WO2017094166A1 - 導電性ペーストの製造方法 - Google Patents
導電性ペーストの製造方法 Download PDFInfo
- Publication number
- WO2017094166A1 WO2017094166A1 PCT/JP2015/084011 JP2015084011W WO2017094166A1 WO 2017094166 A1 WO2017094166 A1 WO 2017094166A1 JP 2015084011 W JP2015084011 W JP 2015084011W WO 2017094166 A1 WO2017094166 A1 WO 2017094166A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- silver
- primary amine
- parts
- hydrocarbon solvent
- dispersion
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B13/00—Apparatus or processes specially adapted for manufacturing conductors or cables
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/05—Metallic powder characterised by the size or surface area of the particles
- B22F1/054—Nanosized particles
- B22F1/0545—Dispersions or suspensions of nanosized particles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/10—Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
- B22F1/102—Metallic powder coated with organic material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/16—Making metallic powder or suspensions thereof using chemical processes
- B22F9/18—Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
- B22F9/20—Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from solid metal compounds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/16—Making metallic powder or suspensions thereof using chemical processes
- B22F9/18—Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
- B22F9/24—Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/16—Making metallic powder or suspensions thereof using chemical processes
- B22F9/30—Making metallic powder or suspensions thereof using chemical processes with decomposition of metal compounds, e.g. by pyrolysis
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D1/00—Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D5/00—Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
- C09D5/24—Electrically-conducting paints
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D7/00—Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
- C09D7/40—Additives
- C09D7/60—Additives non-macromolecular
- C09D7/61—Additives non-macromolecular inorganic
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D7/00—Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
- C09D7/40—Additives
- C09D7/60—Additives non-macromolecular
- C09D7/61—Additives non-macromolecular inorganic
- C09D7/62—Additives non-macromolecular inorganic modified by treatment with other compounds
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D7/00—Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
- C09D7/40—Additives
- C09D7/66—Additives characterised by particle size
- C09D7/67—Particle size smaller than 100 nm
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/20—Conductive material dispersed in non-conductive organic material
- H01B1/22—Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B13/00—Apparatus or processes specially adapted for manufacturing conductors or cables
- H01B13/0036—Details
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2301/00—Metallic composition of the powder or its coating
- B22F2301/25—Noble metals, i.e. Ag Au, Ir, Os, Pd, Pt, Rh, Ru
- B22F2301/255—Silver or gold
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2304/00—Physical aspects of the powder
- B22F2304/05—Submicron size particles
- B22F2304/054—Particle size between 1 and 100 nm
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
Definitions
- the present invention relates to a method for producing a conductive paste that can be suitably used for forming a conductive thin film on a conductive ITO (Indium Tin Oxide) substrate.
- ITO Indium Tin Oxide
- the conductive ITO film is used as a light transmissive electrode layer in a liquid crystal display device for a flat display.
- Patent Document 3 discloses a method of preparing a silver nanoparticle dispersion having a surface coating layer made of an amine compound by a reduction reaction in a liquid phase using silver oxide as a raw material.
- JP 2005-293937 A WO2006 / 011180 A1 JP 2005-293937 A
- Patent Document 1 a metal thin film pattern having good adhesion to an ITO film can be formed using a conductive paste.
- this method requires primer treatment. From the viewpoint of process reduction, it is desirable to eliminate the primer treatment.
- Patent Documents 2 and 3 are not suitable for obtaining a metal fine particle sintered body layer having excellent adhesion to a substrate made of ITO.
- An object of the present invention is to provide a conductive paste suitable for obtaining a metal fine particle sintered body layer having excellent adhesion to a substrate made of ITO.
- the preparation process of the silver nanoparticles is as follows: In the liquid phase, using powdered silver oxide (I) as a raw material, formic acid is allowed to act on the powdered silver oxide (I) to convert it into silver formate (I), A step of reducing silver cations contained in silver formate (I) to silver atoms and preparing silver nanoparticles from the silver atoms, Step i: Preparing a dispersion of the powdered silver (I) oxide using a hydrocarbon solvent; Step ii: Formic acid is added to the dispersion of the powdered silver oxide (I), Formic acid is allowed to act on the powdered silver oxide (I) to convert it into silver formate (I), Preparing a dispersion of powdered silver formate (I), wherein the resulting silver
- the titanium compound is at least one selected from the group consisting of alkoxy titanium, carboxy titanium and titanium acetylacetonate
- the manganese compound is at least one selected from the group consisting of carboxy manganese and manganese acetylacetonate.
- the metal contained in the metal compound added in Step B is 0.5 to 2 parts by mass with respect to 100 parts by mass of silver contained in the silver nanoparticle dispersion obtained from Step A.
- the hydrocarbon solvent used in step i is preferably a hydrocarbon having 6 to 9 carbon atoms.
- the formic acid used in step ii is preferably selected in the range of 1.1 to 1.4 mol per mol of silver cation contained in the raw powdered silver oxide (I).
- the atomic group R having an aliphatic hydrocarbon chain having affinity for the hydrocarbon solvent is: It is preferably selected from (alkyloxy) alkyl groups, (alkylamino) alkyl groups, (dialkylamino) alkyl groups and alkyl groups having a total carbon number of 7 to 12.
- the primary amine (R—NH 2 ) composed of an atomic group R having an aliphatic hydrocarbon chain having an affinity for the hydrocarbon solvent and an amino group is an amine compound having a boiling point exceeding 170 ° C. It is preferable that Moreover, With respect to the hydrocarbon solvent, primary amines consisting of atomic R and an amino group having an aliphatic hydrocarbon chain having an affinity (R-NH 2), the boiling point range of 200 ° C. ⁇ 270 ° C. More preferably, it is an amine compound.
- the primary amine (R—NH 2 ) composed of an atomic group R having an aliphatic hydrocarbon chain having affinity for the hydrocarbon solvent and an amino group is 3-alkyloxypropylamine (R′— O—CH 2 CH 2 CH 2 —NH 2 ),
- R′— O—CH 2 CH 2 CH 2 —NH 2 3-alkyloxypropylamine
- the primary amine (R—NH 2 ) composed of an atomic group R having an aliphatic hydrocarbon chain having affinity for the hydrocarbon solvent and an amino group is 3- (dialkylamino) propylamine (R 1 N (R 2 ) —CH 2 CH 2 CH 2 —NH 2 ),
- R 1 N (R 2 ) —CH 2 CH 2 CH 2 —NH 2 3- (dialkylamino) propylamine
- a diluted solution obtained by diluting with the hydrocarbon solvent is added to the dispersion of the powdered silver formate (I),
- the diluted solution is Per 100 parts by weight of the primary amine, It is desirable to adopt a form in which the hydrocarbon solvent is added in the range of 20 to 45 parts by mass and diluted.
- the primary amine added acts on the remaining formic acid without being consumed by the reaction with the powdered silver oxide (I), so that the primary amine addition salt of formic acid is converted.
- the reactions that form proceed in parallel, It is desirable to select a configuration in which the reaction temperature resulting from the reaction to form the primary amine addition salt of the formic acid causes an increase in the liquid temperature.
- step A it is preferable to employ a configuration further including the following steps iv to vi after step iii.
- the silver nanoparticles prepared by using the method for preparing silver nanoparticles according to the present invention described above are obtained from a primary amine having an aliphatic hydrocarbon chain having affinity for the hydrocarbon solvent on the surface. Since the silver nanoparticles having an average particle diameter of 5 nm to 20 nm having a coating layer formed as described above can be stored in the form of a dispersion dispersed in the hydrocarbon solvent.
- a conductive paste suitable for obtaining a metal fine particle sintered body layer having excellent adhesion to a base material made of ITO is provided.
- the average particle size refers to a particle size having an integrated value of 50% in a particle size distribution (volume basis) measured by a laser diffraction method.
- the term “boiling point” means the boiling point at 1 atmosphere.
- the term “ink” means a paste that is particularly suitable for printing.
- the quantity (mass and content) of a silver nanoparticle unless there is particular notice, it means the quantity of only a silver nanoparticle (and therefore a coating agent is not included).
- the particle size of the silver nanoparticles when referring to the particle size of the silver nanoparticles, unless otherwise specified, it means the particle size including the coating agent attached to the surface of the silver nanoparticles.
- Step A that is, the silver nanoparticle preparation step, includes the following steps i to iii.
- Step i Preparation of dispersion of powdered silver oxide (I):
- powdered silver oxide (I) (Ag 2 O; formula amount: 231.74, density: 7.22 g / cm 3 ) is used as a starting material.
- Powdered silver (I) oxide does not dissolve in nonpolar solvents such as chain hydrocarbon solvents, but when finely powdered, it should be uniformly dispersed in nonpolar solvents such as chain hydrocarbon solvents. Is possible.
- a powdery silver oxide (I) having a particle size distribution within a range of 200 mesh or less (75 ⁇ m or less) is preferably used.
- the dispersion solvent of the powdered silver oxide (I) is also used as a solvent for dissolving the primary amine. Therefore, a hydrocarbon solvent is used as a dispersion solvent for powdered silver oxide (I). Moreover, in the process of collect
- the dispersion solvent for the powdered silver oxide (I) is selected as the dispersion solvent for the powdered silver oxide (I).
- a hydrocarbon having 6 to 9 carbon atoms eg, alkane
- straight-chain alkanes having 6 to 9 carbon atoms such as hexane (boiling point: 68.74 ° C., density: 0.6603 g / cm 3 ), heptane (boiling point: 98.42 ° C., density: 0.684 g / cm 3 ), octane (boiling point: 125.67 ° C., density: 0.7026 g / cm 3 ), nonane (boiling point 150.8 ° C., density 0.7 g / cm 3 ), of which 6-9 carbon atoms It is desirable to use a straight-chain alkane.
- heptane (boiling point: 98.42 ° C., density: 0.684 g / cm 3) is an alkane having a boiling point in the range of 80 ° C. to 100 ° C., for example, a linear alkane having a boiling point in the range of 80 ° C. to 100 ° C. It is more desirable to use 3 ).
- cycloalkane such as methylcyclohexane (boiling point 100.9 ° C.) can also be used as a dispersion solvent for powdered silver oxide (I).
- a cyclic alkene such as toluene can be used.
- a hydrocarbon solvent having a boiling point lower than the boiling point of formic acid (100.75 ° C.), particularly an alkane having a boiling point in the range of 80 ° C. to 100 ° C. is selected, in the formation reaction of powdered silver formate described later Since the boiling point of the hydrocarbon solvent does not exceed the boiling point of the hydrocarbon solvent when the temperature of the reaction solution rises due to heat generation, formic acid transpiration can be suppressed.
- a dispersion of the powdered silver (I) oxide can be prepared.
- the powdered silver (I) oxide dispersion can be prepared using a hydrocarbon solvent having a boiling point in the range of 65 ° C. to 155 ° C., preferably in the range of 80 ° C. to 130 ° C.
- Step ii Preparation of a dispersion of powdered silver formate (I):
- the relative powdered silver oxide in the dispersion (I) (Ag 2 O) , formic acid (HCOOH; formula weight 46.025, boiling point: 100.75 ° C.) was allowed to act, silver formate ( I) Convert to (HCOOAg).
- Formic acid associates by hydrogen bonding to form a dimer (HCOOH: HOOCH).
- HCOOH: HOOCH dimer of formic acid
- the dimer of formic acid acts on the powdered silver oxide (I) (Ag 2 O) in the dispersion, and by the reaction represented by the following formula (i), silver formate ( I) (HCOOAg) is generated.
- the reaction represented by the above formula (1) corresponds to a “neutralization reaction” between silver (I) oxide (Ag 2 O), which is a basic metal oxide, and a dimer of formic acid (HCOOH: HOOCH). It is an exothermic reaction.
- silver oxide (I) (Ag 2 O) the ratio of the dispersion solvent amount by selecting the above range, an increase in the liquid temperature of the whole dispersion can be suppressed to up to about 40 ° C.. That is, the liquid temperature is suppressed from excessively rising, and formic acid having the function of a reducing agent acts on the produced silver formate (I) (HCOAAg), and can be expressed by the following formula (A1). It is possible to prevent the reduction reaction from proceeding. Moreover, it can prevent that the decomposition
- the total amount of the raw powdered silver oxide (I) is converted into silver formate (I) (HCOAAg), and the aggregate of [(HCOO ⁇ ) (Ag I ) + ] A dispersion can be obtained.
- Step iii Formation of primary amine complex of silver formate (I) and decomposing reduction reaction: After completion of step ii, when the liquid temperature drops to 30 ° C., the dispersion of the aggregate of [(HCOO ⁇ ) (Ag I ) + ] has an affinity for the hydrocarbon solvent. A primary amine (R—NH 2 ) having a hydrocarbon chain is added to cause the primary amine (R—NH 2 ) to act on [(HCOO ⁇ ) (Ag I ) + ] forming an aggregate. be able to. That is, a primary amine complex (HCOOAg: NH 2 —R) of silver formate (I) (HCOOAg) is produced by the reaction represented by the following formula (ii).
- the primary amine complex (HCOOAg: NH 2 —R) of silver (I) formate (HCOOAg) to be produced has an atomic group R of the primary amine (R—NH 2 ) moiety having an affinity for the hydrocarbon solvent. Since it has an aliphatic hydrocarbon chain having a property, it dissolves in the hydrocarbon solvent. Specifically, it is presumed that the reaction of the formula (ii) probably proceeds by the following two elementary processes (ii-1) and (ii-2).
- the formic acid primary amine addition salt formation reaction of the formula (iii) corresponds to an acid / base “neutralization reaction” and is an exothermic reaction.
- Resulting primary amine addition salts of formic acid (HCOOH: NH 2 -R), the atomic group R of the primary amine (R-NH 2) moiety, aliphatic respect hydrocarbon solvent has an affinity carbide Since it has a hydrogen chain, it dissolves in the hydrocarbon solvent.
- the reaction for forming a primary amine addition salt of formic acid of formula (iii) proceeds, the temperature of the reaction solution increases. Note that, when the temperature of the reaction liquid approaches the boiling point of the hydrocarbon solvent being used, the evaporation of the hydrocarbon solvent starts, so the temperature of the reaction liquid does not exceed the boiling point of the hydrocarbon solvent.
- the formed aggregate of metallic silver atoms is a silver nanostructure composed of a spherical nucleus composed of metal atoms and a coating molecule layer composed of a primary amine (R—NH 2 ) covering the surface. Become particles.
- the thermally dissociated primary amine (R—NH 2 ) generates a primary amine complex (HCOOAg: NH 2 —R) of silver formate (I) (HCOOAg) of formula (ii) above, and It is used in the primary amine addition salt formation reaction of formic acid of formula (iii).
- the temperature of the reaction solution becomes 70 ° C. or higher. The rise can be prevented.
- the primary amine (R—NH 2 ) is 3- (dialkylamino) propylamine (R 1 N (R 2 ) —CH 2 CH 2 CH 2 —NH 2 ), and the dialkylamino atomic group (R A compound in which the sum of the carbon number of the alkyl group (R 1 and R 2 ) constituting 1 N (R 2 ) —) is 4 to 9 can also be used.
- the boiling point of the amine compound exceeds 170 ° C., and the boiling point is 200 ° C. More preferred is an amine compound in the range of ⁇ 270 ° C.
- 2-ethylhexyloxypropylamine (boiling point: 235 ° C.) having 2-ethylhexyl group which is an alkyl group having 8 carbon atoms
- dibutylaminopropylamine (boiling point: 238 ° C.) having dibutylaminopropyl group, etc.
- the amount of primary amine (R—NH 2 ) having an aliphatic hydrocarbon chain having affinity for the hydrocarbon solvent is such that the silver cation 1 contained in the powdered silver oxide (I) as a raw material
- the molar amount is preferably selected in the range of 1.2 to 1.8 mol, more preferably in the range of 1.3 to 1.6 mol.
- the addition molar amount of primary amine (R-NH 2) is selected to exceed the addition molar amount of formic acid (HCOOH) is added in step ii.
- the ratio of the molar amount of formic acid (HCOOH) added in step ii to the molar amount of primary amine (R—NH 2 ) added in step iii, [primary amine / formic acid] is preferably 1. 2 / 1.1 to 1.8 / 1.4, more preferably 1.3 / 1.1 to 1.6 / 1.3, and even more preferably 1.4 / 1.2 to It is desirable to select in the range of 1.6 / 1.3.
- the atomic group R is an (alkyloxy) alkyl group, (alkylamino) alkyl group, (dialkylamino) alkyl group, alkyl group having 7 to 12 carbon atoms in total.
- the melting point and boiling point increase. Therefore, what is solid at room temperature is also included. Or even if it is a liquid, what does not have high fluidity is also included.
- the primary amine (R—NH 2 ) is preferably added in the form of a solution dissolved in a hydrocarbon solvent.
- the powdered formic acid is prepared by diluting with a hydrocarbon solvent having a boiling point of preferably 65 ° C. to 155 ° C., more preferably a boiling point of 80 ° C. to 130 ° C. Add to silver (I) dispersion. At that time, the diluted solution contains 20 parts by mass to 45 parts of a hydrocarbon solvent having a boiling point in the range of 65 ° C. to 155 ° C., preferably in the range of 80 ° C. to 130 ° C., per 100 parts by mass of the primary amine.
- dilution is performed in addition to the range of parts by mass, preferably in the range of 35 parts by mass to 45 parts by mass, more preferably in the range of 35 parts by mass to 40 parts by mass. Further, by adding the primary amine in the form of a diluted solution, the mixing after the addition proceeds rapidly.
- the boiling point is preferably in the range of 65 ° C. to 155 ° C., more preferably in the range of 80 ° C. to 130 ° C. per 100 parts by mass of the raw powdery silver oxide (I) in the reaction solution of step iii. In a range of 385 parts by mass to 545 parts by mass, preferably 435 parts by mass to 540 parts by mass, more preferably 450 parts by mass to 540 parts by mass. It is desirable.
- step iii after addition of a dilute solution of said primary amine (R-NH 2), while the reaction solution was stirred, the reaction was carried out, the reaction liquid of the liquid temperature and, said first amine (R-NH 2 ) To avoid uneven density.
- step iii silver nanoparticles are formed using a degradative reduction reaction of a primary amine complex of silver (I) formate (HCOAAg: NH 2 —R) that is uniformly dissolved in a hydrocarbon solvent. Therefore, variation in the particle diameter of the silver nanoparticles to be generated can be reduced. Further, the average particle diameter of the silver nanoparticles to be produced can be easily adjusted to the range of 5 nm to 20 nm within the range of the above-described conditions.
- HCOAAg primary amine complex of silver (I) formate
- a coating molecule layer composed of the primary amine is formed on the surface of the silver nanoparticles to be formed, and is in equilibrium with the unreacted primary amine dissolved in the reaction solution.
- the total of the primary amine formed by this coating agent molecular layer and the unreacted primary amine dissolved in the reaction solution is 1 mol of silver cation contained in the raw material powdered silver oxide (I). Preferably, it exceeds 1 ⁇ 2 molar amount.
- Step A it is preferable to adopt a configuration further comprising the following Step iv to Step vi in order to recover the produced silver nanoparticles from the reaction solution after Step iii.
- the primary amine addition salt of formic acid produced by the reaction of formula (iii) and most of the unreacted primary amine are removed to form a coating agent molecular layer comprising the primary amine on the surface. It is desirable to prepare a dispersion of silver nanoparticles containing the silver nanoparticles and the appropriate amount of primary amine necessary to maintain the coating agent molecular layer comprising the primary amine.
- the primary amine covers the surface and is contained in a reaction solution containing silver nanoparticles having an average particle size of 5 nm to 20 nm, preferably having a boiling point in the range of 65 ° C. to 155 ° C., more preferably boiling point.
- the hydrocarbon solvent in the range of 80 ° C. to 130 ° C. is distilled off under reduced pressure.
- a primary amine addition salt of formic acid and an unreacted primary amine are dissolved, but the boiling point of the primary amine addition salt of formic acid is higher than the boiling point of the primary amine.
- the boiling point of the primary amine is 170 ° C. or higher, and the hydrocarbon solvent having a boiling point in the range of 65 ° C. to 155 ° C., more preferably 80 ° C. to 130 ° C. is distilled off under reduced pressure. No transpiration in the process. Accordingly, the silver nanoparticles having an average particle diameter of 5 nm to 20 nm, the primary amine addition salt of formic acid, and the residual residue containing the primary amine remaining are recovered.
- the silver nanoparticles having a coating agent molecular layer made of primary amine formed on the surface cannot be dispersed in the aqueous mixed solvent and become a sediment layer.
- the primary amine addition salt of formic acid and the primary amine are dissolved in an aqueous mixed solvent to form a liquid phase layer, and thus are separated into a liquid phase layer / sediment layer.
- aqueous mixed solvent Since the aqueous mixed solvent is poorly compatible with the hydrocarbon solvent, it is separated into two layers of an aqueous mixed solvent / hydrocarbon solvent. The layer of the mixed solvent of methanol and distilled water (aqueous mixed solvent) is removed, and the layer of the hydrocarbon solvent is recovered.
- silver nanoparticles having a coating agent molecular layer made of primary amine formed on the surface are dispersed.
- a substantial portion of the primary amine (R—NH 2 ) remaining in the sediment layer is dissolved in the hydrocarbon solvent as the dispersion solvent. Therefore, in the dispersion of the silver nanoparticles to be recovered, the primary amine (R—NH 2 ) dissolved in the hydrocarbon solvent and the first molecular layer constituting the coating molecule layer on the surface of the silver nanoparticles.
- One amine (R—NH 2 ) is in a dissociation equilibrium state.
- Methanol is selectively distilled off under reduced pressure using the vapor pressure difference between methanol and the hydrocarbon solvent.
- the silver nanoparticles on the surface of which the coating agent molecular layer composed of primary amine is redispersed in an appropriate amount of a hydrocarbon solvent can be recovered.
- the silver nanoparticles prepared by using the method for preparing silver nanoparticles according to the present invention described above are obtained from a primary amine having an aliphatic hydrocarbon chain having affinity for the hydrocarbon solvent on the surface.
- the silver nanoparticles having an average particle diameter of 5 nm to 20 nm and having a coating layer are usually stored in the form of a dispersion dispersed in the hydrocarbon solvent.
- the prepared silver nanoparticle redispersion liquid contains silver nanoparticles, a primary amine, and a hydrocarbon solvent having a coating molecular layer composed of a primary amine formed on the surface thereof.
- the total amount of the primary amine is in the range of 20 to 30 parts by mass, more preferably in the range of 22 to 30 parts by mass, per 100 parts by mass of the silver nanoparticles.
- the hydrocarbon solvent as a dispersion solvent is contained in the range of 100 parts by mass to 200 parts by mass, and more preferably in the range of 120 parts by mass to 180 parts by mass per 100 parts by mass of the silver nanoparticles.
- a conductive paste can be prepared according to the following procedure.
- Step B one or more metal compounds selected from the group consisting of titanium compounds and manganese compounds are added to the silver nanoparticle dispersion prepared in Step A. From step B, a conductive paste can be obtained.
- Another solvent a solvent other than the solvent contained in the silver nanoparticle dispersion
- a part or all of the solvent contained in the silver nanoparticle dispersion can be replaced with another solvent.
- manganese compound one or more selected from the group consisting of carboxymanganese and manganese acetylacetonate can be used.
- manganese compounds include manganese 2-ethylhexanoate and manganese (III) acetylacetonate.
- the metal contained in the metal compound added in step B exceeds 0 part by mass with respect to 100 parts by mass of silver contained in the silver nanoparticle dispersion obtained from step A. 0 parts by mass or less, preferably 0.5 to 2.0 parts by mass.
- the dispersion solvent of the silver nanoparticle redispersion liquid is preferably a hydrocarbon solvent having a boiling point in the range of 65 ° C to 155 ° C.
- the conductive paste can be prepared by substituting with a solvent, preferably a high boiling point hydrocarbon solvent having a boiling point in the range of 200 ° C. to 310 ° C., more preferably in the range of a boiling point of 210 ° C. to 310 ° C.
- Nippon Oil which is a mixed solvent of alkanes having a carbon number of 12 to 16, such as tetradecane (boiling point: 253.6 ° C.), or naphthene / paraffin hydrocarbons.
- Examples include petroleum AF7 solvent (trade name, boiling point: 275-306 ° C.), Idemitsu Kosan IP solvent 2028 (trade name, boiling point: 213 to 262 ° C.), and the like.
- a mixture of a plurality of high boiling hydrocarbon solvents can also be used.
- the high boiling point hydrocarbon solvent is preferably in the range of 43 to 58 parts by weight, more preferably 45 to 55 parts by weight per 100 parts by weight of the silver nanoparticles contained in the redispersed liquid of the silver nanoparticles. Add in the range. Next, using the difference in vapor pressure between the hydrocarbon solvent and the high boiling point hydrocarbon solvent, the hydrocarbon solvent is selectively distilled off under reduced pressure.
- a conductive paste is prepared in which silver nanoparticles having a coating layer of a primary amine formed on the surface thereof are uniformly dispersed in the high boiling point hydrocarbon solvent.
- the conductive paste to be prepared contains silver nanoparticles, a primary amine, and a high-boiling hydrocarbon solvent having a coating molecular layer made of primary amine formed on the surface.
- the total amount of the above primary amine per 100 parts by mass of silver nanoparticles in the conductive paste is in the range of 20 to 30 parts by mass, preferably in the range of 22 to 30 parts by mass.
- the high boiling point hydrocarbon solvent is contained in the range of 43 to 58 parts by mass, preferably in the range of 45 to 55 parts by mass, per 100 parts by mass of the silver nanoparticles.
- the volume ratio of the silver nanoparticles contained in the conductive paste is preferably adjusted to a range of 8% to 12% by volume. That is, it is desirable to maintain a uniformly dispersed state by selecting the above-described volume ratio of silver nanoparticles contained in droplets applied by an inkjet method.
- the conductive paste to be applied determines the distribution of the coating film thickness depending on the average density of the dispersion, the wettability of the dispersion solvent used, and the surface tension. In order to adjust the wettability of the dispersion solvent and its surface tension, for example, it is effective to mix two or more solvents having different wettability and surface tension of individual solvents.
- the dispersibility of the silver nanoparticles on the surface of which the coating agent molecular layer composed of the primary amine is formed is that the aliphatic hydrocarbon chain present in the atomic group R of the primary amine (R—NH 2 ).
- R—NH 2 the aliphatic hydrocarbon chain present in the atomic group R of the primary amine
- a solvent can also be mixed.
- the primary amine (R—NH 2 ) constituting the coating molecule layer on the surface of the silver nanoparticles is eluted in the dispersion solvent.
- the silver nanoparticles settle, the silver nanoparticles are brought into direct contact with each other, and low-temperature sintering proceeds.
- a conductive film composed of a low-temperature sintered body of silver nanoparticles is formed.
- step iii a primary amine is added to a dispersion of powdered silver formate (I).
- a secondary amine can be added together with the primary amine.
- the molecular weight of the secondary amine is preferably 100 or more and 150 or less.
- the secondary amine preferably has an aliphatic hydrocarbon chain having affinity for the hydrocarbon solvent.
- step iii addition of the primary amine to the dispersion of powdered silver formate (I) may be performed in the presence of a monocarboxylic acid.
- a monocarboxylic acid having 8 to 11 carbon atoms is preferable.
- step iii 0.05 mol-0.3 mol of monocarboxylic acid is used per 0.05 mol of silver cation contained in silver formate (I) and 0.05 mol-0.00 mol of primary amine.
- the secondary amine can be used in an amount of 3 moles so that the total moles of primary and secondary amines are in the range of 1.1 moles to 1.5 moles.
- Step A a silver nanoparticle dispersion was prepared.
- a diisopropylamine addition salt of formic acid or neodecanoic acid, 2-ethylhexyloxypropylamine addition salt of formic acid or neodecanoic acid, and methylcyclohexane are dissolved in a mixed solvent consisting of methanol and distilled water.
- silver nanoparticles settle without being dispersed in hydrous methanol.
- the supernatant phase of the mixed solvent (hydrous methanol) was removed by decantation.
- the resulting heptane liquid in which silver nanoparticles were dispersed was filtered through a 0.2 ⁇ m membrane filter to remove aggregates.
- a silver nanoparticle dispersion was obtained as the filtrate obtained from the filtration.
- the method for measuring the total amount of metallic silver is as follows.
- the obtained silver nanoparticle dispersion liquid was weighed in a crucible, and methylcyclohexane contained in a hot air dryer was removed by drying to obtain a solid.
- the crucible was placed in a muffle furnace and baked at 700 ° C. for 30 minutes. Since only the metal remains after firing, the amount of metal was weighed, and the total amount of metallic silver was calculated from the concentration of the dispersion.
- the obtained silver nanoparticle dispersion was allowed to stand at room temperature for 1 week, and then the presence or absence of particle sedimentation was visually observed. No settling of particles was observed.
- the method for measuring the amount of the coating agent covering the silver nanoparticles is as follows. That is, about 0.1 g of a dispersion in which silver nanoparticles were dispersed in heptane was weighed in a glass bottle, and the solvent was dried with a dryer (cold air) to form powder. About 10 mg of the dried powder was measured by raising the temperature to 500 ° C. with a thermal analyzer (trade name: TG / DTA6200, manufactured by SII Nanotechnology Co., Ltd.), and the amount of coating agent was calculated from the weight reduction rate.
- step B The silver nanoparticle dispersion obtained in step A was used in such an amount that the amount of silver contained in this dispersion was 60 parts by mass, and tetradecane (boiling point: 253.6 ° C., density: 0.7624 g / cm 3 ). 38.2 parts by mass and 1.8 parts by mass of titanium tetraisopropoxide (manufactured by Wako Pure Chemical Industries) were mixed.
- the ink (printing conductive paste) using tetradecane as a dispersion solvent was prepared by distilling off the heptane contained in the obtained mixed liquid under reduced pressure.
- the amount of metallic titanium contained in the ink is 0.5 parts by mass with respect to 100 parts by mass of silver.
- the viscosity of the produced ink was 11 mPa ⁇ s (20 ° C.), and the metal content was 55.2% by mass.
- the prepared conductive ink was applied onto glass with an ITO film having a width of 25 mm and a length of 75 mm by spin coating. The average film thickness of this coating film was 6 ⁇ m.
- the obtained coating film was heat-treated at 200 ° C. for 60 minutes in the atmosphere using a wind drying oven to sinter the contained silver nanoparticles.
- the resistivity of the produced silver nanoparticle fired film was measured. The film thickness after firing was 0.9 ⁇ m, and the resistivity of the low-temperature fired film was 13 ⁇ ⁇ cm.
- Step B the conductive paste was prepared and evaluated in the same manner as in Example 1 except that the conductive paste formulation shown in Table 1 was adopted. The results are shown in Table 1.
- titanium (IV) 2-ethylhexanolate is used as the metal compound.
- a 2-ethylhexanoic acid manganese mineral spirit solution manufactured by Wako Pure Chemical Industries, Mn 8 mass%) is used to add the metal compound.
- Comparative Example 1 no metal compound was added to the conductive paste. In Comparative Example 1, in the cross-cut test, peeling occurred at 40 squares out of a total of 81 squares of 1 mm ⁇ 1 mm.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Inorganic Chemistry (AREA)
- Wood Science & Technology (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Materials Engineering (AREA)
- Nanotechnology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Dispersion Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
- Conductive Materials (AREA)
- Powder Metallurgy (AREA)
Abstract
Description
A)表面に被覆剤分子からなる被覆層を有する、平均粒子径5nm~20nmの銀ナノ粒子を調製する工程、
ここで該銀ナノ粒子の調製工程は、
液相中において、粉末状酸化銀(I)を原料として、該粉末状酸化銀(I)にギ酸を作用させ、ギ酸銀(I)に変換し、
ギ酸銀(I)中に含まれる銀カチオンを、銀原子に還元し、該銀原子から銀ナノ粒子を調製する工程であり、
工程i:
炭化水素溶媒を用いて、該粉末状酸化銀(I)の分散液を調製する工程;
工程ii:
前記該粉末状酸化銀(I)の分散液に対して、ギ酸を添加して、
前記該粉末状酸化銀(I)にギ酸を作用させ、ギ酸銀(I)に変換させ、
前記炭化水素溶媒中に、生成するギ酸銀(I)の粉末を分散してなる、粉末状ギ酸銀(I)の分散液を調製する工程;
工程iii:
前記粉末状ギ酸銀(I)の分散液に対して、第一アミンを添加して、
前記粉末状ギ酸銀(I)に該第一アミンを作用させ、ギ酸銀(I)の該第一アミン錯体を生成させ、
前記炭化水素溶媒中に、生成する該ギ酸銀(I)の第一アミン錯体を溶解させた後、
該ギ酸銀(I)の第一アミン錯体の分解的還元反応により生成する銀原子からなる平均粒子径5nm~20nmの銀ナノ粒子を生成させる工程、
ここで工程iiiにおいて生成される、平均粒子径5nm~20nmの銀ナノ粒子は、
その表面の銀原子に対して、前記第一アミンが、そのアミノ窒素原子上に存在する孤立電子対を利用して、配位的な結合を介して被覆してなる形態であり;ならびに、
B)工程Aから得られる銀ナノ粒子の分散液に、チタン化合物およびマンガン化合物からなる群から選ばれる一種以上の金属化合物を加える工程であって、この金属化合物に含まれる金属が、工程Aから得られる銀ナノ粒子の分散液に含まれる銀100質量部に対して、0質量部超、2.0質量部以下である、工程
を含むことを特徴とする導電性ペーストの製造方法が提供される。
前記炭化水素溶媒に対して、親和性を有する脂肪族炭化水素鎖を有する原子団Rは、
炭素数の合計が7~12の(アルキルオキシ)アルキル基、(アルキルアミノ)アルキル基、(ジアルキルアミノ)アルキル基、アルキル基から選択されることが好ましい。
前記炭化水素溶媒に対して、親和性を有する脂肪族炭化水素鎖を有する原子団Rとアミノ基からなる第一アミン(R-NH2)は、その沸点が、200℃~270℃の範囲のアミン化合物であることがより好ましい。
前記アルキルオキシ原子団(R’-O-)を構成するアルキル基(R’)は、炭素数4~9のアルキル基である態様を好適に選択できる。
前記ジアルキルアミノ原子団(R1N(R2)-)を構成するアルキル基(R1とR2)の炭素数の和は、4~9である態様を選択することができる。
前記炭化水素溶媒に対して、親和性を有する脂肪族炭化水素鎖を有する原子団Rとアミノ基からなる第一アミン(R-NH2)は、
前記炭化水素溶媒を用いて、希釈してなる希釈溶液とした上で、前記粉末状ギ酸銀(I)の分散液に添加され、
該希釈溶液は、
該第一アミン100質量部当たり、
前記炭化水素溶媒を20質量部~45質量部の範囲で加えて、希釈がなされている形態を採用することが望ましい。
前記粉末状ギ酸銀(I)に該第一アミンが作用して、ギ酸銀(I)の該第一アミン錯体を生成する反応に加えて、
前記工程iiにおいて、粉末状酸化銀(I)との反応によって、消費されずに、残余しているギ酸に、添加される前記第一アミンが作用して、ギ酸の該第一アミン付加塩を形成する反応が併行して進行し、
該ギ酸の該第一アミン付加塩を形成する反応に起因する反応熱によって、液温の上昇が引き起こされるという構成を選択することが望ましい。
工程Aにおいて、工程iii後に、下記の工程iv~工程viをさらに有する構成を採用することが好ましい。
前記工程iiiの終了後、
前記第一アミンが表面を被覆している、平均粒子径5nm~20nmの銀ナノ粒子が含有されている反応液中に含まれる、前記炭化水素溶媒を、減圧下で留去し、
前記第一アミンが表面を被覆している、平均粒子径5nm~20nmの銀ナノ粒子、前記ギ酸の第一アミン付加塩、残余する第一アミンを含む残渣を回収する工程;
工程v:
前記工程ivで回収された残渣に対して、
原料の粉末状酸化銀(I)100質量部当たり、
200質量部~300質量部の範囲に選択される、メタノールと、
50質量部~300質量部の範囲に選択される、蒸留水を加え、
該メタノールと蒸留水の混合溶媒中に、該残渣中に含まれる、前記ギ酸の第一アミン付加塩、残余する第一アミンを溶解させ、
前記第一アミンが表面を被覆している、平均粒子径5nm~20nmの銀ナノ粒子を含む沈降物層と、前記混合溶媒中に前記ギ酸の第一アミン付加塩、第一アミンを溶解してなる液相層に層分離し、
前記混合溶媒中に前記ギ酸の第一アミン付加塩、第一アミンを溶解してなる液相層を除去し、前記第一アミンが表面を被覆している、平均粒子径5nm~20nmの銀ナノ粒子を含む沈降物層を回収する工程;
工程vi:
前記工程vで回収された沈降物層に対して、
原料の粉末状酸化銀(I)100質量部当たり、
100質量部~200質量部の範囲に選択される、沸点が65℃~155℃の範囲の炭化水素溶媒を加えて、
該沸点が65℃~155℃の範囲の炭化水素溶媒中に、前記沈降物層中に含まれる、前記第一アミンが表面を被覆している、平均粒子径5nm~20nmの銀ナノ粒子を均一に分散させて、分散液とし、
前記沈降物層中に含浸されていた、少量の前記メタノールと蒸留水の混合溶媒の層と、前記沸点が65℃~155℃の範囲の炭化水素溶媒を分散溶媒とする分散液の層に層分離し、
前記少量の前記メタノールと蒸留水の混合溶媒の層を除去し、前記沸点が65℃~155℃の範囲の炭化水素溶媒を分散溶媒とする分散液の層を回収する工程。
本明細書において、平均粒子径はレーザー回折法により測定された粒度分布(体積基準)において積算値50%の粒子径を指す。
用語「沸点」は、1気圧における沸点を意味する。
用語「インク」は、ペーストのうちの特に印刷に好適なものを意味する。
また、銀ナノ粒子の量(質量や含有量)に言及する場合、特に断りのない限り、銀ナノ粒子のみ(したがって被覆剤は含まない)の量を意味する。一方、銀ナノ粒子の粒径に言及する場合、特に断りのない限り、銀ナノ粒子の表面に付着した被覆剤を含んだ粒径を意味する。
工程A、すなわち銀ナノ粒子の調製工程は、下記の工程i~工程iiiを有している。
本発明では、出発原料として、粉末状酸化銀(I)(Ag2O;式量:231.74、密度:7.22g/cm3)を使用している。粉末状酸化銀(I)は、非極性溶媒、例えば、鎖式炭化水素溶媒には溶解しないが、微粉末状とすると、非極性溶媒、例えば、鎖式炭化水素溶媒中に均一に分散させることが可能である。具体的には、均一な分散液を調製する上では、粉末状酸化銀(I)の粒径分布は、200メッシュ以下(75μm以下)の範囲に収まるものが好適に利用される。
本発明では、前記分散液中の粉末状酸化銀(I)(Ag2O)に対して、ギ酸(HCOOH;式量46.025、沸点:100.75℃)を作用させて、ギ酸銀(I)(HCOOAg)に変換する。
→ 2[(HCOO-)(AgI)+]+H2O 式(i)
生成するギ酸銀(I)(HCOOAg)は、炭化水素溶媒に対する溶解性は極めて低いため、[(HCOO-)(AgI)+]の凝集体を形成して、該炭化水素溶媒に分散する状態となる。
→ 2Ag+2HCOOH+CO2↑ 式(A1)
2[(HCOO-)(AgI)+]
→ 2Ag+HCOOH+CO2↑ 式(A2)
上記式(1)の反応を行うため、原料の粉末状酸化銀(I)中に含まれる銀カチオン1モル量当たり、好ましくは1.1モル量~1.4モル量の範囲、より好ましくは、1.2モル量~1.3モル量の範囲に選択される、ギ酸を添加する。過剰量のギ酸を添加することで、原料の粉末状酸化銀(I)の全量を、ギ酸銀(I)(HCOOAg)に変換し、[(HCOO-)(AgI)+]の凝集体の分散液とすることができる。
(i-1) Ag2O+(HCOOH:HOOCH)
→ [HCOOAg:AgOH:HOOCH]
(i-2) [HCOOAg:(HO)Ag:HOOCH]
→ [(HCOO-)(AgI)+](H2O)[+(AgI)(-OOCH)]
過剰量のギ酸を添加すると、未反応のギ酸が残余し、炭化水素溶媒中に、ギ酸の二量体(HCOOH:HOOCH)として溶解している。
工程iiの終了後、液温が30℃まで降下した時点で、[(HCOO-)(AgI)+]の凝集体の分散液に、前記炭化水素溶媒に対して、親和性を有する脂肪族炭化水素鎖を有する第一アミン(R-NH2)を添加して、凝集体を形成している[(HCOO-)(AgI)+]に第一アミン(R-NH2)を作用させることができる。すなわち、下記式(ii)で表記される反応によって、ギ酸銀(I)(HCOOAg)の第一アミン錯体(HCOOAg:NH2-R)が生成される。
2[(HCOO-)(AgI)+]+2R-NH2
→ 2[(HCOO-)(AgI)+:NH2-R] 式(ii)
生成するギ酸銀(I)(HCOOAg)の第一アミン錯体(HCOOAg:NH2-R)は、その第一アミン(R-NH2)部分の原子団Rは、炭化水素溶媒に対して、親和性を有する脂肪族炭化水素鎖を有しているため、該炭化水素溶媒中に溶解する。具体的には、式(ii)の反応は、恐らくは、下記の(ii-1)、(ii-2)の2つの素過程により進行していると、推定される。
(ii-1)
[HCOOAg](H2O)[AgOOCH]+R-NH2
→ [R-NH2:Ag+-OCHO](H2O)[AgOOCH]
(ii-2)
[R-NH2:Ag+-O-CHO](H2O)[AgOOCH]+R-NH2
→ [R-NH2:Ag+-O-CHO](H2O)[HCOO-+Ag:NH2-R]
凝集体中のギ酸銀(I)(HCOOAg)は、水分子(H2O)を「結晶水」の形態で取り込み、[HCOOAg](H2O)[AgOOCH]の形状を取っている。第一アミン(R-NH2)が作用し、ギ酸銀(I)(HCOOAg)中の銀カチオン((AgI)+)に配置すると、ギ酸銀(I)(HCOOAg)は、第一アミン錯体(HCOOAg:NH2-R)に変換される。その際、「結晶水」の形態で取り込まれている、水分子(H2O)は、第一アミン錯体(HCOOAg:NH2-R)のギ酸アニオン種(-O-CHO)部分に「溶媒和」する状態となる。具体的には、二つのギ酸アニオン種(-O-CHO)に水素結合を形成して、水分子(H2O)が「溶媒和」する状態;-O-CHO‥H-(HO)‥H-COO-となると、推定される。従って、最終的に生成するギ酸銀(I)(HCOOAg)の第一アミン錯体は、上記の水分子(H2O)が「溶媒和」する状態で、炭化水素溶媒中に溶解されると推定される。
(HCOOH:HOOCH)+2R-NH2
→ 2(R-NH2:HOOCH) 式(iii)
前記式(iii)のギ酸の第一アミン付加塩形成反応は、酸・塩基の「中和反応」に相当しており、発熱反応である。生成するギ酸の第一アミン付加塩(HCOOH:NH2-R)は、その第一アミン(R-NH2)部分の原子団Rは、炭化水素溶媒に対して、親和性を有する脂肪族炭化水素鎖を有しているため、該炭化水素溶媒中に溶解する。前記式(iii)のギ酸の第一アミン付加塩形成反応の進行に伴って、反応液の温度が上昇する。なお、反応液の温度が、利用している炭化水素溶媒の沸点に近づくと、該炭化水素溶媒の蒸散が開始するため、反応液の温度は、該炭化水素溶媒の沸点を超えることはない。
2(R-NH2:Ag-OOCH)
→2[R-NH2:Ag]+HCOOH+CO2↑ 式(iv)
この式(iv)で表記される分解的還元反応は、恐らくは、下記の(iv-1)、(iv-2)の2つの素過程により進行していると、推定される。
(iv-1)[R-NH2:Ag+-O-CHO](H2O)[HCOO-+Ag:NH2-R]
→ (R-NH2:Ag)+O=CHOH+[HO‥H‥COO-+Ag:NH2-R]
(iv-2) [HO‥H‥COO-+Ag:NH2-R]
→ [HOH‥COO]+(Ag:NH2-R)
→ (Ag:NH2-R)+H2O++CO2↑
前記式(iv)で表記される分解的還元反応で派生する二酸化炭素(CO2)は、気泡を形成するため、反応液では、発泡が観測される。また、副生されるギ酸(HCOOH)は、一旦は、ギ酸の二量体(HCOOH:HOOCH)を形成するが、反応液中に溶解している、前記第一アミンと、上記式(iii)で表記される反応によって、ギ酸の第一アミン付加塩(HCOOH:NH2-R)に変換される。
前記工程iiiの反応中は反応液を攪拌するが、式(iv)の分解的還元反応に起因する発泡が観測されなくなった後、液温が40℃まで下降した時点で、攪拌を停止する。
前記工程ivで回収された残渣に対して、原料の粉末状酸化銀(I)100質量部当たり、200質量部~300質量部の範囲、より好ましくは、200質量部~270質量部に選択される、メタノールと、50質量部~300質量部の範囲、好ましくは200質量部~300質量部の範囲、より好ましくは、200質量部~270質量部に選択される、蒸留水を加える。
前記工程vで回収される沈降物層に含まれる、第一アミンからなる被覆剤分子層が表面に形成されている銀ナノ粒子を、炭化水素溶媒中に再分散させる。
工程Bにおいて、工程Aで調製された銀ナノ粒子分散液に、チタン化合物およびマンガン化合物からなる群から選ばれる一種以上の金属化合物を加える。工程Bから、導電性ペーストを得ることができる。前記銀ナノ粒子分散液に、適宜他の溶媒(銀ナノ粒子分散液に含まれる溶媒以外の溶媒)を加えることもできる。あるいは、前記銀ナノ粒子分散液に含まれる溶媒の一部もしくは全部を他の溶媒と置換することもできる。
工程iiiでは、粉末状ギ酸銀(I)の分散液に第一アミンを添加する。この際、第一アミンとともに第二アミンを添加することもできる。この場合、第二アミンの分子量が、100以上150以下であることが好ましい。第二アミンは、前記炭化水素溶媒に対して親和性を有する脂肪族炭化水素鎖を有することが好ましい。
・工程A
まず、工程Aで銀ナノ粒子分散液を調製した。
粉末状の酸化銀(I)(Ag2O、式量231.735)100質量部(0.43モル部)をメチルシクロヘキサン(沸点100.9℃、密度0.7737)550質量部に分散させた。
得られた分散液に、室温(25℃)で攪拌しつつ、ギ酸(HCOOH、式量46.03、沸点100.75℃)50質量部(1.09モル部)を3~5分かけて滴下した。ギ酸の添加により、発熱反応が進み液温は45℃付近まで上昇した。粉末状の酸化銀がギ酸銀に変換されると、その後は反応液の温度が降下した。
得られた反応液の温度が27℃以下まで降下した時点で、2-エチルヘキシルオキシプロピルアミン(C11H25NO、式量187.32、沸点235℃)230質量部をメチルシクロヘキサン50質量部に溶解した溶液を、反応液に添加した。
得られた濃紺色の分散液をナス型フラスコに移し、減圧下で反応溶剤のメチルシクロヘキサンやジイソプロピルアミンを留去した。ナスフラスコ内の銀ナノ粒子を含む内容物は溶剤等が除去されるためスラリー状に変化した。
脱溶剤処理後の残渣にメタノール(沸点64.7℃)280質量部、蒸留水50質量部を添加した。
デカンテーションから得られた沈降相に、ヘプタン120質量部を添加した。沈降した銀ナノ粒子はメチルシクロヘキサンに分散した。沈降した銀粒子に残存していたメタノールはヘプタンとの相溶性が乏しいため相分離した。相分離したメタノール相(含水メタノール)部分を除去した。
銀ナノ粒子が分散したヘプタン層中には、若干量のメタノールが溶解し、混入していた。減圧下、混入しているメタノールを留去した。メタノールとヘプタンの沸点の差を利用してメタノールを選択的に留去した。具体的には、45℃(浴温)、150hPaで5min脱メタノールを行った後、減圧度を120hPaに上げて、さらに3min脱メタノールを行った。
得られた銀ナノ粒子分散液に含まれる金属銀の総量を測定し、出発原料の酸化銀(I)中に含まれる銀の含有量を基準とする収率を算出した。算出された収率は98%であった。
工程Aで得られた銀ナノ粒子分散液を、この分散液に含有される銀の量が60質量部となる量用い、これにテトラデカン(沸点253.6℃、密度0.7624g/cm3)38.2質量部、チタンテトライソプロポキシド(和光純薬工業製)1.8質量部を混合した。
工程Bにおいて、それぞれ表1に示す導電性ペースト処方を採用したこと以外は実施例1と同様にして、導電性ペーストの作成および評価を行った。結果を表1に示す。なお、例えば実施例4では、金属化合物として、チタン(IV)2-エチルヘキサノラートを用いている。また、例えば実施例5~7では、金属化合物を添加するために、2エチルへキサン酸マンガンミネラルスピリット溶液(和光純薬工業製、Mn8質量%)を用いている。
Claims (16)
- A)表面に被覆剤分子からなる被覆層を有する、平均粒子径5nm~20nmの銀ナノ粒子を調製する工程、
ここで該銀ナノ粒子の調製工程は、
液相中において、粉末状酸化銀(I)を原料として、該粉末状酸化銀(I)にギ酸を作用させ、ギ酸銀(I)に変換し、
ギ酸銀(I)中に含まれる銀カチオンを、銀原子に還元し、該銀原子から銀ナノ粒子を調製する工程であり、
工程i:
炭化水素溶媒を用いて、該粉末状酸化銀(I)の分散液を調製する工程;
工程ii:
前記該粉末状酸化銀(I)の分散液に対して、ギ酸を添加して、
前記該粉末状酸化銀(I)にギ酸を作用させ、ギ酸銀(I)に変換させ、
前記炭化水素溶媒中に、生成するギ酸銀(I)の粉末を分散してなる、粉末状ギ酸銀(I)の分散液を調製する工程;
工程iii:
前記粉末状ギ酸銀(I)の分散液に対して、第一アミンを添加して、
前記粉末状ギ酸銀(I)に該第一アミンを作用させ、ギ酸銀(I)の該第一アミン錯体を生成させ、
前記炭化水素溶媒中に、生成する該ギ酸銀(I)の第一アミン錯体を溶解させた後、
該ギ酸銀(I)の第一アミン錯体の分解的還元反応により生成する銀原子からなる平均粒子径5nm~20nmの銀ナノ粒子を生成させる工程、
ここで工程iiiにおいて生成される、平均粒子径5nm~20nmの銀ナノ粒子は、
その表面の銀原子に対して、前記第一アミンが、そのアミノ窒素原子上に存在する孤立電子対を利用して、配位的な結合を介して被覆してなる形態であり;ならびに、
B)工程Aから得られる銀ナノ粒子の分散液に、チタン化合物およびマンガン化合物からなる群から選ばれる一種以上の金属化合物を加える工程であって、この金属化合物に含まれる金属が、工程Aから得られる銀ナノ粒子の分散液に含まれる銀100質量部に対して、0質量部超、2.0質量部以下である、工程
を含むことを特徴とする導電性ペーストの製造方法。 - 前記チタン化合物がアルコキシチタン、カルボキシチタンおよびチタンアセチルアセトナートからなる群から選ばれる一種以上であり、前記マンガン化合物がカルボキシマンガンおよびマンガンアセチルアセトナートからなる群から選ばれる一種以上である請求項1に記載の方法。
- 工程Bにおいて加える金属化合物に含まれる金属が、工程Aから得られる銀ナノ粒子の分散液に含まれる銀100質量部に対して、0.5~2.0質量部である、請求項1または2に記載の方法。
- 工程iにおいて用いる炭化水素溶媒が、原料の粉末状酸化銀(I)100質量部当たり、350質量部~550質量部の範囲に選択される、沸点が65℃~155℃の範囲の炭化水素溶媒である、請求項1~3のいずれか一項に記載の方法。
- 工程iにおいて用いる炭化水素溶媒が、
炭素数6~9の炭化水素である
ことを特徴とする請求項1~4の何れか一項に記載の方法。 - 工程iiにおいて用いるギ酸が、原料の粉末状酸化銀(I)中に含まれる銀カチオン1モル量当たり、1.1モル量~1.4モル量の範囲に選択される、請求項1~5のいずれか一項に記載の方法。
- 工程iiiにおいて、炭素数8~11のモノカルボン酸を添加する、請求項1~6のいずれか一項に記載の方法。
- 工程iiiにおいて、前記第一アミンとして炭素数9~11の第一アミンを用い、かつ、第二アミンを添加する、請求項1~7のいずれか一項に記載の方法。
- 工程iiiにおいて用いる第一アミンが、原料の粉末状酸化銀(I)中に含まれる銀カチオン1モル量当たり、1.2モル量~1.8モル量の範囲に選択される、前記炭化水素溶媒に対して、親和性を有する脂肪族炭化水素鎖を有する原子団Rとアミノ基からなる第一アミン(R-NH2)である、請求項1~8のいずれか一項に記載の方法。
- 前記炭化水素溶媒に対して、親和性を有する脂肪族炭化水素鎖を有する原子団Rとアミノ基からなる第一アミン(R-NH2)において、
前記炭化水素溶媒に対して、親和性を有する脂肪族炭化水素鎖を有する原子団Rは、
炭素数の合計が7~12の(アルキルオキシ)アルキル基、(アルキルアミノ)アルキル基、(ジアルキルアミノ)アルキル基、アルキル基から選択される
ことを特徴とする請求項9に記載の方法。 - 前記炭化水素溶媒に対して、親和性を有する脂肪族炭化水素鎖を有する原子団Rとアミノ基からなる第一アミン(R-NH2)は、その沸点が、170℃を超えるアミン化合物である
ことを特徴とする請求項9または10に記載の方法。 - 前記炭化水素溶媒に対して、親和性を有する脂肪族炭化水素鎖を有する原子団Rとアミノ基からなる第一アミン(R-NH2)は、その沸点が、200℃~270℃の範囲のアミン化合物である
ことを特徴とする請求項11に記載の方法。 - 前記炭化水素溶媒に対して、親和性を有する脂肪族炭化水素鎖を有する原子団Rとアミノ基からなる第一アミン(R-NH2)は、3-アルキルオキシプロピルアミン(R’-O-CH2CH2CH2-NH2)であり、
前記アルキルオキシ原子団(R’-O-)を構成するアルキル基(R’)は、炭素数4~9のアルキル基である
ことを特徴とする請求項9~12のいずれか一項に記載の方法。 - 前記工程iiiにおいて、
前記炭化水素溶媒に対して、親和性を有する脂肪族炭化水素鎖を有する原子団Rとアミノ基からなる第一アミン(R-NH2)は、
前記炭化水素溶媒を用いて、希釈してなる希釈溶液とした上で、前記粉末状ギ酸銀(I)の分散液に添加され、
該希釈溶液は、
該第一アミン100質量部当たり、
前記炭化水素溶媒を20質量部~45質量部の範囲で加えて、希釈がなされている
ことを特徴とする請求項1~13のいずれか一項に記載の方法。 - 前記工程iiiにおいて、
前記粉末状ギ酸銀(I)に該第一アミンが作用して、ギ酸銀(I)の該第一アミン錯体を生成する反応に加えて、
前記工程iiにおいて、粉末状酸化銀(I)との反応によって、消費されずに、残余しているギ酸に、添加される前記第一アミンが作用して、ギ酸の該第一アミン付加塩を形成する反応が併行して進行し、
該ギ酸の該第一アミン付加塩を形成する反応に起因する反応熱によって、液温の上昇が引き起こされる
ことを特徴とする請求項1~14のいずれか一項に記載の方法。 - 工程Aにおいて、工程iii後に、下記の工程iv~工程viをさらに有する
工程iv:
前記工程iiiの終了後、
前記第一アミンが表面を被覆している、平均粒子径5nm~20nmの銀ナノ粒子が含有されている反応液中に含まれる、前記炭化水素溶媒を、減圧下で留去し、
前記第一アミンが表面を被覆している、平均粒子径5nm~20nmの銀ナノ粒子、前記ギ酸の第一アミン付加塩、残余する第一アミンを含む残渣を回収する工程;
工程v:
前記工程ivで回収された残渣に対して、
原料の粉末状酸化銀(I)100質量部当たり、
200質量部~300質量部の範囲に選択される、メタノールと、
50質量部~300質量部の範囲に選択される、蒸留水を加え、
該メタノールと蒸留水の混合溶媒中に、該残渣中に含まれる、前記ギ酸の第一アミン付加塩、残余する第一アミンを溶解させ、
前記第一アミンが表面を被覆している、平均粒子径5nm~20nmの銀ナノ粒子を含む沈降物層と、前記混合溶媒中に前記ギ酸の第一アミン付加塩、第一アミンを溶解してなる液相層に層分離し、
前記混合溶媒中に前記ギ酸の第一アミン付加塩、第一アミンを溶解してなる液相層を除去し、前記第一アミンが表面を被覆している、平均粒子径5nm~20nmの銀ナノ粒子を含む沈降物層を回収する工程;
工程vi:
前記工程vで回収された沈降物層に対して、
原料の粉末状酸化銀(I)100質量部当たり、
100質量部~200質量部の範囲に選択される、沸点が65℃~155℃の範囲の炭化水素溶媒を加えて、
該沸点が65℃~155℃の範囲の炭化水素溶媒中に、前記沈降物層中に含まれる、前記第一アミンが表面を被覆している、平均粒子径5nm~20nmの銀ナノ粒子を均一に分散させて、分散液とし、
前記沈降物層中に含浸されていた、少量の前記メタノールと蒸留水の混合溶媒の層と、前記沸点が65℃~155℃の範囲の炭化水素溶媒を分散溶媒とする分散液の層に層分離し、
前記少量の前記メタノールと蒸留水の混合溶媒の層を除去し、前記沸点が65℃~155℃の範囲の炭化水素溶媒を分散溶媒とする分散液の層を回収する工程;
ことを特徴とする請求項1~15のいずれか一項に記載の方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020187017383A KR20180090288A (ko) | 2015-12-03 | 2015-12-03 | 도전성 페이스트의 제조 방법 |
US15/780,306 US20180355191A1 (en) | 2015-12-03 | 2015-12-03 | Method for producing electro-conductive paste |
JP2017553572A JPWO2017094166A1 (ja) | 2015-12-03 | 2015-12-03 | 導電性ペーストの製造方法 |
PCT/JP2015/084011 WO2017094166A1 (ja) | 2015-12-03 | 2015-12-03 | 導電性ペーストの製造方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2015/084011 WO2017094166A1 (ja) | 2015-12-03 | 2015-12-03 | 導電性ペーストの製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017094166A1 true WO2017094166A1 (ja) | 2017-06-08 |
Family
ID=58796560
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/084011 WO2017094166A1 (ja) | 2015-12-03 | 2015-12-03 | 導電性ペーストの製造方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20180355191A1 (ja) |
JP (1) | JPWO2017094166A1 (ja) |
KR (1) | KR20180090288A (ja) |
WO (1) | WO2017094166A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3690898A4 (en) * | 2017-09-29 | 2021-06-30 | Harima Chemicals, Inc. | ELECTRICALLY CONDUCTIVE PASTE |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3708619B1 (en) * | 2019-03-11 | 2024-07-31 | Karlsruher Institut für Technologie | Highly conductive, printable ink for highly stretchable soft electronics and highly conductive, ultra-stretchable conductors obtainable therefrom |
WO2021001763A1 (en) * | 2019-07-02 | 2021-01-07 | Xtpl S.A. | Method of forming contiguous conductive features on a substrate |
US11186493B2 (en) | 2019-09-05 | 2021-11-30 | Imam Abdulrahman Bin Faisal University | Green synthesis of noble metal/transition metal oxide nanocomposite |
CN114918424A (zh) * | 2022-05-18 | 2022-08-19 | 浙江海钛新材料科技股份有限公司 | 一种甲酸银高效制备低温纳米银浆的方法和装置 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005293937A (ja) * | 2004-03-31 | 2005-10-20 | Harima Chem Inc | 導電性ito膜上、あるいは導電性ito膜の下地基板とするガラス基板表面上への金属薄膜層の形成方法、および該方法による導電性ito膜上、あるいは導電性ito膜の下地基板とするガラス基板表面上の金属薄膜層 |
WO2006041030A1 (ja) * | 2004-10-08 | 2006-04-20 | Mitsui Mining & Smelting Co., Ltd. | 導電性インク |
JP2006348160A (ja) * | 2005-06-15 | 2006-12-28 | Mitsui Mining & Smelting Co Ltd | 導電性インク |
WO2009097269A1 (en) * | 2008-01-30 | 2009-08-06 | Basf Catalysts Llc | Conductive inks |
JP2011153362A (ja) * | 2010-01-28 | 2011-08-11 | Harima Chemicals Inc | 銀ナノ粒子の製造方法 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE602004020396D1 (de) | 2004-06-23 | 2009-05-14 | Harima Chemicals Inc | Leitfähige metallpaste |
JP5309521B2 (ja) * | 2006-10-11 | 2013-10-09 | 三菱マテリアル株式会社 | 電極形成用組成物及びその製造方法並びに該組成物を用いた電極の形成方法 |
KR100711505B1 (ko) * | 2007-01-30 | 2007-04-27 | (주)이그잭스 | 도전막 형성을 위한 은 페이스트 |
JP5169389B2 (ja) * | 2007-04-19 | 2013-03-27 | 三菱マテリアル株式会社 | 導電性反射膜の製造方法 |
WO2013041120A1 (en) * | 2011-09-19 | 2013-03-28 | Telecom Italia S.P.A. | "measurement on a data flow in a communication network" |
JP6001861B2 (ja) * | 2012-01-11 | 2016-10-05 | 株式会社ダイセル | 銀ナノ粒子の製造方法及び銀ナノ粒子、並びに銀塗料組成物 |
KR20150006091A (ko) * | 2012-02-29 | 2015-01-15 | 이슘 리서치 디벨롭먼트 컴퍼니 오브 더 히브루 유니버시티 오브 예루살렘, 엘티디. | 금속 전구체 나노입자들을 함유한 잉크 |
-
2015
- 2015-12-03 JP JP2017553572A patent/JPWO2017094166A1/ja active Pending
- 2015-12-03 US US15/780,306 patent/US20180355191A1/en not_active Abandoned
- 2015-12-03 KR KR1020187017383A patent/KR20180090288A/ko unknown
- 2015-12-03 WO PCT/JP2015/084011 patent/WO2017094166A1/ja active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005293937A (ja) * | 2004-03-31 | 2005-10-20 | Harima Chem Inc | 導電性ito膜上、あるいは導電性ito膜の下地基板とするガラス基板表面上への金属薄膜層の形成方法、および該方法による導電性ito膜上、あるいは導電性ito膜の下地基板とするガラス基板表面上の金属薄膜層 |
WO2006041030A1 (ja) * | 2004-10-08 | 2006-04-20 | Mitsui Mining & Smelting Co., Ltd. | 導電性インク |
JP2006348160A (ja) * | 2005-06-15 | 2006-12-28 | Mitsui Mining & Smelting Co Ltd | 導電性インク |
WO2009097269A1 (en) * | 2008-01-30 | 2009-08-06 | Basf Catalysts Llc | Conductive inks |
JP2011153362A (ja) * | 2010-01-28 | 2011-08-11 | Harima Chemicals Inc | 銀ナノ粒子の製造方法 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3690898A4 (en) * | 2017-09-29 | 2021-06-30 | Harima Chemicals, Inc. | ELECTRICALLY CONDUCTIVE PASTE |
Also Published As
Publication number | Publication date |
---|---|
US20180355191A1 (en) | 2018-12-13 |
JPWO2017094166A1 (ja) | 2018-09-20 |
KR20180090288A (ko) | 2018-08-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5426413B2 (ja) | 銀ナノ粒子の製造方法 | |
JP5371247B2 (ja) | 銀塗料およびその製造法 | |
JP6220920B2 (ja) | 銀微粒子分散体、銀微粒子及びその製造方法 | |
WO2017094166A1 (ja) | 導電性ペーストの製造方法 | |
KR101951452B1 (ko) | 피복 금속 미립자와 그 제조 방법 | |
JP4674375B2 (ja) | 銀粒子粉末の製造法 | |
JP5574761B2 (ja) | 被覆銀超微粒子とその製造方法 | |
JP6315669B2 (ja) | 銀微粒子の調製方法 | |
JP6979150B2 (ja) | 被覆銀粒子とその製造方法、導電性組成物、および導電体 | |
KR20100014347A (ko) | 은 입자 분말의 제조법 | |
JP2014031542A (ja) | 被覆銀微粒子の製造方法及び当該製造方法で製造した被覆銀微粒子 | |
JP5274000B2 (ja) | 低温焼結性銀微粉および銀塗料ならびにそれらの製造法 | |
JP4897624B2 (ja) | 低温焼結性銀微粉および銀塗料ならびにそれらの製造法 | |
WO2010137080A1 (ja) | 低温焼結性金属ナノ粒子の製造方法および金属ナノ粒子およびそれを用いた分散液の製造方法 | |
JP4674376B2 (ja) | 銀粒子粉末の製造法 | |
JP2009102716A (ja) | 銀ナノ粒子の製造方法 | |
KR20160120716A (ko) | 금속 나노 미립자의 제조 방법 | |
TWI683322B (zh) | 導電性糊劑之製造方法 | |
WO2015045932A1 (ja) | 銅薄膜形成組成物 | |
WO2017073364A1 (ja) | 印刷用導電性ペーストおよびその調製方法、ならびに銀ナノ粒子分散液の調製方法 | |
TWI757412B (zh) | 銀奈米粒子的製造方法 | |
JP5314451B2 (ja) | 金属ニッケル粒子粉末およびその分散液並びに金属ニッケル粒子粉末製造法 | |
JP7057183B2 (ja) | 銀微粒子分散体の製造方法 | |
JP2014198905A (ja) | 被覆銀超微粒子とその製造方法 | |
JP2015040319A (ja) | 金属ナノ粒子の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15909796 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2017553572 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20187017383 Country of ref document: KR Kind code of ref document: A |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15909796 Country of ref document: EP Kind code of ref document: A1 |