WO2017094252A1 - 非水系二次電池接着層用組成物、非水系二次電池用接着層、積層体および非水系二次電池 - Google Patents

非水系二次電池接着層用組成物、非水系二次電池用接着層、積層体および非水系二次電池 Download PDF

Info

Publication number
WO2017094252A1
WO2017094252A1 PCT/JP2016/004986 JP2016004986W WO2017094252A1 WO 2017094252 A1 WO2017094252 A1 WO 2017094252A1 JP 2016004986 W JP2016004986 W JP 2016004986W WO 2017094252 A1 WO2017094252 A1 WO 2017094252A1
Authority
WO
WIPO (PCT)
Prior art keywords
aqueous secondary
adhesive layer
mass
secondary battery
particulate polymer
Prior art date
Application number
PCT/JP2016/004986
Other languages
English (en)
French (fr)
Inventor
純之介 秋池
慶一朗 田中
一輝 浅井
慶 大浦
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to US15/777,220 priority Critical patent/US11319391B2/en
Priority to EP16870193.6A priority patent/EP3386023A4/en
Priority to CN201680067845.XA priority patent/CN108352575B/zh
Priority to KR1020187014483A priority patent/KR102551090B1/ko
Priority to JP2017553625A priority patent/JP7167440B2/ja
Publication of WO2017094252A1 publication Critical patent/WO2017094252A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/42Nitriles
    • C08F220/44Acrylonitrile
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F265/00Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00
    • C08F265/08Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00 on to polymers of nitriles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/003Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to macromolecular compounds obtained by reactions only involving unsaturated carbon-to-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08L9/06Copolymers with styrene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/08Macromolecular additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J133/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
    • C09J133/04Homopolymers or copolymers of esters
    • C09J133/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C09J133/10Homopolymers or copolymers of methacrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J133/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
    • C09J133/18Homopolymers or copolymers of nitriles
    • C09J133/20Homopolymers or copolymers of acrylonitrile
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J201/00Adhesives based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/443Particulate material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F212/06Hydrocarbons
    • C08F212/08Styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • C08F220/1804C4-(meth)acrylate, e.g. butyl (meth)acrylate, isobutyl (meth)acrylate or tert-butyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2203/00Applications of adhesives in processes or use of adhesives in the form of films or foils
    • C09J2203/33Applications of adhesives in processes or use of adhesives in the form of films or foils for batteries or fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a non-aqueous secondary battery adhesive layer composition, a non-aqueous secondary battery adhesive layer, a laminate, and a non-aqueous secondary battery.
  • Lithium ion secondary batteries are frequently used as secondary batteries used as power sources for these portable terminals.
  • a separator is generally provided to prevent a short circuit between the positive electrode and the negative electrode.
  • Patent Document 1 a particulate polymer for a binder of a lithium ion secondary battery, which has excellent adhesion in an electrolytic solution and can improve the low-temperature output characteristics of a lithium ion secondary battery, the particulate polymer Including adhesive layers have been proposed.
  • the adhesive layer described in Patent Document 1 has excellent adhesion in an electrolytic solution, but the adhesion after a long period of time (for example, 30 days) has passed in the electrolytic solution at a high temperature.
  • adheresiveness after a long period of time in an electrolytic solution at a high temperature may be simply referred to as “adhesiveness over time at a high temperature”
  • adheresiveness over time at a high temperature has been found to have room for improvement.
  • the composition for a non-aqueous secondary battery adhesive layer according to the present invention is: A composition for a non-aqueous secondary battery adhesive layer comprising a particulate polymer and a binder,
  • the particulate polymer contains 5 to 50% by mass of (meth) acrylonitrile monomer units and 0.1 to 3.5% by mass of crosslinkable monomer units.
  • It is a composition for non-aqueous secondary battery adhesive layers.
  • the composition has such a composition, it is possible to obtain an adhesive layer in which deterioration of adhesiveness with time at high temperatures is suppressed.
  • the elution amount of the particulate polymer with respect to the electrolytic solution is preferably 0.1 to 10%.
  • the particulate polymer preferably has a volume average particle diameter of 400 to 800 nm.
  • the non-aqueous secondary battery adhesive layer according to the present invention is a non-aqueous secondary battery adhesive layer produced using any of the above-described non-aqueous secondary battery adhesive layer compositions. Thereby, the fall of the adhesiveness with time at the high temperature of the adhesive layer can be suppressed.
  • the laminate according to the present invention is a laminate provided with the non-aqueous secondary battery adhesive layer directly or via another layer on at least one surface side of the substrate. Thereby, the deterioration of the adhesiveness with time at high temperature between the battery members can be suppressed.
  • a non-aqueous secondary battery according to the present invention is a non-aqueous secondary battery comprising a positive electrode, a negative electrode, a separator and an electrolyte solution, At least one of the positive electrode, the negative electrode, and the separator is a non-aqueous secondary battery including the above-described adhesive layer for a non-aqueous secondary battery.
  • the low temperature output characteristic of a non-aqueous secondary battery is favorable.
  • the non-aqueous secondary battery according to the present invention is preferably a wound type or a stacked type. Thereby, there exists an effect that the energy density of a secondary battery can be improved.
  • non-aqueous secondary battery adhesive layer composition capable of obtaining an adhesive layer in which a decrease in adhesiveness with time at high temperatures is suppressed.
  • ADVANTAGE OF THE INVENTION According to this invention, the non-aqueous secondary battery contact bonding layer which can suppress the fall of adhesiveness with time at high temperature can be provided.
  • ADVANTAGE OF THE INVENTION According to this invention, the laminated body which can suppress the fall of adhesiveness with time at high temperature can be provided. According to the present invention, it is possible to provide a non-aqueous secondary battery with good low-temperature output characteristics.
  • a numerical range is intended to include the lower limit and the upper limit of the range unless otherwise specified.
  • 5 to 50% by mass is intended to include a lower limit of 5% by mass and an upper limit of 50% by mass, and means 5% by mass to 50% by mass.
  • (meth) acrylic acid means one or more selected from the group consisting of acrylic acid, methacrylic acid, and combinations thereof.
  • (meth) acrylate means one or more selected from the group consisting of acrylate, methacrylate, and combinations thereof.
  • (meth) acrylonitrile means one or more selected from the group consisting of acrylonitrile, methacrylonitrile, and combinations thereof.
  • (meth) acrylamide means one or more selected from the group consisting of acrylamide, methacrylamide and combinations thereof.
  • the (meth) acrylonitrile monomer unit means a structural unit formed by polymerizing a (meth) acrylonitrile monomer.
  • a crosslinkable monomer unit means a structural unit formed by polymerizing a crosslinkable monomer.
  • a crosslinkable monomer is a monomer that can form a crosslinked structure during or after polymerization by heating or irradiation with energy rays.
  • a (meth) acrylic acid ester monomer unit means a structural unit formed by polymerizing a (meth) acrylic acid ester monomer.
  • a fluorine-containing monomer unit means a structural unit formed by polymerizing a monomer having fluorine.
  • an acid group-containing monomer unit means a structural unit formed by polymerizing a monomer having an acid group.
  • the aromatic vinyl monomer unit means a structural unit formed by polymerizing an aromatic vinyl monomer.
  • the measurement of the elution amount of the particulate polymer with respect to the electrolytic solution and the measurement of the volume average particle diameter of the particulate polymer are performed by the methods described in the examples.
  • a substance is water-soluble means that an insoluble content is 0 to less than 1.0% by mass when 0.5 g of the substance is dissolved in 100 g of water at 25 ° C. .
  • a substance is water-insoluble means that an insoluble content is 90 to 100% by mass when 0.5 g of the substance is dissolved in 100 g of water at 25 ° C.
  • the proportion of the structural unit formed by polymerizing a certain monomer in the polymer is not particularly described. As long as it is normal, it is equal to the ratio of the mass of the certain monomer to the mass of all monomers used for the polymerization of the polymer (preparation ratio).
  • “monomer composition” is used not only as a composition containing two or more types of monomers but also as a term indicating one type of monomer.
  • composition for non-aqueous secondary battery adhesive layer is: A composition for a non-aqueous secondary battery adhesive layer comprising a particulate polymer and a binder, The particulate polymer contains 5 to 50% by mass of (meth) acrylonitrile monomer units and 0.1 to 3.5% by mass of crosslinkable monomer units. It is a composition for non-aqueous secondary battery adhesive layers. When the composition has such a composition, it is possible to obtain an adhesive layer in which deterioration of adhesiveness with time at high temperatures is suppressed.
  • the particulate polymer contains 5 to 50% by mass of (meth) acrylonitrile monomer units and 0.1 to 3.5% by mass of crosslinkable monomer units.
  • the particulate polymer is not particularly limited as long as it contains a predetermined amount of the monomer unit.
  • the particulate polymer may have a core-shell structure including a core part and a shell part that at least partially covers the outer surface of the core part, or a structure without a shell (non-core shell structure) It may have. Further, as the particulate polymer, a core-shell structured particulate polymer and a non-core-shell structured particulate polymer may be used in combination.
  • the particulate polymer preferably has a core-shell structure.
  • the core part is formed of a polymer excellent in ion conductivity and the shell part is formed of a polymer excellent in adhesiveness in the electrolytic solution
  • the electrolytic solution of the particulate polymer It is possible to effectively enhance both the adhesiveness inside and the low-temperature output characteristics of the secondary battery.
  • the monomer unit constituting the core part of the core-shell structured particulate polymer is not particularly limited.
  • the core portion comprises (meth) acrylonitrile monomer units, crosslinkable monomer units, (meth) acrylic acid ester monomer units, fluorine-containing monomer units, acid group-containing monomer units, and aromatics.
  • the core part includes a (meth) acrylonitrile monomer unit and a crosslinkable monomer unit, and further includes a (meth) acrylic acid ester monomer unit, a fluorine-containing monomer unit, and an acid group It includes one or more units selected from the group consisting of monomer units and aromatic vinyl monomer units.
  • the monomer for producing the core part of the core-shell structure particulate polymer is not particularly limited, but (meth) acrylonitrile monomer, crosslinkable monomer and (meth) acrylic acid ester monomer It is preferable to use it.
  • (meth) acrylic acid ester monomers those containing fluorine are treated as fluorine-containing monomers described later, and are distinguished from (meth) acrylic acid ester monomers.
  • the (meth) acrylonitrile monomer is not particularly limited, and acrylonitrile, methacrylonitrile, and other (meth) acrylonitrile derivatives can be used.
  • crosslinkable monomer examples include polyfunctional monomers having two or more polymerization reactive groups in the monomer.
  • a polyfunctional monomer is not particularly limited.
  • divinyl compounds such as divinylbenzene; ethylene dimethacrylate, diethylene glycol dimethacrylate, ethylene glycol dimethacrylate, diethylene glycol diacrylate, 1,3-butylene glycol diacrylate
  • Di (meth) acrylic acid ester compounds such as: Tri (meth) acrylic acid ester compounds such as trimethylolpropane trimethacrylate and trimethylolpropane triacrylate; Ethylenic unsaturation containing epoxy groups such as allyl glycidyl ether and glycidyl methacrylate And monomers.
  • a dimethacrylic acid ester compound and an ethylenically unsaturated monomer containing an epoxy group are preferable, and a dimethacrylic acid ester compound is more preferable.
  • the (meth) acrylic acid ester monomer is not particularly limited, and a known monomer can be used.
  • Examples of the (meth) acrylic acid ester monomer include methyl acrylate, ethyl acrylate, butyl acrylate, methyl methacrylate, ethyl methacrylate, 2-ethylhexyl acrylate, and the like.
  • the core part may contain a fluorine-containing monomer unit.
  • the core part contains a fluorine-containing monomer unit, the ionic conductivity of the core part can be increased, and the ionic conductivity of the particulate polymer can be effectively increased.
  • fluorine-containing monomers examples include fluorine-containing (meth) acrylic acid ester monomers and fluorine-containing aromatic diene monomers, among which fluorine-containing (meth) acrylic acid ester monomers are used. preferable.
  • the hydrocarbon group of R 2 has 1 to 18 carbon atoms.
  • the number of fluorine atoms contained in R 2 is 1 or 2 or more.
  • fluorine-containing (meth) acrylic acid ester monomers represented by the general formula (I) include (meth) acrylic acid alkyl fluoride, (meth) acrylic acid fluoride aryl, and (meth) acrylic acid fluorine monomer. And aralkyl.
  • the fluorine-containing (meth) acrylic acid ester monomer is a (meth) acrylic alkyl fluoride. Specific examples of such a monomer include (meth) acrylic acid-2,2,2-trifluoroethyl, (meth) acrylic acid- ⁇ - (perfluorooctyl) ethyl, (meth) acrylic acid-2.
  • the core part may contain an acid group-containing monomer unit.
  • the acid group-containing monomer include a monomer having a carboxylic acid group, a monomer having a sulfonic acid group, a monomer having a phosphate group, and a monomer having a hydroxyl group. It is done.
  • Examples of the monomer having a carboxylic acid group include monocarboxylic acid and dicarboxylic acid.
  • Examples of the monocarboxylic acid include acrylic acid, methacrylic acid, and crotonic acid.
  • Examples of the dicarboxylic acid include maleic acid, fumaric acid, itaconic acid and the like.
  • Examples of the monomer having a sulfonic acid group include vinyl sulfonic acid, methyl vinyl sulfonic acid, (meth) allyl sulfonic acid, ethyl (meth) acrylic acid-2-sulfonate, 2-acrylamido-2-methylpropane sulfone. Acid, 3-allyloxy-2-hydroxypropanesulfonic acid and the like.
  • Examples of the monomer having a phosphoric acid group include phosphoric acid-2- (meth) acryloyloxyethyl phosphate, methyl-2- (meth) acryloyloxyethyl phosphate, and ethyl phosphate- (meth) acryloyloxyethyl phosphate. Can be mentioned.
  • Examples of the monomer having a hydroxyl group include 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, 2-hydroxyethyl methacrylate, and 2-hydroxypropyl methacrylate.
  • monomers having a carboxylic acid group are preferable, monocarboxylic acid is preferable, and (meth) acrylic acid is preferable.
  • the core part may contain an aromatic vinyl monomer.
  • aromatic vinyl monomer examples include styrene, ⁇ -methylstyrene, styrenesulfonic acid, butoxystyrene, vinylnaphthalene, and the like.
  • the core part may include other arbitrary structural units.
  • arbitrary structural units include vinyl chloride monomers such as vinyl chloride and vinylidene chloride; vinyl acetate monomers such as vinyl acetate; vinylamine monomers such as vinylamine; N-vinylformamide Vinylamide monomers such as N-vinylacetamide; (meth) acrylic acid derivatives; (meth) acrylamide monomers such as acrylamide and methacrylamide; unsaturated dicarboxylic acid monomers; unsaturated carboxylic acids such as maleic anhydride Acid anhydrides; maleimides; maleimide derivatives such as phenylmaleimides; and diene monomers such as 1,3-butadiene and isoprene.
  • the above-mentioned monomers may be used alone or in combination of two or more.
  • the glass transition temperature of the core part is not particularly limited, but is, for example, 0 ° C or higher, or 10 ° C or higher, or 20 ° C or higher, or 30 ° C or higher, or 60 ° C or higher, for example, 150 ° C or lower, or 130 ° C. Below, or 110 ° C. or lower, or 100 ° C. or lower, or 90 ° C. or lower, or 80 ° C. or lower.
  • the diameter of the core part is, for example, 50% or more, or 60% or more, or 70% or more, or 80% or more with respect to 100% of the volume average particle diameter of the particulate polymer, for example, 99% or less, Or it is 98.5% or less, or 98% or less.
  • the diameter of the core part can be measured as the volume average particle diameter of the particulate polymer (core part) before forming the shell part obtained in the production process of the particulate polymer.
  • the volume average particle diameter represents a particle diameter at which the cumulative volume calculated from the small diameter side is 50% in the particle diameter distribution measured by the laser diffraction method.
  • the shell part at least partially covers the outer surface of the core part.
  • the outer surface of the core part is partially covered. Even if it appears that the outer surface of the core part is completely covered by the shell part, the shell part is outside the core part as long as a hole that communicates the inside and outside of the shell part is formed. Treat as partially covering the surface. In another example, the outer surface of the core part is completely covered.
  • the shell part partially covers the outer surface of the core part, ions in the electrolytic solution can easily enter the core part of the particulate polymer. Therefore, when the core portion has high ionic conductivity, the high ionic conductivity can be effectively utilized.
  • the monomer unit constituting the shell part is not particularly limited.
  • the shell portion comprises (meth) acrylonitrile monomer units, crosslinkable monomer units, (meth) acrylic acid ester monomer units, fluorine-containing monomer units, acid group-containing monomer units, and aromatics.
  • the shell portion includes an aromatic vinyl monomer unit.
  • the shell part is not particularly limited, but preferably contains an aromatic vinyl monomer unit.
  • the polymer which comprises a shell part contains an aromatic vinyl monomer unit, when immersed in electrolyte solution, a particulate polymer can express high adhesiveness.
  • aromatic vinyl monomer examples include styrene, ⁇ -methyl styrene, styrene sulfonic acid, butoxy styrene, vinyl naphthalene and the like.
  • styrene derivatives such as styrene and styrene sulfonic acid are more preferable.
  • the shell part may include one or more of the monomer units of the core part described above.
  • the glass transition temperature of the shell portion is not particularly limited, but is, for example, 50 ° C or higher, or 60 ° C or higher, or 70 ° C or higher, for example, 200 ° C or lower, or 180 ° C or lower, or 150 ° C or lower, or 120 ° C. It is as follows.
  • the average ratio at which the outer surface of the core part is partially covered by the shell part is not particularly limited, and is, for example, 10% or more, or 30% or more, or 40% or more, or 60% or more. 9% or less, or 98% or less, or 95% or less, or 90% or less, or 85% or less.
  • the average ratio of the outer surface of the core part covered by the shell part can be measured from the observation result of the cross-sectional structure of the particulate polymer. For example, it can be measured by the method described in Patent Document 1.
  • ⁇ Particulate polymer having non-core shell structure examples include a (meth) acrylonitrile monomer unit and a crosslinkable monomer unit, in addition to the above-mentioned (meth) acrylic acid ester monomer unit, fluorine-containing unit.
  • examples thereof include a particulate polymer containing a monomer unit, an acid group-containing monomer unit, an aromatic vinyl monomer unit and the like and having a single composition.
  • volume average particle diameter of particulate polymer can be adjusted as appropriate. For example, 10 nm or more, or 100 nm or more, or 300 nm or more, or 400 nm or more, or 420 nm or more, or 480 nm or more, or 550 nm or more, for example, 1000 nm or less, or 800 nm or less, or 780 nm or less, or 750 nm Or less, or 600 nm or less, or 550 nm or less.
  • the volume average particle diameter of the particulate polymer not less than the lower limit of the above range, the dispersibility of the particulate polymer can be improved.
  • the adhesiveness in the electrolyte solution of a particulate polymer can be improved by making it into an upper limit or less.
  • the volume average particle diameter of the particulate polymer is preferably 400 to 800 nm, and more preferably 450 to 750 nm.
  • the method for producing the particulate polymer is that the particulate polymer contains 5 to 50% by mass of (meth) acrylonitrile monomer units and 0.1 to 3.5% by mass of crosslinkable monomer units. It is not particularly limited and is arbitrary.
  • a particulate polymer having a core-shell structure uses a polymer monomer constituting the core portion and a polymer monomer constituting the shell portion, and the ratio of these monomers over time is increased. It can manufacture by changing and polymerizing in steps. Specifically, as described in Patent Document 1, it is produced by a continuous multi-stage emulsion polymerization method and a multi-stage suspension polymerization method in which the polymer in the previous stage is sequentially coated with the polymer in the subsequent stage. can do.
  • the core part is 40% by mass of (meth) acrylonitrile monomer unit, 1% by mass of crosslinkable monomer unit, and (meth) acrylic acid ester is based on the total mass of the particulate polymer having a core-shell structure.
  • a core-shell structured particulate polymer containing 27% by mass of body units 2% by mass of (meth) acrylic acid monomer units and 30% by mass of aromatic vinyl monomer units in the shell part is produced.
  • the above four types of monomers are used in the above proportion as monomers constituting the above, and the aromatic vinyl monomer is used in the above proportion as the monomer constituting the shell portion, Good.
  • the method for producing the particulate polymer having a non-core-shell structure is not particularly limited, and the particulate polymer comprises 5 to 50% by mass of (meth) acrylonitrile monomer units and 0.1 to 3.
  • Other components such as a (meth) acrylonitrile monomer, a crosslinkable monomer and other monomers, and a polymerization initiator may be blended so as to include 5% by mass and polymerization may be performed.
  • the polymerization mode for example, any mode such as a solution polymerization method, a suspension polymerization method, a bulk polymerization method, and an emulsion polymerization method can be used.
  • the polymerization method any method such as ionic polymerization, radical polymerization, and living radical polymerization can be used. In emulsion polymerization, seed polymerization using seed particles may be employed.
  • the particulate polymer is a (meth) acrylonitrile monomer unit 5 with respect to the total mass of the particulate polymer (that is, the total mass of the core portion and the shell portion). It is sufficient to include ⁇ 50% by mass and crosslinkable monomer unit 0.1 to 3.5% by mass.
  • the core part of the particulate polymer contains 5 to 50% by mass of (meth) acrylonitrile monomer units and 0.1 to 3.5% by mass of crosslinkable monomer units, and the shell part is a single unit of these. Does not include the unit of the mass.
  • the shell portion contains 5 to 50% by mass of (meth) acrylonitrile monomer units and 0.1 to 3.5% by mass of crosslinkable monomer units, and the core portion contains these monomer units.
  • both the core part and the shell part include a (meth) acrylonitrile monomer unit and a crosslinkable monomer unit, and the sum of the core part and the shell part is a (meth) acrylonitrile monomer. It contains 5 to 50% by mass of units and 0.1 to 3.5% by mass of crosslinkable monomer units.
  • the above-described (meth) acrylonitrile monomer unit is 5 to 50% by mass and the crosslinkable monomer unit is 0.1 to 3.5% by mass.
  • the (meth) acrylonitrile monomer unit of the particulate polymer is a particulate polymer.
  • the above-described (meth) acrylonitrile monomer unit is 5 to 50% by mass and the crosslinkable monomer unit is 0.1 to 3.5% by mass.
  • the crosslinkable monomer unit of the particulate polymer is the sum of the particulate polymer.
  • the ratio of the crosslinkable monomer unit is 0.1% by mass or more, 0.15% by mass or more, or 0.2% by mass or more, or 0.3% by mass or more with respect to mass or mass (in the case of a non-core shell structure) Or 0.7% by mass or more, or 3.5% by mass or less, or 3% by mass or less, or 0.7% by mass or less.
  • the ratio of the crosslinkable monomer unit is 0.1% by mass or more, it is possible to suppress a decrease in adhesiveness with time at a high temperature.
  • the crosslinkable monomer unit is 3.5% by mass or less, the adhesiveness of the adhesive layer in the electrolytic solution can be improved.
  • the proportion of the (meth) acrylic acid ester monomer unit of the particulate polymer may be appropriately adjusted and is not particularly limited. However, with respect to the total mass or mass of the particulate polymer (in the case of a non-core shell structure), For example, 15% by mass or more, or 17.5% by mass or more, or 21% by mass or more, or 24% by mass or more, or 30% by mass or more, or 45% by mass or more. For example, it is 60% by mass or less, or 57% by mass or less, or 50% by mass or less, or 47% by mass or less, or 26% by mass or less, or 25% by mass or less.
  • the proportion of the (meth) acrylic acid monomer unit in the particulate polymer may be appropriately adjusted and is not particularly limited.
  • the proportion of the (meth) acrylic acid monomer unit in the particulate polymer may be appropriately adjusted and is not particularly limited.
  • 0.1% by mass or more, or 1% by mass or more, or 2% by mass or more, or 2.5% by mass or more, or 3% by mass or more, or 5% by mass or more for example, 20% by mass or less, or It is 15 mass% or less, or 10 mass% or less, or 5 mass% or less, or 3 mass% or less.
  • the proportion of the aromatic vinyl monomer unit in the particulate polymer may be adjusted as appropriate, and is not particularly limited.
  • the proportion of the total mass or mass (in the case of a non-core shell structure) of the particulate polymer is 1
  • it is 35% by mass or less, or 30% by mass or less, or 20% by mass or less, or 15% by mass or less.
  • the elution amount of the particulate polymer with respect to the electrolytic solution is preferably 0.1 to 10%.
  • the elution amount is more preferably 0.15% or more, further preferably 0.2% or more, more preferably 8% or less, and further preferably 6% or less. If the elution amount is 0.1% or more, it can be prevented that the electrolyte solution is extremely difficult to swell, and the adhesiveness of the adhesive layer is maintained.
  • the elution amount is 10% or less, a decrease in adhesiveness with time at high temperatures is suppressed, and the low-temperature output characteristics of the secondary battery are also improved.
  • the particulate polymer exists in a particle shape in the composition for a non-aqueous secondary battery adhesive layer, but in the adhesive layer produced using the composition, the shape is not particularly limited, and the particulate polymer has a particle shape. It may be any other shape.
  • the binder is not particularly limited, and a known binder or binder used in a non-aqueous secondary battery can be appropriately selected and used.
  • the binder By using the binder, the mechanical strength of the adhesive layer can be increased. Moreover, the adhesiveness of the adhesive layer can be improved by the binder.
  • a water-insoluble polymer is usually used.
  • the binder include thermoplastic elastomers such as a styrene-butadiene copolymer, a styrene-acrylonitrile copolymer, and a (meth) acrylic acid ester polymer.
  • the adhesive layer binder described in Patent Document 1 may be used.
  • the amount of the binder may be adjusted as appropriate.
  • the amount is 0.1 parts by mass or more, or 0.2 parts by mass or more, for example, 30 parts by mass or less with respect to 100 parts by mass of the particulate polymer. Or 20 parts by mass or less.
  • the composition for non-aqueous secondary battery adhesive layers may contain other components known as adhesive layer compositions.
  • the composition for a non-aqueous secondary battery adhesive layer includes a solvent; a water-soluble polymer such as carboxymethyl cellulose and a salt thereof; a non-conductive fiber such as a cellulose fiber; a non-conductive particle such as alumina; an isothiazoline compound; A compound; a pyrithione compound; a dispersant; a leveling agent; an antioxidant; a thickener; an antifoaming agent; a wetting agent; and an electrolytic solution additive having a function of inhibiting decomposition of the electrolytic solution.
  • the solvent it can be appropriately selected from water and organic solvents.
  • water is preferably used.
  • the organic solvent include cycloaliphatic hydrocarbon compounds such as cyclopentane and cyclohexane; aromatic hydrocarbon compounds such as toluene and xylene; ketone compounds such as acetone, ethyl methyl ketone, and cyclohexanone; ethyl acetate, butyl acetate, and ⁇ -Ester compounds such as butyrolactone and ⁇ -caprolactone; nitrile compounds such as acetonitrile and propionitrile; ether compounds such as tetrahydrofuran and ethylene glycol diethyl ether: alcohol compounds such as methanol, ethanol, isopropanol, ethylene glycol and ethylene glycol monomethyl ether; Examples thereof include amide compounds such as N-methylpyrrolidone (NMP) and N, N-dimethylformamide.
  • a solvent may be
  • the amount per unit area of the adhesive layer is not particularly limited and may be appropriately adjusted, but is preferably 0.1 g / m 2 or more, and more preferably 1.5 g / m 2 or less.
  • the thickness of the adhesive layer is not particularly limited and may be appropriately adjusted, but is preferably 0.1 ⁇ m or more, more preferably 0.2 ⁇ m or more, particularly preferably 0.5 ⁇ m or more, preferably 5 ⁇ m or less, more preferably Is 4 ⁇ m or less, particularly preferably 3 ⁇ m or less.
  • composition for the non-aqueous secondary battery adhesive layer is not particularly limited.
  • the composition may be prepared by dissolving or dispersing a particulate polymer, a binder, and other optional components in a solvent. it can. Specifically, using a disperser such as a ball mill, sand mill, pigment disperser, crusher, ultrasonic disperser, homogenizer, planetary mixer, bead mill, roll mill, fill mix, etc.
  • a composition for a non-aqueous secondary battery adhesive layer is prepared by dispersing or dissolving an agent and other optional components in a solvent.
  • the non-aqueous secondary battery adhesive layer according to the present invention is a non-aqueous secondary battery adhesive layer produced using the above-described non-aqueous secondary battery adhesive layer composition. Thereby, the fall of the adhesiveness with time at the high temperature of the adhesive layer can be suppressed.
  • the adhesive layer for non-aqueous secondary batteries according to the present invention may be at least an adhesive layer, and may have functions such as blocking resistance, heat resistance, and ion diffusibility in addition to adhesiveness. Good.
  • the adhesive layer for a non-aqueous secondary battery according to the present invention is applied to at least one surface side of a substrate (for example, a separator or an electrode) with or without another layer, and has a battery member having an adhesive layer ( Laminate).
  • the adhesive layer bonds the battery member having the adhesive layer and another battery member.
  • the other battery member may or may not have an adhesive layer.
  • the adhesive layer may be provided only on one side of the separator or electrode with or without another layer, and provided on both sides with or without another layer. May be.
  • the adhesive layer when a separator is used as the substrate, it is preferable to form an adhesive layer on both sides of the separator, and when an electrode is used as the substrate, it is preferable to form it on one side, particularly on the electrode mixture layer.
  • the adhesive layer for a non-aqueous secondary battery may be used for adhesion between a battery member and a battery container (exterior body) such as an aluminum packaging exterior.
  • the non-aqueous secondary battery adhesive layer according to the present invention is, for example, applied to the above-described non-aqueous secondary battery adhesive layer composition on at least one side of the base material using an electrode or a separator as a base material, and dried. Can be formed.
  • the laminated body which concerns on this invention is a laminated body provided with the said contact bonding layer for non-aqueous secondary batteries directly or through another layer on the at least one surface side of a base material. Thereby, the deterioration of the adhesiveness with time at high temperature between the battery members can be suppressed.
  • the base material of the laminate is not particularly limited and can be appropriately selected from the base materials of the battery members of the secondary battery.
  • a separator, an electrode, a battery container, etc. are mentioned.
  • a porous substrate made of a resin including polyolefin (for example, polyethylene, polypropylene, polybutene, polyvinyl chloride) and a mixture thereof, and a copolymer thereof; polyethylene terephthalate, polycycloolefin, poly Porous substrate made of a resin containing ether sulfone, polyamide, polyimide, polyimide amide, polyaramid, nylon, polytetrafluoroethylene, cellulose, etc .; woven fabric of the above-mentioned resin fibers; non-woven fabric of the above-mentioned resin fibers; insulation Aggregates of sex particles; combinations thereof.
  • polyolefin for example, polyethylene, polypropylene, polybutene, polyvinyl chloride
  • polyethylene terephthalate polycycloolefin
  • Porous substrate made of a resin containing ether sulfone, polyamide, polyimide, polyimide amide, polyaramid, nylon, poly
  • Examples of the electrode include those described later.
  • Examples of battery containers include an aluminum packaging exterior.
  • ⁇ layers that can be arbitrarily provided between the substrate and the adhesive layer are not particularly limited, and known layers can be appropriately selected and used. For example, a porous film, a heat-resistant layer, etc. are mentioned.
  • the laminate according to the present invention is, for example, applied by applying the composition for a non-aqueous secondary battery adhesive layer described above to at least one surface side of the base material directly or via another layer using an electrode or a separator as the base material. It can be formed by drying.
  • a non-aqueous secondary battery according to the present invention is a non-aqueous secondary battery comprising a positive electrode, a negative electrode, a separator and an electrolyte solution, At least one of the positive electrode, the negative electrode, and the separator is a non-aqueous secondary battery including the above-described adhesive layer for a non-aqueous secondary battery.
  • the low temperature output characteristic of a non-aqueous secondary battery is favorable.
  • the non-aqueous secondary battery according to the present invention includes, for example, the non-aqueous secondary battery adhesive layer on one side or both sides of the separator base material with or without other layers interposed therebetween.
  • the positive electrode and the separator are bonded and integrated through an adhesive layer for a non-aqueous secondary battery.
  • the negative electrode and the separator are bonded and integrated through the non-aqueous secondary battery adhesive layer.
  • the positive electrode, the separator, and the negative electrode are bonded and integrated via the non-aqueous secondary battery adhesive layer.
  • the positive electrode, negative electrode, separator and electrolyte used in the non-aqueous secondary battery are not particularly limited, and the positive electrode, negative electrode, separator and electrolyte used in the non-aqueous secondary battery can be appropriately selected and used. it can.
  • the electrodes for example, an electrode formed by forming an electrode mixture layer on a current collector can be used.
  • a material made of a metal material such as iron, copper, aluminum, nickel, stainless steel, titanium, tantalum, gold, or platinum can be used.
  • the current collector for the negative electrode it is preferable to use a current collector made of copper.
  • a current collector made of aluminum as the current collector for the positive electrode.
  • the electrode mixture layer for example, a layer containing an electrode active material and a binder can be used.
  • positive electrode active material examples include, for example, transition metal oxides, composite oxides of lithium and transition metals, inorganic compounds such as transition metal sulfides, and conductive materials such as polyacetylene and poly-p-phenylene. Examples include organic compounds such as polymers. Examples of the transition metal include Fe, Co, Ni, and Mn.
  • inorganic compounds used for the positive electrode active material include lithium-containing composite metal oxides such as LiCoO2, LiNiO2, LiMnO2, LiMn2O4, LiFePO4, and LiFeVO4; transition metal sulfides such as TiS2, TiS3, and amorphous MoS2; Examples thereof include transition metal oxides such as Cu2V2O3, amorphous V2O—P2O5, MoO3, V2O5, and V6O13.
  • a positive electrode active material may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the negative electrode active material examples include carbonaceous materials such as amorphous carbon, graphite, natural graphite, mesocarbon microbeads, and pitch-based carbon fibers; and conductive polymers such as polyacene.
  • metals such as silicon, tin, zinc, manganese, iron and nickel, and alloys thereof; oxides of the metals or alloys; sulfates of the metals or alloys, and the like are also included.
  • metallic lithium; lithium alloys such as Li—Al, Li—Bi—Cd, and Li—Sn—Cd; lithium transition metal nitrides; silicon and the like may be used.
  • an electrode active material having a conductive material attached to the surface by a mechanical modification method may be used.
  • a negative electrode active material may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the separator is not particularly limited, and a known separator can be used.
  • microporous membrane, porous membrane or nonwoven fabric containing polyolefin resin such as polyethylene, polypropylene, polybutene, polyvinyl chloride or aromatic polyamide resin
  • porous resin coat containing inorganic ceramic powder such as polyethylene terephthalate, polycycloolefin, polyether
  • Microporous membrane made of resin such as sulfone, polyamide, polyimide, polyimide amide, polyaramid, nylon, polytetrafluoroethylene or woven polyolefin fiber, or its nonwoven fabric, aggregate of insulating material particles; combinations thereof Etc.
  • the electrolytic solution is not particularly limited, and a known electrolytic solution can be appropriately selected and used.
  • an organic electrolytic solution in which a supporting electrolyte is dissolved in a solvent (organic solvent) is usually used.
  • a lithium salt is used as the supporting electrolyte.
  • lithium salt examples include LiPF 6 , LiAsF 6 , LiBF 4 , LiSbF 6 , LiAlCl 4 , LiClO 4 , CF 3 SO 3 Li, C 4 F 9 SO 3 Li, CF 3 COOLi, (CF 3 CO) 2 NLi , (CF 3 SO 2 ) 2 NLi, (C 2 F 5 SO 2 ) NLi, and the like.
  • LiPF 6 , LiClO 4 , and CF 3 SO 3 Li are preferable, and LiPF 6 is particularly preferable because it is easily dissolved in a solvent and exhibits a high degree of dissociation.
  • the electrolyte (supporting electrolyte) may be used alone or in combination of two or more.
  • the solvent used in the electrolytic solution is not particularly limited as long as it can dissolve the supporting electrolyte, and can be appropriately selected and used.
  • the solvent include carbonates such as dimethyl carbonate (DMC), ethylene carbonate (EC), diethyl carbonate (DEC), propylene carbonate (PC), butylene carbonate (BC), and ethyl methyl carbonate (EMC); ⁇ -butyrolactone And esters such as methyl formate; ethers such as 1,2-dimethoxyethane and tetrahydrofuran; and sulfur-containing compounds such as sulfolane and dimethyl sulfoxide.
  • DMC dimethyl carbonate
  • EC ethylene carbonate
  • DEC diethyl carbonate
  • PC propylene carbonate
  • BC butylene carbonate
  • EMC ethyl methyl carbonate
  • ⁇ -butyrolactone And esters such as methyl formate
  • ethers such as 1,2-dimethoxyethane and t
  • the solvent is, in one example, one or more carbonates selected from the group consisting of dimethyl carbonate, ethylene carbonate, diethyl carbonate, propylene carbonate, butylene carbonate, and ethyl methyl carbonate, and in another example, EC and EMC. In another example, a mixed solution of EC, EMC, and DEC. What is necessary is just to adjust the mixing ratio of these liquid mixture suitably.
  • a known additive such as vinylene carbonate (VC), fluoroethylene carbonate (FEC), or ethyl methyl sulfone may be added to the electrolytic solution.
  • VC vinylene carbonate
  • FEC fluoroethylene carbonate
  • ethyl methyl sulfone ethyl methyl sulfone
  • the shape of the secondary battery is not particularly limited and can be appropriately selected.
  • the non-aqueous secondary battery according to the present invention is preferably a wound type or a stacked type. Thereby, there exists an effect that the energy density of a secondary battery can be improved.
  • the method for producing a non-aqueous secondary battery according to the present invention is not particularly limited except that the above-mentioned adhesive layer for non-aqueous secondary batteries is used for at least one of the positive electrode, the negative electrode, and the separator.
  • a secondary battery can be used.
  • a positive electrode and a negative electrode are overlapped via a separator, and this is put into a battery container by winding or folding according to the battery shape as necessary, and an electrolytic solution is injected into the battery container and sealed.
  • an overcurrent prevention element such as a fuse and a PTC element, an expanded metal, a lead board, etc. as needed.
  • the blending amount means parts by mass.
  • Examples 1 to 10 An adhesive layer using a non-aqueous secondary battery adhesive layer composition containing particulate polymers 1 to 10 described later and a non-aqueous secondary battery having the adhesive layer are referred to as Examples 1 to 10, respectively. Further, an adhesive layer using a composition for a non-aqueous secondary battery adhesive layer including each of particulate polymer comparisons 1 to 5 described later and a non-aqueous secondary battery having the adhesive layer are respectively used in Comparative Examples 1 to 5
  • the volume average particle diameter D50 of each particulate polymer was measured by the following method.
  • Each particulate polymer was measured with a laser diffraction particle size distribution measuring apparatus (product name “LS-230” manufactured by Beckman Coulter, Inc.) of an aqueous dispersion adjusted to a solid content concentration of 0.1% by mass.
  • the particle size distribution volume basis
  • the particle diameter (nm) at which the cumulative volume calculated from the small diameter side becomes 50% was obtained and set as the volume average particle diameter D50.
  • a positive electrode and a separator (single-side coated separator) prepared by the method described later are cut out to a width of 10 mm, and stacked one by one so that the adhesive layer of the separator and the positive electrode mixture layer of the positive electrode face each other.
  • the laminated body test piece was taken out and the electrolytic solution adhering to the surface was wiped off.
  • the cellophane tape was affixed on the surface of the positive electrode with the current collector side surface of the positive electrode facing down.
  • the cellophane tape defined in JIS Z1522 was used.
  • the cellophane tape was fixed on a horizontal test bench. Thereafter, the stress was measured when one end of the separator was pulled vertically upward at a pulling speed of 50 mm / min and peeled off. This measurement was performed three times, the average value of the stress was determined, and the average value was defined as the peel strength P. Evaluation A shows the most excellent adhesiveness.
  • Evaluation A 20 N / m ⁇ P Evaluation B: 15 N / m ⁇ P ⁇ 20 N / m Evaluation C: 10 N / m ⁇ P ⁇ 15 N / m Evaluation D: P ⁇ 10 N / m
  • aqueous dispersion containing a particulate polymer prepared by the method described later was prepared.
  • the aqueous dispersion was dried in an environment of 50% humidity and 100 ° C. to produce a film having a thickness of 3 ⁇ 0.3 mm.
  • the produced film was cut into 5 mm squares to prepare film pieces. About 1 g of these film pieces was accurately weighed. The mass of the precisely weighed film piece was defined as W0.
  • Electrolytic solution elution amount (%) 100 ⁇ (W1 / W0) ⁇ 100
  • the monomer composition of the core part; emulsifier; 150 parts by mass of ion-exchanged water; and 0.5 parts by mass of potassium persulfate as a polymerization initiator were added and sufficiently stirred. Then, it heated to 60 degreeC and superposition
  • the reaction was stopped by cooling to prepare an aqueous dispersion containing a particulate polymer.
  • the shell part was comprised with the particle
  • Example 1 a particulate polymer having no core-shell structure was prepared. Specifically, in a 5 MPa pressure vessel with a stirrer, as shown in Table 2, the monomer composition of the core part of Example 1, the monomer composition of the shell part; emulsifier; 150 parts by mass of ion-exchanged water And 0.5 parts by mass of potassium persulfate as a polymerization initiator were added and sufficiently stirred. Then, it heated to 60 degreeC and superposition
  • ⁇ Preparation of binder for adhesive layer> In a reactor equipped with a stirrer, 70 parts by mass of ion-exchanged water, 0.15 parts by mass of sodium lauryl sulfate (product name “Emal 2F” manufactured by Kao Chemical Co., Ltd.) as an emulsifier and 0.5 parts by mass of ammonium persulfate, Each was supplied, the gas phase was replaced with nitrogen gas, and the temperature was raised to 60 ° C.
  • sodium lauryl sulfate product name “Emal 2F” manufactured by Kao Chemical Co., Ltd.
  • a separate container 50 parts by mass of ion-exchanged water, 0.5 parts by mass of sodium dodecylbenzenesulfonate as a dispersant, 95 parts by mass of butyl acrylate as a (meth) acrylate monomer, acrylonitrile 2 parts by mass, 2 parts by mass of methacrylic acid and 1 part by mass of N-methylolacrylamide were mixed to obtain a monomer mixture.
  • This monomer mixture was continuously added to the reactor over 4 hours and polymerized at 60 ° C. After completion of the addition, the reaction was further terminated by stirring at 70 ° C. for 3 hours to prepare an aqueous dispersion containing a binder for the adhesive layer.
  • composition for non-aqueous secondary battery adhesive layer 14 parts by mass of the prepared aqueous dispersion containing the binder for the adhesive layer in terms of solid content and ethylene oxide as a viscosity modifier with respect to 100 parts by mass in terms of solid content of the aqueous dispersion containing the prepared particulate polymer.
  • -Propylene oxide copolymer solid content concentration 70% by mass, polymerization ratio: 5/5 (mass ratio)
  • solid content concentration 5 1,2-benzoisothiazolin-3-one
  • a separator for evaluating low-temperature output characteristics of a secondary battery As a separator for evaluating low-temperature output characteristics of a secondary battery, a polyethylene porous substrate (thickness 16 ⁇ m, Gurley value 210 s / 100 cc) was prepared as a separator substrate.
  • the prepared composition for a non-aqueous secondary battery adhesive layer was applied on both sides of the separator substrate by a spray coating method and dried at 50 ° C. for 1 minute. Thereby, the adhesive layer whose thickness of 1 layer is 1 micrometer was formed in both surfaces of the separator base material, and the coating separator was obtained.
  • surface of a separator base material as a separator for adhesive evaluation and time-dependent adhesive evaluation was obtained.
  • ⁇ Preparation of negative electrode> In a 5 MPa pressure vessel equipped with a stirrer, 33.5 parts by mass of 1,3-butadiene, 3.5 parts by mass of itaconic acid, 62 parts by mass of styrene, 1 part by mass of 2-hydroxyethyl acrylate, 0 sodium dodecylbenzenesulfonate as an emulsifier .4 parts by mass, 150 parts by mass of ion-exchanged water and 0.5 parts by mass of potassium persulfate as a polymerization initiator were added and stirred sufficiently, and then heated to 50 ° C. to initiate polymerization.
  • the reaction was stopped by cooling to obtain a mixture containing a particulate binder (SBR).
  • SBR particulate binder
  • a 5% aqueous sodium hydroxide solution was added to the mixture containing the particulate binder to adjust to pH 8, and then unreacted monomers were removed from the mixture by heating under reduced pressure. Thereafter, the mixture was cooled to 30 ° C. or lower to obtain an aqueous dispersion containing a particulate binder.
  • the composition for a secondary battery negative electrode was applied on a copper foil having a thickness of 20 ⁇ m, which is a current collector, with a comma coater so that the film thickness after drying was about 150 ⁇ m and dried.
  • This drying was performed by conveying the copper foil in an oven at 60 ° C. at a speed of 0.5 m / min for 2 minutes. Thereafter, heat treatment was performed at 120 ° C. for 2 minutes to obtain a negative electrode raw material before pressing.
  • This negative electrode original fabric was rolled with a roll press to obtain a negative electrode having a negative electrode mixture layer with a thickness of 80 ⁇ m.
  • composition for positive electrode of the secondary battery was applied on a 20 ⁇ m-thick aluminum foil as a current collector with a comma coater so that the film thickness after drying was about 150 ⁇ m and dried. This drying was performed by conveying the aluminum foil in an oven at 60 ° C. at a speed of 0.5 m / min for 2 minutes. Thereafter, heat treatment was performed at 120 ° C. for 2 minutes to obtain a positive electrode raw material before pressing.
  • This positive electrode original fabric was rolled by a roll press to obtain a positive electrode having a positive electrode mixture layer having a thickness of 80 ⁇ m.
  • ⁇ Manufacture of non-aqueous secondary batteries> The prepared positive electrode, coating separator, and negative electrode were cut into 49 cm ⁇ 5 cm, 55 cm ⁇ 5.5 cm, and 50 cm ⁇ 5.2 cm, respectively.
  • a positive electrode / separator / negative electrode laminate was obtained by disposing the positive electrode and the negative electrode so that the positive electrode mixture layer faces one adhesive layer on both sides of the separator and the negative electrode composite layer faces the other adhesive layer.
  • this laminate was wound with a winding machine to obtain a wound body. The wound body was pressed at 70 ° C. and 1.0 MPa for 8 seconds to obtain a flat body.
  • heat sealing at 150 ° C. was performed to close the aluminum exterior.
  • a wound lithium ion secondary battery having a discharge capacity of 800 mAh was manufactured.
  • Comparative Example 1 Comparative Example 3
  • the amount of the crosslinkable monomer unit of the particulate polymer is an appropriate amount, but there are many (meth) acrylonitrile monomer units, and the particulate polymer of the adhesive layer becomes an electrolyte solution at high temperatures. On the other hand, it is presumed to be due to the large amount of elution.
  • the (meth) acrylonitrile monomer unit is in an appropriate amount, but there are few crosslinkable monomer units, and the particulate polymer is eluted more than the electrolyte at high temperature. It is guessed.
  • non-aqueous secondary battery adhesive layer composition capable of obtaining an adhesive layer in which a decrease in adhesiveness with time at high temperatures is suppressed.
  • ADVANTAGE OF THE INVENTION According to this invention, the non-aqueous secondary battery contact bonding layer which can suppress the fall of adhesiveness with time at high temperature can be provided.
  • ADVANTAGE OF THE INVENTION According to this invention, the laminated body which can suppress the fall of adhesiveness with time at high temperature can be provided. According to the present invention, it is possible to provide a non-aqueous secondary battery with good low-temperature output characteristics.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Cell Separators (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

高温下での経時接着性の低下を抑制した接着層を得ることができる非水系二次電池接着層用組成物を提供すること。高温下での経時接着性の低下を抑制することができる非水系二次電池接着層を提供すること。高温下での経時接着性の低下を抑制することができる積層体を提供すること。低温出力特性が良好な非水系二次電池を提供すること。粒子状重合体および結着剤を含む非水系二次電池接着層用組成物であって、粒子状重合体が、(メタ)アクリロニトリル単量体単位5~50質量%および架橋性単量体単位0.1~3.5質量%を含む非水系二次電池接着層用組成物。非水系二次電池接着層用組成物を用いて作製された非水系二次電池用接着層。基材の少なくとも一面側に直接または他の層を介して、非水系二次電池用接着層を有する、積層体。正極、負極、セパレータの少なくとも1つが、非水系二次電池用接着層を備える非水系二次電池。

Description

非水系二次電池接着層用組成物、非水系二次電池用接着層、積層体および非水系二次電池
 本発明は、非水系二次電池接着層用組成物、非水系二次電池用接着層、積層体および非水系二次電池に関する。
 近年、ノート型パソコン、携帯電話、PDA(Personal Digital Assistant)などの携帯端末が普及している。これら携帯端末の電源として用いられている二次電池には、リチウムイオン二次電池が多用されている。
 リチウムイオン二次電池では、一般に、正極と負極との間の短絡を防ぐために、セパレータが設けられている。
 リチウムイオン二次電池の正極、負極およびセパレータなどの部材では、部材同士の電解液中での高い接着性が求められている。
 例えば、特許文献1では、電解液中での接着性に優れ、リチウムイオン二次電池の低温出力特性を改善できる、リチウムイオン二次電池のバインダー用の粒子状重合体、当該粒子状重合体を含む接着層などが提案されている。
国際公開第2015/064411号パンフレット
 本発明者らが検討した結果、特許文献1に記載の接着層は、電解液中での接着性は優れるが、電解液中、高温で長期間(例えば、30日間)経過した後の接着性(以下、「電解液中、高温下での長期間経過後の接着性」を単に「高温下での経時接着性」ということがある)に改善の余地があることが判明した。
 さらに本発明者らが検討した結果、高温下での経時接着性が低下すると、非水系二次電池の低温出力特性も低下する場合があることが判明した。
 そこで、本発明は、高温下での経時接着性の低下を抑制した接着層を得ることができる非水系二次電池接着層用組成物を提供することを目的とする。また、本発明の他の目的は、高温下での経時接着性の低下を抑制することができる非水系二次電池接着層を提供することである。また、本発明の他の目的は、高温下での経時接着性の低下を抑制することができる積層体を提供することである。また、本発明の他の目的は、低温出力特性が良好な非水系二次電池を提供することである。
 本発明に係る非水系二次電池接着層用組成物は、
 粒子状重合体および結着剤を含む非水系二次電池接着層用組成物であって、
 前記粒子状重合体が、(メタ)アクリロニトリル単量体単位5~50質量%および架橋性単量体単位0.1~3.5質量%を含む、
非水系二次電池接着層用組成物である。組成物がこのような組成を有することにより、高温下での経時接着性の低下を抑制した接着層を得ることができる。
 本発明に係る非水系二次電池接着層用組成物は、前記粒子状重合体の電解液に対する溶出量が0.1~10%であることが好ましい。これにより、接着層の接着性が向上し、高温下での経時接着性の低下を抑制した接着層を得ることができ、二次電池の低温出力特性も向上する。
 本発明に係る非水系二次電池接着層用組成物は、前記粒子状重合体の体積平均粒子径が、400~800nmであることが好ましい。これにより、接着層の接着性を向上し、また、二次電池の低温出力特性を向上することができる。
 本発明に係る非水系二次電池接着層は、上述のいずれかの非水系二次電池接着層用組成物を用いて作製された、非水系二次電池用接着層である。これにより、接着層の高温下での経時接着性の低下を抑制することができる。
 本発明に係る積層体は、基材の少なくとも一面側に直接または他の層を介して、前記非水系二次電池用接着層を備える、積層体である。これにより、電池部材間の高温下での経時接着性の低下を抑制することができる。
 本発明に係る非水系二次電池は、正極、負極、セパレータおよび電解液を備えてなる非水系二次電池であって、
 前記正極、負極、セパレータの少なくとも1つが、上述の非水系二次電池用接着層を備える、非水系二次電池である。これにより、非水系二次電池の低温出力特性が良好である。
 本発明に係る非水系二次電池は、捲回型または積層型であることが好ましい。これにより、二次電池のエネルギー密度を向上できるという効果がある。
 本発明によれば、高温下での経時接着性の低下を抑制した接着層を得ることができる非水系二次電池接着層用組成物を提供することができる。本発明によれば、高温下での経時接着性の低下を抑制することができる非水系二次電池接着層を提供することができる。本発明によれば、高温下での経時接着性の低下を抑制することができる積層体を提供することができる。本発明によれば、低温出力特性が良好な非水系二次電池を提供することができる。
 以下、本発明の実施形態について説明する。これらの記載は、本発明の例示を目的とするものであり、本発明を何ら限定するものではない。
 本明細書において、数値範囲は、別段の記載がない限り、その範囲の下限値および上限値を含むことを意図している。例えば、5~50質量%は、下限値5質量%と上限値50質量%を含むことを意図しており、5質量%以上50質量%以下を意味する。
 本明細書において、(メタ)アクリル酸は、アクリル酸、メタクリル酸およびこれらの組み合わせからなる群より選択される1種以上を意味する。本明細書において、(メタ)アクリレートは、アクリレート、メタクリレートおよびこれらの組み合わせからなる群より選択される1種以上を意味する。本明細書において、(メタ)アクリロニトリルは、アクリロニトリル、メタクリロニトリルおよびこれらの組み合わせからなる群より選択される1種以上を意味する。本明細書において、(メタ)アクリルアミドは、アクリルアミド、メタクリルアミドおよびこれらの組み合わせからなる群より選択される1種以上を意味する。
 本明細書において、(メタ)アクリロニトリル単量体単位は、(メタ)アクリロニトリル単量体を重合して形成される構造単位を意味する。本明細書において、架橋性単量体単位は、架橋性単量体を重合して形成される構造単位を意味する。架橋性単量体とは、加熱又はエネルギー線の照射により、重合中又は重合後に架橋構造を形成しうる単量体である。本明細書において、(メタ)アクリル酸エステル単量体単位は、(メタ)アクリル酸エステル単量体を重合して形成される構造単位を意味する。本明細書において、フッ素含有単量体単位は、フッ素を有する単量体を重合して形成される構造単位を意味する。本明細書において、酸基含有単量体単位は、酸基を有する単量体を重合して形成される構造単位を意味する。芳香族ビニル単量体単位は、芳香族ビニル単量体を重合して形成される構造単位を意味する。
 本発明では、粒子状重合体の電解液に対する溶出量の測定および粒子状重合体の体積平均粒子径の測定は、実施例に記載の方法により行う。
 本明細書において、ある物質が水溶性であるとは、25℃において、その物質0.5gを100gの水に溶解した際に、不溶分が0~1.0質量%未満であることをいう。また、ある物質が非水溶性であるとは、25℃において、その物質0.5gを100gの水に溶解した際に、不溶分が90~100質量%であることをいう。
 本明細書において、2種以上の単量体を共重合して製造される重合体において、ある単量体を重合して形成される構造単位の前記重合体における割合は、別段の記載がない限り、通常は、その重合体の重合に用いる全単量体の質量に占める当該ある単量体の質量の比率(仕込み比)と一致する。
 本明細書において、「単量体組成物」は、2種類以上の単量体を含む組成物だけでなく、1種類の単量体を指す用語としても用いる。
 (非水系二次電池接着層用組成物)
 本発明に係る非水系二次電池接着層用組成物は、
 粒子状重合体および結着剤を含む非水系二次電池接着層用組成物であって、
 前記粒子状重合体が、(メタ)アクリロニトリル単量体単位5~50質量%および架橋性単量体単位0.1~3.5質量%を含む、
非水系二次電池接着層用組成物である。組成物がこのような組成を有することにより、高温下での経時接着性の低下を抑制した接着層を得ることができる。
 <粒子状重合体>
 粒子状重合体は、(メタ)アクリロニトリル単量体単位5~50質量%および架橋性単量体単位0.1~3.5質量%を含む。これにより、接着層の高温下での経時接着性の低下を抑制することができる。このように、高温下での経時接着性の低下を抑制することができる理由は、定かではないが、粒子状重合体が上記の組成を有することにより、粒子状重合体の電解液に対する溶出が抑制され、それによって、高温下での経時接着性の低下が抑制されるものと推測される。
 粒子状重合体は、上記単量体単位を所定量含むものであればとくに限定されない。粒子状重合体は、コア部と、当該コア部の外表面を少なくとも部分的に覆うシェル部とを備える、コアシェル構造を有するものであってもよいし、シェルを有しない構造(非コアシェル構造)を有するものであってもよい。また、粒子状重合体として、コアシェル構造の粒子状重合体と非コアシェル構造の粒子状重合体を組み合わせて用いてもよい。
 本発明では、粒子状重合体がコアシェル構造を有するものであることが好ましい。例えば、特許文献1に記載のように、コア部をイオン伝導性に優れる重合体で形成し、シェル部を電解液中における接着性に優れる重合体で形成すれば、粒子状重合体の電解液中における接着性および二次電池の低温出力特性の両方を効果的に高めることが可能である。
 <コアシェル構造を有する粒子状重合体>
 コアシェル構造を有する粒子状重合体について例示説明する。
 <コア部>
 コアシェル構造の粒子状重合体のコア部を構成する単量体単位としては、特に限定されない。一例では、コア部は、(メタ)アクリロニトリル単量体単位、架橋性単量体単位、(メタ)アクリル酸エステル単量体単位、フッ素含有単量体単位、酸基含有単量体単位および芳香族ビニル単量体単位からなる群より選択される1種以上の単位を含む。別の一例では、コア部は、(メタ)アクリロニトリル単量体単位および架橋性単量体単位を含み、さらに、(メタ)アクリル酸エステル単量体単位、フッ素含有単量体単位、酸基含有単量体単位および芳香族ビニル単量体単位からなる群より選択される1種以上の単位を含む。
 コアシェル構造の粒子状重合体のコア部を製造するための単量体としては、特に限定されないが、(メタ)アクリロニトリル単量体、架橋性単量体および(メタ)アクリル酸エステル単量体を用いることが好ましい。(メタ)アクリル酸エステル単量体の中でもフッ素を含有するものは、後述するフッ素含有単量体として取り扱うことにして、(メタ)アクリル酸エステル単量体とは区別する。
 (メタ)アクリロニトリル単量体としては、特に限定されず、アクリロニトリル、メタクリロニトリル、その他の(メタ)アクリロニトリル誘導体を用いることができる。
 架橋性単量体としては、例えば、単量体中に2個以上の重合反応性基を有する多官能単量体が挙げられる。このような多官能単量体としては、特に限定されないが、例えば、ジビニルベンゼンなどのジビニル化合物;エチレンジメタクリレート、ジエチレングリコールジメタクリレート、エチレングリコールジメタクリレート、ジエチレングリコールジアクリレート、1,3-ブチレングリコールジアクリレートなどのジ(メタ)アクリル酸エステル化合物;トリメチロールプロパントリメタクリレート、トリメチロールプロパントリアクリレートなどのトリ(メタ)アクリル酸エステル化合物;アリルグリシジルエーテル、グリシジルメタクリレートなどのエポキシ基を含有するエチレン性不飽和単量体などが挙げられる。これらの中でも、ジメタクリル酸エステル化合物及びエポキシ基を含有するエチレン性不飽和単量体が好ましく、ジメタクリル酸エステル化合物がより好ましい。
 (メタ)アクリル酸エステル単量体としては、特に限定されず、公知のものを用いることができる。(メタ)アクリル酸エステル単量体としては、例えば、アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、メタクリル酸メチル、メタクリル酸エチル、2-エチルヘキシルアクリレートなどが挙げられる。
 コア部は、フッ素含有単量体単位を含んでいてもよい。コア部がフッ素含有単量体単位を含むことにより、コア部のイオン伝導性を高めることができ、粒子状重合体のイオン伝導度を効果的に高めることができる。
 フッ素含有単量体としては、例えば、フッ素を有する(メタ)アクリル酸エステル単量体、フッ素を有する芳香族ジエン単量体などが挙げられ、中でもフッ素含有(メタ)アクリル酸エステル単量体が好ましい。フッ素含有(メタ)アクリル酸エステル単量体としては、例えば、一般式(I)CH=CRCOOR(一般式(I)中、Rは、水素原子またはメチル基を表し、Rは、フッ素原子を含有する炭化水素基を表す。)で表される単量体が挙げられる。Rの炭化水素基の炭素数は、一例では1~18個である。Rが含有するフッ素原子の数は、1個または2個以上である。
 一般式(I)で表されるフッ素含有(メタ)アクリル酸エステル単量体の例としては、(メタ)アクリル酸フッ化アルキル、(メタ)アクリル酸フッ化アリール、及び(メタ)アクリル酸フッ化アラルキルなどが挙げられる。一例では、フッ素含有(メタ)アクリル酸エステル単量体は、(メタ)アクリル酸フッ化アルキルである。このような単量体の具体例としては、(メタ)アクリル酸-2,2,2-トリフルオロエチル、(メタ)アクリル酸-β-(パーフルオロオクチル)エチル、(メタ)アクリル酸-2,2,3,3-テトラフルオロプロピル、(メタ)アクリル酸-2,2,3,4,4,4-ヘキサフルオロブチル、(メタ)アクリル酸-1H,1H,9H-パーフルオロ-1-ノニル、(メタ)アクリル酸-1H,1H,11H-パーフルオロウンデシル、(メタ)アクリル酸パーフルオロオクチル、(メタ)アクリル酸パーフルオロエチル、(メタ)アクリル酸トリフルオロメチル、(メタ)アクリル酸-3[4〔1-トリフルオロメチル-2,2-ビス〔ビス(トリフルオロメチル)フルオロメチル〕エチニルオキシ〕ベンゾオキシ]-2-ヒドロキシプロピル等の(メタ)アクリル酸パーフルオロアルキルエステルが挙げられる。
 コア部は、酸基含有単量体単位を含んでいてもよい。酸基含有単量体としては、例えば、カルボン酸基を有する単量体、スルホン酸基を有する単量体、リン酸基を有する単量体、及び、ヒドロキシル基を有する単量体などが挙げられる。
 カルボン酸基を有する単量体としては、例えば、モノカルボン酸、ジカルボン酸などが挙げられる。モノカルボン酸としては、例えば、アクリル酸、メタクリル酸、クロトン酸などが挙げられる。ジカルボン酸としては、例えば、マレイン酸、フマル酸、イタコン酸などが挙げられる。
 スルホン酸基を有する単量体としては、例えば、ビニルスルホン酸、メチルビニルスルホン酸、(メタ)アリルスルホン酸、(メタ)アクリル酸-2-スルホン酸エチル、2-アクリルアミド-2-メチルプロパンスルホン酸、3-アリロキシ-2-ヒドロキシプロパンスルホン酸などが挙げられる。
 リン酸基を有する単量体としては、例えば、リン酸-2-(メタ)アクリロイルオキシエチル、リン酸メチル-2-(メタ)アクリロイルオキシエチル、リン酸エチル-(メタ)アクリロイルオキシエチルなどが挙げられる。
 ヒドロキシル基を有する単量体としては、例えば、アクリル酸-2-ヒドロキシエチル、アクリル酸-2-ヒドロキシプロピル、メタクリル酸-2-ヒドロキシエチル、メタクリル酸-2-ヒドロキシプロピルなどが挙げられる。
 これらの中でも、カルボン酸基を有する単量体が好ましく、中でもモノカルボン酸が好ましく、中でも(メタ)アクリル酸が好ましい。
 コア部は、芳香族ビニル単量体を含んでいてもよい。芳香族ビニル単量体としては、例えば、スチレン、α-メチルスチレン、スチレンスルホン酸、ブトキシスチレン、ビニルナフタレンなどが挙げられる。
 コア部は、他の任意の構造単位を含んでいてもよい。このような任意の構造単位の例としては、塩化ビニル、塩化ビニリデンなどの塩化ビニル系単量体;酢酸ビニルなどの酢酸ビニル系単量体;ビニルアミンなどのビニルアミン系単量体;N-ビニルホルムアミド、N-ビニルアセトアミドなどのビニルアミド系単量体;(メタ)アクリル酸誘導体;アクリルアミド、メタクリルアミドなどの(メタ)アクリルアミド単量体;不飽和ジカルボン酸単量体;無水マレイン酸などの不飽和カルボン酸無水物;マレイミド;フェニルマレイミドなどのマレイミド誘導体;1,3-ブタジエン、イソプレンなどのジエン系単量体などが挙げられる。
 上述した単量体は、それぞれ、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 コア部のガラス転移温度は、特に限定されないが、例えば、0℃以上、または10℃以上、または20℃以上、または30℃以上、または60℃以上であり、例えば、150℃以下、または130℃以下、または110℃以下、または100℃以下、または90℃以下、または80℃以下である。
 コア部の径は、粒子状重合体の体積平均粒子径100%に対して、例えば、50%以上、または60%以上、または70%以上、または80%以上であり、例えば、99%以下、または98.5%以下、または98%以下である。
 コア部の径は、粒子状重合体の製造過程において得られるシェル部を形成する前の粒子状の重合体(コア部)の体積平均粒子径として測定することができる。また、体積平均粒子径とは、レーザー回折法で測定された粒子径分布において、小径側から計算した累積体積が50%となる粒子径を表す。
 <シェル部>
 シェル部は、コア部の外表面を少なくとも部分的に覆っている。一例では、コア部の外表面を部分的に覆っている。外観上、コア部の外表面がシェル部によって完全に覆われているように見える場合であっても、シェル部の内外を連通する孔が形成されていれば、そのシェル部はコア部の外表面を部分的に覆っているものとして取り扱う。別の例では、コア部の外表面を完全に覆っている。
 シェル部がコア部の外表面を部分的に覆っている場合、電解液中のイオンは粒子状重合体のコア部に容易に進入できる。そのため、コア部が高いイオン伝導度を有する場合には、その高いイオン伝導度を有効に活用することが可能である。
 シェル部を構成する単量体単位としては、特に限定されない。一例では、シェル部は、(メタ)アクリロニトリル単量体単位、架橋性単量体単位、(メタ)アクリル酸エステル単量体単位、フッ素含有単量体単位、酸基含有単量体単位および芳香族ビニル単量体単位からなる群より選択される1種以上の単位を含む。別の一例では、シェル部は、芳香族ビニル単量体単位を含む。
 シェル部は、特に限定されないが、芳香族ビニル単量体単位を含むことが好ましい。シェル部を構成する重合体が芳香族ビニル単量体単位を含むことにより、電解液に浸漬した場合に粒子状重合体が高い接着性を発現できる。
 芳香族ビニル単量体としては、例えば、スチレン、α-メチルスチレン、スチレンスルホン酸、ブトキシスチレン、ビニルナフタレンなどが挙げられる。中でも、スチレン及びスチレンスルホン酸等のスチレン誘導体がより好ましい。
 シェル部は、上述したコア部の単量体単位の1種または2種以上を含んでいてもよい。
 シェル部のガラス転移温度は、特に限定されないが、例えば、50℃以上、または60℃以上、または70℃以上であり、例えば、200℃以下、または180℃以下、または150℃以下、または120℃以下である。
 コア部の外表面がシェル部によって部分的に覆われる平均割合は、特に限定されず、例えば、10%以上、または30%以上、または40%以上、または60%以上であり、例えば、99.9%以下、または98%以下、または95%以下、または90%以下、または85%以下である。コア部の外表面がシェル部によって覆われる平均割合を前記範囲に収めることにより、イオン伝導度と電解液中における接着性とのバランスを良好にできる。
 コア部の外表面がシェル部によって覆われる平均割合は、粒子状重合体の断面構造の観察結果から測定することができる。例えば、特許文献1に記載の方法により測定することができる。
 <非コアシェル構造を有する粒子状重合体>
 非コアシェル構造を有する粒子状重合体としては、例えば、(メタ)アクリロニトリル単量体単位および架橋性単量体単位を含み、その他、上述した(メタ)アクリル酸エステル単量体単位、フッ素含有単量体単位、酸基含有単量体単位および芳香族ビニル単量体単位などを含み、かつ単一の組成を有する粒子状重合体などが挙げられる。
 <粒子状重合体の体積平均粒子径>
 粒子状重合体の体積平均粒子径は、適宜調整することができる。例えば、10nm以上、または100nm以上、または300nm以上、または400nm以上、または420nm以上、または450nm以上、または480nm以上、または550nm以上であり、例えば、1000nm以下、または800nm以下、または780nm以下、または750nm以下、または600nm以下、または550nm以下である。粒子状重合体の体積平均粒子径を前記範囲の下限値以上にすることにより、粒子状重合体の分散性を良好にできる。また、上限値以下にすることにより、粒子状重合体の電解液中における接着性を高めることができる。
 前記粒子状重合体の体積平均粒子径は、400~800nmであることが好ましく、450~750nmであることがより好ましい。粒子状重合体の体積平均粒子径を前記範囲内とすることにより、接着層の接着性を向上し、また、二次電池の低温出力特性を向上することができる。
 <粒子状重合体の製造方法>
 粒子状重合体の製造方法は、粒子状重合体が(メタ)アクリロニトリル単量体単位5~50質量%および架橋性単量体単位0.1~3.5質量%を含むものであれば、特に限定されず、任意である。例えば、コアシェル構造を有する粒子状重合体は、コア部を構成する重合体の単量体とシェル部を構成する重合体の単量体とを用い、経時的にそれらの単量体の比率を変えて段階的に重合することにより、製造することができる。具体的には、特許文献1に記載のように、先の段階の重合体を後の段階の重合体が順次に被覆するような連続した多段階乳化重合法及び多段階懸濁重合法によって製造することができる。
 例えば、コアシェル構造を有する粒子状重合体の合計質量に対して、コア部が(メタ)アクリロニトリル単量体単位40質量%、架橋性単量体単位1質量%、(メタ)アクリル酸エステル単量体単位27質量%、(メタ)アクリル酸単量体単位2質量%を含み、シェル部が芳香族ビニル単量体単位30質量%を含むコアシェル構造の粒子状重合体を製造する場合、コア部を構成する単量体として上記4種類の単量体を上記割合で用いて、シェル部を構成する単量体として芳香族ビニル単量体を上記割合で用いて、段階的に重合を行えばよい。
 非コアシェル構造を有する粒子状重合体の製造方法は、特に限定されず、粒子状重合体が(メタ)アクリロニトリル単量体単位5~50質量%および架橋性単量体単位0.1~3.5質量%を含むように、(メタ)アクリロニトリル単量体、架橋性単量体およびその他の単量体、重合開始剤などのその他の成分を配合し、重合を行えばよい。重合様式は、例えば、溶液重合法、懸濁重合法、塊状重合法、乳化重合法などのいずれの様式も用いることができる。重合方法としては、例えばイオン重合、ラジカル重合、リビングラジカル重合などいずれの方法も用いることができる。また、乳化重合においては、シード粒子を用いるシード重合を採用してもよい。
 <単量体単位の割合>
 粒子状重合体がコアシェル構造を有する場合、粒子状重合体は、粒子状重合体の総質量(すなわち、コア部とシェル部との合計質量)に対して、(メタ)アクリロニトリル単量体単位5~50質量%および架橋性単量体単位0.1~3.5質量%を含めばよい。一例では、粒子状重合体のコア部が、(メタ)アクリロニトリル単量体単位5~50質量%および架橋性単量体単位0.1~3.5質量%を含み、シェル部はこれらの単量体単位を含まない。別の一例では、シェル部が(メタ)アクリロニトリル単量体単位5~50質量%および架橋性単量体単位0.1~3.5質量%を含み、コア部はこれらの単量体単位を含まない。さらに別の一例では、コア部とシェル部の両方が、(メタ)アクリロニトリル単量体単位と架橋性単量体単位を含み、コア部とシェル部との合計が、(メタ)アクリロニトリル単量体単位5~50質量%および架橋性単量体単位0.1~3.5質量%を含む。
 コアシェル構造または非コアシェル構造のいずれであっても、さらに、コアシェル構造において、上述した(メタ)アクリロニトリル単量体単位5~50質量%および架橋性単量体単位0.1~3.5質量%を、コア部のみが含む場合、シェル部のみが含む場合、コア部とシェル部が含む場合のいずれであっても、粒子状重合体の(メタ)アクリロニトリル単量体単位は、粒子状重合体の合計質量または質量(非コアシェル構造の場合)に対して、5質量%以上であり、または10質量%以上であり、または15質量%以上であり、または20質量%以上であり、または25質量%以上であり、または40質量%以上であり、または42質量%以上であり、50質量%以下であり、または48質量%以下であり、または46質量%以下であり、または42質量%以下であり、または20質量%以下である。(メタ)アクリロニトリル単量体単位の割合が5質量%以上であることにより、粒子状重合体の強度が向上し、接着層の優れた接着性が得られる。(メタ)アクリロニトリル単量体単位が50質量%以下であることにより、高温下での経時接着性の低下を抑制することができる。
 コアシェル構造または非コアシェル構造のいずれであっても、さらに、コアシェル構造において、上述した(メタ)アクリロニトリル単量体単位5~50質量%および架橋性単量体単位0.1~3.5質量%を、コア部のみが含む場合、シェル部のみが含む場合、コア部とシェル部が含む場合のいずれであっても、粒子状重合体の架橋性単量体単位は、粒子状重合体の合計質量または質量(非コアシェル構造の場合)に対して、0.1質量%以上であり、または0.15質量%以上であり、または0.2質量%以上であり、または0.3質量%以上であり、または0.7質量%以上であり、または3.5質量%以下であり、または3質量%以下であり、または0.7質量%以下である。架橋性単量体単位の割合が0.1質量%以上であることにより、高温下での経時接着性の低下を抑制することができる。架橋性単量体単位が3.5質量%以下であることにより、電解液中での接着層の接着性を向上することができる。
 粒子状重合体の(メタ)アクリル酸エステル単量体単位の割合は、適宜調整すればよく、特に限定されないが、粒子状重合体の合計質量または質量(非コアシェル構造の場合)に対して、例えば、15質量%以上であり、または17.5質量%以上であり、または21質量%以上であり、または24質量%以上であり、または30質量%以上であり、または45質量%以上であり、例えば、60質量%以下であり、または57質量%以下であり、または50質量%以下であり、または47質量%以下であり、または26質量%以下であり、または25質量%以下である。
 粒子状重合体の(メタ)アクリル酸単量体単位の割合は、適宜調整すればよく、特に限定されないが、粒子状重合体の合計質量または質量(非コアシェル構造の場合)に対して、例えば、0.1質量%以上、または1質量%以上、または2質量%以上、または2.5質量%以上、または3質量%以上、または5質量%以上であり、例えば、20質量%以下、または15質量%以下、または10質量%以下、または5質量%以下、または3質量%以下である。
 粒子状重合体の芳香族ビニル単量体単位の割合は、適宜調整すればよく、特に限定されないが、粒子状重合体の合計質量または質量(非コアシェル構造の場合)に対して、例えば、1質量%以上、または5質量%以上、または10質量%以上であり、例えば、35質量%以下、または30質量%以下、または20質量%以下、または15質量%以下である。
 <粒子状重合体の電解液に対する溶出量>
 本発明に係る非水系二次電池接着層用組成物は、前記粒子状重合体の電解液に対する溶出量が0.1~10%であることが好ましい。これにより、高温下での経時接着性の低下を抑制した接着層を得ることができる。前記溶出量は、より好ましくは0.15%以上であり、さらに好ましくは0.2%以上であり、より好ましくは8%以下であり、さらに好ましくは6%以下である。溶出量が、0.1%以上であると、電解液に極端に膨潤しにくくなることを防止することができ、接着層の接着性が維持される。また、溶出量が、10%以下であることにより、高温下での経時接着性の低下を抑制し、また、二次電池の低温出力特性も向上する。
 粒子状重合体は、非水系二次電池接着層用組成物中では粒子形状で存在するが、当該組成物を用いて作製された接着層中では、形状は特に限定されず、粒子形状であってもよいし、その他の任意の形状であってもよい。
 <結着剤>
 結着剤としては、特に限定されず、非水系二次電池で使用される結着剤またはバインダーとして公知のものを適宜選択して用いることができる。結着剤を用いることにより、接着層の機械的強度を高めることができる。また、結着剤により、接着層の接着性を向上させることができる。
 結着剤としては、通常は、非水溶性の重合体を用いる。結着剤としては、例えば、スチレン-ブタジエン共重合体、スチレン-アクリロニトリル共重合体、(メタ)アクリル酸エステル重合体などの熱可塑性エラストマーなどが挙げられる。また、特許文献1に記載の接着層用バインダーを用いてもよい。
 結着剤の量は、適宜調整すればよいが、例えば、粒子状重合体100質量部に対して、0.1質量部以上、または0.2質量部以上であり、例えば、30質量部以下、または20質量部以下である。
 <その他の成分>
 非水系二次電池接着層用組成物は、接着層用組成物として公知のその他の成分を含んでいてもよい。例えば、非水系二次電池接着層用組成物は、溶媒;カルボキシメチルセルロース及びその塩などの水溶性重合体;セルロース繊維などの非導電性繊維;アルミナなどの非導電性粒子;イソチアゾリン系化合物;キレート化合物;ピリチオン化合物;分散剤;レベリング剤;酸化防止剤;増粘剤;消泡剤;湿潤剤;および電解液分解抑制の機能を有する電解液添加剤などを含んでいてもよい。
 溶媒としては、水および有機溶媒から適宜選択して用いることができる。溶媒としては、水を用いることが好ましい。有機溶媒としては、例えば、シクロペンタン、シクロヘキサンなどの環状脂肪族炭化水素化合物;トルエン、キシレンなどの芳香族炭化水素化合物;アセトン、エチルメチルケトン、シクロヘキサノンなどのケトン化合物;酢酸エチル、酢酸ブチル、γ-ブチロラクトン、ε-カプロラクトンなどのエステル化合物;アセトニトリル、プロピオニトリルなどのニトリル化合物;テトラヒドロフラン、エチレングリコールジエチルエーテルなどのエーテル化合物:メタノール、エタノール、イソプロパノール、エチレングリコール、エチレングリコールモノメチルエーテルなどのアルコール化合物;N-メチルピロリドン(NMP)、N,N-ジメチルホルムアミドなどのアミド化合物などが挙げられる。溶媒は、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。一例では、溶媒は水である。
 接着層の単位面積当たりの量は、特に限定されず、適宜調整すればよいが、0.1g/m以上が好ましく、1.5g/m以下が好ましい。
 接着層の厚みは、特に限定されず、適宜調整すればよいが、好ましくは0.1μm以上、より好ましくは0.2μm以上、特に好ましくは0.5μm以上であり、好ましくは5μm以下、より好ましくは4μm以下、特に好ましくは3μm以下である。
 <非水系二次電池接着層用組成物の調製方法>
 非水系二次電池接着層用組成物の調製方法は、特に限定されないが、例えば、粒子状重合体と、結着剤と、その他の任意成分とを溶媒に溶解または分散させて調製することができる。具体的には、ボールミル、サンドミル、顔料分散機、擂潰機、超音波分散機、ホモジナイザー、プラネタリーミキサー、ビーズミル、ロールミル、フィルミックスなどの分散機を使用し、粒子状重合体と、結着剤と、その他の任意成分とを溶媒中に分散または溶解させて非水系二次電池接着層用組成物を調製する。
 (非水系二次電池用接着層)
 本発明に係る非水系二次電池用接着層は、上述した非水系二次電池接着層用組成物を用いて作製された、非水系二次電池用接着層である。これにより、接着層の高温下での経時接着性の低下を抑制することができる。本発明に係る非水系二次電池用接着層は、少なくとも接着性を有する層であればよく、接着性に加えて、耐ブロッキング性、耐熱性、イオン拡散性などの機能を有していてもよい。
 本発明に係る非水系二次電池用接着層は、基材(例えば、セパレータや電極)の少なくとも一面側に、他の層を介してまたは介さずに、適用されて接着層を有する電池部材(積層体)を形成する。接着層は、接着層を有する電池部材と他の電池部材とを接着する。この場合、他の電池部材は、接着層を有していてもよいし、有していなくてもよい。
 接着層は、二次電池の構造に従い、セパレータや電極の片面側のみに他の層を介してまたは介さずに設けられてもよく、両面側に他の層を介してまたは介さずに設けられてもよい。例えば、基材としてセパレータを用いる場合はセパレータの両面側に接着層を形成することが好ましく、基材として電極を用いる場合は片側、とりわけ電極合材層上に形成することが好ましい。
 非水系二次電池用接着層は、電池部材と、アルミニウム包材外装などの電池容器(外装体)との接着に用いてもよい。
 <非水系二次電池用接着層の形成方法>
 本発明に係る非水系二次電池用接着層は、例えば、上述した非水系二次電池接着層用組成物を、電極やセパレータを基材として、当該基材の少なくとも一面側に塗布し、乾燥させることにより形成することができる。
 (積層体)
 本発明に係る積層体は、基材の少なくとも一面側に直接または他の層を介して、前記非水系二次電池用接着層を備える、積層体である。これにより、電池部材間の高温下での経時接着性の低下を抑制することができる。
 積層体の基材は、特に限定されず、二次電池の電池部材の基材から適宜選択することができる。例えば、セパレータ、電極および電池容器などが挙げられる。
 セパレータ基材としては、ポリオレフィン(例えば、ポリエチレン、ポリプロピレン、ポリブテン、ポリ塩化ビニル)及びこれらの混合物、並びにこれらの共重合体などを含む樹脂からなる多孔性基材;ポリエチレンテレフタレート、ポリシクロオレフィン、ポリエーテルスルフォン、ポリアミド、ポリイミド、ポリイミドアミド、ポリアラミド、ナイロン、ポリテトラフルオロエチレン、セルロースなどを含む樹脂からなる多孔性基材;前記の樹脂の繊維を織った織物;前記の樹脂の繊維の不織布;絶縁性粒子の集合体;これらの組み合わせなどが挙げられる。
 電極としては、例えば、後述するものを挙げることができる。
 電池容器としては、例えば、アルミニウム包材外装などが挙げられる。
 基材と接着層との間に任意に設けることができる他の層としては、特に限定されず、公知の層を適宜選択して用いることができる。例えば、多孔膜、耐熱層などが挙げられる。
 <積層体の形成方法>
 本発明に係る積層体は、例えば、上述した非水系二次電池接着層用組成物を、電極やセパレータを基材として、当該基材の少なくとも一面側に直接または他の層を介して塗布し、乾燥させることにより形成することができる。
 (非水系二次電池)
 本発明に係る非水系二次電池は、正極、負極、セパレータおよび電解液を備えてなる非水系二次電池であって、
 前記正極、負極、セパレータの少なくとも1つが、上述の非水系二次電池用接着層を備える、非水系二次電池である。これにより、非水系二次電池の低温出力特性が良好である。
 本発明に係る非水系二次電池は、一例では、セパレータ基材の一面側または両面側に、他の層を介してまたは介さずに、上記非水系二次電池用接着層を備える。一例では、非水系二次電池用接着層を介して、正極とセパレータが接着されて一体化される。別の例では、非水系二次電池用接着層を介して、負極とセパレータが接着されて一体化される。さらに別の例では、非水系二次電池用接着層を介して、正極、セパレータおよび負極が接着されて一体化される。
 非水系二次電池に用いられる正極、負極、セパレータおよび電解液としては、特に限定されず、非水系二次電池において用いられている正極、負極、セパレータおよび電解液を適宜選択して用いることができる。
 電極(正極及び負極)としては、例えば、電極合材層を集電体上に形成してなる電極を用いることができる。
 集電体としては、例えば、鉄、銅、アルミニウム、ニッケル、ステンレス鋼、チタン、タンタル、金、白金などの金属材料からなるものを用いることができる。
 負極用の集電体としては、銅からなる集電体を用いることが好ましい。
 正極用の集電体としては、アルミニウムからなる集電体を用いることが好ましい。
 電極合材層としては、例えば、電極活物質と結着剤とを含む層を用いることができる。
 正極の電極活物質(正極活物質)としては、例えば、遷移金属酸化物、リチウムと遷移金属との複合酸化物、遷移金属硫化物などの無機化合物;ポリアセチレン、ポリ-p-フェニレンなどの導電性重合体などの有機化合物が挙げられる。上記遷移金属としては、例えば、Fe、Co、Ni、Mnなどが使用される。正極活物質に使用される無機化合物の具体例としては、LiCoO2、LiNiO2、LiMnO2、LiMn2O4、LiFePO4、LiFeVO4などのリチウム含有複合金属酸化物;TiS2、TiS3、非晶質MoS2などの遷移金属硫化物;Cu2V2O3、非晶質V2O-P2O5、MoO3、V2O5、V6O13などの遷移金属酸化物などが挙げられる。正極活物質は、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 負極活物質は、例えば、アモルファスカーボン、グラファイト、天然黒鉛、メゾカーボンマイクロビーズ、ピッチ系炭素繊維などの炭素質材料;ポリアセンなどの導電性重合体などが挙げられる。また、ケイ素、錫、亜鉛、マンガン、鉄およびニッケルなどの金属並びにこれらの合金;前記金属又は合金の酸化物;前記金属又は合金の硫酸塩なども挙げられる。また、金属リチウム;Li-Al、Li-Bi-Cd、Li-Sn-Cd等のリチウム合金;リチウム遷移金属窒化物;シリコンなどを使用してもよい。さらに、電極活物質は、機械的改質法により表面に導電材を付着させたものを使用してもよい。負極活物質は、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 セパレータとしては、特に限定されず、公知のセパレータを用いることができる。例えばポリエチレン、ポリプロピレン、ポリブテン、ポリ塩化ビニルなどのポリオレフィン樹脂または芳香族ポリアミド樹脂を含む微多孔膜、多孔膜または不織布;無機セラミック粉末を含む多孔質の樹脂コート;ポリエチレンテレフタレート、ポリシクロオレフィン、ポリエーテルスルフォン、ポリアミド、ポリイミド、ポリイミドアミド、ポリアラミド、ナイロン、ポリテトラフルオロエチレンなどの樹脂からなる微多孔膜またはポリオレフィン系の繊維を織ったもの、またはその不織布、絶縁性物質粒子の集合体;これらの組み合わせなどが挙げられる。
 電解液としては、特に限定されず、公知の電解液を適宜選択して用いることができる。電解液としては、通常、溶媒(有機溶媒)に支持電解質を溶解した有機電解液が用いられる。例えば、非水系二次電池がリチウムイオン二次電池である場合には、支持電解質としては、リチウム塩が用いられる。リチウム塩としては、例えば、LiPF6、LiAsF6、LiBF4、LiSbF6、LiAlCl4、LiClO4、CF3SO3Li、C49SO3Li、CF3COOLi、(CF3CO)2NLi、(CF3SO22NLi、(C25SO2)NLiなどが挙げられる。なかでも、溶媒に溶けやすく高い解離度を示すので、LiPF6、LiClO4、CF3SO3Liが好ましく、LiPF6が特に好ましい。
 電解質(支持電解質)は、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 電解液に用いる溶媒としては、支持電解質を溶解できるものであれば特に限定されず、適宜選択して用いることができる。溶媒としては、例えば、ジメチルカーボネート(DMC)、エチレンカーボネート(EC)、ジエチルカーボネート(DEC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、エチルメチルカーボネート(EMC)などのカーボネート類;γ-ブチロラクトン、ギ酸メチルなどのエステル類;1,2-ジメトキシエタン、テトラヒドロフランなどのエーテル類;スルホラン、ジメチルスルホキシドなどの含硫黄化合物類などが挙げられる。
 溶媒は、一例では、ジメチルカーボネート、エチレンカーボネート、ジエチルカーボネート、プロピレンカーボネート、ブチレンカーボネートおよびエチルメチルカーボネートからなる群より選択される1種以上のカーボネート類であり、別の例では、ECとEMCとの混合液であり、さらに別の例では、ECとEMCとDECとの混合液である。これらの混合液の混合比率は適宜調節すればよい。
 電解液には、例えば、ビニレンカーボネート(VC)、フルオロエチレンカーボネート(FEC)やエチルメチルスルホンなどの公知の添加剤を添加してもよい。
 二次電池の形状は、特に限定されず、適宜選択することができる。例えば、コイン型、ボタン型、シート型、円筒型、角形、扁平型などが挙げられる。本発明に係る非水系二次電池は、捲回型または積層型であることが好ましい。これにより、二次電池のエネルギー密度を向上させることができるという効果がある。
 <非水系二次電池の製造方法>
 本発明に係る非水系二次電池の製造方法は、正極、負極、セパレータの少なくとも1つに、上述の非水系二次電池用接着層を用いること以外は特に限定されず、公知の非水系二次電池を用いることができる。
 例えば、正極と、負極とを、セパレータを介して重ね合わせ、これを必要に応じて電池形状に応じて巻く、折るなどして電池容器に入れ、電池容器に電解液を注入して封口することにより製造することができる。また、必要に応じて、ヒューズ、PTC素子などの過電流防止素子、エキスパンドメタル、リード板などを設けてもよい。
 以下、実施例を挙げて本発明をさらに詳しく説明するが、これらの実施例は、本発明の例示を目的とするものであり、本発明を何ら限定するものではない。特に断らない限り、配合量は、質量部を意味する。
 後述する粒子状重合体1~10をそれぞれ含む非水系二次電池接着層用組成物を用いた接着層および当該接着層を有する非水系二次電池を、それぞれ、実施例1~10とする。また、後述する粒子状重合体比較1~比較5をそれぞれ含む非水系二次電池接着層用組成物を用いた接着層および当該接着層を有する非水系二次電池を、それぞれ、比較例1~5とする。
 各粒子状重合体の体積平均粒子径D50は、以下の方法により測定した。
 各粒子状重合体について、固形分濃度0.1質量%に調整した水分散溶液の、レーザー回折式粒子径分布測定装置(ベックマン・コールター社製、製品名「LS-230」)により測定された粒度分布(体積基準)において、小径側から計算した累積体積が50%となる粒子径(nm)として求め、体積平均粒子径D50とした。
 実施例および比較例の接着層の接着性(正極と接着層との間の接着性)、経時接着性、実施例および比較例の二次電池の低温出力特性は、以下の方法で測定及び評価した。その結果を表1に示す。
 <接着性>
 後述する方法で調製した、正極およびセパレータ(片面塗工の塗工セパレータ)をそれぞれ10mm幅に切り出して、セパレータの接着層と正極の正極合材層が向かい合うように1枚ずつ重ね、積層体試験片とした。この積層体試験片を電解液中に温度60℃で3日間浸漬した。この際、電解液としては、電解液(組成:エチレンカーボネート:エチルメチルカーボネート:ジエチルカーボネート=30:20:50(体積比))に、支持電解質としてLiPFを溶媒に対し1mol/Lの濃度で溶かしたものを用いた。その後、積層体試験片を取り出し、表面に付着した電解液を拭き取った。その後、この積層体試験片を、正極の集電体側表面を下にして、正極の表面にセロハンテープを貼り付けた。この際、セロハンテープはJIS Z1522に規定されるものを用いた。また、セロハンテープは水平な試験台に固定しておいた。その後、セパレータの一端を鉛直上方に引張り速度50mm/分で引っ張って剥がしたときの応力を測定した。この測定を3回行い、応力の平均値を求めて、当該平均値をピール強度Pとした。評価Aが最も接着性に優れることを示す。
評価A:20N/m≦P
評価B:15N/m≦P<20N/m
評価C:10N/m≦P<15N/m
評価D:P<10N/m
 <経時接着性>
 積層体試験片を電解液中に温度60℃で30日間浸漬したこと以外は、上記接着性測定と同様に、積層体試験片の調製および応力の測定を3回行った。応力の平均値を求めて、当該平均値をピール強度pとした。当該ピール強度pと上記ピール強度Pと、T(経時接着性)=p÷Pの式から経時接着性Tを求めた。ピール強度pとピール強度Pの差が小さいほど、Tの値が大きく、経時接着性が高い。評価Aが最も経時接着性に優れることを示す。
評価A:0.8≦T
評価B:0.5≦T<0.8
評価C:0.3≦T<0.5
評価D:T<0.3
 <電解液に対する溶出量測定>
 後述する方法で調製した粒子状重合体を含む水分散液を用意した。その水分散液を50%湿度、100℃の環境下で乾燥させて、厚み3±0.3mmのフィルムを作製した。作製したフィルムを5mm角に裁断してフィルム片を用意した。これらのフィルム片の約1gを精秤した。精秤したフィルム片の質量をW0とした。このフィルム片を、100gの電解液(組成:エチレンカーボネート:エチルメチルカーボネート:ジエチルカーボネート=30:20:50(体積比))に60℃で24時間浸漬した。その後、電解液からフィルム片を引き揚げた。引き揚げたフィルム片をメタノールで洗浄し、105℃で3時間真空乾燥して、その重量(不溶分の質量)W1を計測した。そして、以下の式に従って、粒子状重合体の電解液に対する溶出量(%)を算出した。
電解液溶出量(%)=100-(W1/W0)×100
 <低温出力特性>
 後述する方法で製造した800mAh捲回型のリチウムイオン二次電池を25℃の環境下で24時間静置させた後に、25℃の環境下で、4.4V、0.1C、5時間の充電の操作を行い、その時の電圧V0を測定した。その後、-10℃環境下で、1Cの放電レートにて放電の操作を行い、放電開始15秒後の電圧V1を測定した。低温出力特性は、ΔV=V0-V1で示す電圧変化にて評価し、この値が小さいほど低温出力特性に優れる。評価Aが最も低温出力特性に優れることを示す。
評価A:500≦ΔV(mV)
評価B:500<ΔV(mV)≦700
評価C:700<ΔV(mV)≦900
評価D:900<ΔV(mV)
 <粒子状重合体1~9および粒子状重合体比較1~比較5の調製>
 表1に示す配合のコア部の単量体組成物、乳化剤およびシェル部の単量体組成物を用いて、以下の手順により、粒子状重合体1~9および粒子状重合体比較1~比較5を調製した。
 撹拌機付き5MPa耐圧容器に、コア部の単量体組成物;乳化剤;イオン交換水150質量部;および重合開始剤として過硫酸カリウム0.5質量部を入れ、十分に撹拌した。その後、60℃に加温して重合を開始した。重合転化率が96%になるまで重合を継続させることにより、コア部を構成する粒子状の重合体を含む水分散液を得た。次いで、この水分散液を70℃に加温した。その水分散液に、シェル部の単量体組成物を30分かけて連続で供給し、重合を継続した。重合転化率が96%になった時点で冷却して反応を停止することにより、粒子状重合体を含む水分散液を調製した。得られた粒子重合体の断面を観察したところ、シェル部は重合体の粒子によって構成されていた。
 <粒子状重合体10の調製>
 実施例1に対し、コアシェル構造ではない粒子状重合体を調製した。具体的には、撹拌機付き5MPa耐圧容器に、表2に示すように、実施例1のコア部の単量体組成物、シェル部の単量体組成物;乳化剤;イオン交換水150質量部;および重合開始剤として過硫酸カリウム0.5質量部を入れ、十分に撹拌した。その後、60℃に加温して重合を開始した。重合転化率が96%になるまで重合を継続させた。次いで、冷却して反応を停止することにより、粒子状重合体を含む水分散液を調製した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 <接着層用結着剤の調製>
 撹拌機を備えた反応器に、イオン交換水70質量部、乳化剤としてのラウリル硫酸ナトリウム(花王ケミカル社製、製品名「エマール2F」)0.15質量部および過硫酸アンモニウム0.5質量部を、それぞれ供給し、気相部を窒素ガスで置換し、60℃に昇温した。一方、別の容器で、イオン交換水50質量部、分散剤としてのドデシルベンゼンスルホン酸ナトリウム0.5質量部、および、(メタ)アクリル酸エステル単量体としてのアクリル酸ブチル95質量部、アクリロニトリル2質量部、メタクリル酸2質量部、N-メチロールアクリルアミド1質量部を混合して単量体混合物を得た。この単量体混合物を4時間かけて前記反応器に連続的に添加して60℃で重合を行った。添加終了後、さらに70℃で3時間撹拌して反応を終了し、接着層用結着剤を含む水分散液を調製した。
 <非水系二次電池接着層用組成物の調製>
 調製した粒子状重合体を含む水分散液の固形分換算100質量部に対し、調製した接着層用結着剤を含む水分散液を固形分換算で14質量部、粘度調整剤としてのエチレンオキサイド-プロピレンオキサイド共重合体(固形分濃度70質量%、重合比:5/5(質量比))を固形分換算で2質量部および1,2-ベンゾイソチアゾリン-3-オン(固形分濃度5.0質量%)を固形分換算で0.0005質量部混合し、さらにイオン交換水を固形分濃度が15質量%になるように混合し、スラリー状の非水系二次電池接着層用組成物を調製した。
 <セパレータの調製>
 二次電池の低温出力特性評価用のセパレータとして、ポリエチレン製の多孔基材(厚み16μm、ガーレー値210s/100cc)をセパレータ基材として用意した。そのセパレータ基材の両面上に、調製した非水系二次電池接着層用組成物をスプレーコート法により塗布し、50℃で1分間乾燥させた。これにより、1層の厚みが1μmの接着層をセパレータ基材の両面に形成して、塗工セパレータを得た。また、接着性評価用および経時接着性評価用のセパレータとして、セパレータ基材の片面のみに同様に接着層を形成した塗工セパレータを得た。
 <負極の調製>
 撹拌機付き5MPa耐圧容器に、1,3-ブタジエン33.5質量部、イタコン酸3.5質量部、スチレン62質量部、2-ヒドロキシエチルアクリレート1質量部、乳化剤としてのドデシルベンゼンスルホン酸ナトリウム0.4質量部、イオン交換水150質量部および重合開始剤としての過硫酸カリウム0.5質量部を入れ、十分に撹拌した後、50℃に加温して重合を開始した。重合転化率が96%になった時点で冷却し反応を停止して、粒子状結着剤(SBR)を含む混合物を得た。この粒子状結着剤を含む混合物に、5%水酸化ナトリウム水溶液を添加して、pH8に調整後、加熱減圧蒸留によって混合物から未反応の単量体を除去した。その後、その混合物を30℃以下まで冷却し、粒子状結着剤を含む水分散液を得た。
 次に、負極活物質としての人造黒鉛(体積平均粒子径D50:15.6μm)100質量部、増粘剤としてのカルボキシメチルセルロースナトリウム塩(日本製紙社製「MAC350HC」)の2%水溶液を固形分換算で1質量部、および、イオン交換水を加えて固形分濃度が68%となるように調整した後、25℃で60分間混合して、混合液を得た。この混合液に、イオン交換水を加えて固形分濃度が62%となるように調整した後、さらに25℃で15分間混合した。次いで、この混合液に、調製した粒子状結着剤を含む水分散液を固形分換算で1.5質量部加え、さらにイオン交換水を加えて最終固形分濃度が52%となるように調整し、さらに10分間混合した。これを減圧下で脱泡処理して、流動性の良い二次電池負極用組成物を得た。
 その二次電池負極用組成物を、コンマコーターで、集電体である厚み20μmの銅箔上に、乾燥後の膜厚が150μm程度になるように塗布し、乾燥させた。この乾燥は、銅箔を0.5m/分の速度で60℃のオーブン内を2分間かけて搬送することにより行った。その後、120℃にて2分間加熱処理して、プレス前の負極原反を得た。この負極原反をロールプレスで圧延して、厚み80μmの負極合材層を有する負極を得た。
 <正極の調製>
 正極活物質としてのLiCoO(体積平均粒子径D50:12μm)100質量部、導電材としてアセチレンブラック(電気化学工業社製、製品名「HS-100」)を2質量部および結着剤としてのポリフッ化ビニリデン(クレハ社製、製品名「#7208」)を固形分換算で2質量部混合し、これにN-メチルピロリドンを加えて全固形分濃度を70%にした。これらをプラネタリーミキサーで混合し、二次電池正極用組成物を得た。
 この二次電池正極用組成物を、コンマコーターで、集電体である厚み20μmのアルミニウム箔上に、乾燥後の膜厚が150μm程度になるように塗布し、乾燥させた。この乾燥は、アルミニウム箔を0.5m/分の速度で60℃のオーブン内を2分間かけて搬送することにより行った。その後、120℃にて2分間加熱処理して、プレス前の正極原反を得た。この正極原反をロールプレスで圧延して、厚み80μmの正極合材層を有する正極を得た。
<非水系二次電池の製造>
 調製した正極、塗工セパレータおよび負極をそれぞれ、49cm×5cm、55cm×5.5cm、50cm×5.2cmに切り出した。次に、セパレータの両面の一方の接着層に正極合材層が、他方の接着層に負極合材層が向かい合うように正極と負極を配置して正極/セパレータ/負極の積層体を得た。次いで、この積層体を捲回機によって捲回し、捲回体を得た。この捲回体を70℃、1.0MPaで8秒間プレスし、扁平体とした。この扁平体を電池の外装としてのアルミニウム包材外装で包み、電解液(組成:エチレンカーボネート:エチルメチルカーボネート:ジエチルカーボネート=30:20:50(体積比)、電解質 濃度1MのLiPF)を空気が残らないように注入した。さらに、アルミニウム包材の開口を密封するために、150℃のヒートシールをしてアルミニウム外装を閉口した。これにより、放電容量800mAhの捲回型リチウムイオン二次電池を製造した。
 表1から、比較例1と比較例3では、接着性は良好であったが、経時接着性が低かった。これは、比較例1では、粒子状重合体の架橋性単量体単位は適量であるが、(メタ)アクリロニトリル単量体単位が多く、高温下で接着層の粒子状重合体が電解液に対して多く溶出したことによるものと推測される。同様に、比較例3では、(メタ)アクリロニトリル単量体単位は適量であるが、架橋性単量体単位が少なく、高温下で粒子状重合体が電解液に対して多く溶出したことによるものと推測される。表1の実施例から、電解液溶出量が少ない(とくに1%以下の場合)ほど、優れた経時接着性が得られたことが分かる。表2の実施例10から、非コアシェル構造の粒子状重合体も良好な経時接着性が得られたことが分かる。比較例4と比較例5では、電解液溶出量は少ないが、初期の接着性が低いため、電解液中で高温で長期間経過すると接着性の低下の程度が大きく、経時接着性も低くなったものと推測される。実施例1など優れた経時接着性を有する接着層を用いた二次電池では、低温出力特性も良好な結果が得られた。
 本発明によれば、高温下での経時接着性の低下を抑制した接着層を得ることができる非水系二次電池接着層用組成物を提供することができる。本発明によれば、高温下での経時接着性の低下を抑制することができる非水系二次電池接着層を提供することができる。本発明によれば、高温下での経時接着性の低下を抑制することができる積層体を提供することができる。本発明によれば、低温出力特性が良好な非水系二次電池を提供することができる。

Claims (7)

  1.  粒子状重合体および結着剤を含む非水系二次電池接着層用組成物であって、
     前記粒子状重合体が、(メタ)アクリロニトリル単量体単位5~50質量%および架橋性単量体単位0.1~3.5質量%を含む、
    非水系二次電池接着層用組成物。
  2.  前記粒子状重合体の電解液に対する溶出量が0.1~10%である、請求項1に記載の非水系二次電池接着層用組成物。
  3.  前記粒子状重合体の体積平均粒子径が、400~800nmである、請求項1または2に記載の非水系二次電池接着層用組成物。
  4.  請求項1~3のいずれか一項に記載の非水系二次電池接着層用組成物を用いて作製された、非水系二次電池用接着層。
  5.  基材の少なくとも一面側に直接または他の層を介して、請求項4に記載の非水系二次電池用接着層を備える、積層体。
  6.  正極、負極、セパレータおよび電解液を備えてなる非水系二次電池であって、
     前記正極、負極、セパレータの少なくとも1つが、請求項4に記載の非水系二次電池用接着層を備える、非水系二次電池。
  7.  捲回型または積層型である、請求項6に記載の非水系二次電池。
     
PCT/JP2016/004986 2015-11-30 2016-11-28 非水系二次電池接着層用組成物、非水系二次電池用接着層、積層体および非水系二次電池 WO2017094252A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US15/777,220 US11319391B2 (en) 2015-11-30 2016-11-28 Composition for non-aqueous secondary battery adhesive layer, non-aqueous secondary battery adhesive layer, laminate, and non-aqueous secondary battery
EP16870193.6A EP3386023A4 (en) 2015-11-30 2016-11-28 COMPOSITION FOR NON-AQUEOUS ELECTROLYTE RECHARGEABLE BATTERY ADHESIVE LAYER, ADHESIVE LAYER FOR NONAQUEOUS ELECTROLYTE RECHARGEABLE BATTERY, LAMINATED BODY, AND NONAQUEOUS ELECTROLYTE RECHARGEABLE BATTERY
CN201680067845.XA CN108352575B (zh) 2015-11-30 2016-11-28 非水系二次电池粘接层用组合物、非水系二次电池用粘接层、层叠体以及非水系二次电池
KR1020187014483A KR102551090B1 (ko) 2015-11-30 2016-11-28 비수계 2차 전지 접착층용 조성물, 비수계 2차 전지용 접착층, 적층체 및 비수계 2차 전지
JP2017553625A JP7167440B2 (ja) 2015-11-30 2016-11-28 非水系二次電池接着層用組成物、非水系二次電池用接着層、積層体および非水系二次電池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-233885 2015-11-30
JP2015233885 2015-11-30

Publications (1)

Publication Number Publication Date
WO2017094252A1 true WO2017094252A1 (ja) 2017-06-08

Family

ID=58796634

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/004986 WO2017094252A1 (ja) 2015-11-30 2016-11-28 非水系二次電池接着層用組成物、非水系二次電池用接着層、積層体および非水系二次電池

Country Status (6)

Country Link
US (1) US11319391B2 (ja)
EP (1) EP3386023A4 (ja)
JP (1) JP7167440B2 (ja)
KR (1) KR102551090B1 (ja)
CN (1) CN108352575B (ja)
WO (1) WO2017094252A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019131348A1 (ja) * 2017-12-27 2019-07-04 日本ゼオン株式会社 非水系二次電池機能層用組成物、非水系二次電池用電池部材、非水系二次電池用積層体の製造方法、および非水系二次電池
WO2020040163A1 (ja) * 2018-08-24 2020-02-27 日本ゼオン株式会社 非水系二次電池機能層用スラリー組成物、非水系二次電池用セパレータおよび非水系二次電池
WO2020105672A1 (ja) * 2018-11-22 2020-05-28 東レ株式会社 多孔性フィルム、二次電池用セパレータおよび二次電池
WO2020105673A1 (ja) * 2018-11-22 2020-05-28 東レ株式会社 多孔性フィルム、二次電池用セパレータおよび二次電池
EP3690985A4 (en) * 2017-09-28 2021-04-28 Zeon Corporation COMPOSITION OF THE FUNCTIONAL LAYER OF A WATER-FREE SECONDARY BATTERY, FUNCTIONAL LAYER OF A WATER-FREE SECONDARY BATTERY, AND WATER-FREE SECONDARY BATTERY
US20210242533A1 (en) * 2018-08-24 2021-08-05 Zeon Corporation Slurry composition for non-aqueous secondary battery functional layer, functional layer for non-aqueous secondary battery, separator for non-aqueous secondary battery, and non-aqueous secondary battery
KR20210129057A (ko) 2019-02-26 2021-10-27 니폰 제온 가부시키가이샤 비수계 이차 전지 기능층용 슬러리 조성물, 비수계 이차 전지용 세퍼레이터 및 비수계 이차 전지
KR20230140564A (ko) 2021-01-29 2023-10-06 니폰 제온 가부시키가이샤 비수계 이차 전지
US11799173B2 (en) 2020-11-18 2023-10-24 Lg Energy Solution, Ltd. Secondary battery and manufacturing method thereof

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3310736B1 (de) 2015-06-17 2019-01-30 Clariant International Ltd Wasserlösliche oder wasserquellbare polymere als wasserverlustreduzierer in zementschlämmen
WO2017221572A1 (ja) * 2016-06-21 2017-12-28 日本ゼオン株式会社 非水系二次電池機能層用組成物、非水系二次電池用機能層及び非水系二次電池
EP3551163B1 (en) 2016-12-12 2021-02-17 Clariant International Ltd Use of bio-based polymer in a cosmetic, dermatological or pharmaceutical composition
EP3551680A1 (en) 2016-12-12 2019-10-16 Clariant International Ltd Polymer comprising certain level of bio-based carbon
US11542343B2 (en) 2016-12-15 2023-01-03 Clariant International Ltd Water-soluble and/or water-swellable hybrid polymer
US11339241B2 (en) 2016-12-15 2022-05-24 Clariant International Ltd. Water-soluble and/or water-swellable hybrid polymer
WO2018108664A1 (en) 2016-12-15 2018-06-21 Clariant International Ltd Water-soluble and/or water-swellable hybrid polymer
CN109728350A (zh) * 2018-12-20 2019-05-07 福建师范大学 水体系羟丙基甲基纤维素的一体电池电芯的制备方法
KR102342671B1 (ko) * 2019-01-04 2021-12-22 삼성에스디아이 주식회사 리튬 이차 전지용 분리막 및 이를 포함하는 리튬 이차 전지
KR102573567B1 (ko) * 2021-05-27 2023-09-04 더블유스코프코리아 주식회사 분리막 코팅 조성물
WO2023042954A1 (ko) * 2021-09-17 2023-03-23 (주)에코케미칼 바인더, 이를 포함하는 전극, 이를 포함하는 이차 전지, 이를 포함하는 커패시터 및 바인더의 제조 방법
WO2024040572A1 (zh) * 2022-08-26 2024-02-29 宁德时代新能源科技股份有限公司 用于正极极片的水性粘接剂以及由其制备的正极极片

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011001848A1 (ja) * 2009-06-30 2011-01-06 日本ゼオン株式会社 二次電池用電極及び二次電池
JP2014041818A (ja) * 2012-07-25 2014-03-06 Samsung Sdi Co Ltd リチウム二次電池用セパレータ、及びこれを含むリチウム二次電池
JP2014146600A (ja) * 2007-01-16 2014-08-14 Nippon Zeon Co Ltd 結着剤組成物、電極用スラリー、電極および非水電解質二次電池
JP2015026572A (ja) * 2013-07-29 2015-02-05 日本ゼオン株式会社 リチウムイオン二次電池用多孔膜組成物、リチウムイオン二次電池用セパレーター、リチウムイオン二次電池用電極、及びリチウムイオン二次電池
JP2015041603A (ja) * 2013-08-23 2015-03-02 日本ゼオン株式会社 リチウムイオン二次電池用の接着剤、接着層付きセパレータ、接着層付き電極、及びリチウムイオン二次電池
WO2015064411A1 (ja) 2013-10-31 2015-05-07 日本ゼオン株式会社 リチウムイオン二次電池のバインダー用の粒子状重合体、接着層及び多孔膜組成物

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998039808A1 (en) * 1997-03-04 1998-09-11 Nippon Zeon Co., Ltd. Binder for cell, slurry for cell electrode, electrode for lithium secondary cell, and lithium secondary cell
KR101934706B1 (ko) * 2011-02-25 2019-01-03 제온 코포레이션 이차 전지용 다공막, 이차 전지 다공막용 슬러리 및 이차 전지
EP2752927B1 (en) * 2011-08-30 2017-02-22 Zeon Corporation Binder composition for secondary battery negative electrode, negative electrode for secondary battery, negative electrode slurry composition, manufacturing method, and secondary battery
US20150030922A1 (en) * 2011-12-06 2015-01-29 Zeon Corporation Binder composition for secondary battery positive electrode, slurry composition for secondary battery positive electrode, positive electrode, and secondary battery
PL2833437T3 (pl) * 2012-03-28 2018-10-31 Zeon Corporation Porowata membrana do akumulatorów elektrycznych, sposób jej wytwarzania, elektroda do akumulatorów elektrycznych, separator do akumulatorów elektrycznych i akumulator elektryczny
KR102127876B1 (ko) * 2012-06-07 2020-06-29 제온 코포레이션 부극 슬러리 조성물, 리튬 이온 이차 전지 부극 및 리튬 이온 이차 전지
JP2015028842A (ja) * 2013-06-28 2015-02-12 日本ゼオン株式会社 リチウムイオン二次電池用接着剤、リチウムイオン二次電池用セパレータ、及びリチウムイオン二次電池
CN105324868B (zh) 2013-07-10 2018-06-05 日本瑞翁株式会社 锂离子二次电池用粘接剂、锂离子二次电池用隔板、及锂离子二次电池
JP6311269B2 (ja) 2013-10-28 2018-04-18 日本ゼオン株式会社 リチウムイオン二次電池用接着剤、リチウムイオン二次電池用セパレータ及びリチウムイオン二次電池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014146600A (ja) * 2007-01-16 2014-08-14 Nippon Zeon Co Ltd 結着剤組成物、電極用スラリー、電極および非水電解質二次電池
WO2011001848A1 (ja) * 2009-06-30 2011-01-06 日本ゼオン株式会社 二次電池用電極及び二次電池
JP2014041818A (ja) * 2012-07-25 2014-03-06 Samsung Sdi Co Ltd リチウム二次電池用セパレータ、及びこれを含むリチウム二次電池
JP2015026572A (ja) * 2013-07-29 2015-02-05 日本ゼオン株式会社 リチウムイオン二次電池用多孔膜組成物、リチウムイオン二次電池用セパレーター、リチウムイオン二次電池用電極、及びリチウムイオン二次電池
JP2015041603A (ja) * 2013-08-23 2015-03-02 日本ゼオン株式会社 リチウムイオン二次電池用の接着剤、接着層付きセパレータ、接着層付き電極、及びリチウムイオン二次電池
WO2015064411A1 (ja) 2013-10-31 2015-05-07 日本ゼオン株式会社 リチウムイオン二次電池のバインダー用の粒子状重合体、接着層及び多孔膜組成物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3386023A4

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3690985A4 (en) * 2017-09-28 2021-04-28 Zeon Corporation COMPOSITION OF THE FUNCTIONAL LAYER OF A WATER-FREE SECONDARY BATTERY, FUNCTIONAL LAYER OF A WATER-FREE SECONDARY BATTERY, AND WATER-FREE SECONDARY BATTERY
JP7306272B2 (ja) 2017-12-27 2023-07-11 日本ゼオン株式会社 非水系二次電池機能層用組成物、非水系二次電池用電池部材、非水系二次電池用積層体の製造方法、および非水系二次電池
US11637327B2 (en) 2017-12-27 2023-04-25 Zeon Corporation Composition for non-aqueous secondary battery functional layer, battery component for non-aqueous secondary battery, method of producing laminate for non-aqueous secondary battery, and non-aqueous secondary battery
WO2019131348A1 (ja) * 2017-12-27 2019-07-04 日本ゼオン株式会社 非水系二次電池機能層用組成物、非水系二次電池用電池部材、非水系二次電池用積層体の製造方法、および非水系二次電池
JPWO2019131348A1 (ja) * 2017-12-27 2021-01-07 日本ゼオン株式会社 非水系二次電池機能層用組成物、非水系二次電池用電池部材、非水系二次電池用積層体の製造方法、および非水系二次電池
JPWO2020040163A1 (ja) * 2018-08-24 2021-08-12 日本ゼオン株式会社 非水系二次電池機能層用スラリー組成物、非水系二次電池用セパレータおよび非水系二次電池
WO2020040163A1 (ja) * 2018-08-24 2020-02-27 日本ゼオン株式会社 非水系二次電池機能層用スラリー組成物、非水系二次電池用セパレータおよび非水系二次電池
US20210242533A1 (en) * 2018-08-24 2021-08-05 Zeon Corporation Slurry composition for non-aqueous secondary battery functional layer, functional layer for non-aqueous secondary battery, separator for non-aqueous secondary battery, and non-aqueous secondary battery
JPWO2020105673A1 (ja) * 2018-11-22 2021-10-07 東レ株式会社 多孔性フィルム、二次電池用セパレータおよび二次電池
CN113039069A (zh) * 2018-11-22 2021-06-25 东丽株式会社 多孔性膜、二次电池用隔膜及二次电池
JPWO2020105672A1 (ja) * 2018-11-22 2021-10-14 東レ株式会社 多孔性フィルム、二次電池用セパレータおよび二次電池
JP7207328B2 (ja) 2018-11-22 2023-01-18 東レ株式会社 多孔性フィルム、二次電池用セパレータおよび二次電池
JP7234941B2 (ja) 2018-11-22 2023-03-08 東レ株式会社 多孔性フィルム、二次電池用セパレータおよび二次電池
WO2020105672A1 (ja) * 2018-11-22 2020-05-28 東レ株式会社 多孔性フィルム、二次電池用セパレータおよび二次電池
WO2020105673A1 (ja) * 2018-11-22 2020-05-28 東レ株式会社 多孔性フィルム、二次電池用セパレータおよび二次電池
CN113039069B (zh) * 2018-11-22 2023-12-05 东丽株式会社 多孔性膜、二次电池用隔膜及二次电池
KR20210129057A (ko) 2019-02-26 2021-10-27 니폰 제온 가부시키가이샤 비수계 이차 전지 기능층용 슬러리 조성물, 비수계 이차 전지용 세퍼레이터 및 비수계 이차 전지
US11799173B2 (en) 2020-11-18 2023-10-24 Lg Energy Solution, Ltd. Secondary battery and manufacturing method thereof
KR20230140564A (ko) 2021-01-29 2023-10-06 니폰 제온 가부시키가이샤 비수계 이차 전지

Also Published As

Publication number Publication date
CN108352575B (zh) 2022-09-27
KR102551090B1 (ko) 2023-07-03
EP3386023A1 (en) 2018-10-10
US11319391B2 (en) 2022-05-03
US20180351149A1 (en) 2018-12-06
KR20180083339A (ko) 2018-07-20
EP3386023A4 (en) 2019-08-07
CN108352575A (zh) 2018-07-31
JP7167440B2 (ja) 2022-11-09
JPWO2017094252A1 (ja) 2018-09-13

Similar Documents

Publication Publication Date Title
JP7167440B2 (ja) 非水系二次電池接着層用組成物、非水系二次電池用接着層、積層体および非水系二次電池
JP7003663B2 (ja) 非水系二次電池接着層用組成物、非水系二次電池用接着層および非水系二次電池
JP6149730B2 (ja) 二次電池用正極及びその製造方法、スラリー組成物、並びに二次電池
KR101460930B1 (ko) 축전 디바이스용 전극, 전극용 슬러리, 전극용 바인더 조성물 및 축전 디바이스
JP5381974B2 (ja) 非水電解質二次電池電極用バインダー組成物および非水電解質二次電池
JP6737182B2 (ja) 非水系二次電池機能層用組成物、非水系二次電池用機能層および非水系二次電池
JP2017098203A (ja) 非水系二次電池接着層用組成物、非水系二次電池用接着層、及び非水系二次電池
KR20180041683A (ko) 비수계 이차 전지 기능층용 조성물, 비수계 이차 전지용 기능층, 및 비수계 이차 전지
JP6414201B2 (ja) 二次電池用バインダー組成物
JP6665484B2 (ja) 非水系二次電池接着層用組成物、非水系二次電池用接着層、及び非水系二次電池
WO2019065416A1 (ja) 非水系二次電池機能層用組成物、非水系二次電池用機能層および非水系二次電池
JP6414202B2 (ja) 二次電池用バインダー組成物
WO2018155713A1 (ja) エネルギーデバイス電極用樹脂、エネルギーデバイス電極形成用組成物、エネルギーデバイス電極及びエネルギーデバイス
KR102496400B1 (ko) 비수계 이차 전지 접착층용 슬러리 조성물, 제조 방법 및 용도
JP5835581B2 (ja) 蓄電デバイスの電極用バインダー組成物
JP2015041570A (ja) リチウムイオン二次電池用多孔膜組成物、リチウムイオン二次電池用多孔膜、リチウムイオン二次電池、およびリチウムイオン二次電池用多孔膜の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16870193

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017553625

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20187014483

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016870193

Country of ref document: EP