクを加える。正トルクを加えることによって、シリンジ28内の液状樹脂30の樹脂圧力を負圧から大気圧にする。このことによって、トルク値は0になるので、空気の吸い込みを防止できる。
 本実施形態によれば、サックバックを停止した時点(時点D)から一定の時間が経過した時点(時点F)においてシリンジ28内の液状樹脂30の樹脂圧力を監視する。この時点において液状樹脂30の樹脂圧力が正圧であれば、サーボモータ31を逆回転させることによって、プランジャ35に負トルクを加える。負トルクを加えることによって、シリンジ28内の液状樹脂30の樹脂圧力を正圧から大気圧にする。このことによって、トルク値は0になるので、液状樹脂30の液だれを防止できる。
 上述した各実施形態においては、液状樹脂30の吐出を開始した時点、送出機構27が所定量の液状樹脂30を送出した時点、サックバックを開始した時点、サックバックを停止した時点、液状樹脂30の吐出が完了した時点、それぞれの時点におけるサーボモータ31のトルク値をモニタリングする。このことによって、液状樹脂30の吐出が正常に行われたかどうか、液状樹脂30の吐出に異常があるかどうかなど、液状樹脂30の吐出に関する様々な状態を把握できる。サーボモータ31のトルク変化を監視するという簡便な方法によって、液状樹脂30の吐出状態を把握できる。
 上述した各実施形態においては、LEDチップを樹脂封止する際に使用される樹脂成形装置及び樹脂成形方法を説明した。樹脂封止する対象はIC、トランジスタなどの半導体チップでもよく、受動素子でもよい。プリント基板、セラミックス基板などの基板に装着された1個又は複数個の電子部品を樹脂封止する際に本発明を適用できる。
 加えて、電子部品を樹脂封止する場合に限らず、レンズ、光学モジュール、導光板などの光学部品を樹脂成形によって製造する場合や、一般的な樹脂成形品を製造する場合などに、本発明を適用できる。
 各実施形態における流動性樹脂として、常温において液状である液状樹脂30を例に挙げて説明した。流動性樹脂として、常温において固形状の樹脂材料を溶融させて生成した溶融樹脂を使用してもよい。液状樹脂30及び溶融樹脂は、いずれも流動性樹脂の一態様である。流動性樹脂は流動性材料の一態様である。
 主剤と硬化剤とからなる2種類の液状樹脂を実際に樹脂成形する際に一定の割合で混合して使用する2液タイプの樹脂材料がある。2液タイプの樹脂材料を使用する樹脂成形装置においても、本発明が適用される。
 各実施形態においては、圧縮成形による樹脂成形装置及び樹脂成形方法を説明した。加えて、トランスファ成形による樹脂成形装置及び樹脂成形方法に本発明を適用できる。この場合には、成形型に設けられた円筒状の空間からなる樹脂収納部(下方にプランジャと呼ばれる昇降部材が配置され、通常は固形樹脂からなる樹脂材料が収納される部分であり、ポットと呼ばれる)に、液状樹脂が吐出される。この場合には、上述したポットが収容部に相当する。
 各実施形態においては、下型に設けられたキャビティを液状樹脂(流動性樹脂)30の収容部として、そのキャビティに液状樹脂を吐出する例を説明した。キャビティの他に、液状樹脂30の収容部は次のいずれであってもよい。第1に、収容部は、下型に設けられたポット(上述)である。
 第2に、収容部は、基板の上面を含む空間であってその基板の上面に実装されているチップ(半導体チップ、受動部品のチップなどの電子部品のチップ)を含む空間である。液状樹脂は、基板の上面に実装されているチップを覆うようにして吐出される。
 第3に、収容部は、シリコンウェーハなどの半導体基板の上面を含む空間である。液状樹脂は、半導体基板に形成されている半導体回路などの機能部を覆うようにして吐出される。
 第4に、収容部は、最終的に成形型のキャビティに収容されるはずのフィルムにおける上面を含む空間である。この場合における収容部は、例えば、フィルムがくぼむことによって形成される凹部である。液状樹脂は、フィルムがくぼむことによって形成された凹部に吐出される。このフィルムの目的としては、離型性の向上、フィルムの表面における凹凸からなる形状の転写、フィルムに予め形成された図柄の転写などが挙げられる。フィルムの凹部に収容された液状樹脂を、フィルムとともに、適切な搬送機構を使用して搬送して最終的に成形型のキャビティに収容する。
 第1~第4の場合のいずれにおいても、収容部に収容された液状樹脂は、最終的に成形型のキャビティの内部に収容されて、成形型が型締めした状態でキャビティの内部において硬化する。
 第2~第4の場合のいずれにおいても、相対向する1対の成形型の外部において収容部に液状樹脂を吐出し、その収容部を少なくとも含む構成要素を成形型の間に搬送できる。
 各実施形態においては、基板供給・収納モジュール2と供給モジュール4との間に、4個の成形モジュール3A、3B、3C、3DをX方向に並べて装着した。基板供給・収納モジュール2と供給モジュール4とを1つのモジュールにして、そのモジュールに1個の成形モジュール3AをX方向に並べて装着してもよい。さらに、その1つのモジュールに成形モジュール3AをX方向に並べて装着し、成形モジュール3Aに他の成形モジュール3Bを装着してもよい。
 本発明に係る吐出機構及び吐出装置が吐出する材料は流動性樹脂に限定されない。本発明に係る吐出機構及び吐出装置が吐出する材料は流動性材料であればよい。流動性材料としては、乳剤、接着剤、印刷用インク、放熱用グリース、はんだペースト、銀ペースト等の工業用材料が挙げられる。加えて、流動性材料としては、蜂蜜、バター、生クリーム、溶融したチョコレート、ソース、液卵、スープ等の飲食用材料が挙げられる。
 本発明は、上述した各実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲内で、必要に応じて、任意にかつ適宜に組み合わせ、変更し、又は選択して採用できるものである。
 1 樹脂成形装置(吐出装置)、2 基板供給・収納モジュール、3A、3B、3C、3D 成形モジュール、4 供給モジュール、5 封止前基板、6 封止前基板供給部、7 封止済基板(成形品)、8 封止済基板収納部、9 ローダ、10 アンローダ、11 レール、12、13、20 移動機構、14 下型(成形型)、15 型締め機構、16 キャビティ(収容部)、17 離型フィルム、18 樹脂供給機構、19 ディスペンサ(供給機構、吐出機構)、21 真空引き機構、22 制御部、23 上型(成形型)、24 フィルム押え部材、25 LEDチップ、26 個別キャビティ(収容部)、27 送出機構、28 シリンジ(貯留部)、29 ノズル(吐出部)、30 液状樹脂(流動性樹脂、流動性材料)、31 サーボモータ(回転機構)、32 ボールねじ(回転軸)、33 スライダ(直動部材)、34 ロッド、35 プランジャ(移動部材)、36 ボールねじ軸受、37 振れ止め部材、38 ガイドレール、39 エンコーダ(検出部)、40 シリンジ取り付け用のねじ、41 吐出口。

Claims (16)

  1.  上型と、前記上型に相対向して設けられた下型と、前記上型と前記下型との少なくとも一方に設けられたキャビティと、流動性樹脂が収容される収容部と、前記収容部に前記流動性樹脂を供給する供給機構と、前記上型と前記下型とを少なくとも有する成形型を型締めする型締め機構とを備え、前記キャビティにおいて前記流動性樹脂が硬化することによって成形された硬化樹脂を含む成形品を成形する樹脂成形装置であって、
     前記供給機構に設けられ前記流動性樹脂を送出する送出機構と、
     前記送出機構に接続され前記流動性樹脂を貯留する貯留部と、
     前記貯留部に接続され前記流動性樹脂を吐出する吐出部と、
     前記送出機構に設けられた回転機構と、
     前記回転機構の回転に基づいて前記貯留部の内壁に沿って進退し前記貯留部に貯留された前記流動性樹脂を押圧する移動部材と、
     前記貯留部内における前記流動性樹脂の樹脂圧力に起因して前記移動部材を経由して前記回転機構に加えられるトルク値を検出する検出部と、
     検出された前記トルク値に基づいて前記移動部材の移動速度又は前記回転機構の回転速度を制御する制御部とを備え、
     前記制御部は、前記移動部材を前進させて停止させた後に後退させるように制御することによって、前記収容部に供給される前記流動性樹脂の供給量を制御する、樹脂成形装置。
  2.  前記制御部は、検出された前記トルク値と異常状態を示す予め設定されたトルク値とを比較することによって、前記供給機構が正常な状態で前記流動性樹脂が供給されているかどうかを判断する、請求項1に記載の樹脂成形装置。
  3.  前記制御部は、前記移動部材を後退させた後に検出されたトルク値が所定の時間が経過した時点において正トルクを示す場合には、検出されるトルク値が0に近づくことを目的として前記移動部材を後退させるように制御する、請求項1に記載の樹脂成形装置。
  4.  前記制御部は、前記移動部材を後退させた後に検出されたトルク値が所定の時間が経過した時点において負トルクを示す場合には、検出されるトルク値が0に近づくことを目的として前記移動部材を前進させるように制御する、請求項1に記載の樹脂成形装置。
  5.  前記硬化樹脂は、基板を覆う封止樹脂である、請求項1~4のいずれか1項に記載の樹脂成形装置。
  6.  前記成形型と前記型締め機構とを有する少なくとも1個の成形モジュールをさらに備え、
     前記1個の成形モジュールと他の成形モジュールとが着脱されることができる、請求項1~4のいずれか1項に記載の樹脂成形装置。
  7.  上型と、前記上型に相対向して設けられた下型と、前記上型と前記下型との少なくとも一方に設けられたキャビティと、収容部に流動性樹脂を供給する供給機構と、前記上型と前記下型とを少なくとも有する成形型を型締めする型締め機構とを備えた樹脂成形装置を使用して、前記キャビティにおいて前記流動性樹脂を硬化させることによって成形された硬化樹脂を含む成形品を成形する樹脂成形方法であって、
     前記流動性樹脂を送出する送出機構と前記流動性樹脂を貯留する貯留部と前記流動性樹脂を吐出する吐出部とを有する前記供給機構を準備する工程と、
     前記送出機構に設けられた回転機構の回転軸を回転させる工程と、
     前記回転軸の回転に基づいて前記貯留部の内壁に沿って移動部材を進退させる工程と、
     前記貯留部内における前記流動性樹脂の樹脂圧力に起因して前記移動部材を経由して前記回転機構に加えられるトルク値を検出する工程と、
     検出された前記トルク値に基づいて前記移動部材の移動速度又は前記回転機構の回転速度を制御する工程と、
     前記移動部材の移動速度又は前記回転機構の回転速度を制御した状態で前記移動部材を前進させる工程と、
     前記移動部材を停止させる工程と、
     前記移動部材を停止させた後に前記移動部材を後退させることによって、前記収容部に供給する前記流動性樹脂の供給量を制御する工程とを備える、樹脂成形方法。
  8.  前記トルク値を検出する工程において検出された前記トルク値と異常状態を示す予め設定されたトルク値とを比較することによって、前記供給機構が正常な状態で前記流動性樹脂を供給しているかどうかを判断する工程をさらに備える、請求項7に記載の樹脂成形方法。
  9.  前記移動部材を後退させた後に検出されたトルク値が所定の時間が経過した時点において正トルクを示す場合には、検出されるトルク値が0に近づくことを目的として前記移動部材を後退させるように制御する工程をさらに備える、請求項7に記載の樹脂成形方法。
  10.  前記移動部材を後退させた後に検出されたトルク値が所定の時間が経過した時点において負トルクを示す場合には、検出されるトルク値が0に近づくことを目的として前記移動部材を前進させるように制御する工程をさらに備える、請求項7に記載の樹脂成形方法。
  11.  前記硬化樹脂は、基板を覆う封止樹脂である、請求項7~10のいずれか1項に記載の樹脂成形方法。
  12.  前記成形型と前記型締め機構とを有する少なくとも1個の成形モジュールを準備する工程をさらに備え、
     前記1個の成形モジュールと他の成形モジュールとを着脱することができる、請求項7~10のいずれか1項に記載の樹脂成形方法。
  13.  流動性材料を送出する送出機構と、前記送出機構に接続され前記流動性材料を貯留する貯留部と、前記貯留部に接続され前記流動性材料を吐出する吐出部とを備えた吐出機構であって、
     前記送出機構に設けられた回転機構と、
     前記回転機構によって回転する回転軸と、
     前記回転軸の回転運動を直動運動に変換する直動部材と、
     前記直動部材に接続され前記貯留部の内壁に沿って進退し前記貯留部に貯留された前記流動性材料を押圧する移動部材と、
     前記貯留部内における前記流動性材料の樹脂圧力に起因して前記移動部材を経由して前記回転機構に加えられるトルク値を検出する検出部とを備え、
     検出された前記トルク値に基づいて、前記回転機構の回転速度又は前記移動部材の移動速度が制御される、吐出機構。
  14.  検出された前記トルク値と異常状態を示す予め設定されたトルク値とが比較されることによって、前記吐出機構が正常な状態で前記流動性材料を供給しているかどうかが判断される、請求項13に記載の吐出機構。
  15.  流動性材料を送出する送出機構と、前記送出機構に接続され前記流動性材料を貯留する貯留部と、前記貯留部に接続され前記流動性材料を吐出する吐出部とを備えた吐出装置であって、
     前記送出機構に設けられた回転機構と、
     前記回転機構によって回転する回転軸と、
     前記回転軸の回転運動を直動運動に変換する直動部材と、
     前記直動部材に接続され前記貯留部の内壁に沿って進退し前記貯留部に貯留された前記流動性材料を押圧する移動部材と、
     前記貯留部内における前記流動性材料の樹脂圧力に起因して前記移動部材を経由して前記回転機構に加えられるトルク値を検出する検出部と、
     検出された前記トルク値に基づいて前記移動部材の移動速度又は前記回転機構の回転速度を制御する制御部とを備え、
     前記制御部は、検出された前記トルク値に基づいて前記回転機構の回転速度又は前記移動部材の移動速度を制御する、吐出装置。
  16.  前記制御部は、検出された前記トルク値と異常状態を示す予め設定されたトルク値とを比較することによって、前記吐出装置が正常な状態で前記流動性材料が供給されているかどうかを判断する、請求項15に記載の吐出装置。
PCT/JP2016/074208 2015-11-30 2016-08-19 樹脂成形装置、樹脂成形方法、吐出機構、及び吐出装置 WO2017094293A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
MYPI2018701915A MY187148A (en) 2015-11-30 2016-08-19 Resin molding apparatus, resin molding method, discharge mechanism, and discharge apparatus
CN201680070185.0A CN108290324B (zh) 2015-11-30 2016-08-19 树脂成形装置、树脂成形方法、排出机构以及排出装置
KR1020187016488A KR102158030B1 (ko) 2015-11-30 2016-08-19 수지 성형 장치, 수지 성형 방법, 토출 기구, 및 토출 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-232720 2015-11-30
JP2015232720A JP6549478B2 (ja) 2015-11-30 2015-11-30 吐出装置、樹脂成形装置、吐出方法及び樹脂成型品の製造方法

Publications (1)

Publication Number Publication Date
WO2017094293A1 true WO2017094293A1 (ja) 2017-06-08

Family

ID=58796741

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/074208 WO2017094293A1 (ja) 2015-11-30 2016-08-19 樹脂成形装置、樹脂成形方法、吐出機構、及び吐出装置

Country Status (6)

Country Link
JP (1) JP6549478B2 (ja)
KR (1) KR102158030B1 (ja)
CN (1) CN108290324B (ja)
MY (1) MY187148A (ja)
TW (1) TWI644735B (ja)
WO (1) WO2017094293A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6759176B2 (ja) * 2017-10-31 2020-09-23 Towa株式会社 ノズル、樹脂成形装置、樹脂成形品の製造方法
CN108212689B (zh) * 2018-03-28 2018-11-20 郑全金 一种高性能的环保型胶粘剂设备
JP7206091B2 (ja) * 2018-10-05 2023-01-17 住友重機械工業株式会社 射出成形機
JP7193376B2 (ja) * 2019-02-22 2022-12-20 Towa株式会社 樹脂成型装置及び樹脂成型品の製造方法
JP7349869B2 (ja) * 2019-10-02 2023-09-25 ミネベアミツミ株式会社 圧力検出装置および良否判断方法
CN114867565B (zh) * 2019-12-24 2023-08-29 三键有限公司 材料涂敷装置
JP7417495B2 (ja) * 2020-08-28 2024-01-18 Towa株式会社 樹脂成形装置及び樹脂成形品の製造方法
CN112289728A (zh) * 2020-11-03 2021-01-29 谭秀美 一种半导体环氧树脂封装设备
JP7515373B2 (ja) 2020-11-13 2024-07-12 三菱電機株式会社 積層鉄心の製造装置、積層鉄心の製造方法および回転電機の製造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03247433A (ja) * 1990-02-27 1991-11-05 Matsushita Electric Ind Co Ltd 射出成形機及び射出成形方法
JP2008114428A (ja) * 2006-11-02 2008-05-22 Towa Corp 電子部品の圧縮成形方法及び成形装置
JP2010064457A (ja) * 2008-09-12 2010-03-25 Komatsulite Mfg Co Ltd 成形装置及び成形方法
JP2013153057A (ja) * 2012-01-25 2013-08-08 Renesas Electronics Corp 半導体装置の製造方法
JP2015193096A (ja) * 2014-03-31 2015-11-05 Towa株式会社 樹脂成形装置及び樹脂成形方法
JP2015211121A (ja) * 2014-04-25 2015-11-24 Towa株式会社 樹脂成形装置及び樹脂成形方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07320B2 (ja) * 1987-02-25 1995-01-11 株式会社日立製作所 半導体封止用トランスファ成形装置
NL1003366C2 (nl) * 1996-06-18 1997-12-19 Fico Bv Inrichting en werkwijze voor het omhullen van produkten.
JP3830453B2 (ja) * 2003-01-15 2006-10-04 ファナック株式会社 射出成形機のモニタ装置
JP2006192371A (ja) 2005-01-13 2006-07-27 Shinwa Shokai:Kk 液体定量吐出装置及びその制御方法
JP5004872B2 (ja) * 2008-05-27 2012-08-22 Towa株式会社 樹脂封止装置及び樹脂封止方法
WO2013021816A1 (ja) * 2011-08-11 2013-02-14 東レ株式会社 離型用ポリアリーレンスルフィドフィルムおよびこれを用いた熱硬化性樹脂成形体の製造方法
JP6186113B2 (ja) * 2012-03-26 2017-08-23 住友重機械工業株式会社 射出成形機
TWI588160B (zh) * 2012-10-09 2017-06-21 積水化成品工業股份有限公司 發泡性聚苯乙烯系樹脂粒子及其製造方法、預備發泡粒子及發泡成形體
WO2014098103A1 (ja) * 2012-12-21 2014-06-26 東レ株式会社 繊維強化熱可塑性樹脂成形品、繊維強化熱可塑性樹脂成形材料および繊維強化熱可塑性樹脂成形材料の製造方法
JP6071869B2 (ja) * 2013-12-27 2017-02-01 Towa株式会社 樹脂成形装置及び樹脂成形方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03247433A (ja) * 1990-02-27 1991-11-05 Matsushita Electric Ind Co Ltd 射出成形機及び射出成形方法
JP2008114428A (ja) * 2006-11-02 2008-05-22 Towa Corp 電子部品の圧縮成形方法及び成形装置
JP2010064457A (ja) * 2008-09-12 2010-03-25 Komatsulite Mfg Co Ltd 成形装置及び成形方法
JP2013153057A (ja) * 2012-01-25 2013-08-08 Renesas Electronics Corp 半導体装置の製造方法
JP2015193096A (ja) * 2014-03-31 2015-11-05 Towa株式会社 樹脂成形装置及び樹脂成形方法
JP2015211121A (ja) * 2014-04-25 2015-11-24 Towa株式会社 樹脂成形装置及び樹脂成形方法

Also Published As

Publication number Publication date
JP6549478B2 (ja) 2019-07-24
KR20180088835A (ko) 2018-08-07
JP2017100285A (ja) 2017-06-08
TWI644735B (zh) 2018-12-21
KR102158030B1 (ko) 2020-09-21
CN108290324B (zh) 2020-07-14
TW201722566A (zh) 2017-07-01
MY187148A (en) 2021-09-04
CN108290324A (zh) 2018-07-17

Similar Documents

Publication Publication Date Title
WO2017094293A1 (ja) 樹脂成形装置、樹脂成形方法、吐出機構、及び吐出装置
JP6104787B2 (ja) 樹脂成形装置及び樹脂成形方法
JP6672191B2 (ja) 吐出装置、吐出方法、樹脂成形装置及び樹脂成形品の製造方法
JP6169516B2 (ja) 樹脂成形装置及び樹脂成形方法
KR101998942B1 (ko) 수지 성형 장치 및 수지 성형 방법
JP6071869B2 (ja) 樹脂成形装置及び樹脂成形方法
TWI607518B (zh) Resin molding apparatus, resin molding method, and fluid material spraying apparatus
JP6218666B2 (ja) 樹脂成形装置及び樹脂成形方法
KR102313005B1 (ko) 수지 성형 장치 및 수지 성형품의 제조 방법
JP6986478B2 (ja) 樹脂成形装置、及び樹脂成形品の製造方法
Th et al. Dispensing challenges of large format packaging and some of its possible solutions
CN109719879B (zh) 喷嘴、树脂成形装置、树脂成形品的制造方法
CN114379014A (zh) 树脂供给方法、树脂成形品的制造方法及树脂成形装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16870234

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187016488

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 16870234

Country of ref document: EP

Kind code of ref document: A1