WO2017090400A1 - H形鋼の継手構造およびh形鋼の接合方法 - Google Patents

H形鋼の継手構造およびh形鋼の接合方法 Download PDF

Info

Publication number
WO2017090400A1
WO2017090400A1 PCT/JP2016/082614 JP2016082614W WO2017090400A1 WO 2017090400 A1 WO2017090400 A1 WO 2017090400A1 JP 2016082614 W JP2016082614 W JP 2016082614W WO 2017090400 A1 WO2017090400 A1 WO 2017090400A1
Authority
WO
WIPO (PCT)
Prior art keywords
joint structure
flange
steel plate
web
bearing steel
Prior art date
Application number
PCT/JP2016/082614
Other languages
English (en)
French (fr)
Inventor
悠介 鈴木
聡 北岡
半谷 公司
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to SG11201803846VA priority Critical patent/SG11201803846VA/en
Priority to JP2017552337A priority patent/JPWO2017090400A1/ja
Publication of WO2017090400A1 publication Critical patent/WO2017090400A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K25/00Slag welding, i.e. using a heated layer or mass of powder, slag, or the like in contact with the material to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K37/00Auxiliary devices or processes, not specially adapted to a procedure covered by only one of the preceding main groups
    • B23K37/06Auxiliary devices or processes, not specially adapted to a procedure covered by only one of the preceding main groups for positioning the molten material, e.g. confining it to a desired area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/16Arc welding or cutting making use of shielding gas
    • B23K9/173Arc welding or cutting making use of shielding gas and of a consumable electrode
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/18Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons
    • E04B1/24Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons the supporting parts consisting of metal
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/38Connections for building structures in general
    • E04B1/58Connections for building structures in general of bar-shaped building elements

Definitions

  • the present invention relates to a joint structure and a joining method that are particularly suitable for joining extremely thick H-section steels used as pillar members of building structures.
  • H-shaped steel is widely used as a pillar member of a building structure, and in the case of a large-scale structure, an extremely thick H-section steel with an extremely thick cross section is used.
  • the H-shaped steel is cut to a predetermined length due to restrictions on manufacturing and transportation, and when used as a column member, it is necessary to join at a factory or a construction site.
  • a method of joining column members there is a case where welding joining by gas shield arc welding is performed, but when a steel member has an extremely thick cross section, it is necessary to perform multi-layer welding, which requires a lot of time, Production efficiency is poor.
  • Patent Document 1 a groove portion is provided in an oblique direction on the flange, and a metal plating is installed on the inside and outside of the flange so as to surround the groove portion, and electroslag welding is performed along the groove line.
  • a method of column-welding a section steel is disclosed.
  • Patent Document 1 in order to perform welding, it is necessary to perform a process of notching a flange and providing a groove part or a process of providing a scallop on a web, and further, since the web is bolted or welded, there are many processes. This is extremely time consuming.
  • This invention solves this subject, reduces the number of parts and the number of processing steps in the manufacture of H-shaped steel joints, and makes it possible to efficiently manufacture column joints between H-shaped steels with a simple component configuration and process. With the goal.
  • the present invention adopts the following aspects.
  • a first aspect of the present invention is a joint structure in which a pair of H-section steels each having a web, a flange, and a fillet are joined at flat end faces, and is formed between the end faces of the flange.
  • the end surfaces of the web are joined via the bearing steel plate, and the end surfaces of the flange are joined via the weld metal, the end surface of the web that mainly transmits compressive stress is welded. It is possible to make the state of metal touch that does not require. Therefore, the column joint of H-section steel can be efficiently manufactured, without giving the special process for forming a groove, a scallop, etc. in the end face of H-section steel.
  • the weld metal may be formed by electroslag welding or electrogas arc welding. According to this structure, flanges can be joined by complete penetration welding. Therefore, the resistance to bending buckling can be increased.
  • the bearing steel plate and the web may be fillet welded. According to this configuration, the resistance to shearing can be increased.
  • the upper surface and the lower surface of the bearing steel plate may be in surface contact with the end surface of the fillet, respectively. According to this structure, when performing electroslag welding or electrogas arc welding, the metal pad arrange
  • the upper surface and the lower surface of the bearing steel plate may be in surface contact with part of the end surface of the flange over the entire length in the width direction of the flange. According to this configuration, when performing electroslag welding or electrogas arc welding, leakage of molten slag or molten metal can be prevented easily and reliably. Moreover, since the bearing steel plate is extended over the full length direction of a flange, when performing electroslag welding or electrogas arc welding, the metal pad arrange
  • the joint structure according to (1) may further include an inner surface side metal fitting attached to the inner surface of the flange and the weld metal. According to this configuration, when performing electroslag welding or electrogas arc welding, leakage of molten slag or molten metal can be prevented easily and reliably.
  • the inner surface side metal pad is formed with an R portion that is in surface contact with the surface of the fillet and a convex portion that is in surface contact with the surface of the bearing steel plate. Also good.
  • the joint structure according to (1) may further include an outer surface side abutting attached to the outer surface of the flange and the weld metal. According to this configuration, when performing electroslag welding or electrogas arc welding, leakage of molten slag or molten metal can be prevented easily and reliably.
  • a second aspect of the present invention is a method for joining H-shaped steels in which a pair of H-shaped steels each having a web, a flange, and a fillet are joined to each other between flat end surfaces, wherein the upper surface and the lower surface are the webs.
  • the end surfaces of the flanges are Electroslag welding or electrogas arc welding.
  • the end surfaces of the web are joined via the bearing steel plate, and the end surfaces of the flange are joined via the weld metal, the end surface of the web that mainly transmits compressive stress is welded. It is possible to make the state of metal touch that does not require. Therefore, the H-shaped steel column joint can be efficiently manufactured without performing special processing for forming a groove, a scallop or the like on the end surface of the H-shaped steel.
  • an H-section steel column joint can be efficiently manufactured without subjecting the H-section steel to special processing such as scalloping. Therefore, it is possible to improve the productivity of a building structure using H-shaped steel as a column member and contribute to shortening the work period. In particular, even in the case of extremely thick H-section steel, the column joint can be efficiently manufactured.
  • the present invention has been conceived of a joint structure of H-section steel that can be easily manufactured by using electroslag welding or electrogas arc welding, utilizing the high heat input welding characteristics of H-section steel manufactured by rolling. In particular, it is suitable for joining of extremely thick H-section steels used as column members.
  • the H-section steel 10 used in the following embodiment has a pair of flanges 11 whose cross-sectional shapes are parallel to each other, a web 12 that is orthogonally connected to the pair of flanges 11, and a flange 11. And a fillet 13 formed between the web 12.
  • the fillet 13 is a curved portion at the boundary between the flange 11 and the web 12, and the end of the curved portion in the cross-sectional shape is referred to as an R-stop 14.
  • the surfaces facing each other outward are referred to as outer surfaces 11a, and the surfaces facing each other inward are referred to as inner surfaces 11b.
  • a is “flange width”
  • b is “inner web height”
  • c is “flange thickness”
  • d is “web thickness”.
  • wf is “R-stop flange width wf”, which means a flange width direction distance between both fillet R stops on the flange inner surface.
  • FIGS. 2 and 3A to 3C are views for explaining the configuration of the H-section steel joint structure 1 according to an embodiment of the present invention.
  • a bearing steel plate 2 that transmits a vertical load acting on the H-section steel 10 is disposed between the webs 12 of a pair of H-section steels 10 having the same cross-sectional shape dimension.
  • the webs 12 are in contact with each other with the pressure steel plate 2 interposed therebetween. That is, the webs 12 of the pair of H-section steels 10 are in contact with each other by a metal touch that transmits only compressive stress.
  • the flanges 11 that need to resist bending buckling are joined via a weld metal 15 formed by electroslag welding.
  • the flanges 11 are joined together by full penetration welding rather than by metal touch. That is, the bearing steel plate 2 is disposed between the end surfaces of the web 12 such that the upper surface and the lower surface are in surface contact with the entire flat end surface of the web 12 and the side surface is integrally fused with the weld metal 15. Is done.
  • the width w of the bearing steel plate 2 is equal to the R-stop flange width wf. Therefore, the upper surface and the lower surface of the bearing steel plate 2 are arranged so that the center surface of the web 12 is substantially symmetrical in a state in which the entire surface of the end surface of the web 12 and the end surface of the fillet 13 are covered. Further, as shown in FIG. 3A, the length of the bearing steel plate 2 that is perpendicular to the width w of the bearing steel plate 2 is equal to the internal height b of the web 12. The thickness t ⁇ b> 2 of the bearing steel plate 2 is equal to the gap g (see FIG.
  • the gap g is a gap for forming the weld metal 15 by electroslag welding. Therefore, the thickness t2 of the bearing steel plate 2 is set to about 10 mm to 60 mm, preferably about 15 mm to 30 mm so that a nozzle for performing electroslag welding can be inserted into the gap g.
  • welded metal is a metal that has been melted and solidified during welding, and does not include a weld heat affected zone.
  • the outer surface side abutment 3 and the inner surface side abutment 4 having a dimension in the H-shaped steel height direction larger than the thickness t2 of the bearing steel plate 2 are provided on the outer surface 11a and the inner surface 11b of each flange 11. Is arranged.
  • the outer surface side metal pad 3 and the inner surface side metal pad 4 have a substantially rectangular parallelepiped shape.
  • the outer surface side metal fitting 3 and the inner surface side metal plating 4 block the gap g between the H-section steels 10 and 10 so that molten slag and molten metal do not flow out of the welding range when the flanges 11 are electroslag welded. Is for.
  • the outer surface side metal plate 3 and the inner surface side metal plate 4 made of steel plates are attached to the H-section steel 10 even after welding. . That is, the outer surface side metal plate 3 and the inner surface side metal plate 4 are attached to the flange 11 and the weld metal 15.
  • the “H-section steel height direction” refers to the length direction of the H-section steel 10 itself used as a column member.
  • the outer surface side metal plate 3 provided on the outer surface 11a of the flange 11 is a flat steel plate that closes the outer surface side of the gap g between the flanges 11.
  • the dimension in the height direction of the H-shaped steel 10 of the outer surface side metal 3 is larger than the gap g between the H-shaped steels 10, that is, the thickness t2 of the bearing steel plate 2. Is equal to the flange width a.
  • the inner surface side metal pads 4 provided on the inner surface 11b of the flange 11 are respectively disposed on both sides of the flange 11 in the width direction with a width w of the bearing steel plate 2 therebetween as shown by a dotted line in FIG. 3A. Therefore, the inner metal pad 4 has a dimension in the height direction of the H-section steel 10 that is larger than the gap g between the H-section steels 10, that is, the thickness t2 of the bearing steel plate 2, and a dimension in the flange width direction. It is a flat plate of the length from the end of this to the side surface of the bearing steel plate 2.
  • the inner surface side metal pad 4 does not need to consider the shape of the fillet 13, and the flange 11 A substantially rectangular flat plate in contact with the inner surface and the side surface of the bearing steel plate 2 can be used.
  • Such inner surface side metal pads 4 are disposed on both sides of the inner surface of both flanges 11 with the bearing steel plate 2 interposed therebetween, as indicated by dotted lines in FIG. 3A.
  • the gap g between the flanges 11 is closed, and the end of the flange 11 and the outer surface side metal 3 and the inner surface side metal 4 A space surrounded by is formed, and the weld metal 15 can be formed by electroslag welding.
  • the bearing steel plate 2 covered so as to be in surface contact with the web 12 is arranged with the central plane of the web 12 as a substantially symmetrical plane.
  • the web 12 is contacted
  • the inner surface side stopper 4 is arranged.
  • the gap between the flanges 11 is joined by electroslag welding.
  • welding is performed by inserting a welding wire into a space surrounded by the gap between the flanges 11 and the outer surface side metal plate 3 and the inner surface side metal plate 4.
  • electroslag welding and electrogas arc welding in order to avoid the outflow of molten slag and molten metal, it is not possible to make the welding progress direction horizontal. Therefore, it is preferable to perform in a state where the flange width direction is the vertical direction.
  • the joint structure 1 is configured with being attached to the H-section steel 10 after welding.
  • a water-cooled copper brazing metal, a ceramic backing material, or a flux backing material is used as the outer surface side metal plating 3 and the inner surface side metal plating 4, it is removed after welding and used repeatedly.
  • the surface of the weld metal 15 is flush with the outer surface and the inner surface of the flange 11.
  • FIG. 5 illustrates an example of a welding method in the case where a water-cooled copper brazing is used as the outer surface side metal pad 3 and the inner surface side metal pad 4. As shown in FIG.
  • the outer surface side metal pad 3 is arranged on the outer surface 11 a of the flange 11 so as to close a part of the gap between the H-shaped steels 10, and the outer surface side contact is made according to the welding position by the welding wire 9.
  • the gold 3 is slid sequentially.
  • the joint structure 1 is a product of the H-section steel 10 by making the web 12 of the H-section steel 10 abut by metal touch and the flange 11 by complete penetration welding by electroslag welding or electrogas arc welding.
  • the H-section steel can be joined easily and quickly using the end faces of the above.
  • the joint structure 1 is a structure of an extra-thick H-shaped steel column joint mainly for supporting vertical loads, such as a structural column or a column of a seismically isolated building, and by specializing in a column joint,
  • the structure is simplified and the number of processing can be reduced. That is, man-hours and time can be greatly reduced as compared with a method in which a groove is formed on the web 12 and multilayer welding is performed, and a method in which the web 12 is also welded by electroslag welding or the like.
  • the extremely thick H-section steel refers to an H-section steel having a flange plate thickness of 40 mm or more.
  • the shear force can be transmitted to the web 12, and thus the resistance force against the shear force can be efficiently increased.
  • the bearing steel plate 2 since the bearing steel plate 2 covers the fillet 13 so as to make surface contact with the fillet 13, the fillet welding is performed on the step portion generated between the web 12 and the bearing steel plate 2.
  • the shearing force can be transmitted without performing special processing such as groove processing on the workpiece (H-shaped steel) and the bearing steel plate.
  • the fillet 13 of the H-section steel 10 is covered with the upper surface and the lower surface of the bearing steel plate 2 so that an extremely simple flat plate-shaped metal plate is disposed on the outer surface of the flange 11 and, if necessary, the inner surface. It is not necessary to perform groove processing or scallop processing or the like on the member to be joined (H-shaped steel), and leakage of molten slag and molten metal can be easily and reliably prevented. Therefore, according to the joint structure 1 according to the present embodiment, the end face of the H-section steel 10 can be obtained by using an extremely simple part without performing special processing on the joint surface of the H-section steel 10 or in the vicinity thereof.
  • a high-quality column joint structure can be efficiently manufactured only by processing flatly by sawing or gas fusing.
  • the joint structure 1 is comprised in the state by which the outer surface side metal 3 and the inner surface side metal 4 which consist of a steel plate were attached to the H-section steel 10 after welding, 3 and the inner surface side metal pad 4 may be removed after welding.
  • a metal stopper can be used repeatedly and manufacture of the joint structure 1 can be performed very economically.
  • the upper surface and the lower surface of the bearing steel plate 2 are part of the end surface of the flange 11 over the entire length in the width direction of the flange 11. It is good also as a structure which contacts each surface.
  • the width w of the bearing steel plate 2 is equal to the flange width a of the H-section steel 10 (see FIG. 1), and the length perpendicular to the width w of the bearing steel plate 2 is the internal height b of the web. Longer than. Therefore, as shown in FIGS.
  • both end portions in the length direction of the bearing steel plate 2 are arranged in a state of being embedded in a gap between both flanges 11 of the pair of H-section steels 10.
  • the bearing steel plate 2 closes the inner surface side of the flange 11, the inner surface side metal pad 4 is not necessary, and only the outer surface is the same as that of the above-described embodiments of FIGS. 2 and 3A to 3C.
  • An outer surface side metal 3 is disposed.
  • an R portion that is in surface contact with the surface of the fillet 13 instead of the inner surface side metal pad 4, and the surface of the bearing steel plate It is good also as a structure using 4 C of inner surface side metal-plating metal in which the convex part which surface-contacts was formed.
  • the R portion and the convex portion of the inner surface side metal pad 4C are brought into surface contact with the surface of the fillet 13 and the surface of the bearing steel plate 2, respectively, and the shaped (substantially rectangular parallelepiped) flange welding is performed.
  • the width w of the bearing steel plate 2 can be made equal to the thickness of the web. Moreover, since the R part and the convex part of the inner surface side metal pad 4C are in surface contact with the fillet 13 and the bearing steel plate 2, leakage of molten slag and molten metal can be prevented more easily and reliably when performing electroslag welding. be able to.
  • the present invention can be applied to a joint structure of H-shaped steel that mainly receives compressive force such as a building structure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Architecture (AREA)
  • Plasma & Fusion (AREA)
  • Electromagnetism (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Optics & Photonics (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)
  • Joining Of Building Structures In Genera (AREA)
  • Arc Welding In General (AREA)

Abstract

この継手構造は、ウェブ、フランジ、及びフィレットを各々有する一対のH形鋼を平坦な端面同士で接合した継手構造であって、前記フランジの端面同士の間に形成された溶接金属と、上面及び下面が前記ウェブの端面全面にそれぞれ面接触するとともに、側面が前記溶接金属と一体的に融合するように、前記ウェブの端面同士の間に配置される支圧鋼板と、を備える。

Description

H形鋼の継手構造およびH形鋼の接合方法
 本発明は、特に建築構造物の柱部材として用いられる極厚H形鋼同士の接合において好適な継手構造及び接合方法に関する。
 本願は、2015年11月26日に、日本に出願された特願2015-230440号に基づき優先権を主張し、その内容をここに援用する。
 建築構造物の柱部材として広くH形鋼が用いられ、大規模構造物の場合には、極厚断面の極厚H形鋼が使用される。H形鋼は、製造や輸送の制約から所定の長さに切断されており、柱部材として用いる際には、工場あるいは建設現場で接合する必要がある。例えば、柱部材の接合方法として、ガスシールドアーク溶接による溶接接合を行う場合があるが、鋼部材が極厚断面の場合には多層盛溶接を行う必要があるため、多大な時間を要し、製造効率が悪い。
 特許文献1には、フランジに斜め方向に開先部を設け、その開先部を囲うようにフランジ内側及び外側に当て金を設置して、開先線に沿ってエレクトロスラグ溶接する極厚H形鋼の柱継ぎ溶接方法が開示されている。
日本国特許第4038003号公報
 ところが、特許文献1の場合、溶接を行うために、フランジを切り欠いて開先部を設ける加工やウェブにスカラップを設ける加工が必要であり、さらにウェブをボルト接合または溶接するため、工程が多く極めて手間がかかる。
 本発明は、かかる課題を解決し、H形鋼の継手製造における部品点数や加工工数を低減し、簡易な部品構成および工程でH形鋼同士の柱継手を効率的に製造できるようにすることを目的とする。
 上記問題を解決するため、本発明は、下記の態様を採用する。
(1)本発明の第一の態様は、ウェブ、フランジ、及びフィレットを各々有する一対のH形鋼を平坦な端面同士で接合した継手構造であって、前記フランジの端面同士の間に形成された溶接金属と、上面及び下面が前記ウェブの端面全面にそれぞれ面接触するとともに、側面が前記溶接金属と一体的に融合するように、前記ウェブの端面同士の間に配置される支圧鋼板と、を備える。
 この構成によれば、ウェブの端面同士が支圧鋼板を介して接合されるとともに、フランジの端面同士は溶接金属を介して接合されるため、圧縮応力を主に伝達するウェブの端面については溶接を必須としないメタルタッチの状態とすることができる。従って、H形鋼の端面に開先やスカラップ等を形成するための特別な加工を施すことなく、H形鋼の柱継手を効率的に製造することができる。
(2)上記(1)に記載の継手構造では、前記溶接金属が、エレクトロスラグ溶接又はエレクトロガスアーク溶接により形成されてもよい。
 この構成によれば、フランジ同士を完全溶け込み溶接により接合することができる。従って、曲げ座屈に対する抵抗力を高めることができる。
(3)上記(1)に記載の継手構造では、前記支圧鋼板と前記ウェブとが隅肉溶接されてもよい。
 この構成によれば、せん断に対する抵抗力を高めることができる。
(4)上記(1)に記載の継手構造では、前記支圧鋼板の上面及び下面が前記フィレットの端面にそれぞれ面接触してもよい。
 この構成によれば、エレクトロスラグ溶接又はエレクトロガスアーク溶接を行う際に、フィレット端面に対応する位置に配置する当て金を必須としない。従って、フィレット近傍からの溶融スラグや溶融金属の漏出を簡易且つ確実に防ぐことができる。
(5)上記(1)に記載の継手構造では、前記フランジの幅方向全長に亘り、前記支圧鋼板の上面及び下面が前記フランジの端面の一部にそれぞれ面接触してもよい。
 この構成によれば、エレクトロスラグ溶接又はエレクトロガスアーク溶接を行う際に、溶融スラグや溶融金属の漏出を簡易且つ確実に防ぐことができる。また、フランジの長手方向全長に亘り支圧鋼板が延在しているため、エレクトロスラグ溶接又はエレクトロガスアーク溶接を行う際に、フランジの内面に配置する当て金が不要となる。
(6)上記(1)に記載の継手構造では、前記フランジの内面と前記溶接金属とに取り付けられた内面側当て金を更に備えてもよい。
 この構成によれば、エレクトロスラグ溶接又はエレクトロガスアーク溶接を行う際に、溶融スラグや溶融金属の漏出を簡易且つ確実に防ぐことができる。
(7)上記(6)に記載の継手構造では、前記内面側当て金に、前記フィレットの表面に面接触するR部と、前記支圧鋼板の表面に面接触する凸部とが形成されてもよい。
 この構成によれば、支圧鋼板をウェブの端面全面のみに面接触させる場合であっても、エレクトロスラグ溶接又はエレクトロガスアーク溶接を行う際に、溶融スラグや溶融金属の漏出を簡易且つ確実に防ぐことができる。
(8)上記(6)に記載の継手構造では、前記内面側当て金に、前記フィレットの表面に面接触するR部と、前記支圧鋼板が嵌合する凹部とが形成されてもよい。
 この構成によれば、支圧鋼板をウェブの端面全面とフィレットとに面接触させる場合であっても、エレクトロスラグ溶接又はエレクトロガスアーク溶接を行う際に、溶融スラグや溶融金属の漏出をより簡易且つ確実に防ぐことができる。
(9)上記(1)に記載の継手構造では、前記フランジの外面と前記溶接金属とに取り付けられた外面側当て金を更に備えてもよい。
 この構成によれば、エレクトロスラグ溶接又はエレクトロガスアーク溶接を行う際に、溶融スラグや溶融金属の漏出を簡易且つ確実に防ぐことができる。
(10)本発明の第二の態様は、ウェブ、フランジ、及びフィレットを各々有する一対のH形鋼を平坦な端面同士で接合するH形鋼の接合方法であって、上面及び下面が前記ウェブの端面全面にそれぞれ面接触するように、支圧鋼板を前記ウェブの端面同士の間に配置し、前記フランジの端面同士の間に形成された間隙を塞いだ状態で、前記フランジの端面同士をエレクトロスラグ溶接またはエレクトロガスアーク溶接する。
 この構成によれば、ウェブの端面同士が支圧鋼板を介して接合されるとともに、フランジの端面同士は溶接金属を介して接合されるため、圧縮応力を主に伝達するウェブの端面については溶接を必須としないメタルタッチの状態とすることができる。従って、H形鋼の端面に開先やスカラップ等を形成するための特別な加工を施すことなく、H形鋼の柱継手を効率良く製造することができる。
 本発明によれば、H形鋼にスカラップ等の特別な加工を施すことなく、H形鋼の柱継手を効率良く製造することができる。したがって、柱部材としてH形鋼を用いた建築構造物の生産性を向上して工期短縮に貢献することができる。特に、極厚H形鋼の場合にも、柱継手を効率良く製造することができる。
本明細書におけるH形鋼の方向や寸法等の呼称の説明図である。 本発明の一実施形態に係る継手構造の斜視図である。 同継手構造について、H形鋼の端面に対する支圧鋼板の幅寸法を示す図である。 同継手構造の側面図である。 同継手構造の内面側当て金の斜視図である。 同継手構造を得るためのH形鋼同士の接合方法の一例を説明するための分解斜視図である。 水冷銅当て金を用いた場合の接合方法を説明するための断面図である。 本発明の第一変形例に係る継手構造の斜視図である。 同継手構造について、H形鋼の端面に対する支圧鋼板の幅寸法を示す図である。 同継手構造の側面図である。 同継手構造の内面側当て金の斜視図である。 本発明の第二変形例に係る継手構造の斜視図である。 同継手構造について、H形鋼の端面に対する支圧鋼板の幅寸法を示す図である。 同継手構造の側面図である。 本発明の第三変形例に係る継手構造の斜視図である。 同継手構造について、H形鋼の端面に対する支圧鋼板の幅寸法を示す図である。 同継手構造の側面図である。 同継手構造の内面側当て金の斜視図である。
 以下、本発明の実施の形態を、図を参照して説明する。なお、本明細書および図面において、実質的に同一の機能構成を有する要素においては、同一の符号を付することにより重複説明を省略する。
 本発明は、圧延によって製造されるH形鋼の大入熱溶接特性の高さを活かして、エレクトロスラグ溶接またはエレクトロガスアーク溶接を用いて容易に製造できるH形鋼の継手構造を着想したものであり、特に柱部材として用いる圧延極厚H形鋼同士の接合に適している。
 まず、図1を参照して本明細書で用いる用語を説明する。
 図1に示すように、下記の実施形態で用いるH形鋼10は、その断面形状が、互いに平行な一対のフランジ11と、一対のフランジ11に直交して連接するウェブ12と、フランジ11とウェブ12との間に形成されるフィレット13とを有する。
 フィレット13は、フランジ11とウェブ12との境界の湾曲部分であり、断面形状における湾曲部分の端をR止まり14と呼称する。
 一対のフランジ11のうち、互いに外向きとなる面を外面11aと呼称し、互いに内向きとなる面を内面11bと呼称する。
 図1において、aは「フランジの幅」であり、bは「ウェブの内法高さ」であり、cは「フランジの厚さ」であり、dは「ウェブの厚さ」である。また、wfは「R止まり間フランジ幅wf」であり、フランジ内面の両フィレットR止まり間のフランジ幅方向距離を意味する。
 図2及び図3A~図3Cは、本発明の一実施形態に係るH形鋼の継手構造1の構成を説明する図である。
 本実施形態に係る継手構造1は、断面形状寸法が等しい一対のH形鋼10のウェブ12同士の間に、H形鋼10に作用する鉛直荷重を伝達する支圧鋼板2が配置され、支圧鋼板2を挟んでウェブ12同士が当接されて構成されている。つまり、一対のH形鋼10のウェブ12同士は、圧縮応力のみを伝達するメタルタッチにより当接されている。
 一方、曲げ座屈に対して抵抗する必要があるフランジ11同士は、エレクトロスラグ溶接により形成される溶接金属15を介して接合されている。従って、フランジ11同士は、メタルタッチではなく、完全溶け込み溶接により一体的に接合されている。
 すなわち、支圧鋼板2は、上面及び下面がウェブ12の平坦な端面の全面にそれぞれ面接触するとともに、側面が溶接金属15と一体的に融合するように、ウェブ12の端面同士の間に配置される。
 本実施形態に係る継手構造1においては、支圧鋼板2の幅wが、R止まり間フランジ幅wfと等しい。従って、支圧鋼板2の上面と下面とが、ウェブ12の端面全面とフィレット13の端面とを覆うように面接触した状態で、ウェブ12の中心面を略対称面にして配置されている。
 また、図3Aに示すように、支圧鋼板2の幅wに対して直角方向である支圧鋼板2の長さは、ウェブ12の内法高さbと等しい。
 支圧鋼板2の厚さt2は、支圧鋼板2を介して対向する一対のH形鋼10のフランジ11同士の間隙g(図2参照)と等しい。この間隙gは、エレクトロスラグ溶接により溶接金属15を形成するための間隙である。
 したがって、この間隙gにエレクトロスラグ溶接を行う際のノズルが挿入できるように、支圧鋼板2の厚さt2は、10mm~60mm程度、好ましくは15mm~30mm程度とする。
 なお、本明細書において「溶接金属」とは、溶接中に溶融凝固した金属であり、溶接熱影響部を含まない。
 図3Bに示すように、各フランジ11の外面11aおよび内面11bには、支圧鋼板2の厚さt2よりもH形鋼高さ方向の寸法が大きい外面側当て金3及び内面側当て金4が配置されている。
 外面側当て金3及び内面側当て金4は、図3Cに示すように略直方体の形状を有する。
 外面側当て金3及び内面側当て金4は、フランジ11同士をエレクトロスラグ溶接する際に溶融スラグや溶融金属が溶接範囲外へ流れ出ないように、H形鋼10、10同士の間隙gを塞ぐためのものである。
 本実施形態に係る継手構造1では、曲げ座屈への抵抗力を高めるために、鋼板からなる外面側当て金3及び内面側当て金4が、溶接後もH形鋼10に取り付けられている。すなわち、外面側当て金3及び内面側当て金4は、フランジ11と溶接金属15とに取り付けられた状態とされている。
 なお、本明細書において「H形鋼高さ方向」とは、柱部材として用いられるH形鋼10自体の材長方向を指す。
 本実施形態に係る継手構造1では、フランジ11の外面11aに設けられる外面側当て金3は、フランジ11同士の間隙gの外面側を塞ぐ平板状の鋼板である。そして、外面側当て金3のH形鋼10高さ方向の寸法は、H形鋼10同士の間隙g、すなわち支圧鋼板2の厚さt2よりも大きく、外面側当て金3のフランジ幅方向の寸法は、フランジ幅aと等しい。
 一方、フランジ11の内面11bに設けられる内面側当て金4は、図3Aに点線で示すように、支圧鋼板2の幅wを隔ててフランジ11の幅方向両側にそれぞれ配置される。したがって、内面側当て金4は、H形鋼10高さ方向の寸法が、H形鋼10同士の間隙gすなわち支圧鋼板2の厚さt2よりも大きく、フランジ幅方向の寸法が、フランジ11の端から支圧鋼板2の側面までの長さの平板である。
 本実施形態に係る継手構造1では、支圧鋼板2がフィレット13に対し面接触するように覆っているため、内面側当て金4は、フィレット13の形状を考慮する必要がなく、フランジ11の内面と支圧鋼板2の側面とに接する略矩形の平板を用いることができる。このような内面側当て金4が、図3Aに点線で示すように、両フランジ11の内面に、それぞれ支圧鋼板2を挟んで両側に配置される。
 以上のような外面側当て金3及び内面側当て金4を配置することにより、フランジ11同士の間隙gが塞がれて、フランジ11の端部と外面側当て金3及び内面側当て金4で囲まれた空間が形成され、エレクトロスラグ溶接により溶接金属15を形成することが可能となる。
 次に、H形鋼10の接合方法の一例を説明する。
 図4に示すように、被接合材である一対のH形鋼10のウェブ12同士の間に、R止まり間フランジ幅wfと等しい幅を有し、ウェブ12の端面全面とフィレット13の端面とに対し面接触するように覆う支圧鋼板2を、ウェブ12の中心面を略対称面にして配置する。
 そして、支圧鋼板2を挟んでウェブ12同士を当接し、さらに、一対のH形鋼10同士の間隙を塞ぐように、フランジ11の外面11aおよび内面11bに、鋼板からなる外面側当て金3及び内面側当て金4を配置する。
 その後、フランジ11同士の隙間を、エレクトロスラグ溶接により接合する。この場合、フランジ11同士の隙間と外面側当て金3及び内面側当て金4とで囲まれた空間に溶接ワイヤを挿入し、溶接を行う。
 尚、エレクトロスラグ溶接やエレクトロガスアーク溶接では、溶融スラグや溶融金属の流出を回避するため、溶接の進行方向を水平方向にすることができない。従って、フランジ幅方向を鉛直方向とした状態で行うことが好ましい。
 外面側当て金3及び内面側当て金4が鋼板の場合には、溶接後、H形鋼10に取り付けられたままの状態で継手構造1が構成される。外面側当て金3及び内面側当て金4として、水冷銅当て金、セラミックス製裏当て材、またはフラックス製裏当て材を用いる場合は、溶接後に取り外して繰り返し使用される。なお、外面側当て金3及び内面側当て金4を取り外した場合には、溶接金属15の表面は、フランジ11の外面および内面と面一となる。
 図5は、外面側当て金3及び内面側当て金4として水冷銅当て金を用いた場合の溶接方法の例を説明するものである。図5に示すように、フランジ11の外面11aに対し、H形鋼10同士の間隙の一部を塞ぐように外面側当て金3を配置し、溶接ワイヤ9による溶接位置に応じて外面側当て金3を順次摺動させる。
 本実施形態に係る継手構造1は、H形鋼10のウェブ12をメタルタッチによる当接とし、フランジ11をエレクトロスラグ溶接またはエレクトロガスアーク溶接による完全溶け込み溶接とすることで、H形鋼10の製品の端面をそのまま利用して、簡易且つ迅速にH形鋼同士を接合することができる。
 継手構造1は、例えば構真柱や免震構造の建物の柱等、主に鉛直荷重を支持するための極厚H形鋼の柱継手の構造であり、柱継手に特化することで、構造が簡略化され、加工数を削減することができる。すなわち、ウェブ12に開先加工して多層溶接する方法や、ウェブ12もエレクトロスラグ溶接等により溶接する方法に比べて、工数や時間を大幅に削減できる。
 なお、本実施形態において、極厚H形鋼とは、フランジの板厚が40mm以上のH形鋼を指す。
 なお、支圧鋼板2をウェブ12に隅肉溶接する場合、ウェブ12にせん断力を伝達させることができるため、せん断力に対する対抗力を効率的に高めることができる。本実施形態に係る継手構造1では、支圧鋼板2がフィレット13に対し面接触するように覆っているため、ウェブ12と支圧鋼板2の間に生じる段差部に当該隅肉溶接を行うことで、被溶接材(H形鋼)および支圧鋼板に開先加工等の特段の加工を施すことなく、せん断力の伝達が可能となる。
 また、エレクトロスラグ溶接でフランジ11同士を接合することにより、1パスで効率的且つ高品質な接合を行うことができ、従来極厚H形鋼等において行われていた、例えば被接合部材に開先加工し多層盛溶接で接合する方法に比べ、継手の製造時間を大幅に削減することができる。
 例えば、フランジ板厚100mmのH形鋼同士を溶接する場合、多層盛溶接では20時間以上を要するのに対し、エレクトロスラグ溶接の場合には30分程度で行うことができる。
 さらに、エレクトロスラグ溶接を行う際、支圧鋼板2の上面及び下面でH形鋼10のフィレット13を覆うことにより、極めて簡易な平板形状の当て金をフランジ11の外面、および必要によって内面に配置するだけで、被接合部材(H形鋼)への開先加工やスカラップ加工等を必要とせず、溶融スラグや溶融金属の漏出を簡易且つ確実に防ぐことができる。
 したがって、本実施形態に係る継手構造1によれば、極めて簡易な部品を用いるだけで、H形鋼10の接合面またはその近傍に特別な加工を施すことなく、H形鋼10の端面を、例えば鋸断加工あるいはガス溶断加工等により平坦に加工するのみで、高品質の柱継手構造を効率良く製造することができる。
 なお、上記実施形態では、鋼板からなる外面側当て金3及び内面側当て金4が、溶接後もH形鋼10に取り付けられた状態で継手構造1が構成されているが、外面側当て金3及び内面側当て金4は溶接後に取り外してもよい。この場合、外面側当て金3及び内面側当て金4として、水冷銅当て金、セラミックス製当て材、又はフラックス製当て材を用いることが好ましい。これにより、当て金を繰り返し使用することができ、継手構造1の製造を極めて経済的に行うことができる。
 以上、本発明の好適な実施形態について説明したが、本発明はこれらの例に限定されない。当業者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到しうることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと理解される。
 例えば、図6および図7A~図7Cに示す第一変形例に係る継手構造1Aのように、内面側当て金4の代わりに、前記フィレットの表面に面接触するR部、前記支圧鋼板が嵌合する凹部が形成された内面側当て金4Aを用いる構成としてもよい。
 このような内面側当て金4Aを用いることで、支圧鋼板2をウェブ12の端面全面とフィレット13の端面とに面接触させる場合であっても、エレクトロスラグ溶接を行う際に、溶融スラグや溶融金属の漏出をより簡易かつ確実に防ぐことができる。
 また、図8および図9A、図9Bに示す第二変形例に係る継手構造1Bのように、フランジ11の幅方向全長に亘り、支圧鋼板2の上面及び下面がフランジ11の端面の一部にそれぞれ面接触する構成としてもよい。
 この場合、支圧鋼板2の幅wは、H形鋼10のフランジ幅a(図1参照)と等しく、支圧鋼板2の幅wと直角方向の長さは、ウェブの内法高さbよりも長い。したがって、図9A、図9Bに示すように、支圧鋼板2の長さ方向の両端部は、一対のH形鋼10の両フランジ11間の隙間に埋設された状態で配置されている。この場合には、支圧鋼板2がフランジ11の内面側を塞いでいるため、内面側当て金4は不要であり、外面のみに、前述の図2、図3A~3Cの実施形態と同様の外面側当て金3が配置される。
 また、図10および図11A~図11Cに示す第三変形例に係る継手構造1Cのように、内面側当て金4の代わりにフィレット13の表面に面接触するR部、前記支圧鋼板の表面に面接触する凸部が形成された内面側当て金4Cを用いる構成としてもよい。
 この変形例に係る継手構造1Cでは、内面側当て金4CのR部、凸部がフィレット13の表面および支圧鋼板2の表面にそれぞれ面接触して、整形な(略直方体形状の)フランジ溶接開先空間を形成するため、支圧鋼板2の幅wをウェブの厚さと等しくすることができる。また内面側当て金4CのR部、凸部がフィレット13および支圧鋼板2に面接触しているため、エレクトロスラグ溶接を行う際に、溶融スラグや溶融金属の漏出をより簡易かつ確実に防ぐことができる。
 更に、上記実施形態では、フランジ11同士の接合をエレクトロスラグ溶接として説明したが、エレクトロガスアーク溶接でもよい。また、上記実施形態では、断面形状が等しい一対のH形鋼を用いたが、本発明が適用できる範囲で完全に等しくなくてもよい。
 本発明は、建築構造物等の主に圧縮力を受けるH形鋼の継手構造に適用できる。
1、1A、1B、1C 継手構造
2  支圧鋼板
3  外面側当て金
4、4A、4C  内面側当て金
10 H形鋼
11 フランジ
12 ウェブ
13 フィレット
14 R止まり
15 溶接金属

Claims (10)

  1.  ウェブ、フランジ、及びフィレットを各々有する一対のH形鋼を平坦な端面同士で接合した継手構造であって、
     前記フランジの端面同士の間に形成された溶接金属と、
     上面及び下面が前記ウェブの端面全面にそれぞれ面接触するとともに、側面が前記溶接金属と一体的に融合するように、前記ウェブの端面同士の間に配置される支圧鋼板と、
    を備えることを特徴とするH形鋼の継手構造。
  2.  前記溶接金属が、エレクトロスラグ溶接又はエレクトロガスアーク溶接により形成されている
    ことを特徴とする請求項1に記載のH形鋼の継手構造。
  3.  前記支圧鋼板と前記ウェブとが隅肉溶接されている
    ことを特徴とする請求項1に記載のH形鋼の継手構造。
  4.  前記支圧鋼板の上面及び下面が前記フィレットの端面にそれぞれ面接触する
    ことを特徴とする請求項1に記載のH形鋼の継手構造。
  5.  前記フランジの幅方向全長に亘り、前記支圧鋼板の上面及び下面が前記フランジの端面の一部にそれぞれ面接触する
    ことを特徴とする請求項1に記載のH形鋼の継手構造。
  6.  前記フランジの内面と前記溶接金属とに取り付けられた内面側当て金を更に備える
    ことを特徴とする請求項1に記載のH形鋼の継手構造。
  7.  前記内面側当て金に、前記フィレットの表面に面接触するR部と、前記支圧鋼板の表面に面接触する凸部とが形成されている
    ことを特徴とする請求項6に記載のH形鋼の継手構造。
  8.  前記内面側当て金に、前記フィレットの表面に面接触するR部と、前記支圧鋼板が嵌合する凹部とが形成されている
    ことを特徴とする請求項6に記載のH形鋼の継手構造。
  9.  前記フランジの外面と前記溶接金属とに取り付けられた外面側当て金を更に備える
    ことを特徴とする、請求項1に記載のH形鋼の継手構造。
  10.  ウェブ、フランジ、及びフィレットを各々有する一対のH形鋼を平坦な端面同士で接合するH形鋼の接合方法であって、
     上面及び下面が前記ウェブの端面全面にそれぞれ面接触するように、支圧鋼板を前記ウェブの端面同士の間に配置し、
     前記フランジの端面同士の間に形成された間隙を塞いだ状態で、前記フランジの端面同士をエレクトロスラグ溶接またはエレクトロガスアーク溶接する
    ことを特徴とするH形鋼の接合方法。
     
PCT/JP2016/082614 2015-11-26 2016-11-02 H形鋼の継手構造およびh形鋼の接合方法 WO2017090400A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
SG11201803846VA SG11201803846VA (en) 2015-11-26 2016-11-02 Joint structure of steel h-shapes and joining method of steel h-shapes
JP2017552337A JPWO2017090400A1 (ja) 2015-11-26 2016-11-02 H形鋼の継手構造およびh形鋼の接合方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015230440 2015-11-26
JP2015-230440 2015-11-26

Publications (1)

Publication Number Publication Date
WO2017090400A1 true WO2017090400A1 (ja) 2017-06-01

Family

ID=58763531

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/082614 WO2017090400A1 (ja) 2015-11-26 2016-11-02 H形鋼の継手構造およびh形鋼の接合方法

Country Status (3)

Country Link
JP (1) JPWO2017090400A1 (ja)
SG (1) SG11201803846VA (ja)
WO (1) WO2017090400A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7462492B2 (ja) 2020-07-01 2024-04-05 株式会社竹中工務店 梁接合構造

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5042024U (ja) * 1973-08-21 1975-04-28
JPS62240169A (ja) * 1986-04-11 1987-10-20 Kawasaki Steel Corp H形鋼の突合せ溶接接合方法
JPH10235497A (ja) * 1997-02-24 1998-09-08 Matsumura Kogyo:Kk ノンスカラップ工法による裏当て金物
JP2011132745A (ja) * 2009-12-25 2011-07-07 Nakajima Steel Pipe Co Ltd 鉄骨構造物
WO2011093533A1 (ja) * 2010-02-01 2011-08-04 株式会社アークリエイト 鉄骨連続小梁構造
JP2012241245A (ja) * 2011-05-20 2012-12-10 Nippon Steel Corp 大入熱溶接での溶接熱影響部靭性に優れた厚鋼板およびその製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4929847B1 (ja) * 1970-06-12 1974-08-08
JP2004332763A (ja) * 2003-04-30 2004-11-25 Yakumo Kk アクティブ・パッシブ切換式免震装置
JP2006051522A (ja) * 2004-08-11 2006-02-23 Okudo Kinzoku:Kk H型鋼溶接継手構造

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5042024U (ja) * 1973-08-21 1975-04-28
JPS62240169A (ja) * 1986-04-11 1987-10-20 Kawasaki Steel Corp H形鋼の突合せ溶接接合方法
JPH10235497A (ja) * 1997-02-24 1998-09-08 Matsumura Kogyo:Kk ノンスカラップ工法による裏当て金物
JP2011132745A (ja) * 2009-12-25 2011-07-07 Nakajima Steel Pipe Co Ltd 鉄骨構造物
WO2011093533A1 (ja) * 2010-02-01 2011-08-04 株式会社アークリエイト 鉄骨連続小梁構造
JP2012241245A (ja) * 2011-05-20 2012-12-10 Nippon Steel Corp 大入熱溶接での溶接熱影響部靭性に優れた厚鋼板およびその製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7462492B2 (ja) 2020-07-01 2024-04-05 株式会社竹中工務店 梁接合構造

Also Published As

Publication number Publication date
JPWO2017090400A1 (ja) 2018-09-06
SG11201803846VA (en) 2018-06-28

Similar Documents

Publication Publication Date Title
JP5754238B2 (ja) 柱梁接合構造
JP6638349B2 (ja) H形鋼の継手構造、h形鋼同士の接合方法、および当て金
JP5754262B2 (ja) 柱梁接合構造
WO2017090400A1 (ja) H形鋼の継手構造およびh形鋼の接合方法
JP6349647B2 (ja) 接合方法
JP2011102512A (ja) 柱と梁の溶接接合構造
JP5935395B2 (ja) 溶接組立四面箱形断面部材の角溶接用開先部
JP5953744B2 (ja) 溶接四面箱形断面部材の角溶接用開先部
JP6179757B2 (ja) 建築物の異径柱接合用柱梁接合構造
JP2005307722A (ja) 開先付き異形棒鋼とその杭頭接合構造および施工法
JP5982879B2 (ja) 溶接組立h形鋼
JP2012030237A (ja) 構造部材の溶接継手構造及びその溶接方法
JP5527945B2 (ja) 柱梁接合部構造
JP2010106515A (ja) 四角形鋼管柱
JP6703303B2 (ja) 柱梁仕口部及び柱梁接合方法
WO2021182516A1 (ja) 溶接構造体の製造方法
JP6122517B1 (ja) 配管のアンカプレートおよびその設置方法
JP5367790B2 (ja) 橋桁の製造方法
JP6720563B2 (ja) 溶接接合構造
JP4990317B2 (ja) 鉄骨構造物
JP7471996B2 (ja) 外ダイヤフラム用鋼片、柱梁接合構造および柱梁接合方法
JP6319027B2 (ja) 溶接継手、溶接継手の製造方法
JP2013111581A (ja) 接合体及び接合体からなる車両、接合体の製造方法
WO2019215942A1 (ja) H形断面部材の接合構造およびその製造方法
CN112399903B (zh) 热连接两个工件区段的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16868349

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017552337

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 11201803846V

Country of ref document: SG

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16868349

Country of ref document: EP

Kind code of ref document: A1